

Finalist Reports

2024-2025

https://supercomputingchallenge.org

https://supercomputingchallenge.org/

Printed by PNM

Compiled by the

Supercomputing Challenge

Cover: Analyzing Pre-Indo-European Theory of Etruscan

Language Origins Using Topological Data Analysis

Welch Home School

Team Member: Helena Welch

Sponsor: Cindy Welch

Winner in the Technical Poster Competition

Notification: These final reports are presented in an un-abridged form, though printing might be

done in black and white. Complete copies of the final reports, including color graphics, along

with the code, are available from the archives of Supercomputing Challenge web site:

https://supercomputingchallenge.org .

1

New Mexico Supercomputing Challenge

2024 – 2025 Finalist Reports

Table of Contents

About the New Mexico Supercomputing Challenge

For more information, please visit our website at https://supercomputingchallenge.org ……. 2

2024—2025 Supercomputing Challenge Awards ….……………………….. 4

Sponsors ……………………………………………………………….……… 5

Scholarship winners ….……………………………………….……………… 6

Participants ………………………………………………………………….... 8

Judges ……………………………………………………………….……....... 10

Finalist Reports ……………………………………………………………… 13

1. Los Alamos High School, Constraining the Neutron Star Equation of State

with Observational Data

2. Los Alamos High School, Point Cloud Surface Reconstruction

3. La Cueva High, You Only Look Once Machine Learning Solution to Orbital

Debris Detection

4. Albuquerque Academy, Predicting the drug and micro-/nano-plastic

interactions inside the body using molecular dynamics modeling and machine

learning

5. Santa Fe Prep, Understanding and Predicting Trail Maintenance Needs Using

Machine Learning

6. Santa Fe Prep, Investigating Intersubjective Realities From Novel NLP and

Chaos Theory Approach

7. Welch Homeschool, Analyzing Pre-Indo-European Theory of Etruscan

Language Origins Using Topological Data Analysis

8. Welch Homeschool, Modeling Fast Moving Objects in Crowded Astronomical

Neighborhoods

https://supercomputingchallenge.org/

2

 Supercomputing Challenge Vision

The Vision of the Supercomputing Challenge is to be a nationally

recognized program that promotes computational thinking in science

and engineering so that the next generation of high school graduates

is better prepared to compete in an information-based economy.

Supercomputing Challenge Mission

The Mission of the Supercomputing Challenge is to teach teams of middle and high school

students how to use powerful computers to analyze, model and solve real world problems.

About the Supercomputing Challenge

The Supercomputing Challenge (the Challenge) is an exciting program that offers a truly unique

experience to students in our state. The opportunity to work on the most powerful computers in

the world is currently available to only a very few students in the entire United States, but in

New Mexico, it is just one of the benefits of living in the "Land of Enchantment."

The Challenge is a program encompassing the school year in which teams of students complete

science projects using high-performance computers. Each team of up to five students and a

sponsoring teacher defines and works on a single computational project of its own choosing.

Throughout the program, help and support are given to the teams by their project advisors and

the Challenge organizers and sponsors.

The Challenge is open to all interested students in grades 5 through 12 on a nonselective basis.

The program has no grade point, class enrollment or computer experience prerequisites.

Participants come from public, private, parochial and home-based schools in all areas of New

Mexico. The important requirement for participating is a real desire to learn about science and

computing.

Challenge teams tackle a range of interesting problems to solve. The most successful projects

address a topic that holds great interest for the team. In recent years, ideas for projects have come

from Astronomy, Geology, Physics, Ecology, Mathematics, Economics, Sociology, and

Computer Science. It is very important that the problem a team chooses is what we call "real

world" and not imaginary. A "real world" problem has measurable components. We use the term

Computational Science to refer to science problems that we wish to solve and explain using

computer models.

Those teams who make significant progress on their projects can enter them in the competition

for awards of cash and scholarships. Team plaques are also awarded for: Teamwork, Written

Report, Professional Presentation, Research, Creativity and Innovation, Environmental

Modeling, High Performance, Science is Fun and the Judges' Special Award, just to name a few.

3

The Challenge is offered at minimal cost to the participants or the school district. It is sponsored

by a partnership of federal laboratories, universities, and businesses. They provide food and

lodging for events such as the kickoff conference during which students and teachers are shown

how to use computers, learn programming languages, how to analyze data, write reports and

much more.

These sponsors also supply time on the supercomputers and lend equipment to schools that need

it. Employees of the sponsoring groups conduct training sessions at workshops and advise teams

throughout the year. The Challenge usually culminates with an Expo and Awards Ceremony in

the spring at the Los Alamos National Laboratory or in Albuquerque. During the Covid

pandemic, three Expo and Awards Ceremonies, as well as two Kickoffs, were held virtually.

History

The New Mexico High School Supercomputing Challenge was conceived in 1990 by former Los

Alamos Director Sig Hecker and Tom Thornhill, president of New Mexico Technet Inc., a

nonprofit company that in 1985 set up a computer network to link the state's national

laboratories, universities, state government and some private companies. Sen. Pete Domenici,

and John Rollwagen, then chairman and chief executive officer of Cray Research Inc., added

their support.

In 2001, the Adventures in Supercomputing program formerly housed at Sandia National

Laboratories and then at the Albuquerque High Performance Computing Center at the University

of New Mexico merged with the former New Mexico High School Supercomputing Challenge to

become the New Mexico High School Adventures in Supercomputing Challenge.

In 2002, the words "High School" were dropped from the name as middle school teams had been

invited to participate in 2000 and had done well.

In the summer of 2005, the name was simplified to the Supercomputing Challenge.

In 2007, the Challenge began collaborating with the middle school Project GUTS, (Growing Up

Thinking Scientifically), an NSF grant housed at the Santa Fe Institute.

In 2013, the Challenge began collaborating with New Mexico Computer Science for All, an NSF

funded program based at the Santa Fe Institute that offers a comprehensive teacher professional

development program in Computer Science including a University of New Mexico Computer

Science course for teachers.

4

2024—2025 Supercomputing Challenge Awards

35th Annual New Mexico Supercomputing Challenge winners

5

Supercomputing Challenge students across the state have completed their computational projects

on topics such as cancer, astrophysics, transportation, and environmental issues. This year the

Supercomputing Challenge celebrated their 35th annual Expo and Awards Ceremony on April 25,

2025 which featured student final presentations, judging, tours and an award ceremony held at

the Santa Fe Community College.

Sponsors

In this program, middle school and high school students are mentored by a community of

volunteer scientists, computer programmers and professors. Several alumni also serve as

volunteers. The Supercomputing Challenge partners include the New Mexico Consortium, Los

Alamos National Laboratory, Sandia National Laboratory, Public Service Company of New

Mexico, Bigbyte, Westwind, NMTIE, Simtable/Redfish Group and most New Mexico colleges

and universities. A complete list of sponsors and supporters of the Challenge is on the website at

https://supercomputingchallenge.org/24-25/sponsors. Do you want to become a supporter of the

Supercomputing Challenge? Please email us at consult@supercomputingchallenge.org for

details.

“These students never cease to amaze me with the breadth and depth of their projects,” said

David Kratzer, Executive Director of the Supercomputing Challenge. “We are so proud to

showcase the incredible talent and persistence they bring to every phase of the competition.”

By participating in the Challenge, students learn to be prepared and successful in any career or

college. They learn to be persistent by practicing their computer programming skills, completing

research, and meeting deadlines to cross the finish line. The Challenge likes to refer to itself as

https://newmexicoconsortium.org/
https://www.lanl.gov/
https://www.lanl.gov/
https://www.sandia.gov/
https://www.pnm.com/
https://www.pnm.com/
https://www.bigbyte.cc/
https://www.westwindcomputerproducts.com/
https://nmtie.net/
https://www.simtable.com/
https://redfish.com/
https://supercomputingchallenge.org/24-25/sponsors

6

an academic marathon, and these students should be recognized as critical thinkers,

communicators, collaborators, and computer scientists.

Scholarships

Scholarships worth $5,400 were awarded to participating students. Many other awards were

distributed ranging from $50 per team member for being finalists in the academic marathon to

team prizes of up to $1000 for 1st and additional prizes for other categories such as teamwork,

research, programming ability, and community impact. Random drawings were held for $50

door prizes.

The Supercomputing Challenge is open to New Mexico middle and high-school students,

including home-schooled students. Students work in teams and follow their own interests to

choose a topic to computationally model. New students interested in becoming involved can

make plans to start the next academic year, by contacting consult@supercomputingchallenge.org

Finalist teams receive banners to hang in their schools

A complete list of all winning student teams.

https://supercomputingchallenge.org/24-25/expo-AllWinnersList.pdf

More about the Supercomputing Challenge

“The goal of the yearlong event is to teach student teams how to use powerful computers to

analyze, model and solve real-world problems,” said David Kratzer, Executive Director.

“Participating students improve their understanding of technology by developing skills in

scientific inquiry, modeling, computing, communications, and teamwork.”

https://supercomputingchallenge.org/24-25/marathon
mailto:consult@supercomputingchallenge.org
https://supercomputingchallenge.org/24-25/expo-AllWinnersList.pdf

7

The New Mexico Supercomputing Challenge teaches written and oral communication,

collaboration with peers and professionals, critical thinking including research and coding

including computer modeling to middle and high school students throughout the state. Any New

Mexico middle-school or high-school student, including home-schooled students are eligible to

participate in the Supercomputing Challenge. Students follow their own interests to choose a

topic to model.

Scholarship winners

Scholarships worth $5,400 were awarded at the Supercomputing Challenge Awards Ceremony

to three seniors: Andrew Morgan, Ximena Serna and Elisea Jackson (not pictured).

All final reports are online.

https://supercomputingchallenge.org/24-25/final-reports-view

More information about the Supercomputing Challenge can be found at:

https://supercomputingchallenge.org

https://supercomputingchallenge.org/24-25/final-reports-view
https://supercomputingchallenge.org/

8

Teams Finishing the Challenge and submitting final reports:

School: Albuquerque Academy

Predicting the drug and micro-/nano-plastic interactions inside the body using molecular

dynamics modeling and machine learning

Team Member: Ahana Koushik

Sponsor: Jay Garcia

School: Albuquerque Academy

Additive Manufacture Kinetics and Thermodynamics Model

Team Member: Harrison Schiek

Sponsors: Jay Garcia, Alex Benedict

School: Justice Code

The Impact Of Food Insecurity In New Mexico

Team Members: Mekhi Bradford, Lukas Lee Baires

Sponsor: Becky Campbell

School: Justice Code

THE EFFICIENCY OF MAGNETIC TRANSPORTATION

Team Members: Kolton Walker, Delight Emma-Asonye, Junior Offor, Leilani Baty

Sponsor: Becky Campbell

Mentor: Kevin Walker

School: La Cueva High School

You Only Look Once Machine Learning Solution to Orbital Debris Detection and Classification

Team Members: Hadwyn Link, Ximena Serna

Sponsor: Jeremy Jensen

Mentor: Mario Serna

School: Los Alamos High School

Constraining the Neutron Star Equation of State with Observational Data

Team Member: Tate Plohr

Sponsor: JeeYeon Plohr

Mentors: Ingo Tews, Rahul Somasundaram

School: Los Alamos High School

Point Cloud Surface Reconstruction

Team Member: Andrew Morgan

Mentor: Nathaniel Morgan

School: Mountain Elementary

Modeling Urban Heat Islands and Rural Areas

Team Member: Emmaline Fadner

Sponsor: Zeynep Unal

Mentor: Cristie Fadner

9

School: New Futures School

How Can Virtual Reality Help Kids Escape the Confines of Hospitals by Entering New Worlds?

Team Member: Xa’Ria Rush

Sponsor: Rachel Kilman

Mentor: Richard Barrett

School: New Futures School

Investigating the Effects of Screen Time on Infants Aged 0-2

Team Members: Neveah Birner, Emily Boucher, Chiara Haney, Amari Solomon-Iule

Sponsor: Rachel Kilman

Mentor: Gennie Barrett

School: New Mexico Academy for the Media Arts

The Effects of Mycorrhizal Fungal Networks and

Native Species on Plant Health in Arid Environments

Team Members: Eduardo Dorado, Ana Sofia Rodriguez, Zaaliyah Thomas

Sponsor: Tanya Mueller

School: New Mexico School for the Arts

Melenoma

Team Members: Elisea Jackson, Megan Odom

Sponsors: Sarah Rowe, Acacia McCombs

Mentor: Felina Rivera Calzadillas

School: Santa Fe Preparatory School

Investigating Intersubjective Realities From Novel NLP and Chaos Theory Approach

Team Member: Camila Carreon

Sponsor: Jocelyn Comstock

Mentor: Mark Galassi

School: Santa Fe Preparatory School

Utilizing YouTube Data as a Tool for Tracking the Spread of COVID-19

Team Member: Inho Ryu

Sponsor: Jocelyn Comstock

Mentor:

School: Santa Fe Preparatory School

Understanding and Predicting Trail Maintenance Needs Using Machine Learning Techniques

Team Members: Luke Rand, Isaac Olson

Sponsor: Jocelyn Comstock

School: Santa Fe Preparatory School

Simulating Interactions Between Varied Predators & Preys

Team Member: Marlow Lichty

Sponsor: Jocelyn Comstock

Mentor: Clint Hubbard

10

School: Truman Middle School

Exploring the Moon with VEX Robotics

Team Members: Josue Ochoa, Kaleb Martinez

Sponsor: Natali Barreto Baca

School: Truman Middle School

Growing Plants on Mars with CyberBot Robotics

Team Members: Carlos Cantu, Zinoc Fang

Sponsor: Natali Barreto Baca

School: Welch Homeschool

Modeling Fast Moving Objects in Crowded Astronomical Neighborhoods

Team Member: Kalliope Luna Welch

Sponsor: Cindy Welch

Mentor: Paul Welch

School: Welch Homeschool

Analyzing Pre-Indo-European Theory of Etruscan Language Origins Using Topological Data

Analysis

Team Member: Helena Welch

Sponsor: Cindy Welch

Mentor: Paul Welch

Judges

Leila Alhemali, Simtable

Char Arias, Sandia National Laboratories/Retired

Richard Barrett, Sandia National Laboratory/Retired

Nick Bennett, TLG Learning

Hope Cahill, Santa Fe Public Schools

Sharmistha Chakrabarti, Los Alamos National Laboratory

Rusty Davis, Los Alamos National Laboratory

Creighton Edington, Rural Education Advancement Program

Susan Gibbs, Project GUTS

Stephen Guerin, Simtable

Omar Ishak, Los Alamos National Laboratory

Elizabeth Yakes Jimenez, University of New Mexico

Philip Jones, Los Alamos National Laboratory

11

Will Jones, Los Alamos National Laboratory

David Kratzer, Los Alamos National Laboratory/Retired

Maximo Lazo, Central New Mexico College

Scott Levey, Sandia National Laboratories

Kasra "Kaz" Manavi, Simtable

Patty Meyer, Supercomputing Challenge

Ziyi Niu, Eastern New Mexico University

Joseph Olonia, Central New Mexico Community College

James Overfelt, Sandia National Laboratories

Mark Petersen, Los Alamos National Laboratory

Lee Rand, Sun Mountain Capital

Lonnie Rednour, San Juan College

Dana Roberson, Central New Mexico College

Thomas Robey, Gaia Environmental Sciences

Dorian Sims, Westwind Computer Products Inc.

Tim Thomas, Sandia National Laboratories

Michael Trahan, Sandia National Laboratories

Geoff Valdez, Los Alamos National Laboratory

Eduardo Ceh Varela, Eastern New Mexico University

Anneliese Ward, University of New Mexico

Kyreen White, University of NM/Challenge Alumni

Christin Whitton, Los Alamos National Laboratory

Kaley Woelfel, BlueHalo

Do you want to become a supporter of the Supercomputing Challenge?

Please email us at consult@supercomputingchallenge.org for details.

12

Constraining the Neutron Star Equation of State
with Observational Data

New Mexico
Supercomputing Challenge

Final Report
April 1, 2025

Los Alamos High School
Tate Plohr

Teacher:
JeeYeon Plohr

Mentors:
Ingo Tews, Rahul Somasundaram

1

EXECUTIVE SUMMARY

Neutron stars are remnants of the cores of massive stars after they undergo supernovae,

powerful explosions, at the end of their lives. Neutron stars are so dense that electrons are forced

into atomic nuclei, where they combine with protons to form neutrons. They were theoretically

predicted in the 1930s and first observed in the 1960s. Since then, much research has been done

to understand the properties of the neutron stars. In particular, the Equation of State for the

neutron star is an active research area for its importance in astrophysics simulations as well as in

condensed matter physics. In the last few years, unprecedented observational data from the

Neutron star Interior Composition Explorer (NICER) and the Laser Interferometer

Gravitational-wave Observatory (LIGO) on neutron stars became available, making it possible to

test out numerous theories.

In nuclear physics, there are many proposed Equations of State (EOSs) for neutron stars

based on theories with various assumptions and approximations. To find the true EOS for

neutron stars, we adopted a data-oriented, model-agnostic approach, based on random sampling

and Bayesian analysis. Starting with many possible EOSs, we utilized recent observational data

of neutron stars to constrain these candidates. The prediction of the 90th percentile range of the

radius of a 1.4-solar-mass neutron star provides a quantitative measure of the constraint and can

be compared to other works.

One important question to be answered by research on the neutron star EOS is the

composition of the core. That is, whether the cores of neutron stars are made of nucleonic matter,

like the outer layers, or instead, it consists of quarks or exotic states of matter. Using the

constrained set of EOSs, we investigated the state of matter at the core. By analyzing the

structure of the likely EOS curves, I find the probability that the core is made of nucleons

relative to the probability of deconfined quark matter. I find that nucleonic matter is strongly

favored over deconfined quark matter. Specifically, nucleonic matter is 21 times more likely than

quark matter.

2

Table of Contents

I. Introduction
 1.1 Neutron Stars and EOS
 1.2 Tolman-Oppenheimer-Volkoff (TOV) Equations

II. Data

 2.1 Maximum Mass Data
 2.2 NICER
 2.3 LIGO

III. Methods

IV. Procedure

V. Computation

 5.1 TOV solver
 5.2 Probability Density Function: Discrete Data and Kernel Density Estimator (KDE)
 5.3 Posterior Analysis: Phase Transition Locator

VI. Results

VII. Conclusion

Acknowledgements

Appendix: Bimodal Analysis of PSR J0030+0451

References

3

I. INTRODUCTION

1.1 Neutron Stars and Equation of State

All stars begin as stellar nebulae and are stabilized by nuclear fusion. Over millions or

billions of years, they exhaust their fuel for fusion and can evolve into red giants or supergiants.

The most massive stars undergo a supernova explosion, leaving behind a compact remnant.

Lighter stars form white dwarfs, medium-mass stars evolve into neutron stars, and the most

massive stars collapse into black holes. In this paper, I examine neutron stars, with a particular

focus on their Equation of State (EOS), which is essential for understanding their properties.

Neutron stars are the densest observable objects in the universe, formed during the

supernova explosions of red supergiant stars. A typical neutron star weighs about 1.4 times the

mass of the Sun and has a radius between 10 and 12 km (Lattimer and Prakash, 2001), making

the neutron star's core density exceed that of atomic nuclei. They are so dense that one sugar

cube of neutron star matter would weigh 10 billion tons on Earth, or roughly 30,000 Empire

State Buildings. However, we do not have reliable models of the extreme densities inside neutron

stars. This is why studying neutron stars is crucial, since it allows physicists to create more

refined models describing all matter at densities not currently achievable on Earth.

 Neutron stars have several distinct layers: an atmosphere, outer crust, inner crust, outer

core, and inner core (see Fig. 1). The atmosphere is a thin layer composed of hydrogen, helium,

and carbon. Beneath it lies the solid outer crust, made up of ions and electrons arranged in a

lattice structure. Below the outer crust is the inner crust, where nuclei are compressed so tightly

that they can form “nuclear pasta” (Caplan and Horowitz, 2017). In the outer core, a neutron

superfluid and a proton superconductor coexist. Finally, there is the inner core, where the

composition is unknown due to the extremely high density. It may consist of neutrons and

protons like the outer core, or it could be made of exotic matter, such as deconfined quark matter

or (keep? ***) “hyperons,” which are subatomic particles that weigh more than protons and

neutrons (Benhar, O. et al. (eds.), 2024).

Neutron stars provide an effective laboratory for studying matter and the laws of physics

at extreme densities on the threshold of forming a black hole. Constraining the neutron star EOS

improves our understanding of the interaction between the strong force and gravity.

4

Figure 1: Inner structure of a neutron star.

 The Equation of State (EOS) is a relationship between thermodynamic state variables

such as density, pressure, temperature, energy, etc. For neutron star matter, we generally relate

the pressure and the energy density or number density. At low densities, Chiral Effective Field

Theory (Chiral EFT) provides a well-established description of the strong force between

nucleons (neutrons and protons) (Epelbaum et al., 2008). However, Chiral EFT breaks down at

high densities. Beyond the breakdown density, many models have been proposed to describe the

higher-density regime, each depending on different underlying physical assumptions and

approximations. The uncertainty in this regime is represented by the blue region in Fig. 2. Even

the precise value of the breakdown density remains uncertain (Capano et al., 2020). In this work,

I assume the breakdown density to be 1.5 , where is the saturation density (1.6 /), the 𝑛
𝑠

𝑛
𝑠

𝑓𝑚3

density of an atomic nucleus. This follows Dietrich et al., 2020.

5

Figure 2: The Nuclear Matter Equation of State. The low-density regime is well constrained
by theory. The regime beyond the breakdown density, however, is not well understood, and many
possible EOSs have been proposed.

The purpose of this paper is to search for the unified EOS that describes all neutron

stars. My approach involves generating 5,000 EOS samples that are constructed using Chiral

EFT in the low-density regime and are random in the high-density regime (Tews, 2024). I use

random samples to explore all possibilities in the high-density regime, to account for the

numerous models that have been proposed. By adopting a model-agnostic approach, I allow the

data to determine which EOSs are more probable. Following Dietrich et al., 2020, I construct an

analysis framework with a Python program that converts the EOS curves into mass-radius

curves, which are explained in the next section. Then, I combine the analysis of multiple neutron

star datasets with existing nuclear theory to find the most probable EOSs using Bayesian

statistical methods.

This framework is based on the hypothesis that, even though neutron stars have different

sizes and masses, they all follow the one, true Neutron Star EOS. Therefore, every neutron star

must fall somewhere on the one, true mass-radius curve. I am trying to find this mass-radius

curve that predicts the mass-radius observations of several neutron stars. Once I calculate the

probabilities of the EOS curves, I examine their predictions of neutron star properties. In

particular, the composition of the inner core, i.e., whether it is nucleonic (protons and

neutrons) like the outer core or deconfined quark matter (QM), is encoded in the EOS

curves. To illustrate this point, let us consider water and vapor. When vapor condenses to water,

6

its density jumps with the sound speed increasing in proportion. This is manifested as a plateau

in pressure vs. energy density. We can make analogous statements about nucleonic and

deconfined quark matter. If the core consists of neutrons and protons, pressure will increase

monotonically with energy. On the other hand, if the matter in the core has gone through a phase

transition to become quark matter (QM), the pressure-energy curve will have a plateau. In other

words, a change in the composition is likely manifested in the structure of EOS curves.

Therefore, by analyzing the structure of the more probable EOS curves, I find out what the core

is made of.

By reducing the uncertainty in the Equation of State, I identify which high-density

models of particle physics are most accurate and best describe the properties of neutron stars.

The EOS plays a crucial role in astrophysical simulations, so finding the true EOS helps us

understand many phenomena of neutron stars. For example, when two neutron stars merge, new

elements are created through what is known as the rapid process or r-process. A large fraction of

natural elements heavier than iron are formed in such events, meaning that most objects in

everyday life are made of elements from neutron stars. Physicists try to understand the r-process

using computer simulations where the EOS is an essential component. Therefore, knowledge of

the state of neutron stars is crucial in understanding how these elements were made and why

some elements exhibit certain properties (Cowan et al. 2021).

1.2 Tolman-Oppenheimer-Volkoff Equations and Mass-Radius curves

To constrain the Neutron Star EOS with mass-radius data, I calculate the masses and radii

of neutron stars predicted by each EOS by solving the Tolman-Oppenheimer-Volkoff (TOV)

Equations, which describe a spherically symmetric object, such as a neutron star (Oppenheimer

and Volkoff, 1939; Tolman, 1939; Camenzind, 2007; Gandolfi et al., 2019). The details of a

solver I wrote, using the forward Euler method in Python are in the appendix. These equations

are based on the equilibrium between relativistic gravity and the pressure in nuclear matter. The

TOV equations are Ordinary Differential Equations (ODEs):

 (1)
𝑑𝑚
𝑑𝑟 = 4 π 𝑟2 ϵ(𝑃),

7

 (2)
𝑑𝑃
𝑑𝑟 =

−𝐺 𝑚(𝑟) ϵ(𝑃)

𝑟2 𝑐2 1 + 4 π 𝑟3 𝑃

𝑚(𝑟) 𝑐2() 1 + 𝑃

ϵ(𝑃)() 1 − 2 𝐺 𝑚(𝑟)

𝑟 𝑐2()−1

,

where is the mass within the sphere of radius ; is the pressure on the surface of that 𝑚(𝑟) 𝑟 𝑃(𝑟)

sphere; the total energy density is specified by the EOS. The first factor corresponds to ϵ(𝑃)

Newtonian gravity, the next three terms are relativistic corrections. To model a neutron star, I

solve a boundary condition problem for the TOV equations with many choices of the central

pressure to find the total mass M and radius R of the neutron star. For each choice of , I 𝑃
𝑐

𝑃
𝑐

integrate the TOV equations with respect to from and at until the 𝑟 𝑃 = 𝑃
𝑐

𝑚 = 0 𝑟 = 0

pressure drops to zero, at which point and . In this way, I obtain a curve relating 𝑟 = 𝑅 𝑚 = 𝑀

the total mass M and radius R of the neutron star for a range of choices of the central pressure,

which is the mass-radius curve for the EOS. A more detailed explanation of how to solve the

TOV equations is in the Appendix.

In Fig. 3, I illustrate the result of integrating the TOV equations for an EOS to give its

mass-radius curve. There is a one-to-one correspondence between the two curves so the

probability of the mass-radius curve is equal to the probability of the corresponding EOS. In Fig.

4, I show my 5000 EOS samples and their corresponding mass-radius curves, obtained by my

TOV solver.

Figure 3: Integrating the TOV equations for each EOS results in a curve in the mass-radius
plane.

8

Figure 4: Neutron star mass-radius curves predicted by 5000 sample EOSs.

II. DATA

In this section, we review the three types of observational data on neutron stars that have

been used in this work: data from radio observations, NICER X-ray observations, and LIGO

gravitational-wave data. These public datasets are available in the form of tables. For instance,

NICER data have thousands of pairs of mass and radius values. Collectively, they represent a

probability distribution. The areas where there are more data points (of mass and radius)

correspond to higher probabilities. I convert this table of discrete points into a probability

distribution function using a Kernel Density Estimator or KDE, which is a standard statistical

method. I utilized a KDE method in SciPy, a Python library. More details about the KDE can be

found in the appendix.

2.1 Maximum Mass Data

 The maximum mass data helps determine which mass-radius curve is more probable

based on its prediction of the maximum mass of a neutron star. This data includes three pulsars

that are contenders for the most massive neutron star observed (although we cannot be certain

which one is the most massive due to measurement uncertainties). These massive pulsars provide

a lower bound for how massive neutron stars can be (Rezzolla, et al., 2018).

The data also includes a gravitational-wave event where two neutron stars collided,

resulting in the lowest mass black hole we have observed. This black hole provides an upper

bound on the maximum mass a neutron star can have (Abbott et al., 2017).

2.2 NICER Data

 The Neutron Star Interior Composition Explorer (NICER) is an X-ray telescope onboard

the International Space Station (ISS) that observes pulsars, rapidly rotating neutron stars. Pulsars

have magnetic fields that emit X-rays from areas known as hotspots. NICER observes these
9

X-rays and obtains a “pulse profile.” These pulse profiles do not reveal much on their own, so

researchers perform simulations of neutron stars with various parameters, including mass and

radius. By comparing the resulting pulse profile from the simulation with the real pulse profile,

mass and radius can be estimated. Among numerous neutron star observations, three analyses of

neutron star pulse profiles are considered most credible and are utilized in this paper. For

simplicity and clarity, I label these three NICER datasets in Table 1.

 NICER 1 NICER 2 NICER 3

Neutron star (pulsar) PSR J0030+0451
(Miller et al., 2019;
Raaijmakers et al.,
2019)

PSR J0437-4715
(Choudhury et al.,
2024)

PSR J0740+6620
(Miller et al., 2021;
Riley et al., 2021)

Table 1: Labels for the NICER data

I note that the PSR J0030+0451 pulse profiles have recently been reanalyzed using an

updated framework (Vinciguerra et al., 2024) that incorporates extra information. The new

analysis yielded two modes in mass and radius, meaning two distinct pairs of mass and radius are

likely. I identify which mode of mass and radius is more consistent with the observations of other

neutron stars and present the result in an Appendix.

2.3 LIGO/VIRGO Data

The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two large

observatories aimed at detecting gravitational waves using laser interferometry. VIRGO, named

after a galaxy, is another such observatory in Europe. The collaboration between multiple

detectors is crucial for gravitational wave measurement. Gravitational waves are released when

two massive objects rapidly orbit each other and cause ripples in spacetime. These gravitational

waves depend on the Chirp Mass (a combination of the masses of the two objects), the mass ratio

between the objects, and the tidal deformability of each object, among other parameters. Roughly

speaking, a greater Chirp Mass leads to a higher frequency and a larger change in frequency over

time. Additionally, if the combined radius is smaller, the peak frequency is higher. Similar to

NICER, researchers determine properties of neutron stars using simulations of

gravitational-wave signals that are compared with observations (Abbott et al., 2017).

10

III. METHOD

In order to calculate the probability of an EOS using data, I utilized Bayesian analysis, a

statistical method for finding the probability of a statement (e.g., that a hypothesis holds or

certain data is observed) given another statement (Kurt, 2019). Bayesian analysis is based on

Bayes’ theorem, which states that the conditional probability of hypothesis given data 𝐻 𝐷

equals the conditional probability of given times the probability of divided by the 𝐷 𝐻 𝐻

probability of : 𝐷

 , (3) 𝑃(𝐻|𝐷) =
𝑃(𝐷|𝐻) 𝑃(𝐻)

𝑃(𝐷)

which follows from the definition of conditional probability, . 𝑃(𝐻|𝐷) = 𝑃(𝐻 𝑎𝑛𝑑 𝐷)/𝑃(𝐷)

Bayes’ Theorem provides a rule for updating the prior probability, , of the hypothesis to the 𝑃(𝐻)

posterior probability, , to account for the data . 𝑃(𝐻|𝐷) 𝐷

In the context of this paper, the conditional probability of an EOS given several datasets

is equal to the product of the conditional probabilities of each dataset:

 (4) 𝑃(𝐸𝑂𝑆|𝑑𝑎𝑡𝑎) = 𝑃(𝐸𝑂𝑆|𝑀
𝑚𝑎𝑥

) × 𝑃(𝐸𝑂𝑆|𝑁𝐼𝐶𝐸𝑅) × 𝑃(𝐸𝑂𝑆|𝐿𝐼𝐺𝑂)

since each observation is independent from each other. With Bayes’ theorem, the probability of

an EOS given data is proportional to the probability of each dataset given an EOS multiplied by

the unconditional probability of that EOS. For instance,

 , (5) 𝑃(𝐸𝑂𝑆|𝑀
𝑚𝑎𝑥

) = 𝑃(𝑀
𝑚𝑎𝑥

|𝐸𝑂𝑆) 𝑃(𝐸𝑂𝑆) / 𝑃(𝑀
𝑚𝑎𝑥

)

With similar relations for and , we get: 𝑃(𝐸𝑂𝑆|𝑁𝐼𝐶𝐸𝑅) 𝑃(𝐸𝑂𝑆|𝐿𝐼𝐺𝑂)

 (6) 𝑃(𝐸𝑂𝑆|𝑑𝑎𝑡𝑎) ∝ 𝑃(𝑀
𝑚𝑎𝑥

|𝐸𝑂𝑆) × 𝑃(𝑁𝐼𝐶𝐸𝑅|𝐸𝑂𝑆) × 𝑃(𝐿𝐼𝐺𝑂|𝐸𝑂𝑆)

I illustrate my Bayes’ theorem methodology in Fig. 5. Because neutron star data is given

in mass and radius, I start with many possible EOS candidates (a) and convert them into

mass-radius curves (b). Then, in (c), I find two curves (colored yellow) that are most probable

11

according to dataset 1. Since the dataset consists of discrete points, I construct a probability

density function using KDE, available in the SciPy Python library. The basic idea is that more

data points in an area represents higher probability. To constrain the mass-radius curves, I

calculate the probability of each EOS using Bayesian statistics. This involves determining the

probability of each mass-radius point along the curve and summing to obtain the probability of

that entire mass-radius curve. Next, in (d), I compute the joint probability using both datasets.

The two datasets imply that the one curve (colored red) is more probable. Finally, in (e), I map

the mass-radius curves back to their respective EOSs.

Figure 5: Schematic representation of how I constrain the EOSs using data. a) I start with
several, equally-probable EOS candidates, which is indicated by the same blue color. b) Each
EOSs is mapped to a mass-radius curve. c) Dataset 1 identifies two mass-radius curves (in
yellow) as more probable. d) Dataset 2 further constrains the mass-radius curves by assigning
higher probability to the red EOS. e) Finally, the mass-radius curves are mapped back to their
respective EOSs along with their probabilities.

IV. PROCEDURE

The procedure of constraining EOSs is based on the methodology in the previous section;

the flowchart of Fig. 6 follows the schematic diagram of Fig. 5. After converting EOS to

mass-radius curves, I applied five datasets from NICER and LIGO/VIRGO (steps 1-5), and then

converted the mass-radius curves with their associated probabilities back into the EOS curves.

Afterwards, I analyze the EOSs to find the composition of neutron star cores. All computations

were performed by Python programs written by the author.

12

Figure 6: Flowchart of the multistep procedure. From the EOS samples, mass-radius curves
are constructed by solving the TOV equations. These curves are then progressively constrained
by incorporating the data (step 1-5). Next, the mass-radius curves are mapped back to EOS
space. Finally, neutron star cores are analyzed using the probabilities of the EOSs.

To investigate the composition of the core, I separate the EOSs into two categories: those

with a first-order phase transition and those without. I use my Python program to identify

sections of the EOS where the sound speed is zero for a considerable range, which corresponds

to a phase transition. After separating the EOSs, I find the relative probability between no phase

transition and a phase transition, which corresponds to nucleonic matter and quark matter,

respectively. I sum the probabilities of the EOSs without a phase transition and divide by the sum

of the probabilities of the EOSs with a phase transition. Finally, I account for the bias that 11%

of the 5000 EOSs have a phase transition.

V. COMPUTATION

I have written three programs for this project. The first is the TOV solver that calculates

mass-radius for each EOS. The second is constraining EOS based on the data. And the last is for

analyzing the constrained EOS to find the probability of phase transition in the neutron star

cores. In this section, I explain these three codes. All codes are written in Python and provided

along with the report.

13

5.1 TOV Solver

 The Tolman-Oppenheimer-Volkoff equations for a spherically symmetric body consist of

Eqs. 1 and 2, which represent the balance between relativistic gravity and the strong nuclear

force. After setting and simplifying, the TOV equations become 𝑐 = 1

, 𝑑𝑚/𝑑𝑟 = 4 π 𝑟2 ϵ(𝑃)

. 𝑑𝑃/𝑑𝑟 =− 𝐺 ϵ(𝑃) + 𝑃[] 𝑚 + 4 π 𝑟3 𝑃
𝑟 𝑟 − 2 𝐺 𝑚()

The TOV equations form a system of ordinary differential equations (ODEs) to be solved for

certain initial conditions:

, 𝑑𝑦/𝑑𝑥 = 𝑓(𝑥, 𝑦)

. 𝑦(𝑥
0
) = 𝑦

0

I wrote a solver that integrates these equations using the forward Euler method. The discretized

equations are

 𝑥
𝑘+1

= 𝑥
𝑘

+ ∆𝑥,

 𝑦
𝑘+1

= 𝑦
𝑘

+ 𝑓(𝑥
𝑘
, 𝑦

𝑘
) ∆𝑥.

These equations are applied for until a stopping criterion is triggered. 𝑘 = 0, 1, 2, ...

For the TOV equations, stands for the mass and pressure while stands for the radius . 𝑦 𝑚 𝑃 𝑥 𝑟

To model a neutron star, I start at the core of the star () and integrate until the surface of 𝑟 = 0

the star is reached (). The pressure at is the core pressure , whereas the mass is 𝑟 = 𝑅 𝑟 = 0 𝑃
𝑐

zero at . These values give the initial conditions. Since the core pressure is unknown and 𝑟 = 0

different in each neutron star, I choose a range of values for . (See Fig. 3, where various core 𝑃
𝑐

pressures correspond to their respective points on the mass-radius curve.) In contrast, the
14

pressure at the surface is zero because it is in equilibrium with the vacuum, whereas at 𝑟 = 𝑅 𝑚

the surface equals the mass of the star. The stopping criterion is , and then is the 𝑀 𝑃 = 0 𝑅

value of and is the value of . 𝑟 𝑀 𝑚

However, it is important to note that the first step of the integration requires special treatment.

The reason is that the right-hand side of Eq. (2) (the equation for pressure) is singular when

. I analyzed the singularity and circumvented it in the following way. 𝑟 = 0

While remains small, stays close to the constant . Therefore, Eq. (1) implies 𝑟 ϵ(𝑃) ϵ
𝑐

= ϵ(𝑃
𝑐
)

that

. 𝑚 ≈ (4 π 𝑟3/3) ϵ
𝑐

This result is easy to understand: the mass equals the mass-energy density times the volume of a

sphere of radius . After making this substitution, Eq. (2) becomes 𝑟

. 𝑑𝑃/𝑑𝑟 ≈− 𝐺 (ϵ
𝑐

+ 𝑃
𝑐
)

(4 π 𝑟3/3) ϵ
𝑐
+4 π 𝑟3 𝑃

𝑐

𝑟 𝑟 − 2 𝐺 (4 π 𝑟3/3) ϵ
𝑐()

Since is much smaller than , the denominator is approximately , so that 𝑟3 𝑟 𝑟2

. 𝑑𝑃/𝑑𝑟 ≈− 4 π 𝐺 (ϵ
𝑐

+ 𝑃
𝑐
) (ϵ

𝑐
/3 + 𝑃

𝑐
) 𝑟

Hence, for small , the pressure approximately equals 𝑟

. 𝑃 ≈ 𝑃
𝑐

− 2 π 𝐺 (ϵ
𝑐

+ 𝑃
𝑐
) (ϵ

𝑐
/3 + 𝑃

𝑐
) 𝑟2

15

These approximations replace the first step of the integration. After the first step, the

forward Euler method is used.

5.2 Probability Density Function from Discrete Data using Kernel Density Estimator

(KDE)

A Kernel Density Estimator (KDE) is a statistical tool to obtain a probability density

function, given a data sample. That is, using KDE, we get a smooth function that approximates

the underlying probability that could have generated the data themselves. In a sense, it is similar

to making a histogram of data and connecting the bars to get a continuous function. To use the

KDE, we need to specify the kernel function (), a smooth function that peaks where the data 𝐾

point is, and the bandwidth. By overlapping the kernel functions with their centers at the data

points, we get an estimate of the underlying functions for the data:

 𝑓(𝑥) = Σ
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

 𝐾(𝑥−𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)

where is the estimated probability density and the choices for kernel function and 𝑓(𝑥)

bandwidth are problem-dependent.

For the neutron star mass-radius data, I used a 2D KDE with a Gaussian kernel from

which I calculated the probability of each mass-radius curve: I picked the fixed number of

discrete points along a curve, calculated the probability at each point and then added them up to

find the probability of that particular mass-radius (or equivalently, EOS) curve. I repeat this

process for the 5000 mass-radius curves. Since I had multiple sets of data, there is a different

KDE for the new dataset added in each step, described in Fig. 6.

5.3 Posterior Analysis: Phase Transition Locator

 Phase transitions from nucleonic matter to deconfined quark matter are embedded in

some of the EOSs I considered. They were randomly generated at different energy density and

pressure for random strength (energy required to complete the transition). I wrote a Python script

to locate any phase transition which would be manifested as a plateau in the pressure vs. energy

16

density curves. Specifically, for each EOS, I calculated slopes at grid points and found where

they are sufficiently small. One requirement is that the difference in energy density from the start

to the end of the phase transition must be at least 50 MeV fm-3. The phase transition must also

start within the range of core energy densities, from 150 MeV fm-3 to the maximum described by

the EOS (Tews, 2024). I performed a further analysis on phase transitions in neutron stars by

finding pair correlations among the initiation energy density, max slope, and strength of the

phase transition using the corner module in Python.

VI. RESULTS

After generating the neutron star EOSs, converting them into mass-radius curves using

the TOV equations, and obtaining mass-radius probability distributions from data, I applied

Bayes’ theorem to determine the probability of each EOS. As a quantitative measure of how

much the mass-radius curves have been constrained, I also calculated the 90th percentile radius

interval for a 1.4-solar-mass neutron star.

Step 1: Maximum Mass

We start with the maximum mass data to constrain the mass-radius curves. Each curve

predicts a maximum mass, and if that prediction is lower than what has been observed, that

particular curve cannot describe massive neutron stars. Therefore, we can exclude such

mass-radius curves. In Fig. 7 b), more probable mass-radius curves are dark red while less

probable curves are lighter. Since the maximum mass data itself has a probability distribution,

the mass-radius curve that predicts the most likely maximum mass has a higher probability than

a mass-radius curve with a different maximum mass. The green lines indicate the 90th percentile

range of the maximum mass, which I call the upper and lower bounds.

Using these constrained mass-radius curves, we plot the probability distribution for the

radius of a 1.4-solar-mass neutron star (Fig. 8b). The 90th percentile range of the predicted

radius is km. 11. 52
−1.58
+1.31

After constraining the mass-radius curves, I found that the odds of a first-order phase

transition (FOPT) is about 1/18, indicating that most EOSs with FOPT are discarded.

Steps 2, 3, 4, and 5: NICER 1, LIGO, NICER 2, and NICER 3

17

Having selected the EOSs that satisfy the maximum mass constraint, I apply the NICER

1 (PSR J0030+0451) data. The green contours (at 1 and 2 standard deviations) in Fig. 7c

represents the high probability region according to NICER 1. Hence, the EOS curves that go

through the green contours are evaluated to have high probability. In Fig. 8c, I plot the

probability distribution of the radius of a neutron star at 1.4 solar mass.

 I progressively use the LIGO (GW170817) and the other NICER data in addition to the

previous data. The LIGO data comes from observing two merging neutron stars. The green

contours in Fig. 7d represent the more massive neutron star, and the blue contours represent the

less massive neutron star. The NICER 2 (PSR J0437-4715) data, shown in Fig. 7e, has not been

used in previous work. Lastly, I use the NICER 3 (PSR J0740+6620) data. This pulsar is heavy,

at about 2 solar masses, and its NICER data has also not been used previously. As seen in Fig. 7f,

I now have a much smaller number of EOS that are probable, according to the data. I note the

population of the allowed EOSs is reduced as I constrain them with more data. In Fig. 8f, I plot

the final radius probability distribution of a 1.4-solar-mass neutron star. The final distribution has

a much narrower peak at about 11.5 km, compared with Fig. 8a, for which the radius is

unconstrained.

18

Figure 7: Constraining the mass-radius curves using the data. a) The initial set of 5000 EOSs
with no constraints. b) Mass-radius curves constrained by the maximum mass data from PSR
J0740+6620, PSR J0348+4032, PSR J0614-2230, and GW170817. The green lines represent the
upper and lower mass bounds. c) Mass-radius curves further constrained by the NICER data of
PSR J0030+0451. The green contours are at the 95% and 68% confidence level. d) Further
constraints by LIGO (GW170817) data. Green contours are at the 95% and 68% confidence level
for the more massive neutron star, with the blue contours representing the less massive neutron
star. e) Further constraints on mass-radius curves by PSR J0437-4715 data. f) Further constraint
by PSR J0740+6620.

19

Figure 8: Probability distribution of radius for a neutron star with 1.4 solar masses. a)
Before constraining. b) Constrained by the maximum mass data, c) the NICER 1 data, d) the
LIGO data, e) the NICER 2 data, and f) the NICER 3 data.

In Table 2, I summarize the predictions of the radius of a 1.4-solar-mass neutron star from

each step. The uncertainty is reduced in each step.

 Initial set Max mass NICER 1 LIGO NICER 2 NICER 3

The radius of a 1.4
solar mass NS
(90% confidence,
km)

 11. 37
−1.85
+1.75 11. 52

−1.58
+1.31 11. 88

−1.09
+1.09 11. 53

−0.98
+1.04 11. 38

−0.83
+0.92 11. 60

−0.67
+0.81

Table 2. The radius prediction of a neutron star with 1.4 solar mass. The intervals are the
90th percentile intervals and correspond to the vertical lines in Figs. 8a, 8b, 8c, 8d, 8e, and 8f.

20

Now that we have obtained the allowed set of EOSs, we can compare them with

theory-based models. In Fig. 9, we plotted the predictions of mass and radius by the various

models (Lattimer and Prakash, 2001, Gandolfi et al., 2019) overlapped onto Fig. 7 (f). Each of

these models assume a certain composition of the core: the orange curves predict only quark

matter (Prakash, M. et al., 1995), the blue ones for nucleonic (Akmal and Pandharipande, 1997,

Müller and Serot, 1996, Wiringa, R. B, 1988), and the green curves for mixtures of nucleonic

and exotic matter (Prakash, M. et al, 1995, Glendenning et al., 1991, Glendenning et al., 1999).

Clearly, many of the models don’t agree with the current data-based predictions. Those that fall

in the range of the allowed EOSs are for the nucleonic matter, hence it implies that the phase

transition to quark matter or other exotic matter is unlikely.

Figure 9: Comparison between the theory-based models and the data-based
predictions of mass-radius curves. The orange curves are for quark matter only, the blue ones
are for nucleonic matter, and the green curves for nucleonic, quark, and hyperon mixtures.

Having found the probabilities of the EOSs, I mapped the mass-radius curves back to

EOS space. In Fig. 10, I show the spread of all EOSs I considered in dark blue and the allowed

EOSs in light blue in pressure vs. energy density space. Up to the energy density at about 250

21

, all EOSs obey Chiral Effective Field Theory and there is little uncertainty. Beyond 𝑀𝑒𝑉/𝑓𝑚3

that point, I find the pressure increase was needed while some of the highest pressures were not

feasible.

Figure 10: Envelopes of probable EOSs before and after constraints, in pressure vs. energy
density space. The dark blue region represents the full set of EOSs considered, with every EOS
lying within it. The light blue region shows the extent to which the EOSs were constrained,
representing the 90th percentile range of EOSs after the constraints by the data. I emphasize that
this plot shows the envelope of the EOS curves and does not imply that an arbitrary EOS going
through the shaded region is allowed or even considered.

 After constraining the mass-radius curves, finding the 90th percentile radius intervals of a

1.4 solar mass neutron star, and mapping the probabilities back to the corresponding EOSs, I

separated the EOSs with and without phase transitions. In Table 3, I summarized the relative

probabilities of first-order phase transitions (FOPT) to no phase transition calculated in each step

of constraining EOSs. To find the relative probability, I calculate the likelihood of a phase

transition by summing the probabilities of the EOSs with a phase transition. Then, I divide by the

likelihood of no phase transition, which is calculated similarly, and multiply by a factor that

accounts for the unequal number of EOSs with and without a PT.

Most EOSs that have a PT were eliminated in the first step since those EOSs have a

maximum possible mass above 2 solar masses. The EOSs without PTs are preferred by the

remaining data sets as well. After the final step of constraining EOSs, the odds of a FOPT to no

22

PT is about 1 to 21. This is consistent with the findings from Fig. 9 that the EOSs with quark

matter or other exotic matters do not predict the data as well as those with only nucleons.

 Initial set Max mass NICER 1 LIGO NICER 2 NICER 3

Odds of FOPT
to no PT

1:1 1:16.87 1:19.07 1:19.16 1:19.68 1:20.78

Table 3: Odds of a first-order phase transition to no phase transition in each step of
constraintment.

In Figure 11, I plot the constrained EOSs in the two groups. Since I am investigating

phase transitions in the cores of neutron stars, I truncated the EOS curves at their respective

maximum central pressure, which varies from EOS to EOS.

23

Figure 11: Likely EOSs in two groups. a) The EOSs that predict first-order phase transitions
cc(PT) at the core; b) the EOSs that predict no first-order phase transitions in neutron stars. In
both plots, curves are truncated at the maximum possible central pressure.

In Fig. 11 (a), I note that the phase transition starts and completes at different energy densities so

I performed a statistical analysis on the parameters that characterize the phase transition as

shown in Fig. 11 where epsilon is the energy density and sound speed squared (c2) is the slope of

pressure-energy density curve. We observe that the phase transition starts at an energy density

(epsilon start) of about 276 and that the change in energy density over the phase 𝑀𝑒𝑉/𝑓𝑚3

transition (epsilon difference) is about 218 . While the initiation energy density is not 𝑀𝑒𝑉/𝑓𝑚3

strongly correlated to the energy density jump, the latter and the sound speed after the phase

transition indicate a positive correlation, meaning that the more energy needed for a phase

transition, the larger the sound speed after the PT is.

24

Figure 12: Pair plots for the phase transition parameters. For each parameter, we show the
mean value and one standard deviation. “Epsilon start” is where the phase transition initiates in
energy density and “Epsilon difference” is the jump in energy density occurring during the phase
transition. “c2 max” is the maximum sound speed squared for each EOS in the entire range of
energy density and “c2 after PT” is the value of the sound speed right after the phase transition.

25

VII. CONCLUSIONS

I successfully developed software that solves the TOV equations and analyzes

observations of neutron stars in a Bayesian statistical framework to determine the probability of a

given mass-radius curve. Among the five data sets used, the first three had been previously

analyzed in a similar manner (Dietrich et al., 2020) and I verified that my results were consistent

with theirs. I incorporated two new data sets, further constraining the neutron star EOS. In

addition, I examined the allowed EOSs to investigate the possibility of a phase transition at the

core. There are two main results in this paper.

1) First is a stronger constraint of the mass-radius curves using the new data from NICER

(PSR J0437-4715, PSR J0740+6620). My result is that the 90th percentile interval for the

radius of a 1.4 solar mass neutron star is . After determining the mass-radius 11. 60
−0.67
+0.81

curves that are most probable given the data, I mapped those curves back to the

pressure-energy density space to find the constrained EOS models of neutron star matter

(Fig. 10). The dark blue region represents the range of EOSs considered before applying

data constraints, while the light blue region shows the EOSs allowed by the data. My

analysis eliminated many EOS curves. This can be also seen in Fig. 9 where the

mass-radius prediction of the various theory-based models are plotted along with the

constrained curves.

2) Second, I categorized the EOSs based on whether they had a first-order phase transition

(FOPT) or not, which predicts deconfined quark matter or nucleonic matter, respectively,

in the core. My data-oriented analysis shows that a FOPT is not likely in the core of the

neutron stars. Which is consistent with the findings that EOSs that contain any exotic

matter are unlikely, as seen in Fig 9. This contrasts with Annala et al. (2020), which

claims that a phase transition is necessary. One thing to note is that I considered only

first-order phase transitions since mixed phase transitions are not easily or definitively

found from the EOS.

26

APPENDICES

Bimodal Reanalysis of NICER 1 (PSR J0030+0451)

Recently, the NICER team released the results of the reanalysis of PSR J0030+0451

using an updated calibration framework and simulation capabilities (Vinciguerra et al. 2024).

The reanalysis contains two modes, meaning there are two likely sets of mass-radius values.

These modes were obtained by using two different models for the hot spots (locations,

morphology, etc.) on the neutron stars in their simulations. I use the methodology developed in

this work to find which mode is more likely according to the other neutron star data. That is, I

use the Max Mass, LIGO, NICER 2, and NICER 3 data to find the probabilities of the

mass-radius curves as in the method and procedure sections. Then by comparing the constrained

mass-radius curves to the reanalyzed mass-radius data of NICER 1, I found what mass and radius

are probable for PSR J0030+0451. In Fig. 11, there are two sets of contours that correspond to

the different modes. The first mode (blue contours) generally predicts lower mass and radius

compared to the second mode (green contours). The constrained mass-radius curves fit the first

mode of the analysis so I conclude that the first mode is more probable and a better model of

neutron stars.

Fig. 11. Bimodal analysis of PSR J0030+0451 with constrained mass-radius curves. Mode 1
(blue contours) is found to be more probable since it fits the mass-radius curves better.

27

ACKNOWLEDGEMENTS

I thank Drs. Ingo Tews and Rahul Somasundaram for their mentorship on this project,

both at Los Alamos National Laboratory. I also thank my parents, Dr. JeeYeon Plohr and Dr.

Bradley Plohr, for guidance and support.

REFERENCES

Abbott et al. GW170817: Observation of gravitational waves from a binary neutron star inspiral,

Phys. Rev. Lett. 2017, 119.

Akmal, A., and Pandharipande, V.R Spin-isospin structure and pion condensation in nucleon

matter, Phys. Rev. C, 1997, 56, 226.

Annala et al. Evidence for quark-matter cores in massive neutron stars, Nat. Phys. 2020, 16.

Antoniadis, J. et al. A massive pulsar in a compact relativistic binary, Science 2013, 340.

Arzoumanian, Z. et al. The NANOGrav 11-year dataset: High-precision timing of 45 millisecond

pulsars, Astrophys. J. Suppl. 2018, 235.

Benhar, O. et al. (eds.) Nuclear Theory in the Age of Multimessenger Astronomy. CRC Press,

2024.

Camenzind, M. Compact Objects in Astrophysics: White Dwarfs, Neutron Stars and Black

Holes, Springer, 2007.

Capano, C. et al. Stringent constraints on neutron-star radii from multimessenger observations

and nuclear theory, Nature Astr. 2020, 4.

Caplan, M.; Horowitz, C. Astromaterial Science and Nuclear Pasta, Rev. Mod. Phys. 89, 041002,

2017.

Choudhury, D. et al. A NICER View of the nearest and brightest millisecond pulsar: PSR

J0437-4715, arXiv: 2407.06789, 2024.

Cowan, J. et al. Origin of the heaviest elements: The rapid neutron-capture process, Rev. Mod.

Phys. 2021, 93.

Cromartie, H. T. et al. Relativistic Shapiro delay measurements of an extremely massive

millisecond pulsar, Nature Astron. 019, 4.

28

Dietrich, T. et al. Multimessenger constraints on the neutron-star equation of state and the

Hubble constant, Science 2020, 370.

Epelbaum, E., et al. Modern Theory of Nuclear Forces, Rev. Mod. Phys. 2008, 81.

Gandolfi, S. et al. From the microscopic to the macroscopic world: from nucleons to neutron

stars, J. Phys. G: Nucl. Part. Phys. 2019, 46.

Glendenning, N. K., & Moszkowski, S. A. Reconciliation of neutron star masses and binding of

the in hypernuclei, Phys. Rev. Lett., 1991, 67, 2414. Λ

Glendenning, N. K., & Scha†ner-Bielich, J. First order kaon condensate, Phys. Rev. C., 1999, 60,

025803

Kobyakov, D. Application of superconducting-superfluid magnetohydrodynamics to nuclear

“pasta” in neutron stars, Phys. Rev. C, 045803, 2023, 98.

Kurt, W. Bayesian statistics the fun way. No Starch Press, Inc., 2019.

Lattimer, J. M. and Prakash, M. Neutron Star Structure and the Equation of State, Astrophys. J.

2001, 550:426.

Miller, M. C. et al. PSR J0030+0451 Mass and radius from NICER data and implications for the

properties of neutron star matter, Astrophys. J. Lett. 2019, 887.

Miller, M. C. et al. The Radius of PSR J0740+6620 from NICER and XMM-Newton Data,

Astrophys. J. Lett. 2021, 918.

Müller, H. and Serot, B. Relativistic mean field theory and high density nuclear equation of state,

Nuclear Physics A, 1996, 606.

Oppenheimer, J. R.; Volkoff, G. M. On massive neutron cores, Phys. Rev. 1939, 55.

Prakash, M., Cooke, J. R., & Lattimer, J. M. Quark-hadron phase transition in protoneutron star,

Phys. Rev., D52, 1995, 661.

Raaijmakers, G. et al. A NICER view of PSR J0030+0451: Implications for the dense matter

equation of state, Astrophys. J. Lett. 2019, 887.

Rezzolla, L. et al. Using gravitational-wave observations and quasi-universal relations to

constrain the maximum mass of neutron stars, Astrophys. J. 2018, 852.

Riley, T. E. et al. A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio

Timing and XMM-Newton Spectroscopy, Astrophys. J. Lett. 2021, 918.

29

Somasundaram, R.; Tews, I.; Margueron, J. Investigating signatures of phase transitions in

neutron-star cores, Phys. Rev. C, 2023, 107, 025801.

Tews, I. Private communication, 2024.

Tews, I. et al. Constraining the speed of sound inside neutron stars with chiral effective field

theory interactions and observations, Astrophys. J. 2018, 860:149.

Tolman, R. C. Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Phys.

Rev.1939, 55, 364.

Vinciguerra, S. et al. An updated mass-radius analysis of the 2017-2018 NICER dataset of PSR

J0030+0451, Astrophys. J. 2024, 961.

Watts, A. et al. Measuring the neutron star equation of state using X-ray timing, Rev. Mod. Phys.

2016, 88(2):021001.

Wiringa, R. B., Fiks, V., & Fabrocine, A., Equation of state for dense Nucleon matter, Phys. Rev.

C, 1988, 38, 1010.

Zhang, Z-W and Pethick, C. J. Proton superconductivity in pasta phases in neutron star crusts,

Phys. Rev. C 2021, 103.

30

Point Cloud Surface Reconstruction
Andrew Morgan1 (Sole Author), Nathaniel Morgan2 (Project Mentor/Teacher)

1Los Alamos High School, Los Alamos, NM, USA
2Project Mentor and Teacher, Los Alamos, NM, USA

 Abstract

The efficient and versatile reconstruction of the surface of point clouds remains a notable

problem throughout computer science, physics, robotics, engineering, and other related

fields. Many current methods struggle with noisy data, uneven density distribution, and

discontinuities. This paper proposes a solution that uses a level-set-based method

integrated with a linearized sparse octree, neighboring node caching, a min-heap binary

tree, and surface tension simulation to parse large datasets to reconstruct point clouds as

watertight meshes. A basic prototype in Python 3 validated the utility of this approach

and provided a foundation on which to construct optimizations. Translations into C++ 17

and Rust implemented these additional concepts and demonstrated notable performance

improvements over previous iterations.

1. Introduction

Point clouds are essential tools for countless fields and applications, including medicine, protein

synthesis, robotics, computer graphics, video games, geology, lidar, 3D scans, and more. They

provide a versatile and unique way to store many types of data and allow for novel algorithms.

However, due to their unstructured nature, they have limited direct utility. Many applications

require well-defined discrete surface topology, often as polygonal meshes, which point clouds

cannot provide. Extracting the isosurface offers a solution and bridges this gap, extending its

utility.

Many existing solutions utilize a wide range of methods and techniques. However, many

of these have limitations, such as difficulty extracting the isosurface from noisy, incomplete, and

1

A. Morgan – Point Cloud Surface Reconstruction

discontinuous data sets. Point clouds are often structureless and highly variable, making it

challenging to form generalizations and find easy solutions. Additionally, specific applications

require quick processing of point cloud data for real-time applications.

Point clouds can range from a few hundred points to sometimes over a billion, further

complicating the matter. Creating a versatile algorithm to handle this extensive range of data and

inconsistent and missing information proves challenging. Any solution has to balance

performance and memory consumption, as these data sets can reach many gigabytes in size.

This paper proposes an optimized hybrid level-set-based method to help combat these

problems. The method takes in an arbitrary point cloud and returns a watertight discrete mesh.

Additionally, it is relatively versatile and can handle any number of points, from one to millions.

Unless cited otherwise, all of the work and code created in this project was done by Andrew

Morgan for the 2025 NM Supercomputing Challenge.

Section 2 discusses multiple approaches to this problem. Section 3 follows, breaking

down the steps in the pipeline of the proposed solution. Then, Section 4 explores data structure

optimizations, specifically a sparse, linearized, adaptive octree. Section 5 discusses the program's

results and validates this approach's effectiveness. Section 6 summarizes the findings for the

proposed method.

1.1 Background Information

A quick summary of some background information regarding a few topics mentioned may help

in understanding some of the content of this paper.

 1. A tree data structure is a structure that starts with a root node. Then, successively, each

node starting at that root has a set number of children which may be filled, slowly branching

outwards like how the branches of a tree start as one, and over time branch outwards with each

branch having its own branches.

2

A. Morgan – Point Cloud Surface Reconstruction

 2. A perfect binary tree structure is a tree data structure where all branches get fully filled

out and progress to the same depth. An imperfect tree would have branches that terminate early

or don’t have all their children. See [1] from GeeksforGeeks for further information.

 3. Point clouds are an arbitrarily sized collection of unordered points; they often

collectively represent a larger object or structure.

 4. Hashes or hash codes refer to a unique index or value resulting from a given input.

Some hashes are random, and others are structured. Hashes are fixed-size and often satisfy

certain conditions that the former data couldn’t. For example, converting a string into an

unsigned integer using a hashing algorithm would allow the value to act as an index within an

array.

 5. Data structures refer to varying methods of storing memory as well as the associations

one piece of memory has to another within the collection. Grids are single or multi-dimensional

arrays representing a rectangular area in the form of evenly sized and spaced boxes.

Two-dimensional grids are also called matrices.

 7. Vectors are a continuous array with a dynamic size that never has holes in the middle

(often called lists). Removing and adding items to the center or start does reduce performance,

though; any values beyond it get shifted in memory to make room or fill in a void, resulting in a

large amount of memory movement.

2. Related Work

Many solutions exist for surface reconstruction, with varying strengths and weaknesses. Some

more traditional methods, like marching cubes, require a structured scalar field. However, the

marching cubes algorithm is still practical as an intermediate step in a more extensive process;

marching cubes standing alone is valuable in many other contexts involving more structured

data. Other traditional algorithms, such as Delaunay triangulation, require structured data and

can be very slow on large data sets. Requiring structured data presents a complication, as many

3

A. Morgan – Point Cloud Surface Reconstruction

point clouds don’t have an explicit structuring or order. However, this doesn’t mean these

methods don’t have utility, as they’re still widely used and play a key role in many areas.

 Some newer approaches leverage artificial intelligence (AI) based methods, although

they, too, have their strengths and weaknesses. High frequency, fine-tuned details, and more

complex topology are intricate to capture with AIs. AIs often excel in a specific area, although

they struggle in others. Additionally, AIs require extensive data sets, which, combined with the

already significant size, complexity, and scale of point clouds, leads to high computational cost

and time complexity. Furthermore, training an AI on complex surface topology proves

challenging as there are countless variations and a lack of structure or unified patterns between

or inside data sets. These factors limit the adaptability and generalization of AI implementations,

making them fall short of the overarching goal of this project.

 There are many other miscellaneous solutions, although this project focuses on level-set

methods. Level-set-based methods rely on mathematically extracting the isosurface level through

various means. Many implementations utilize signed distance fields (SDFs) to represent the point

cloud. SDFs are often much more structured, even with an adaptive data structure (for example,

an octree or kd-tree), allowing for more traditional methods, such as marching cubes or dual

contouring, to be combined into a systematic pipeline. In other words, utilizing SDFs in

conjunction with other techniques allows for hybrid methods, balancing accuracy, performance,

memory consumption, and adaptability. This adaptability while maintaining reasonable

performance makes a hybrid level-set-based method well-suited for the project’s goal.

3. Signed Distance Field Representation

While point clouds may be highly variable, the signed distance to the nearest point at any given

position has much more structure. A primitive way to choose which points to sample the signed

distance is to create a 3D array with known bounds and positioning. This primitive solution is the

exact approach taken for the prototype in Python 3. However, it has inherent flaws.

 Because arrays are a fixed size and spacing, areas of low detail (i.e., very few or no

points) require the same amount of memory allocation as an area with lots of detail. Additionally,

4

A. Morgan – Point Cloud Surface Reconstruction

when computing the signed distance, low-detail regions will receive the same computation time

and resources as those of high detail. Additionally, areas of low detail, which don’t need a lot of

expensive computation or significant memory allocation, receive a large portion of the available

resources. The over-allocation of resources in low detail areas also takes away critical

computation and memory necessary to evaluate complex topology regions accurately.

 However, using an adaptive octree data structure can fix this issue. While octrees are far

more complex than traditional grids, the implementation mentioned in this paper adaptively

subdivides the structure in areas of high and complex detail while giving sparse areas more

limited representation. This data structure, for one, saves a lot of memory. In a simple test case, it

consumed nearly 29,000% less memory when storing just the signed distances (from 8MB down

to 30KB for a basic grid of 64-bit floats, not including additional information on the actual

structure). The benefit of the octree is further compounded because there are fewer nodes or

points at which to sample the signed distance, and less computation is needed overall. This

reduction in computation and memory allows for increased resources in more complex and

intricate point cloud sections, resulting in greater detail and precision. More depth on this octree

implementation and other data structures are in Section 4.

 There is one issue with this current method. A known surface contour is necessary to

create a signed distance field (SDF) instead of a regular distance field. Constructing an unsigned

distance field from the point cloud instead of an SDF alleviates this problem. After this, an

algorithm determines which sections are solid and which are hollow. A shell around the surface

is then created by generating the exterior edges of the part(s). Because this shell is solid, the

known surface contour allows for calculating a proper SDF. This pipeline process is broken

down further in Section 3.1.

3.1 Signed Distance Pipeline

One inherent issue in generating a signed distance field, as discussed in Section 3, is that a

known surface contour is necessary to get the signed part of an SDF. The solution is to break the

5

A. Morgan – Point Cloud Surface Reconstruction

process into four steps: calculating an unsigned distance field, signs, solid edges, and finally,

computing the complete SDF.

 The initial step of creating an unsigned distance field is relatively trivial. The process

involves looping over every node or grid cell in a given data structure and performing a nearest

neighbor search on the point cloud (calculating the minimum distance to the nearest point).

However, some complexity arises when optimizing and executing the search on an octree.

Section 4.1 details the implementation of the nearest neighbor search on an octree.

 A more straightforward optimized solution for a fixed grid is a chunking system, also

referred to as hashing. The process relies on grouping all the points into unique vectors or arrays

based on their local position. A good example is how the game Minecraft divides the world into

16x16 chunks. These chunks allow for a smaller, localized search to expand as needed to find the

nearest point. Creating a smaller search radius improves performance by looking over fewer

points in any given search. Implementing this solution in the prototype script in Python 3 gave

decent performance gains, considering the reduced complexity compared to other algorithms.

 Step two calculates the signs for the unsigned distance field using a novel algorithm. The

algorithm calculates every grid cell by repeating the following set of 4 steps. (1) The initial step

is to loop over all 1D slices facing a single axis and step through each cell one by one. (2) At

each marched step through a given slice, check the unsigned distance; if the distance is less than

the isosurface level, continue stepping along until the distance is greater than or equal to the

isosurface level. (3) If the grid cell in the corresponding array for storing signs contains a filled

point, save the current tracking sign as that sign and continue along; otherwise, flip the tracking

sign and fill the entire region between the boundaries created by the isosurface and unsigned

distance field with that sign. (4) Repeat these steps until every slice finishes its calculation. Like

previous algorithms, octrees cause complications and require modifications to the underlying

algorithm; Section 4.1 goes into these necessary modifications.

 Step three involves calculating a shell around any object’s exterior edges (in other words,

voxelizing the distance field of the point cloud). Similar to the first step, the process is relatively

simple. The primary step is to go through every grid cell or node and check a few conditions: if a

6

A. Morgan – Point Cloud Surface Reconstruction

hollow point is directly adjacent to the cell or node (diagonals don’t count) and the current

position is solid, add a new surface point.

 The final step builds upon the previous step to generate the final SDF. Similar to the first

step, start by going through every point and calculating the unsigned distance. However, this

time, use the surface shell rather than the point cloud to calculate the unsigned distance. After

getting the distance, check the sign at the given node or grid cell position; if the sign indicates

it’s solid or the original unsigned distance is less than the isosurface level, flip the sign of the

current distance. This final step concludes the calculation of a proper SDF, allowing a

continuation in the larger pipeline.

3.2 Surface Tension Simulation

Due to the nature of the SDF generation, natural surface ungulations occur in the reconstructed

part. However, a scalar field surface tension simulation solves this problem by smoothing higher

frequency bumps on the surface; this method also preserves a lot of lower frequency bumps,

although it won’t work as well on every application. [2] breaks down the math behind the surface

tension method. The surface tension simulation works by finding the curvature of the surface and

raising the troughs while dropping the peaks. A summary of the math from [2] is as follows:

 The first Equation (1) solves for the level set field while applying a front velocity of F. ɸ

represents the level set field. i, j, k represent the position, and they can also represent the index

within the grid. t represents time.

 (1)
ϕ
𝑖,𝑗,𝑘
𝑛+1−ϕ

𝑖,𝑗,𝑘
𝑛

∆𝑡 = 𝑚𝑎𝑥(𝐹, 0)∇
𝑖,𝑗,𝑘
+ + 𝑚𝑖𝑛(𝐹, 0)∇

𝑖,𝑗,𝑘
−

Where:

 ∇
𝑖,𝑗,𝑘
+ = [𝑚𝑎𝑥(𝐷−𝑥ϕ, 0)

2
+ 𝑚𝑖𝑛(𝐷+𝑥ϕ, 0)

2
+...

7

A. Morgan – Point Cloud Surface Reconstruction

... 𝑚𝑎𝑥(𝐷−𝑦ϕ, 0)
2
+ 𝑚𝑖𝑛(𝐷+𝑦ϕ, 0)

2
+...

 ... 𝑚𝑎𝑥(𝐷−𝑧ϕ, 0)
2
+ 𝑚𝑖𝑛(𝐷+𝑧ϕ, 0)

2
]

1
2

 ∇
𝑖,𝑗,𝑘
− = [𝑚𝑖𝑛(𝐷−𝑥ϕ, 0)

2
+ 𝑚𝑎𝑥(𝐷+𝑥ϕ, 0)

2
+...

... 𝑚𝑖𝑛(𝐷−𝑦ϕ, 0)
2
+ 𝑚𝑎𝑥(𝐷+𝑦ϕ, 0)

2
+...

 ... 𝑚𝑖𝑛(𝐷−𝑧ϕ, 0)
2
+ 𝑚𝑎𝑥(𝐷+𝑧ϕ, 0)

2
]

1
2

D-x refers to the backwards finite difference operation in the x direction. Dx refers to the forwards

finite difference operation in the x direction. This applies to all three dimensions – x, y, and z. V

is a constant representing a constant velocity inwards or outwards; it can either keep the object’s

size or shrink or expand the object depending on its value. F is defined as the front velocity and

equals:

 𝐹 = 𝑉 − κ

V is a constant that moves the level set field in the normal direction. Kappa is the curvature of

the front:

 κ = ∇ • ∇ϕ
∇ϕ| |

The second term equates to the surface normal. Multiple iterations each solve these equations

and adjust the scalar field, smoothing it over time. The more time steps (while shrinking the time

duration), the better the results. Some parameters can lead to instability and undesired results if

not correctly set.

8

A. Morgan – Point Cloud Surface Reconstruction

3.3 Isosurface Extraction

Signed distance fields are the first step to reconstructing the surface of a point cloud. However,

an intermediary step is necessary to provide a more discrete representation. Some traditional

reconstruction algorithms, like marching cubes and dual contouring, become useful here. The

previous year’s submission, which implemented marching cubes, acted as an initial solution for

the Python 3 prototype and basic C++ implementation.

 However, complications arise when applying marching cubes to a more dynamic

structure, like an octree. While many solutions exist, most create intersecting geometry, which

can lead to inconsistencies in physics simulations and other applications, or have non-watertight

gaps. A method that solves this, proposed in [3], not only creates watertight meshes but also does

so efficiently and without modifying the underlying octree; in other words, the octree is

unconstrained, allowing for optimizations tailored directly to point clouds. The method relies on

constructing a set of edge trees and using them to properly align geometry to intersecting node

boundaries when using a hybrid-dual contouring approach. Section 4.1 dives into the

implementation a bit deeper.

3.4 Hybrid Reconstruction Pipeline

Combining these steps — unsigned distance field calculation (Section 3), calculating

discontinuities and signs (Section 3.1), surface tension simulation (Section 3.2), and isosurface

extraction (Section 3.3) — creates an efficient pipeline from a point cloud to a discrete polygonal

mesh representing its approximate surface.

 Each step serves a purpose in the greater pipeline. The first step is gathering a more

useful and structured representation of the point cloud — this initial step contains multiple steps,

which Section 3.1 breaks down. From there, the surface tension simulation can smooth any

artifacts and unnatural surface undulations. Finally, extracting a level set of that final scalar field

produces a discrete and water-tight polygonal mesh; this step produces an STL file, allowing

seamless integration of the mesh into most commercial software along with many algorithms.

9

A. Morgan – Point Cloud Surface Reconstruction

4. Octree Data Structures

While this pipeline can create great results, it also consumes excessive resources from

unnecessary computation and a massive memory footprint. A solution to this overconsumption

of resources, albeit far more complex than a fixed 3D array, is to use an octree data structure

instead. By dynamically subdividing the octree’s node structure — essentially just adding more

children to create a deeper tree — in areas of high complexity and detail, the octree can represent

sparse sections with limited memory and computation while also redirecting those resources to

regions of higher topological complexity.

 Like other tree-data structures, octrees have a root node but, from there, have exactly

eight children, each of which are nodes capable of creating more children nodes to branch the

tree further out. Each node represents a cube or rectangle, and each subdivision divides the

parent bounding box into eight equally sized boxes. The leaf nodes, which represent the deepest

nodes that have no children of their own, store a vector of indexes referencing which points in a

static array, representing the point cloud, fit within their bounding box. One way to do this is to

keep a constant address or pointer referencing the original array. Alternatively, when needed,

provide a parameter for the point cloud in the methods of the octree structure in languages like

Rust. By passing the point cloud in as a parameter, it keeps its ownership within its original

scope, preventing ownership and borrowing errors.

 To dynamically subdivide the octree, follow a set of 3 rules. (1) If the current depth has

reached the maximum specified depth for the octree, push all point indexes within the bounding

box into an array or vector for the current node, and then stop subdividing as it’s now a leaf

node. (2) If there is either one or no points within the current node’s bounding box, turn the node

into a leaf node; in other words, stop subdividing the particular node. (3) If there are multiple

points within the node’s bounding box, which means the previous two rules weren’t satisfied,

subdivide the current node into eight children nodes and continue the rule-set for each of those

individual nodes.

10

A. Morgan – Point Cloud Surface Reconstruction

 Just these steps alone can provide significant performance gains. However, there are

other possible improvements. These other optimizations rely on linearizing the data structure.

Linearizing an octree involves representing all the data in a single, contiguous array. This paper's

linearization implementation involves utilizing an array where each element contains another

array of eight integers. Each of those eight integers represents an index to that exact same array

to act as a pointer to the node’s children. In the case of a leaf node, the eight indexes can either

be replaced by null or by a value representing null; in the context of Rust, Some(index)

represents standard indexes, while leaf nodes contain 8 None’s. This structuring provides an

efficient way to follow the tree’s many branches and determine whether a node has children or is

a leaf node. To store points in a leaf node, another array aligning with the original contains

vectors to store references to points in the point cloud; an array with a predetermined size also

works for representing the vector in memory. Utilizing that vector, adding a point is as easy as

accessing the array at the index of the leaf node and pushing the points’ indexes in the point

cloud to the vector.

 This linearized design has a few notable advantages. The first benefit is that the octree’s

data lines up contiguously in memory, allowing for more cache hits and quicker data fetches;

cached information is also naturally aligned sequentially in increasing order, allowing for more

efficient lookup algorithms, such as binary searches (also known as a bisect search).

pub fn BinarySearch <T: Eq> (points: &Vec <T>, searchValue: &T) ->

. Option <T> {
 let mut currentIndex: usize = 0;
 let mut dividedSize = points.len();

 let mut halfWidth: usize;

 // this could also be a loop; however, this prevents runaway code
 for _ in 0..MAX_BINARY_SEARCH_ITERATIONS {
 halfWidth = dividedSize / 2;
 dividedSize -= halfWidth; // splitting the bounding size
 if let Some(middleValue) = points.get(currentIndex + halfWidth) {
 if middleValue == searchValue {
 return Some(currentIndex + halfWidth);
 } if middleValue < searchValue {

 // splitting the search

11

A. Morgan – Point Cloud Surface Reconstruction

 currentIndex += halfWidth;
 }
 }
 } None
} // Rust

Mortan codes (Z-order curves) [4] are another useful and performant hashing technique

involving bit manipulation to create unique codes for any position that maintain spatial locality

(two neighboring points will have similar hash codes). Hash maps are sometimes useful due to

some variability in the codes’ values. The algorithm works by taking three 32-bit numbers

representing the three axes. The bits interweave, so every three bits contain a bit from the x, y,

and z coordinates, creating the pattern: x1y1z1x2y2z2…. This results in a 96-bit unique hash,

although Rust has 64-bit and 128-bit integers, so a larger number than the code is necessary.

Because of the implementation within the octree, the code gets represented as an unsigned

integer (this makes the final type a 128-bit unsigned integer or, in Rust, u128).

pub fn GetMortonCode (&self, xi: u32, yi: u32, zi: u32) -> u128 {
 let mut x = xi as u128;
 x = (x | (x << 16)) & 0x030000FF; // magic nums -> stackoverflow
 x = (x | (x << 8)) & 0x0300F00F; // spacing the x bits out
 x = (x | (x << 4)) & 0x030C30C3; // creates room for y, and z
 x = (x | (x << 2)) & 0x09249249;
 //... the same as above for y and z

 x | (y << 1) as u128 | (z << 2) as u128 // interweaving all bits
} // Rust

Another performance gain occurs as accessing an array at an index is faster than chasing

repeated pointers to other instances of nodes. This second point compounds with the previous

ones and also alleviates the issue of slow neighboring node computation times; neighboring

nodes are expensive to find and scale alongside the number of points and depth of the octree.

This expensive calculation becomes problematic because the nearest neighbor search traverses

the octree from node to node to identify nearby points while minimizing the search radius, and

many neighboring nodes are needed to do this. Further compounding that issue, the nearest

neighbor search must run for every node multiple times. However, because each node in the

linearized structure is represented by a single integer index/identifier, another array that aligns

12

A. Morgan – Point Cloud Surface Reconstruction

with every node’s index can store a vector containing the indexes to every neighboring node for

that given node. While this caching system requires an expensive computation for every node to

find all its neighbors upfront, it prevents the necessity of doing these computations many times

during each search. In fact, with this caching method, traversing the octree is possible in constant

time, regardless of the number of points or the octree's depth (the search algorithm runs in log n

time due to incorporating additional algorithms beyond traversal). Implementing a similar

caching system with a nonlinear structure would be incredibly difficult; any solution would still

involve an expensive descent from pointer to pointer every single time a cache lookup happens.

While challenging to implement, these two major optimizations provide significant performance

gains, making them worthwhile. The specific implementation of the nearest neighbor query on

an octree is very complex compared to chunk or grid-based methods. Section 4.2 details the

exact implementation used in this paper.

4.1 Octree Pipeline Integration

While the octree provides notable improvements, other algorithms within the greater pipeline are

inherently unable to handle the variability. The sign generation algorithm falls short here because

it traverses line by line, row by row; however, octrees don’t have a perfectly aligned structure

because of their adaptive structure. One solution is using a system where all nodes bounding the

edges of the outline get pushed to a vector, and that vector acts as the starting point for further

iterations; every iteration, the sign gets flipped, beginning at a point on the outside with a value

of one representing hollow space.

 The second issue falls within the surface tension algorithm. Octree-based scalar-field

surface tension simulations are much more complex than their grid-based counterpart. The

solutions go beyond the scope of this paper. Because of the complexity and scope, the surface

tension simulation was discluded for the octree-optimized pipeline despite the notable

improvements on lower resolution point clouds.

 The final problem arises when reconstructing the surface of the scalar field. With a

grid-based solution, marching cubes provided excellent results. However, Marching Cubes

13

A. Morgan – Point Cloud Surface Reconstruction

doesn’t translate as well to an octree. A solution proposed by [3] uses a hybrid method stemming

from dual contouring. The approach proposed in that paper took in an unconstrained octree and

returned a water-tight mesh. Again, this solution goes a bit beyond the scope of this paper. The

paper cited below [3] provides an excellent breakdown, though.

4.2 Nearest Neighbor Query

One of the more complex aspects of integrating the octree is the nearest neighbor search

algorithm (related to voronoi cells). [5] proposes an elegant solution and inspired some

optimizations. For this paper’s implementation, an expanding search radius provides the fastest

results by pruning unnecessary data. However, finding the neighboring nodes to any given leaf

node proves challenging. Additionally, searching for neighbors is too costly. A solution is to use

a neighbor caching system; an array the length of the number of leaf nodes stores vectors

containing the integer indexes of all neighboring nodes (discussed in Section 4).

 From there, the solution is relatively trivial. Get all the neighbors starting at the node

nearest to the sample position. Add all those neighbors to a priority queue (4.3) based on their

distance to the query point. Then, for every iteration, pop the root node from the queue and

continue. For every point encountered, keep track of the shortest distance. Finally, once the

queue is empty or the shortest distance to the nearest node falls beyond the minimum distance

found, return that minimum distance.

 Locating the nearest leaf node to a given position is another challenge, though not nearly

as complex. The first step is to force the query point into the bounding box of the octree using

min and max. From there, start at the root node and iterate the number of times as the octree is

deep. While iterating, keep track of the current node. The size of all nodes at a given depth is

stored in a pre-computed array (1.0 / 2.0depth). Take the query point and find its distance from the

node's base. From there, divide that difference's x, y, and z components by half the node’s size.

Take the result and cast it to an integer of 0 or 1. Each node’s eight children have different offsets

from the node’s base, which get stored in a constant order; using that known order, the current set

of three integers allows for a reverse lookup of offsets to get the child’s index within the current

14

A. Morgan – Point Cloud Surface Reconstruction

node. Repeat that until encountering either a leaf node or the maximum depth (which would also

be a leaf node). Some algorithms may require tracking the path to the node for traversal up the

tree; usually, this only requires the last calculated leaf node, resulting in a negligible memory

size.

4.3 Min-Heap Binary Trees

Min-heap binary trees, also referred to as priority queues, are binary trees where the root node

always contains the smallest value. The counterpart would be a max heap binary tree; however,

in the context of this paper, it isn’t needed. Binary trees are similar to octrees. However, each

node only has two children. GeeksforGeeks [6] provides a great article that breaks down binary

heaps and inspired the implementation used in this paper.

 The C++ standard library has a priority queue implementation that has min and max heap

variants (the following is a min-heap binary tree, dictated by std::greater):

std::priority_queue<double, std::vector<double>,

. std::greater<double> > nodeQueue;

 Some other languages’ standard libraries may include an implementation with varying

performance and versatility. For a manual implementation, the following dictates a min-heap

binary tree; max-heap trees would be the same except search for the maximum instead of the

minimum value. Insertion, popping, and swapping are the most important methods for this binary

tree.

 Swapping. The backbone of the other two algorithms relies on swapping values to satisfy

the tree’s rules: no value should be below a value greater than itself. When inspecting a node,

look at the first branch; if the value is less than the current one, swap their values (ideally

without altering the underlying data structure to reduce memory movement). Otherwise, check

the right branch and do the same. If the condition fails for both branches, the value is in the

correct position. Usually, this method gets called until the condition fails or the value reaches the

bottom of the tree. This swapping method can also begin at the bottom of the tree and swap

upwards to meet the condition until the parent is equal to or smaller than the current value.

15

A. Morgan – Point Cloud Surface Reconstruction

 Insertion. The first step requires constructing a new node with the given value. This new

node becomes a child for one of the leaf nodes. After that, the swapping method iteratively

places the value into the proper position.

pub fn Push (&mut self, value: (f64, usize)) { ... } // Rust

 Popping. The first step involves popping the root node and returning its value (and

possibly co-value or index so it can reference additional information) – the root is always the

smallest value. However, the binary tree requires a root node to function. The solution involves

first removing one of the leaf nodes. From there, the leaf node replaces the root node. Then, the

swapping method satisfies the conditions by swapping the root node downwards.

pub fn Pop (&mut self) -> Option <(f64, usize)> { ... } // Rust

 One way to optimize the queue is to attempt to balance the tree in the form of a perfect

binary tree (1.1). Because the tree repeatedly gets restructured, there isn’t always a perfect

solution. The approximate solution explored in this paper relies on tracking the children of all

leaf nodes. Two buffers are necessary to do this: one for future children below the maximum

depth reached and one for the next deepest layer. The first buffer gets used when appending a

new node; the final index of the first buffer represents the child, which receives the new value.

After placing the value, the swapping method moves the value into position to satisfy the

conditions. By having the two buffers, the tree will initially fill voids within the maximum depth

of the tree before expanding the tree’s depth. The second buffer dumps its contents into the first

when it becomes empty. Most of the complexity comes from maintaining both these buffers as

the tree mutates.

5. Validation

A few different scenarios validated the effectiveness of

the approach and implementation. The first method used

mathematical equations to generate a point cloud around a

known shape. After that, the reconstruction pipeline took Figure 1. Hollow Fib. Sphere

in the point cloud, and the results reasonably matched the inputted shape, as seen in Fig. 1. A

16

A. Morgan – Point Cloud Surface Reconstruction

known geometric model further tested the pipeline—an obj file from the Stanford Bunny (Fig. 2)

allowed for a known comparison while also containing points

that, on their own, have no spatial connection to each other.

Similar to the first test, the results aligned reasonably well with

the test model (Fig. 3). The

specific Stanford Bunny

model used had multiple

holes in the surface geometry.

However, the pipeline properly Figure 2. Stanford Bunny

filled those holes while maintaining a reasonable level of

accuracy in the overall model. This specific test didn’t use

surface tension smoothing.

Figure 3. Reconstructed Bunny The adaptive subdivision of

the octree required rendering all corner points for every node

to verify the structure and subdivision method. The corner

points aligned with expectations, forming smaller nodes in

regions of denser data while minimizing nodes in lighter areas

(Fig. 4). Figure 4. Hollow Sphere1 Octree

The following are examples of the holes before and after reconstruction:

17

A. Morgan – Point Cloud Surface Reconstruction

5.1 Results

All of the code and assets within this project are available on GitHub. The link is in Section 6.1.

The point cloud data files (the program can load .pcd files, which are similar to .ply files that

contain a slightly different header) used for reconstruction came from [7]. It provided a number

of detailed point clouds, which were invaluable and allowed for excellent results.

 Fig. 5 and Fig. 6 show the reconstruction of the Stanford Dragon. The reconstruction

shows a decent improvement after running the surface tension simulation (Fig. 6). Additionally,

the reconstructed model shows a decent handling of sharp corners (Fig. 7) and finer details (Fig.

8) while also keeping small gaps separated correctly (Fig. 9). Note that the mesh is water-tight.

Figure 5. Unsmoothed Dragon Figure 6. Semi-Smoothed Dragon

Figure 7. Sharp Claws Figure 8. Finer Face Features

18

A. Morgan – Point Cloud Surface Reconstruction

The second result comes from the Egyptian mask [7].

The model contains a thin mask without a bottom.

Additionally, the point cloud is somewhat noisy,

complicating the reconstruction. Fig. 10 shows the

reconstructed mesh, which handled the noisy data and

gaps in the model well, only containing a few minor

artifacts. Fig. 11 shows the bottom of the mask where

the opening is along with the thinness of the

Figure 9. Narrow Gaps mask (the mask should be fairly thin).

Figure 10. Egyptian Mask Front Figure 11. Bottom of the Mask

The final point cloud is a 3D scanned vase [7]. Similar to the mask, the vase has thin walls and a

hollow interior (the Stanford Bunny and Dragon both had solid interiors). Additionally, the vase

has a couple of sharper corners, presenting a challenge that the algorithm handled well.

19

A. Morgan – Point Cloud Surface Reconstruction

5.2 Versitility and Limitations

The implementation covered has many strengths but also many weaknesses. Starting with the

strengths, the algorithm can handle anywhere from a single point to millions – some other

algorithms can’t handle such significant disparities in data sets. Additionally, the algorithm can

perform well on noisy or incomplete data sets (as seen with the Stanford Bunny in Section 5). In

addition, while computational parallelization hasn’t been implemented yet, many steps within the

pipeline are well suited to run in parallel, which would provide significant performance

improvements over the current results.

 However, there are some limitations facing the current iteration of this project. The first

is that the many steps in the pipeline each require allocated memory, and when combined, they

result in a larger memory footprint than ideal; according to the activity monitor, mac’s version of

task manager, the program was using upwards of 1.25GB of ram while running on a dataset of a

quarter million points when not using an octree. Additionally, thin objects can get slightly

thickened due to the SDF generation. Furthermore, because of the SDF generation, surface

tension simulation, and Marching Cubes in the non-octree pipeline, sharp corners and

higher-frequency data can sometimes get smoothed over if the resolution becomes too small

relative to the data. Also, the pipeline as a whole isn’t running quite as efficiently as desired, and

as such can’t be used in real-time applications – although, with additional improvements, there is

potential for significant performance gains over the current iteration. Reconstruction speeds

varied from 30 seconds to 45 minutes (from around 40,000 points to upwards of 500,000 on a

high-resolution grid), depending on the version, optimizations, and parameters like grid size or

the number of points in the point cloud. Note that all benchmarks were taken on an older Mac

M1, so a more performant computer would likely provide better benchmarks.

20

A. Morgan – Point Cloud Surface Reconstruction

6. Summary

A hybrid level-set method provides a dynamic and versatile means to reconstruct the surface of

arbitrary point clouds. Combinations of other algorithms expand that versatility and also offer

greater performance while reducing the memory footprint. The first step of approximately

voxelizing the point cloud provides a decent base to work from – some applications may only

want the voxelized data and nothing beyond. From there, the generation of a proper SDF allows

for a smoother and more accurate representation of the object. Additionally, that SDF is

compatible with the surface tension simulation, Marching Cubes, and other algorithms.

 A surface tension simulation is one such algorithm, providing a smooth output that

removes artifacts and surface ungulations formed from the nature of SDFs. Additionally, a

seamless integration of the simulation into the greater pipeline is relatively trivial.

 Sparse, linearized octrees prove promising, providing excellent performance and memory

with the only tradeoff being the complexity. Caching neighboring cells utilizing the benefits of

the linearization further improves the nearest neighbor search, which has to run many times.

Min-heap binary trees can further optimize the search query, efficiently generating signed and

unsigned distance fields.

6.1 Final Remarks

I would like to thank Nathaniel Morgan for helping me come up with the initial idea for this

project. I would also like to thank him for helping me interpret some of the math involved in the

surface tension simulation.

 In addition, I would like to thank a group at LANL for allowing me to present my project

and for providing feedback on everything. Their library, MATAR, was also very helpful by

providing a memory-safe multi-dimensional array structure for C++ (in place of alternatives like

std::shared_ptr, std::unique_ptr, or unsafe raw pointers).

 All of the code and assets used within this project are on GitHub:

https://github.com/AndrewDMorgan/Point-Cloud-Surface-Reconstruction. The code is 54%

21

https://github.com/AndrewDMorgan/Point-Cloud-Surface-Reconstruction

A. Morgan – Point Cloud Surface Reconstruction

C++, 29% Rust, and 17% Python 3. In total, all three program versions came out to a total of a

little over 4,800 lines. Through development, prototyping, iteration, and revision, over 8,000

lines were written, although much of that got refined and compressed over time.

References

[1] “Types of Binary Tree,” GeeksforGeeks. [Online]. Available:

https://www.geeksforgeeks.org/types-of-binary-tree/. [Accessed: Mar. 30, 2025]

[2] S. Osher; R. and Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag,

2003. ISBM 978-0-387-95482-0

[3] M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe, “Unconstrained isosurface extraction on

arbitrary octrees,” in Proc. Eurographics Symp. Geometry Processing, 2007

[4] “Z-order curve,” Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Z-order_curve.

[Accessed: Mar. 30, 2025]

[5] B. H. Drost, S. Lilc, “Almost constant-time 3D nearest-neighbor loopup using implicit

octrees,” 2018 Machine Vision and Applications. [Online]. Available:

https://doi.org/10.1007/s00138-017-0889-4. [Accessed: Mar. 30, 2025]

[6] “Priority Queue using Binary Heap,” GeeksforGeeks. [Online]. Available:

https://www.geeksforgeeks.org/priority-queue-using-binary-heap/. [Accessed: Mar. 28,

2025]

[7] “RG-PCD: Reconstructed Geomatry Point Cloud Dataset,” [Online]. Available:

https://www.epfl.ch/labs/mmspg/downloads/reconstructed-point-clouds-results/.

[Accessed: Mar. 30, 2025]

22

https://www.geeksforgeeks.org/types-of-binary-tree/
https://en.wikipedia.org/wiki/Z-order_curve
https://doi.org/10.1007/s00138-017-0889-4
https://www.geeksforgeeks.org/priority-queue-using-binary-heap/
https://www.epfl.ch/labs/mmspg/downloads/reconstructed-point-clouds-results/

A. Morgan – Point Cloud Surface Reconstruction

Future Reading

E. Alexiou, M. Bernardo, L. S. Cruz, L. G. Dmitrovic, R. Duarte, E. Dumic, T. Ebrahimi, D.

Matkovic, M. Pereira, A. Pinheiro and A. Skodras, “Point Cloud Subjective Evaluation

Methodology based on 2D Rendering,” 2018 Tenth International Conference on Quality

of Multimedia Experiance (QoMEX), Cagliari, 2018, pp. 1-6. Doi:

10.1109/QoMEX.2018.8463406

B. H. Drost, “Almost constant-time 3D nearest-neighbor loopup using implicit octrees,” Springer

Nature Link. [Online]. Available:

https://link.springer.com/article/10.1007/s00138-017-0889-4. [Accessed: Feb. 14, 2025]

S. Lague, “Coding Adventure: Marching Cubes,” Youtube. [Online]. Available:

https://www.youtube.com/watch?v=M3iI2l0ltbE. [Accessed: Feb. 12, 2025]

“The PCD (Point Cloud Data) file format — Point Cloud Library 1.14.1-dev documentation,”

Point Cloud Library. [Online]. Available:

https://pointclouds.org/documentation/tutorials/pcd_file_format.html. [Accessed: Dec.

20, 2024]

23

https://link.springer.com/article/10.1007/s00138-017-0889-4
https://www.youtube.com/watch?v=M3iI2l0ltbE
https://pointclouds.org/documentation/tutorials/pcd_file_format.html

You Only Look Once Machine Learning Solution to Orbital Debris Detection and

Classification

New Mexico

Supercomputing Challenge

Final Report

April 2, 2025

La Cueva High School

Team Members:

Hadwyn Link

Ximena Serna

Teacher:

Jeremy Jensen

Project Mentor:

Mario Serna

2

Table of Contents

Table of Contents... 2

Abstract...3

Introduction..4

The Problem...4

The Objective...5

Solution..6

Orbit Generation.. 6

Orbit Visualization...7

The Setup... 7

Optimization.. 8

Dataset Generation...10

Object Detection.. 10

The Structure of YOLO... 10

Attempts at Making a Custom Network.. 12

Training YOLOv5 Instead... 12

Results... 13

Conclusion...14

Acknowledgements.. 15

Works Cited.. 16

Links To Products.. 19

Graphs and Tables... 20

Graph of loss and precision during training.. 20

Confidence Curve.. 20

Precision-Recall Curve.. 21

Precision-Confidence Curve..21

Recall-Confidence Curve.. 22

3

Abstract

As the amount of debris in Low Earth Orbit (LEO) increases, satellites are more likely to

collide with it. Debris travels at such high speeds that even small debris colliding with a satellite

could cause catastrophic damage. As satellites are crucial to many important systems, it is

important to protect these satellites. The common methods of preventing collision are by either

removing the debris, forcing it to re-enter the atmosphere and burn up, or by maneuvering

satellites around debris to avoid it entirely. Additionally, it is important to be able to classify

objects in orbit to catalogue the type of debris. Classifying debris allows us to better determine

risk and which method of removal to use. However, both classifying and detecting debris are

extremely difficult with the current strategies. By using novel machine learning algorithms to

more efficiently analyze debris classes and orbits, we can vastly improve the performance of

satellite systems and debris removal protocols.

Recent studies pertaining to this field suggest trying You Only Look Once (YOLO), a

new type of machine learning. It is extremely fast at detecting objects and works much more

efficiently than any previous object detection models, making it more likely that it would work

on less powerful space hardware. Our goal was to find how effective YOLO is at classifying

debris in LEO.

Our solution was to create a simulation which can test YOLO’s ability to classify debris.

To do so, we generated over 14,000 orbits containing information such as position versus time.

With this information, we created a graphical simulation of the debris orbiting Earth. Then, we

procedurally took screenshots of the simulation and saved object classes and positions to a file.

After slight adjustment, the images were fed into the YOLO program for training, and once it

was fully trained we fed the simulation directly into the model to see how it would perform in a

real-time environment as opposed to still pictures.

The program finished its training with a very high percentage accuracy of classification.

The program had minimal difference between the different types of background in the images.

Our results support the conclusion that YOLO can classify debris accurately and can be

implemented for the purpose of addressing free floating debris in space. We encourage future

researchers to continue this course of study for possible space implantation.

4

Introduction

The Problem

In the past few decades, society has grown to rely on wireless internet, smart phones, and

instantaneous communication networks. Many of these commodities, however, rely on satellite

technology. With most of the modern world dependent on satellites in some way, it is important

to address problems that threaten their existence. By far the largest one is debris; these pieces of

residual payloads, broken satellite parts, and asteroids have begun

to litter Earth’s orbit on an unprecedented scale. As more satellites

are put in space, more debris is created: more payloads are left

over, and more old satellites are forgotten and broken down. A

piece of debris can reach a speed of 18,000 miles per hour, seven

times faster than the speed of a bullet. At that velocity, even a

collision between a flake of paint and a satellite could prove

catastrophic. The image to the left demonstrates the proportion size

between a piece of debris in Low Earth Orbit and its collision impact crater. A single collision

could easily decommission a satellite, as well as create more debris to worsen the problem.

Repairing damaged satellites costs tens of billions to hundreds of millions of dollars, especially

if it requires a human mission. Leaving them vulnerable jeopardizes every function they perform,

is a danger to society's way of life, and makes sustainability in space very precarious.

Current methods to detect debris are radar systems which can pinpoint locations of

nearby objects as well as contact with a ground-based tracking system with more heavy-duty

tools. Neither of these methods can directly determine what exactly the debris is but can collect

information such as material. However, in some cases this may not be enough to fully classify

the debris, and in the case of ground-based tracking it has a delay between data transfers and can

also be very expensive to operate the ground-based tracking systems. Another, newer option is to

stream images down from the satellite and perform object detection algorithms on earth.

However, streaming such a large amount of data from a satellite would be very expensive and

would have a large enough delay for the data to be outdated when it reaches the

satellite—remember, debris can move at up to 18,000 miles per hour.

Without information about the debris near a satellite in real time, there is little we can do

to reduce collisions. Solutions such as removing the debris, forcing their orbit to burn on reentry,

5

or having satellites maneuver around debris would all require information about the class and

location of the debris that would be necessary in order to determine which approach to use.

Clearly, another method is necessary to accurately and completely classify and detect debris with

attention to both cost and speed.

The Objective

Our proposed solution is to find a way of detecting and classifying pieces of debris with a

common type of artificial neural network: YOLO. First introduced by Joseph Redmon et al. in

2015, it is a quick and efficient object detection neural network. It has never been implemented

in space before but has been proposed for being more effective than current methods of detection

according to studies by Mahendrakar et al. and Ahamed et al. However, no previous studies have

suggested any ability of YOLO’s classification skills in space.

Classification of debris could help us understand the risk of each piece of debris, provide

information on the best way of removal, and gauge whether the debris would burn up in the

atmosphere during reentry. Providing this information would be valuable for addressing the

debris problem and is an area that has not yet been explored in YOLO’s abilities, thus addressing

a gap in scientific understanding.

YOLO sets itself apart from many other machine learning algorithms because it is the

most likely object detection model to work on current satellite hardware because of its speed and

relatively low resource requirements. Realistically, a surveying satellite does not have the time to

be able to detect and classify every object it sees. Instead, it has to be able to process the required

information before the object disappears. Speedy calculations will lead to a more efficient system

of surveying and give the satellite a greater amount of time to act and attempt to remove or avoid

the debris. Because LEO has the highest concentration of debris, our simulations have been

based on receiving its data from this altitude (2,000km or less). At the conclusion of this study,

our results should show how effective YOLO is at detecting and classifying debris in 7 classes:

Asteroid, Cube Satellite, Envisat, Voyager, Hubble, the ISS, and the SaturnV5 Rocket. These

classes include common objects seen in space along with specific, universally recognised objects

that would demonstrate YOLO’s ability to classify different types of objects such as Envisat,

Voyager etc.

6

By separating the project into two sections: generating the debris orbits, and creating and

training the YOLO program. We generated the debris orbits based on a dataset of real debris

orbits, which output individual characteristics of around

14,000 orbits and saved each orbit to a file. These

generated files, containing the position versus time of

each item of debris, were then converted into a real-time

graphical simulation of the debris, as shown in the image

to the left. The graphical simulation was adjusted to

demonstrate the vantage point of a LEO satellite.

Screenshots of the simulation from this vantage point were fed into the YOLO model for

training. Afterward, the YOLO was able to receive information live from the generated debris

visualization.

Solution

Orbit Generation

The debris orbits were generated

from a dataset obtained from Kaggle. The

dataset quantified one debris item per line

summing to a total of around 14,000 pieces

of tracked debris and 14,000 lines of data.

To describe each orbit, the dataset gave over

20 Kepler's characteristics along with name,

ID, country of origin, and date of creation

using a Comma Separated Value(CSV) file.

As the information may suggest, the debris

information was recorded from real debris in

space and does not contain randomly

generated numbers.

Kepler characteristics are values that

describe an orbit in a way that allows us to

derive specific information about its path.

For example, a characteristic could include

an object's closest and farthest point radius,

eccentricity, inclination off the xy plane and

‘w’ rotation away from the zy plane. Using

7

these values, the radius of the debris from

earth are given by where 𝑅 = 𝐴* (1−𝑒2)
1+𝑒*𝑐𝑜𝑠(𝑉)

‘A’ is the semi major axis, ‘e’ is the

eccentricity, and ‘V’ is the true anomaly

(angle from). A python program θ = 0

input the required values and calculated the

radius based on incrementing calculating θ,

one full orbit at

a time. This provided a basic outline of the

orbit’s position over an orbit. It was then

rotated off the xy, yz, and zx axis based on

the ‘w,’ ‘i,’ and the RA node. The rotation

matrix used for adjusting the orbits is given

by

 . This translates the 𝑅 =
𝑠𝑖𝑛θ 𝑐𝑜𝑠θ
𝑐𝑜𝑠θ −𝑠𝑖𝑛θ⎡⎢⎣

⎤⎥⎦
Kaggle orbits into the 3D path of the orbit.

After the piece of debris’ actual path

through space has been found, the time steps

need to be calculated. To do this, we used

the conservation of momentum, to 𝑃 = 𝑚𝑣

find the time between each calculated

position. The velocity was calculated by

subtracting the potential energy from the

total energy and solving for ‘v’. The

equation for total energy is given by

 , the potential energy at 𝐸
𝑡𝑜𝑡𝑎𝑙

=− 𝐺𝑀𝑚
2𝐴

the time of measurement is , 𝑈 =− 𝐺𝑀𝑚
𝑟

and the Kinetic energy is given by

 Using pythagorean theorem, 𝐾 = 1
2 𝑚𝑣2.

we calculated the distance between the said

measurement and used to find ∆𝑡 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑣

the time. At the completion of finding each

time step, the information was saved to a

CSV file for further use. It is saved to the

format time since the start of orbit, x, y, z.

The python program repeated the process for

the rest of the debris, reading one more line

of the dataset and creating another debris

CSV file until every debris file was made.

Orbit Visualization

The Setup

 Each individual orbit is saved to a

CSV file, with each line containing

information about the x, y, and z coordinates

of the debris along with the time. There are

14,372 debris orbits in total, with two extra

files for the orbits of the Earth and moon.

The Sun orbits around the Earth for the sake

of not having to deal with massive

8

floating-point numbers causing precision

loss on satellite positions. Instead of a full

orbit it changes between 8 approximation

positions in a circle around the Earth. The

Earth also rotates around its axis on a

24-hour time interval. To keep the sun and

earth’s rotations synced up with the debris’

timescale, they use one of the orbit files to

determine the timescale being used, and then

take reference to the timestep while using

their own logic for positioning. Below is

what our simulation currently looks like.

The sun is not directly seen by the satellite

at its current angle, but it helps simulate the

day/night cycle.

For convenience, the simulation is

sped up significantly, and the xyz

coordinates of every orbit are decreased by a

scale of 256. This scaling down is necessary

because with 3D simulations such as Unity,

as a number gets larger the amount of

floating-point precision a number can hold

decreases. By scaling down the number we

get more decimal precision, and it is easier

to move around the environment during

testing. The earth and moon are scaled down

in size to match the coordinate shrinking, so

the simulation is an overall 1/256 scale

model of the Earth-Moon-Sun system.

 At runtime, a debris generator object

instantiates all 14,372 pieces of debris with

one of seven random debris models. Each

piece of debris is instantiated at a random

angle as well. The camera is attached to a

survey satellite in the same orbit zone as the

debris, and pointed directly towards the

Earth. The debris are scaled up to 100 times

their real world sizes to make it easier for

the low resolution images we are training

the neural network with to actually capture

the 3D models. This would not be as much

of a problem in a real-world situation

because the camera would take higher

resolution images that could capture

important features from further away.

Optimization

 14,372 pieces of debris is a lot to

simulate individually. Each piece must

update its position in almost every frame

and has a fairly dense 3D model attached to

it which also uses a significant amount of

computing power. On a RTX 3060 graphics

card and an intel i9 cpu, the simulation runs

at under 10 Frames Per Second(FPS)

without optimization. The simulation is

9

intended to run alongside a neural network

and must run at or near “real-time” (30-60

FPS) to be viable.

 To optimize the simulation without

compromising on the amount of debris,

everything the camera can’t see doesn’t need

to be fully simulated. We can do this by

checking if a debris item is past a certain

distance from the camera, and if it is we turn

its model off. By running this every time

when a piece of debris moves, we create a

“mask” around the camera where things are

visible, and hide everything else.

This saves some computational

power, but not enough to get a “real time”

frame rate. The main thing causing FPS to

drop is the number of times each debris item

changes position. Every piece of debris

updated its position every few milliseconds

or so. This meant the CPU was always

swamped with requests, making each frame

take longer to process. To fix this, we again

use the principle of not spending resources

on debris the camera cannot see. To do this,

we again need to know how far the debris is

from the camera. First, we have a script on

the debris that calculates each time it moves

how far away it is from the camera. Then,

we calculate an “optimization number”-a

number that the debris’ delta time and lines

skipped will be multiplied by, making its

motion choppier (but still following the

same path at roughly the same time) and less

computationally expensive. After trying a

few different methods, we settled on taking

‘e’ (Euler’s number) to the power of the

distance minus the radius around the camera

that we want the debris moving smoothly in

with a minimum value of one and a

maximum value of 45, rounded to the

nearest integer. Using this function means

we get a tight sphere around the camera

where everything moves smoothly, but after

that point the debris gets optimized quickly

(but not so much that the orbit becomes

completely unusable). By doing this, the

simulation can now run all 14,372 pieces of

debris simultaneously with a range of FPS

between 30-60. Another thing to note is that

the simulation is rendered at a resolution of

256x256, for two reasons: One reason is that

it makes the simulation run faster, and the

second reason is that it makes the neural

network faster to train and run. In a

real-world scenario the resolution would

10

need to be much larger than this, so there

would be some necessary loss in

performance past what we use in this project

in order to make the model work better in

space.

Dataset Generation

 With the simulation complete, the

dataset for the object detection model could

be generated. This is relatively easy with

Unity’s built in GUI functions: existing

functions can detect which objects are on

screen and where they are on screen (this

does not use machine learning, as Unity has

access to the 3D simulation and can figure

all of this out deterministically). We used

more GUI functions to draw the rectangles

on screen as a sanity check for the boxes

before we screenshot each frame of the

simulation and write the important

information such as class and bounding box

of each object to another CSV file (YOLO

uses the format center x, center y, width and

height for its bounding boxes). Below is an

example of one of these boxes and the sanity

check:

For the most part this gives relatively

good bounding boxes to use in training the

neural network. This code runs until each

object class has a certain number of

screenshots with it in the picture. We

generated 100 images per class as this is the

recommended minimum for such a model.

However, the format of the dataset

cannot be used with YOLO out of the box:

the standard format for YOLO requires a

multitude of text files containing object

information with one text file per image

rather than a CSV file with every image’s

data in it. We made this transition with a

single python script. We also divided each

value for the bounding box by the resolution

of 256 by 256 since YOLO works off of

screen ratio rather than pixels, and changed

the definition of the Y value on the image

from starting at the bottom, as Unity has it,

to starting at the top. After everything was in

the proper format, the YOLO object

detection model could be trained.

Object Detection

The Structure of YOLO

 YOLO stands for You Only Look

Once, and it is currently the most popular

11

neural network for object detection. There

are many different versions of YOLO,

ranging from the original YOLO to the most

recent YOLOv12 model. During this

challenge, we focused on YOLOv4 but

eventually switched to YOLOv5 after we

ran into a critical bug in our v4 code that

required us to switch over to v5 just in case

we couldn’t solve the bug in time.

 YOLO’s structure consists of three

parts: a backbone, a neck, and a head. The

backbone is a convolutional neural network

for object classification, and is the part that

actually determines what objects are in the

scene as well as a great deal of where they

are. A convolutional neural network

classifies objects using convolutional layers,

which extract various “features”, such as

closed circles or even something as

complicated as the contours of a face. Below

is an example of what these features and

feature extractors look like if visualized.

Typically, convolutional neural networks are

used to identify a single object in a picture

as a standalone neural network, but YOLO

modifies the network by essentially splitting

the given image into a grid that the

backbone classifies individually. This gives

the neck and head a starting approximation

of where each object is as well as what the

objects are. This is the largest part of the

neural network, and does most of the heavy

lifting.

 The neck is relatively small

compared to the backbone and head, but

serves as an important bridge of information

between the two. This section collects the

features that were extracted from the image

during the backbone section and sends this

information to the head. This is commonly

done with a Feature Pyramid Network

(FPN), which can aggregate features on

several layers of the backbone at different

scales (convolutional layers shrink the

image’s dimensions, creating vastly different

sizes of features). By feeding accurate data

into the head, the head works better and can

draw more accurate boxes.

 The head is where most of the output

of the neural network is put together. The

head takes the output from the neck and runs

it through a series of “YOLO layers” which

generate thousands of boxes. Each box has

its own confidence value representing how

confident YOLO is that there is an object in

the box and class prediction. The class

12

prediction is a list of confidence values

where the index of the highest value in the

list is the class it believes is in the box.

(Object types during computation are

represented by numbers.) YOLO outputs a

list of three separate tensors with these

boxes for low, medium, and high box size

based on the different scales the neck inputs

to the head. This ensures that regardless of

an object's proximity to the screen or

relative size, the neural network can still

pick up on it.

 However, YOLO’s output is

completely unfiltered and outputs thousands

of boxes that need to be sorted through to

find the best ones. This is done by the

second step of the algorithm, which is

separate from the neural network and

deterministically culls the low-confidence

boxes so that only the most accurate ones

remain. This turns thousands of useless

boxes into a select few usable boxes that are

much closer to the actual object’s position

and class.

Attempts at Making a Custom Network

 Our original idea was to make a

custom implementation of YOLO based on

researcher Wong Kin-Yiu’s Github

repository demonstrating YOLOv4’s

architecture in Pytorch. We coded this

implementation with a dataloader that would

have taken our original CSV file dataset

format, along with a more specialized

structure for our specific needs. The bulk of

the code was finished in late February, but

when we tried to train the model, the loss of

box accuracy plateaued at 0.3 (a very high

number) and the output was completely

unusable. Unfortunately, attempts to fix this

issue didn’t look promising, and after a

month of bug fixing we decided to switch to

a professional implementation of YOLO and

continue fixing the problem after we had

something working. Having to use a version

of YOLO we didn’t personally program and

customize was disappointing, but through

making our own implementation at the start

we were able to understand the structure of

the tool on a deeper level than if we had

started out with a premade model.

Training YOLOv5 Instead

 Since we already had a large amount

of experience getting our YOLOv4 set up,

getting YOLOv5 to train on our dataset was

13

simple. We switched the dataset from the

CSV file to a set of txt files so the dataloader

could read it, and added a .yaml

configuration file that would point towards

our dataset and the number and names of our

classes. After this, we loaded up a python

virtual environment to run 100 epochs of the

YOLOv5 nano model, which is the smallest

version of YOLO that is typically used. We

chose this version because it has the best

chance of running on current space

technology, while also being accurate

enough to pick up on all of the features it

needs to pick up.

 As seen above in one of the output

testing images, the model draws boxes over

each piece of debris it detects along with the

class it believes the object is. After it was

trained, we ran the neural network

simultaneously with the graphical simulation

and visualized the output much like the

above image. This worked extremely well,

even when the camera was looking at a

darker image like when it was nighttime. To

improve accuracy at a marginal increase of

computational stress, we could increase the

resolution and the number of classes.

However, we have not given up on fixing

YOLOv4. We will continue work on it after

the report is finished and try to get it fixed

for the expo.

Results

YOLOv5 ended its training with a

box loss of 0.278, an object loss of 0.016,

and a class loss of 0.007. Its ending

precision was slightly under 94%. If

necessary or if we wanted to add more

classes, we could train it for longer to get an

even more accurate model. The “nano”

model structure didn’t even need two

computers to run it in real-time as we

originally planned, and it could run easily

alongside the real-time graphical simulation

and a communication script that fed the

simulation’s window into the neural

network. Here is the YouTube video that

demonstrates the simulation and the

detection side by side:

https://www.youtube.com/watch?v=W5LQc

zcIe_4. While there is a slight delay in

https://www.youtube.com/watch?v=W5LQczcIe_4
https://www.youtube.com/watch?v=W5LQczcIe_4

14

presentation of the detection boxes and the

original simulation due to using python as a

visualizer of the boxes, the detection

algorithm ran at a much higher framerate

than the simulation, running at hundreds of

FPS and drawing accurate boxes around

debris. Additionally the simulation’s debris

and angle are randomly generated, so there

is little overlap between what the neural

network explicitly trained on and the

material it was tested on here. The model’s

high performance in this case indicates that

the neural network did not overfit while

training. The neural network was also able

to perform well during the night,

demonstrating its ability to accurately

discern class and box location based on less

clear information. If required we could

easily up the image resolution to something

more accurate for a satellite, as well as

improve the model from YOLOv5 Nano size

to small or even medium with a manageable

tradeoff of speed in return for more

accuracy. Below is the graph of our loss

metrics (left) and accuracy (right) during

training. For a larger version of this graph

along with other important graphs, see the

end of this document in the Graphs and

Tables section.

Conclusion

YOLO has proven to be an accurate,

performant way of analyzing and classifying

space debris. However, it is also rather

delicate and difficult to get working, and

there are many edge cases and direct attacks

that can decrease its accuracy significantly,

as is the case with many neural networks.

With our own implementation, programming

around these issues and getting it running in

the first place was complicated and required

us to learn a great deal about neural

networks, convolutional neural networks,

and object detection algorithms in general.

This makes it our most significant

achievement in the project, even though we

were unable to get YOLOV4 working in the

final product.

 YOLO as a solution to detecting and

classifying objects in space has some

downsides. Primarily, it can only classify

objects it has been explicitly trained on. We

used only seven classes in our project, but

there are hundreds, if not thousands of types

of debris currently in orbit and it would be

impossible to catalogue them all and train a

15

network on it. Classification needs more

training the more classes you train on, and

even though the relatively primitive

YOLOv2 could hypothetically guess over

9000 classes relatively accurately (for its

time), this creates a larger neural network

that requires more memory and power.

However, one advantage indicated by

research is that a larger neural network

would be more “robust” when exposed to

radiation than a smaller one, as there would

be more redundancies and pathways that the

model could still perform relatively well

without.

Additionally, YOLO cannot

explicitly find the distance to or relative

position of the debris in 3D space, just

where it is on the screen (Although this can

be paired with other algorithms to figure this

part out). Finally, we once again run into the

issue of performance: current space

technology is at least ten years behind

modern graphics cards and CPUs, and even

in 2017 the most efficient object detection

algorithms ran at 6 FPS and were considered

extremely performant at the time, as seen in

Tsung-Yei Lin’s paper on feature pyramid

networks. This is due to radiation being hard

on modern, fragile graphics cards and frying

them easily, along with the amount of power

neural networks use. This is a relatively

small problem, as even now there is research

going into getting neural networks such as

this into space and even some commercially

available satellite parts that YOLO could

reasonably run on without too much trouble.

These weak points are a significant

concern, but using other technologies in

combination with object detection can cover

these weak points and result in a much more

accurate debris detection system than we

currently have. In particular, a supporting

onboard radar system would be able to tell

where exactly the debris is (one of the

problems with YOLO) as well as provide

auxiliary information about objects such as

their material or mass. This last point is

important because it would let YOLO train

on fewer, more general classes of objects

(such as satellite, rocket stage, etc.) but still

have enough context clues for a

deterministic algorithm to piece together the

output of both the radar and YOLO for a

much more extensive list of detections than

either one could give alone.

Acknowledgements

16

Special thanks to Francisco

Viramontes, one of our teammate’s

internship mentor who has provided helpful

insight on both the inner workings of YOLO

as well as advice on how to frame our

problem to be both accurate to space

technology’s current ability to handle

machine learning algorithms, as well as

giving us ideas as to how machine learning

could be used effectively in space.

Regina Hunter also helped in

proofreading this paper in the final stages,

and helped us catch points where we needed

to elaborate for clarity of concepts.

We would also like to thank Jeremy

Jensen, our team Sponsor for the last three

years of competition. Without him we would

not have been able to compete, and it would

have been much more difficult to

communicate with SCC without him.

Finally, Hamilton Link provided us

with crucial input on troubleshooting the

YOLOv4 network along with Mario Serna

who helped with our orbital simulations and

calculation.

17

Works Cited

Bochkovskiy, Alexey, et al. “YOLOv4: Optimal Speed and Accuracy of Object Detection.”

Institute of Information Science, 23 April 2020, YOLOv4: Optimal Speed and Accuracy

of Object Detection. Accessed 15 January 2025.

David, Leonard. “Space Junk Removal Is Not Going Smoothly.” 14 April 2021,

https://www.scientificamerican.com/article/space-junk-removal-is-not-going-smoothly/.

Accessed 20 March 2025.

“Earth Textures | 1.0.0.” Github, 29 May 2024,

https://github.com/RSS-Reborn/RSS-Earth/releases/tag/V1.0.0. Accessed 6 February

2025.

“Envisat.” Sketchfab, 2016,

https://sketchfab.com/3d-models/envisat-65b0ec49681a44f68dfc8bd4efe95839. Accessed

30 January 2025.

“Hubble space telescope.” Sketchfab,

https://sketchfab.com/3d-models/hubble-space-telescope-e22236fab9634c959c0525c7ab

9c83d7. Accessed 20 January 2025.

“International Space Station 3D Model.” NASA, 22 April 2019,

https://science.nasa.gov/resource/international-space-station-3d-model/. Accessed 17

February 2025.

Keeter, William. “NASA 3D Resources.” NASA,

https://nasa3d.arc.nasa.gov/detail/cubesat-1RU%5C. Accessed 20 February 2025.

18

KHANDEKA, KANDHAL. “SATELLITES AND DEBRIS IN EARTH'S ORBIT.” Kaggle,

2022,

https://www.kaggle.com/datasets/kandhalkhandeka/satellites-and-debris-in-earths-orbit.

Accessed 4 November 2024.

Lin, Tsung-Yi, et al. “Feature Pyramid Networks for Object Detection.” Cornell University and

Cornell Tech, 19 April 2017, https://arxiv.org/pdf/1612.03144. Accessed 1 February

2025.

Mahendrakar, Trupti, et al. “SpaceYOLO: A Human-Inspired Model for Real-time, On-board

Spacecraft Feature Detection.” Florida Institute of Technology,

https://arxiv.org/pdf/2302.00824. Accessed 29 October 2024.

“Orbit Orientation.” AI Solution,

https://ai-solutions.com/_freeflyeruniversityguide/orbit_orientation.htm. Accessed 24

December 2024.

“Planetary Physics: Kepler's Laws of Planetary Motion.” Orbits and Kepler’s Laws, NASA, 26

June 2008, https://science.nasa.gov/resource/orbits-and-keplers-laws/. Accessed 30

October 2024.

Redmon, Joseph, et al. “You Only Look Once: Unified, Real-Time Object Detection.”

https://arxiv.org/pdf/1506.02640. Accessed January 2025.

“Space Debris.” HQ Library Navigation, NASA,

https://www.nasa.gov/headquarters/library/find/bibliographies/space-debris/. Accessed 26

October 2024.

19

“Space Debris Velocities.” RULES OF THUMB AND DATA FOR SPACE DEBRIS STUDIES,

NASA, https://science.nasa.gov/resource/international-space-station-3d-model/. Accessed

25 October 2024.

“Space Rocket Saturn V 3D Model.” Free3D, 23 April 2020,

https://free3d.com/3d-model/space-rocket-saturn-v-360313.html. Accessed 23 January

2025.

“Space Rocks.” CGtrader,

https://www.cgtrader.com/free-3d-models/space/other/space-rocks-9351486c-0cd0-46e7-

ab36-62c8a621820d. Accessed February 14 2025.

“Voyager.” NASA, 31 March 2025, https://nasa3d.arc.nasa.gov/detail/jpl-vtad-voyager. Accessed

11 February 2025.

Yiu, Wong Kin. “PyTorch implementation of YOLOv4.” Github,

https://github.com/WongKinYiu/PyTorch_YOLOv4. Accessed 27 January 2025.

“YOLO9000: Better, Faster, Stronger.” Allen Institute for AI, 25 December 2016,

https://arxiv.org/pdf/1612.08242. Accessed 10 January 2025.

“YOLO, Ultralytics.” Github, 22 November 2022, https://github.com/ultralytics/yolov5.

Accessed 2 January 2025.

20

Links To Products

https://github.com/HadwynLink/SCC-2024-2025

(results table can be found in Yolov5/Runs/results.csv)

https://www.youtube.com/watch?v=W5LQczcIe_4

https://github.com/HadwynLink/SCC-2024-2025
https://www.youtube.com/watch?v=W5LQczcIe_4

21

Graphs and Tables

Graph of loss and precision during training

22

Confidence Curve

Precision-Recall Curve

23

Precision-Confidence Curve

Recall-Confidence Curve

Albuquerque Academy Team 1

Additive Manufacture Kinetics and

Thermodynamics Model

New Mexico

Supercomputing Challenge

Final Report

April 25, 2025

AA Team 1

Albuquerque Academy

Created by

Harrison Schiek

Teacher Mentors

Jay Garcia

Alex Benedict

Table of Contents -------------------------

● Executive Summary 2

● Problem 3-4

● Methodology and Algorithms 4-16

● Verification and Validation 16-24

● Results: Analysis and Conclusions 24-26

● Future Use: Development and Testing 26

● Bibliography and Acknowledgements 27-29

● Appendix A 29-30

1

Executive Summary -----------------------
Problem

As Additive Manufacturing (AM) and, more specifically, Fused Filament Fabrication

(FFF) grow in importance and prevalence, it is essential to understand bonding conditions for

materials and resultant material strength. Especially for high-strength applications like aerospace

and construction and high-precision applications in nanotech and biomaterials, manipulation and

careful characterization of materials is crucial. With its introduction into these fields, AM will

lower costs and break down barriers for research and innovation. It is essential to expand support

for AM applications through bettering understanding for improved material effectiveness.

Solution and Methodology

The filament was modeled as a set of non-colloidal particles using Molecular Dynamics

and other interactions. Two kinds of exchange occur between nodes of the simulation; the first

being thermal energy, and the second being kinetic energy. To model the first, the Heat Equation

was applied using simple approximations of the second derivative. For kinetic exchanges,

Lennard Jones potentials, friction, and torque captured the interaction with high fidelity.

Temperature was also included in gauging friction and bond potential energy to increase

accuracy. To evaluate bonding strength, measured temperature and strain during solidification

contributed to an aggregate measure for characterization thereof.

Validation and Verification
By testing each component of the model in individualized trials, the model is shown to

accurately predict logical results and textbook examples. To further verify their effectiveness,

material characterizations were compared with literature material properties at temperature.

Results
 The model indicates two major changes to improve FFF material effectiveness. The first

change is higher plate temperature. This provides for the slow and steady bonding of the

material. The second conclusion is that effective high temperature control of the bonding surface

increases bonding quality, as maintaining even high temperature ensures key interlayer bonding.

2

Problem -------------------------------------

There are myriad reasons to value AM highly as a target for not only research but also

investment. AM isn’t a new idea, but many of its extensions and specializations, especially FFF,

have grown immensely in recent years and show promise to revolutionize numerous industries

that were previously unaffected by this type of manufacture. Lack of understanding now prevents

broader applications, as gaps in precision and material strength limit usability. Overall, due to

AM’s growth, versatility, and environmental importance, it is essential to better understand and

characterize bonding and product strength to broaden its impact.

AM technology has grown at an unprecedented rate and is projected to continue this

growth. Specifically, growth of the global industry for AM from 2023 to 2030 is estimated to be

432.75% (around 23.3% annually)1. Importantly, FFF is the second largest contributory sector of

AM1.This growth makes it essential to support AM and FFF with better understanding and tools

to predict performance. By facilitating more effective use of AM, greater uptake and positive

effects will be seen across numerous industries. AM is also expanding into numerous new fields,

where it promises to remove impediments to research and production. An article summarizing

AM and its current uses states, “[AM] is rapidly expanding to a large number of industrial

sectors such as aeronautics, automobile and biomedicine, with significant growth in the medical

device and wearables markets”2. Given the wide spanning reach with an emphasis on precision

and strength, predicting and printing for specific characteristics is crucial. Additionally, by

improving understanding, problems with bonding and product durability will be reduced in

severity. To empower the transition to AM, it is invaluable to improve understanding to reduce

waste and cost and develop overall quality.

AM’s versatility makes it crucial for large scale implementation. FFF machinery and

equipment are almost independent of design, meaning costly specialization by product is nearly

nonexistent. This allows flexibility for producers, lowering costs for experimentation and

development. In addition, this makes much more possible for scientists. NASA highlights the

importance of AM coupled with Thermodynamic modeling software specifically: “Applying

these two processes (Thermodynamic Modeling and 3D Printing) has drastically accelerated the

rate of our materials development. We can now produce new materials faster and with better

performance than before”3. As seen here, effective modelling crucially streamlines development

3

processes and better supports science and industry. Adding on, a report by the US Department of

Commerce notes the utility of AM in a broad variety of new uses due to its versatility. It states,

“[AM] can facilitate the customized production of strong light-weight products”4. The wide

spanning uses of AM as a result of its versatility illuminate the importance of utilization with

confidence.

AM results in far less production waste, energy cost, and raw material usage. Its

implementation will lead the way to importantly reducing the significant industrial burden on the

environment. A paper, published in the journal Advanced Industrial and Engineering Polymer

Research, focusing on AM as a sustainable manufacturing alternative reveals that AM results in

“lesser material waste, energy usage, and machine emissions” as opposed to current

manufacturing techniques5. Given these profound benefits over currently prevalent methods, the

use of AM technologies to reduce overall pollution is promising. In the ongoing fight against

Climate Change, the effective implementation and development of AM is a crucial step. The

same paper emphasizes AM’s importance in long term sustainability and climate efforts5. AM

technologies play an important role as a more sustainable and environmentally friendly means of

manufacture, and it is essential to support broad application and implementation.

Methodology and Algorithms ------------
The model consists of two major methods of energy exchange between nodes: thermal

energy exchange and a kinetic energy exchange. Each of these methods will be examined in

depth through foundations in established theory to implementation and program calculation.

First, though, a description of the model framework and setting will set the stage for algorithmic

usage and its computational effectiveness.

The model was developed from scratch exclusively in python using text editor BBEdit. It

was run predominantly on a desktop computer with 3.4 GHz 8 Core Processor and a portable

computer with 4.05GHz 8 Core Processor. Significant Python libraries Matplotlib and NumPy

were used, the first for visualizations and the second for arrays and data organization. The model

uses a Modelling by Decomposition approach to model a complicated 3D printed solid. It uses a

hexagonal matrix of points to approximate the whole solid, and it manages internodal

interactions by defining adjacency by spacing and considering only directly adjacent interactions.

4

The nodes can be thought of as small pieces of the whole not in any particular shape. As an

example of adjacent nodes see Figure 1. The red node gives an example node and the orange

nodes give all the adjacent nodes. The definition is just within 1.5 units of distance.

 (Fig. 1)

Heat Exchange

The first physics feature of interest is heat exchange. To model this interaction, the Heat

Equation was modified and applied to this nodal approach. Since the framework considers

specifically particle-on-particle interactions, the complexity of the 3D Heat Equation was

somewhat generalized for usage. A single variable r can represent distance between particles and

replace position variables x, y, and z. t gives time. T gives the temperature, which is a function of

x, y, z, and t. is the thermal diffusivity. See Equation 1-1: α

 (1-1) δ𝑇
δ𝑡 = α∇2𝑇 = α δ2𝑇

δ𝑥2 + δ2𝑇

δ𝑦2 + δ2𝑇

δ𝑧2() = α δ2𝑇

δ𝑟2

To adapt the equation further for use in the simulation, gaining an approximation of the second

derivative for a point is crucial. To do this, consider (in only one dimension for simplicity) three

nodes of temperatures T1, T2, and T3, and positions x1, x2, and x3. Approximating the first

5

derivative on the two sections, the two approximations are given by equations 1-2. The

approximation is simply the equivalent of change in T over change in x for the function.

 (1-2)
δ𝑇
δ𝑥 1

≈
𝑇

2
−𝑇

1

𝑥
2
−𝑥

1

δ𝑇
δ𝑥 2

≈
𝑇

3
−𝑇

2

𝑥
3
−𝑥

2

Again using the same idea to approximate the second derivative at the center of the full interval

and making the simple assumption that these particles are at the same distance from the central

node (calling this distance r), the simplification and separation of interactions is shown (Eq. 1-3).

 (1-3)
δ2𝑇

δ𝑥2 ≈
𝑇

3
−𝑇

2

𝑥
3
−𝑥

2
−

𝑇
2
−𝑇

1

𝑥
2
−𝑥

1

𝑥
3
+𝑥

2

2 −
(𝑥

2
+𝑥

1
)

2

=
𝑇

3
−𝑇

2

𝑟 −
𝑇

2
−𝑇

1

𝑟
2𝑟+𝑥

2
+𝑥

1

2 −
(𝑥

2
+𝑥

1
)

2

=
𝑇

3
−𝑇

2

𝑟2 +
𝑇

1
−𝑇

2

𝑟2

This shows the final simplification and manipulation of the heat equation for use in one-on-one

particle interactions. Equation 1-3 really shows how the change in temperature at a point is given

in approximate by the sum of nodes around in their change in temperature divided by the square

of the distance, thus making these interactions simply calculable for any given set of nodes. See

Equation 1-4 for the final usage of the Heat Equation, with Particle 1 being the particle from

who’s reference the calculations are made and Particle 2 being a particle adjacent to Particle 1

and thus included in the calculations. (Subscripts giving attributes of the particles and r being

distance between particles). This is applied to a collection of nodes in 3D in the program.

 (1-4) δ𝑇
δ𝑡 𝑝𝑎𝑟𝑡

= α δ2𝑇

δ𝑟2 ≈ α
𝑇

2
−𝑇

1

𝑟2 δ𝑇
δ𝑡 𝑡𝑜𝑡

=
𝑛=2
∑ α

𝑇
𝑛
−𝑇

1

𝑟
𝑛
2

Using this relation, the model calculates heat flow from the difference in temperature and the

distance between particles accurately.

6

Simple Internodal Forces

 Next, the Lennard Jones Potential and its application will be discussed. The 12-6 Lennard

Jones Potential has long been a precise way to model the intermolecular forces of very small

particles. It gives the potential energy as a function of distance with several constants to control

the depth of the potential energy well (the strength of the interparticle attraction or bond) and the

distance of lowest potential. In this way, the equation can be adapted generally, and overall,

inclusion was simple. See Equation 2-1 for constant choice.

 (2-1) 𝑉
𝐿𝐽

= 4ε σ
𝑟()12

− σ
𝑟()6() = 4ε 1

4𝑟12 − 1

2𝑟6()

Important to note: Despite the V, the Lennard Jones is not an electric potential.

This is the substitution of for and leaving (depth of the potential well) variable for σ 2
−1
6 ε

implementation as a function of temperature. The idea being that, with lower temperature, there

is less (unshown) thermal kinetic energy fighting the attractive force, and thus, the overall

observed bond potential energy will increase. A simple approximation of this phenomenon was

used, given the glass transition temperature (Tg) (Eq. 2-2). E gives the preset bond energy, which,

for the coarse grain of the model, can be approximated from state changes for the material in

questions and also experimental results. Specific data and implementation are discussed later.

 (2-2) ε = 𝐸 4𝑇
𝑇

𝑔
− 3()−1

An important characteristic of this approximation is that it gives simply E for T=Tg. I.E. setting E

will depend on what properties the material exhibits as it approaches its brittle ‘glass’ state

before any temperature related changes occur to its chemical structure. Another important

differentiation is that for the model, this approximation of bond energy is only used when T>Tg.

Once T<Tg, the model diverts calculations to a different method as will be discussed. This

function maps to this concept for thermal structural changes of polymeric materials (Figure 2).

7

 (Fig. 2)6

When passing the Glass Transition Temperature from hot to cold, the material loses its

malleability and becomes stiff. To model this change in properties, when particles in the

simulation cross this temperature they solidify their bonds and become resistant to change. The

most important means of doing this is in the reevaluation of force relations with adjacent nodes.

Whatever the distance between the particles is, a new Lennard Jones potential is made with the

new distance as the location of the potential well, and the new potential well depth as the current

potential of the node based on the old Lennard Jones. See Figure 3 where the original potential is

shown in red and the new potential (of a particle bound too far at a distance of 1.3) is shown in

blue. Note the new depth of the potential and the location of its well. This process is a bit

abstract, but in total, it is setting forces to zero for a new configuration and weighting the

strength of these ‘new’ bonds on how strained they were before solidification. The factoring of

current strain into future bond strength is crucial. This measure of strain is also used later for

evaluation of bond quality.

8

 (Fig. 3)

This well approximates several characteristics of polymers, specifically storing stress while

‘solidified’ and becoming resistant to any change once cooled. The math to create this in the

model is fairly simple. The potential and distance at the time of ‘solidification’ are recorded. And

used in this form to yield the new Lennard Jones Potential on demand. See Equation 2-3. Where

old distance is given as d, the old potential is given as Vold(distance), and r is the current distance.

 𝑉
𝑛𝑒𝑤

= 4ε 1

4 𝑟+1−𝑑()12 − 1

2 𝑟+1−𝑑()6() 𝑉
𝑜𝑙𝑑

(𝑑)

𝑣(1)

 𝑉
𝑛𝑒𝑤

= 4𝐸 1

4 𝑟+1−𝑑()12 − 1

2 𝑟+1−𝑑()6() 𝑉
𝑜𝑙𝑑

(𝑑)

4𝐸

 (2-3) 𝑉
𝑛𝑒𝑤

= 𝑉
𝑜𝑙𝑑

(𝑑) 1

4 𝑟+1−𝑑()12 − 1

2 𝑟+1−𝑑()6()

This process is simply moving the well and changing its depth as seen here. Additionally, there is

a small shift in the d to account for thermal warping. Of course, this is just a potential and does

not immediately apply to the model. A derivative is necessary to make a relevant force for

computation. See Equations 2-4 for the final implementations.

9

 (2-4) 𝐹
𝑜𝑙𝑑

= 𝑑𝑉
𝑑𝑟 = 12ε 1

𝑟7 − 1

𝑟13()

This equation gives an accurate force between nodes of the simulation and allows for kinetic

exchange. However, this isn’t the whole picture.

Complex Internodal Forces

Friction (or really drag) plays an important role in more concretely understanding these

interactions at a coarser incrementation of distance. To gain a finer understanding without

modelling millions of nodes, these additional calculations account for more properties. The

model operates under a simple assumption that drag of a node operates like a Newtonian flow

over its surface. Equation 3-1 gives the relevant drag equation (for flow over a surface giving net

force on the ground) more clearly with giving the vector difference in velocities**, giving ∆𝑣 𝑑

the distance vector, giving the force vector from friction, being the viscosity, and A being the 𝐹
𝑓

η

contact area. The viscosity is changed with temperature using the same algorithm as the bond

energy.

 (3-1) 𝐹
𝑓

= − η∆𝑣

𝑑| |
· 𝐴

One question about this assumption is should the difference velocity be considered regardless of

the direction of the considered particle. An alternative projects the velocity to the distance and

takes the orthogonal component to consider (Eq. 3-2).

 (3-2) 𝐹
𝑓

= − η𝐴

𝑑| |
𝑜𝑟𝑡ℎ

𝑑
∆𝑣() = − η𝐴

𝑑| |
∆𝑣 − 𝑑•∆𝑣

𝑑| |
2 𝑑()

This supplies a different approach, which separates motion directly toward or away the particle

** Unfortunately, this software doesn’t support conventional vector notation, so this will show vectors.

10

in question from motion in the perpendicular plane. This makes more sense for smaller and

smaller objects, but for this coarse grid, it makes more sense to include all directions given that

the contact of these particles will not only resist perpendicular motion but also motion in the

direction of the other node. Combined with the increased computational weight, this

specification was not included. While this force was directly applied to the nodes, it is important

to note that this force is applied off-center of the node, so angular momentum is relevant and

needed. Using standard formulas for Torque, calculations for angular acceleration can be used.

See Equation 3-3 with as the torque vector. The distance is divided by two since the interaction τ

occurs in the middle of the two particles.

 (3-3) τ = 𝑑
2 × 𝐹

𝑓

This is converted pretty simply to angular acceleration by using the moment of inertia for a

sphere of evenly distributed mass. See Equation 3-4. I is the moment of inertia. M is the mass of

the node. is the acceleration vector. α

 (3-4) α = τ
𝐼 =

𝑑
2 ×𝐹

𝑓

2
5 𝑀 𝑑

2
|||

|||

2

Now that the angular velocity of the nodes has been established, a look back at the calculation of

the net velocity of a nodal interaction for the definition of friction. Since each node is rotating,

the observed velocity is different at each radial direction. Thankfully, this is calculated very

cleanly using vector algebra. See Equation 3-5 for the definition of surface velocity from angular

velocity. gives angular velocity (the resultant quantity of the angular acceleration shown in ω

3-4).

 (3-5) 𝑣
𝑠

= ω × 𝑑
2

11

This makes a net velocity calculation rather simple (Eq. 3-6)

 (3-6) ∆𝑣 = 𝑣
𝑠𝐴

− 𝑣
𝑠ℎ

+ 𝑣
𝐴

− 𝑣
ℎ

This wraps up all sophisticated nodal interaction. These methods approximate the real

interactions of parts within the system and lead to an accurate prediction.

Evaluation

When a node crosses the aforementioned glass transition temperature, the model grades

the quality of the bonds, but to gauge what results in the actual and necessary effective bonding,

it is important to define what leads to effective bonding in the first place. For this model, two

major contributing factors were identified.

The first is the evenness of cooling. In modern manufacturing, the first issue is preventing

uneven cooling. As summarized by industry manufacturer ZhongDe: “[It is essential] to solidify

uniformly and minimize internal stresses, preventing issues like warping, shrinkage, and part

deformation”7. Identifying uneven temperature during bonding is crucial as it leads specifically

to material weakness and point failure. Specifically, a study of plastic composite cooling and

solidifying highlights, “high cooling rates … cause uneven material shrinkage across different

parts and pronounced warping defects”8. The model accounts for this process on a large scale by

including thermal deformation on bonding, but finer details of temperature-related bonding are

also captured. The model on grading inspects adjacent nodes and compares temperatures to the

bonding temperature. The scale (ST) gives high values for adjacent temperatures (Ta) near the

bonding temperature (Tg) and lower scores for changes up or down (Eq. 4-1).

 (4-1) 𝑆
𝑇

= 10 − 𝑇
𝑔

− 𝑇
𝑎| |

This positively reports temperatures close to the glass transition temperature and successfully

identifies bonding situations where the particles are not at ideal temperatures such that warping

and diminished strength are problems.

12

 The second factor is residual stress during solidification. Many materials and especially

plastics ‘store’ their stress in their material lattice structure when solidified under stressing

conditions. These stresses impact their material properties lastingly. In the ScienceDirect chapter

on Tensile Residual Stress, its effects are summarized: “Tensile residual stress often induces

environmentally assisted cracking and fatigue crack initiation, resulting in crucial damage”9. To

include the factoring of stress into the model and its grading of bonding a comparison of bond

potential gives the necessary detail. The algorithm calculates the bond potential and compares it

to the maximum potential to obtain a measure of its closeness in energy to the optimal bonding

scenario (Eq. 4-2). SS gives the stress score; Vold gives the original Lennard Jones Potential, and d

gives the distance at which the nodes solidified (crossed the glass transition temperature). In

essence this measures the potential of the bond and compares it to the maximum potential it

could have, giving 1 for a perfect length bond and numbers less than one for strained bonds

depending on the intensity of their strain. This gives the strain on the bond as it shows how much

the bond has been forced to change.

 (4-2) 𝑆
𝑆

=
𝑉

𝑜𝑙𝑑
(𝑑)

𝑉
𝑜𝑙𝑑

(1) =
𝑉

𝑜𝑙𝑑
(𝑑)

4𝐸

To make a composite score, both scores were normalized and added together so that the

maximum score was 100 for readability (Eq. 4-3).

 (4-3) 𝑆𝑐𝑜𝑟𝑒 = 50𝑆
𝑆

+ 5𝑆
𝑇

= 50
𝑉

𝑜𝑙𝑑
(𝑑)

𝑉
𝑜𝑙𝑑

(1) + 5 10 − 𝑇
𝑔

− 𝑇
𝑎| |()

To maximize material strength and minimize the highlighted issues with bonding, maximizing

the score gives a good approximation of the necessary steps, and overall, it gives a good

characterization of the bonding quality for a given simulation.

That finishes all numerical methods utilized with this model to simulate the FFF

deposition process. All of these elements worked in tandem to produce an accurate recreation of

the conditions and processes for the material. Next it is important to briefly treat time iteration

and stability regions.

13

Time Iteration and Stability Regions
The stability of this model proved to be an essential struggle in producing results. The

high powers of the Lennard Jones potential are very sharp and can easily send a solution into

divergence. Through development of this model, thousands of node sets have exploded (literally)

into divergence. Given more time, a complete look at stability regions and implementation of a

superior time iteration algorithm (Runge Kutta 4, reverse Euler, etc.) would be immensely

beneficial for quality of results and time to compute (another significant roadblock). Currently,

due in part to the difficulty of literature on time iteration, stability, and related topics and due

more mainly to lack of early consideration for stability as an issue, attempts at implementation

have been unsuccessful.

Over the usage of the model, two methods have been explored as potential time iteration

algorithms. The first is a simple Euler method, I.E. using a fixed time step. The second is an

adaptive time step based on controlling the maximum observed force. It functions by recording

the maximum force observed and setting the time step such that the impulse (force multiplied

time) is beneath a set level. A similar time step set for velocity was considered but unused. These

methods worked to the needs of the project but improving them in the future is a priority. Though

a mix was used, curiously the Euler seemed more stable in its applications.

Model Shape

To do any meaningful simulation, the model must construct a matrix of points that are

stable given the standard qualitative concepts. The first idea here was the use of a rectilinear grid

which turned out to be unstable and prone to slight rotation and collapse, so a hexagonal matrix

was implemented as it is much more stable for interactions based on distance. Figure 4 gives an

example of the hexagonal grid as implemented into the simulation.

14

 (Fig. 4)

While the setup is fascinating and included some moderately nontrivial geometry, it isn’t

incredibly pertinent to the actual modeling of the material. The build process is detailed in

Appendix A if more information would be beneficial, but the important details are given here.

The main principle is that all nodes are equidistant to their neighbors and unlike the rectilinear

grid it requires significant force to break. Additionally, a hide feature was included to mask

nodes that hadn’t been printed yet, so given an extrusion rate, nodes could be gradually

introduced into the model, simulating active printing.

Data and Implementation
 Finding relevant data and implementing physically realistic material values gave this

algorithm the actual realism and applicability needed. The material chosen for specialization and

simulation is polylactic acid (PLA), a very common plastic for FFF AM. Although PLA was

selected here, the model is flexible for any material for similar use. Here is summarized the data

found for PLA and where it was utilized.

 First, Thermal Diffusivity of PLA is . This is from an industry 5. 8244 · 10−7 𝑚2

𝑠

material information sheet10 and a formula given in a paper on AM Thermodynamics11. This is

for implementation in the Heat Exchange calculations.

 The Glass Transition Temperature of PLA is 68.5º C. This is from a paper on the general

properties of PLA and its uses12. A wide spectrum for the values were reported, and they were

almost always given as a range of potential values. It seems likely PLA Tg depends on the

manufacturer or other sources. This is used for defining phase shifts and property changes.

15

 The energy of the attraction (E) is difficult to pin down given the somewhat ambiguous

grid. The value is calculated from the tensile strength. Using it, individual maximum force

before separation between particles is found using as 70 N13. Thus, the F = is 70 𝐹 = σ · 𝐴 𝑑𝑉
𝑑𝑟

N. Looking at the formula for F, the max force achieved is . Thus, if the desired 2. 689901 · 𝐸

max force is 70 N, E would be . 70
2.689901 𝐽 = 26. 023 𝐽

 The viscosity of PLA is a bit difficult to find due to its general usage, so the shear

modulus, which is easier to find, can be used. Since viscosity is given by shear modulus G times

relaxation time , viscosity is roughly given by 1.287 MPa13, 14. While viscosity does change with λ

temperature. This change was simply considered with the same factor as in the calculation of ε

(Eq. 2-2).

The Thermal Expansion of PLA is . There is also some flexibility on the 4. 17 · 10−4 𝐾−1

specific definition of this constant likely again due to manufacturing differences. This particular

value came from a recent paper investigating the thermal expansion of PLA with variable infill15.

 Some additional values used include plate temperature of 50 ºC, extrusion temperature of

110 ºC, and nodal diameter of 1 mm. The first two represent typical and common settings for

those two. The last is a computational choice, resulting in a mass per node of 1.24 mg.

 These data values bring this model to life with needed realism. Through the effective use

of these values, the model is able to simulate FFF and characterize its bonding.

Verification and Validation ------------

 The Verification and Validation of this model is crucial to ensure its effectiveness as a

means for prediction and generalization. To verify the components of the simulation highlighted

in Methodology and Algorithms, individual test simulations show effectiveness of each

component in its isolated form. The simulation for thermal energy exchange is a textbook

example of heat conduction. As for validation, two general cases, one at high temperature and

one at low will illustrate the effective modelling of these different characteristics.

16

Heat Transfer

 Starting off with heat, the popular problem Heat Conduction into an Semi-Infinite Wall

will serve as an example. For this simulation all physical interactions are turned off to

standardize distance and reduce computational complexity for faster run times. A hexagon of

side length 3 particles with a height of 24 levels served as the basis for the simulation. The first

level was fixed at a high temperature (called Ts) and the rest of the material was started at a low

temperature (called T0). The temperatures of the other particles were then recorded at periodic

intervals to gain an idea of the temperature flow as modelled. Given these parameters, two

limitations may be identified. The first being area in the x and y directions. Limited area in these

directions deviates from the theoretical ideal by reducing diagonal heat transfer. Closer to the

heating surface however, this difference is less noticeable. Thus, more heed will be paid to nodes

close to the plate. The second limitation is the limited height of the model, thus eliminating

temperature diffusion to infinity. This means that late times when the heat has penetrated the

whole solid will be less accurate. Running the model, the following results are returned. Figure 5

shows the average observed temperatures for each of the 24 levels of the solid (with x being the

height of the level with the distance between levels being) at times (from the bottom up) 10, 2
3

15, 20, 75, 80, 85, 90, and 185 seconds.

17

 (Fig. 5)

 Here can be seen that those limitations did cause the later steps to not exhibit the proper

qualitative features. For example, the temperature curve for 185s can be seen to not decay

properly to 0 due to the unrealistic stop to the model at 24 levels. This can also be seen (but to a

much lesser extent) for the four middle timeframe curves.

 To get an idea of how accurate the model is to the theory, a solution curve was mapped to

the data points to minimize error given malleable thermal diffusivity, using desmos. Equation 5-1

gives the solution to Heat Conduction into an Semi-Infinite Wall as set out by the physics

textbook Fundamentals of Momentum, Heat, and Mass Transfer16. x gives distance in. t gives

time. gives thermal diffusivity. T is the temperature being solved for. erf is the error function. α

 (5-1)
𝑇−𝑇

0

𝑇
𝑠
−𝑇

0
= 1 − 𝑒𝑟𝑓 𝑥

2 α𝑡()

18

Solving for T (Eq. 5-2) gives the function that can be mapped to the results data set.

 (5-2) 𝑇 = 𝑇
𝑠

− 𝑇
0() 1 − 𝑒𝑟𝑓 𝑥

2 α𝑡()() + 𝑇
0

Using desmos to map this function to the data, the following curves are obtained (Fig. 6).

(Fig. 6)

The curves mapped almost all had R2 values of 1, though curves near the beginning and end of

the timeframe had slightly larger errors. Color unfortunately confuses curves of best fit; the

legend is still for the points. Curves in the region described by the limitations exhibited excellent

adherence to the actual thermal diffusivity number. The black curve for 15 seconds in the lower

three curves is within 1.33% of the actual thermal diffusivity. Curves beyond overestimate the

thermal diffusivity, and curves before underestimate it. This is likely due mostly to inaccuracy in

19

the approximation of the second derivative for the implementation of heat transfer; however,

previously described limitations on the scenario also affect the error observed. Overall in the

broad and generally-unextreme context of the 3D print environment, the heat transfer mechanism

and the 2nd derivative approximation are very accurate and provide a precise input for

mechanical changes.

Simple Nodal Interaction

 Next, for simple nodal interaction, two particles are placed at 1 mm apart and a

separation force is applied to them of 60N, and they should stay together, having their bond

stretch accordingly. Running the simulation, the following results are obtained for .5 seconds

(Fig. 7). The two particles in the background are for visual distance reference. Saved data was

used for accuracy calculations.

 (Fig. 7)

The nodes oscillated in and out due to the initial energy given, but their bond length was easily

fit to a sine wave oscillating around 1.04314 mm. That is within 1.3% of the formula ideal. See

Figure 8 for the sine wave and plotted points. The x axis is time, and the y axis is bond length.

20

(Fig. 8)

Overall it is evident that the attractive potential is well implemented and calibrated. To illustrate,

here is another simulation where the force between these particles is 80N. This simulation was

completed over .5 seconds. See Figure 9.

(Fig. 9)

It simulates as intended. The nodes detach and separate.

Complex Nodal Interaction

21

The next important aspect to test is torque and friction. To do this, three particles are

created and placed one millimeter apart in a line on x = 0. The middle particle is fixed

positionally (i.e. cannot move but can accumulate angular momentum).Then, one of the outer

particles is given a velocity of 1 mm/s. Doing such, the following results are obtained for 1s of

simulation (Fig 10).

(Fig. 10)

Take note of the backwards motion of the front particle. This is exactly what should happen. This

shows the successful effect of the torque and friction within the model and demonstrates the

complex interactions under the surface. Despite the simplicity of this simulation, it does a lot to

give confidence to the often dense vector algebra calculations that go into its definition.

 Repeating the test without fixing the position of the middle particle, a full demonstration

of friction can be seen. This simulation also had that initial velocity of 1 mm/s and it was run for

1 seconds. Figure 11 shows the results.

 (Fig. 11)

22

These show how the particles are dragged along as a result of friction. It also shows how the

particle doesn’t travel the 1mm that it would if it were unimpeded, giving the effectiveness of the

friction algorithm.

 Now that the effectiveness of the individual components has been explored. Two

Validation simulations show how full usage of these algorithms yields correct characteristics.

The first of the two simulations is of a low temperature solid. The model shows that it does not

move and maintains its shape like a solid. This was run for plastic at 60º C (a bit below the Glass

Transition Temperature). Some modifications were needed for this special introduction of solid

particles immediately, as calculations for solidification occur after one step of normal

consideration (Eq. 2-2 can give extreme values for T<Tg). It was run over 2 seconds (small time

frame due to computational complexity). Figure 12 gives the results graph on the right and the

starting graph (for temperature).

(Fig. 12)

As seen, the model holds its shape successfully. Now, for the second simulation, the material was

put at a high temperature and modeled to show liquid characteristics. The temperature was set to

150º C, and it ran over 2 seconds. Figure 13 shows several frames of the results at times 0.75,

1.5, and 2 seconds (left to right). The starting configuration is unshown as it is the same as the

previous.

23

(Fig. 13)

It can be seen clearly that the model successfully models the liquid characteristics of the flow as

well. As a qualitative check, a look at the spread of the flow and the actual simulation

proportions gives more information about the flow. The actual model is about 6 mm by 6 mm at

the start, and it can be seen that the flow spreads from this normally. Given that the surface

tension of PLA is low but not infinitesimal at this temperature, it makes sense that the drop

(really that’s what it is), spreads out a bit but not flowing off the plate yet at 2 seconds in. Longer

time wasn’t feasible due to long calculation times.

 Overall, through these individual verification simulations and these two broader

validation simulations, it is clear that the model accurately and effectively models the material in

the printing environment.

Results: Analysis and Conclusions -----------

A few experimental simulations were conducted to analyze the effect of various

temperature inputs on the quality of bonding and the general conformity to design in the

simulation. These simulations showed two major changes to typical practices that would better

support model strength and shape.

The first of which is supported by three simulations with varying plate temperatures.

Those plate temperatures were 40º C, 60º C, and 65º C. The foremost was to gauge the effects of

reducing plate temperature. These simulations yielded significantly better bonding grades for

temperatures that are within 10º C of the glass transition temperature. Of course, for plate

temperatures too close to the glass transition temperature, slow deformation caused significant

structural changes from the design. This, however, was not an issue for temperatures from 5º C

24

to 10º C lower than the glass transition temperature. Bonding grades were generally 10 to 15

points higher for these high plate temperature simulations. This is supported generally by the

concept that actual shifting and movement of the material is very contained and minute. The high

viscosity, high tensile strength, and constant solidifying leads the material to be resilient to the

small force of gravity on it. This makes focus of proper temperature for bonding significantly

more important than keeping overall temperatures low to maintain rigidity. Higher constant

temperatures also ensures that the model cools to room temperature uniformly, which, in fact,

lowers overall deviance from the design and other physical changes. The usage of higher plate

temperatures ultimately supports the effective bonding and the careful adherence to the original

shape.

 The second major change is more general and related to the laying of material. Due to the

often long waits between when filament is applied to an area and when more filament is added to

it. Temperature differences can be shocking, leading to poorer bonding and warping and physical

changes. To better maintain constant bonding conditions for surfaces to be added to, heating

from the top of the model would be beneficial. Sharp temperature changes from very hot added

filament to the easily-cooled surroundings nodes causes issues.

 In two simulations, changing extrusion temperature gave light to the importance of

control for the adding surface. While actually changing the extrusion temperature would be

disastrous as the filament would no longer melt and bond properly, this gives light to changing

steep temperature changes near that surface. Using lower extrusion temperature, the temperature

changes at the adding surface smoothed out and bonding grades went up. To smooth out surface

temperatures and provide for better bonding, ventilation at a set temperature would allow finer

control. This prevents steep temperature changes, which limit effective bonding and set the stage

for unequal thermal contraction. The two simulations were at extrusion temperatures of 95º C

and 80º C. By reducing the extremity of the temperature on the bonding side, the bonding grades

were observed to go up around 5 to 10 points. It’s important to note that this seen change in

bonding temperature could reasonably be attributed to a general lowering of the temperature for

the model. However, it can be known that this is not the case by considering the previous

simulations, showing that raising the overall temperature results in higher bonding grades, so the

increase seen is directly from the evening of temperature on the adding side.

25

 These two changes, as seen, benefit the overall strength and adherence to the desired

design. Their implementation could improve the effectiveness of FFF processes for myriad

applications.

Future Use: Development and Testing -------

The flexibility of this algorithm is key to its importance overall. Using properties from

any wide variety of materials, different materials can be modeled without drastic change. This

allows this same sort of thermal optimization for any number of applications. Additionally, use

on more sophisticated computers with more refined algorithms could yield a significantly more

nuanced understanding and, more so, understanding to optimize physical properties.

As for further development of this model specifically, usage of superior time iteration

methods, refinement of grid size, and improvement of approximations in second derivatives are

priorities for future improvement. Usage of Runge-Kutta or Reverse Euler algorithms for time

iteration would significantly improve computation time and likely eliminate bad simulations

where a large amount of time is used calculating a simulation only to have it diverge. Refining

the grid to smaller particles would make the simulation more accurate, but it would also make

the simulation more computationally costly. In the long term, increasing computational cost to

increase accuracy is a positive exchange. Lastly, improving approximations in the second

derivative by, for example, including more nodes in the approximation or turning the temperature

into a field, unbound to nodes, would reduce overall error.

The greatest accomplishment of this process was to model the drag (force from

surrounding flow: characterization of friction), torque, and angular momentum of the particles.

This utilized difficult implementation of vector algebra and physics, and its inclusion represented

an oft unconsidered element of material simulations.

Bibliography and Acknowledgements -------

1 - “Additive Manufacturing Market Size Report, 2030.” n.d. Www.grandviewresearch.com.

https://www.grandviewresearch.com/industry-analysis/additive-manufacturing-market.

26

2 - Pérez, Mercedes, Diego Carou, Eva María Rubio, and Roberto Teti. 2020. “Current Advances

in Additive Manufacturing.” Procedia CIRP 88 (January): 439–44.

https://doi.org/10.1016/j.procir.2020.05.076.

3 - Fitzgerald, Diana. 2022. “NASA’s New Material Built to Withstand Extreme Conditions -

NASA.” NASA. April 12, 2022.

https://www.nasa.gov/aeronautics/nasas-new-material-built-to-withstand-extreme-conditi

ons/.

4 - Thomas, Douglas S., and Stanley W. Gilbert. “Costs and Cost Effectiveness of Additive

Manufacturing.” Costs and Cost Effectiveness of Additive Manufacturing, no. 1176, Dec.

2014, nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1176.pdf,

https://doi.org/10.6028/nist.sp.1176.

5 - Javaid, Mohd, et al. “Role of Additive Manufacturing Applications towards Environmental

Sustainability.” Advanced Industrial and Engineering Polymer Research, vol. 4, no. 4,

Aug. 2021, pp. 312–322,

www.sciencedirect.com/science/article/pii/S254250482100049X,

https://doi.org/10.1016/j.aiepr.2021.07.005.

6 - Gopal, Raghvendra. “What Is a Glass Transition Temperature? - Definition from

Corrosionpedia.” Corrosionpedia, Corrosionpedia, 2019,

www.corrosionpedia.com/definition/593/glass-transition-temperature-tg.

7 - “A Comprehensive Overview of Injection Molding Cooling Time - Zhongde.”

Www.zdcpu.com, 30 June 2023,

www.zdcpu.com/knowledge-hub/injection-molding-cooling-time/.

8 - Li, Yue, et al. “Analysis of Warping Defect Formation Mechanisms in Hot Molding of

CF/PEEK Thin-Wall Structures and Their Influence on Mechanical Properties.”

Thin-Walled Structures, vol. 207, 24 Nov. 2024, p. 112740,

www.sciencedirect.com/science/article/abs/pii/S0263823124011807,

https://doi.org/10.1016/j.tws.2024.112740.

27

9 - S. Fyfitch. Corrosion and Stress Corrosion Cracking of Ni-Base Alloys. 1 Jan. 2012, pp.

69–92, https://doi.org/10.1016/b978-0-08-056033-5.00079-3.

10 - PLA Technical Data Sheet (Polylactic Acid).

https://www.seas3d.com/MaterialTDS-PLA.pdf

11 - Blanco, Ignazio, et al. “Specific Heat Capacity and Thermal Conductivity Measurements of

PLA-Based 3D-Printed Parts with Milled Carbon Fiber Reinforcement.” Entropy, vol. 24,

no. 5, 6 May 2022, p. 654, https://doi.org/10.3390/e24050654.

12 - Khouri, Nadia G, et al. “Polylactic Acid (PLA): Properties, Synthesis, and Biomedical

Applications - a Review of the Literature.” Journal of Molecular Structure (Print), vol.

1309, 1 Apr. 2024, pp. 138243–138243, https://doi.org/10.1016/j.molstruc.2024.138243.

13 - Shivraj Yeole. “Tensile Testing and Evaluation of 3D Printed PLA Specimens as per ASTM

D638 Type-IV Standard.” 3rd International Conference on Innovative Design and

Development Practices in Aerospace and Automotive Engineering (IDAD 2018), 23 Feb.

2018,

www.researchgate.net/publication/323726339_Tensile_Testing_and_Evaluation_of_3D_

Printed_PLA_Specimens_as_per_ASTM_D638_Type-IV_Standard.

14 - Yi-Sheng Jhao, et al. “A Mechanical Model for Stress Relaxation of Polylactic

Acid/Thermoplastic Polyurethane Blends.” Journal of Composites Science, vol. 8, no. 5,

1 May 2024, pp. 169–169, www.mdpi.com/2504-477X/8/5/169,

https://doi.org/10.3390/jcs8050169.

15 - Botean, Adrian - Ioan. “Thermal Expansion Coefficient Determination of Polylactic Acid

Using Digital Image Correlation.” E3S Web of Conferences, vol. 32, 2018, p. 01007,

https://doi.org/10.1051/e3sconf/20183201007.

16 - Welty, James R, et al. Fundamentals of Momentum, Heat, and Mass Transfer. John Wiley &

Sons, 1976.

Benenson, Walter, et al. Handbook of Physics. New York, Springer, 2006.

28

Hesthaven, Jan S, et al. Spectral Methods for Time-Dependent Problems. Cambridge University

Press, 11 Jan. 2007.

John Charles Butcher. Numerical Methods for Ordinary Differential Equations. Chichester, West

Sussex, Wiley, 2016.

Acknowledgements

 This project would not have been possible without the help and support of my parents

and teachers. My mom, a chemical engineer and fluid dynamics researcher, helped me

immensely to figure out the relevant material properties and general concepts. She also helped

me revise this paper. My dad, also a chemical engineer with a background in computer science,

helped me a lot to think through and consider the problem from a computational perspective. My

math teacher Dr. David Metzler helped me figure out my errors when some of the more obscure

vector algebra wasn’t going right. Mr. Jay Garcia was quite helpful in planning out the process

and checking in with me periodically. Mr. Alex Benedict, computer science teacher, also helped

me quite a bit and recommended some books to help me understand the more complicated

computational theory. I would like to thank all of these amazing people for their help and

guidance.

Appendix A - Building the Hexagonal Grid -

 To build the stable and effective grid for this simulation a hexagonal grid of many

equilateral triangles was used. These equilateral triangles had side length one, and the nodes

were placed at each vertex. This was pretty simple for the first hexagon. Given some side length

n, the first row has n particles of spacing one, the next row has n+1 particles with an offset of (

,) times rows minus one. That offset simply comes from looking at the height and half the −1
2

3
2

base of an equilateral triangle, literally taking the side and turning it into a vector. This holds

until there are the same number of rows as there are nodes per side. Then the offset is given as

29

(1-n+row/2, row). This comes from carefully considering the definition of this ‘line,’ as it 3
2

continues the other. Et voila, the first level is done.

Using some more geometry to make an equilateral triangular prism, the z change between

levels is . There is also a new offset which is the vector to the center of the triangle: (,) 3
2

1
2

1
2 3

or (0,) depending on the orientation of your triangle. The initial choice gives two rotationally 1
3

equivalent second levels. Alternating between these gives proper progression inward or outward

(adding or subtracting them). The node distribution on these layers is a little more complicated

since it’s not a perfect hexagon, skewing definitions on when to start moving the X offset inward

and when to end. These two formulas give the number of nodes per level by hexagonal and in

between respectively: , . n changes from a in between section 3𝑛2 − 3𝑛 + 1 3𝑛2 − 6𝑛 + 3

moving inward. Those formulas can be derived from simple series sum ideas.

The hexagonal matrix overall made the model more stable and more effective at

predicting the motion and structure of the solid.

30

Investigating Intersubjective

Realities From Novel NLP and

Chaos Theory Approach

Camila Carreon

Santa Fe Preparatory School

Santa Fe, NM

April 2025

Contents

1 Executive Summary 2

2 Statement of the Problem 3

3 Introduction 3

4 Background 5

4.1 Intersubjective Realities . 5

4.2 Chaos Theory as a Novel Way to Understand at Linguistic Intersubjective Realities

in the time of Social Media . 8

4.3 Natural Language Processing and State of the Field 10

4.3.1 State of the Field . 11

4.3.2 Topic Modeling and Latent Dirichlet Allocation (LDA) 11

4.3.3 Preprocessing Techniques . 13

5 Methodology 14

5.1 Preprocessing and Data Collection . 14

5.1.1 Data . 14

5.2 Natural Language Processing . 17

5.3 Engagement Analysis over Time . 18

5.4 Recurrence Network Analysis . 18

5.5 Symbolic Dynamic Analysis . 20

5.6 Social Network Analysis . 21

5.6.1 Network . 21

5.6.2 Network Analysis . 21

5.7 Veracity Analysis . 22

6 Discussion 22

6.1 Conclusion . 22

6.2 Qualitative Contextualization . 24

1

7 Achievements 24

8 Acknowledgments 25

9 Data Availability 25

1 Executive Summary

When does information become important, and how do sentiments gain traction and turn into

beliefs, collective and revisionist histories, principles, and ideologies? As wars of human rights

and contrasting beliefs and values rage across the Earth, such questions are incredibly important.

While the scope of my research is incapable of ending these global conflicts, I start at a smaller

scale, analyzing social media data and discourse during the Covid-19 Pandemic taking language as

the currency of information to analyze stability and structure. Specifically, I use Natural Language

Processing and techniques borrowed from the mathematical field of Chaos Theory to explore what, as

historian and scholar Yuval Noah Harari defines as “intersubjective realities,” or a “shared, mutual

understanding between individuals.”[Har24] Ultimately, these realities are the hotbed of shared

beliefs, stories, and, at an enlarged scale, ideology, and thus important. Furthermore, this research

acts as a form of counterterrorism, looking for patterns in language and structure within these

intersubjective realities to assess their potential for becoming influential and dangerous (becoming

conspiracy theories).

2

2 Statement of the Problem

The goals of my research are twofold, first to investigate an issue that is often left out of the quantita-

tive limelight: understanding narrative development and structure, and second addressing rising con-

cerns of misinformed rumors and conspiracy theories on social media platforms like X (Twitter) and

Reddit. A time period particularly ripe for such exploration is the Covid-19 pandemic, which in an

immense time of uncertainty, as Francesco Farinelli of the Radicalisation Awareness Network (RAN)

reports, “Conspiratorial narratives flourish[ed] in such a context and extremist groups exploited the

spread of the coronavirus to disseminate fake news and to incite violence.”[Far21] We define conspir-

atorial and uncharged yet popular narratives around the Covid-19 pandemic to be intersubjective

realities, which become real once many people believe in it or begin to act in compliance with these

narratives, or as the quotation from the RAN suggests, extremist violence in anti-government, anti-

establishment, anti-lockdown and anti-restriction protests or AGAAVE—Anti-Government, Anti-

Authority Violent Extremism. By identifying the linguistic and structural patterns of conspiratorial

narratives we may be able to predict when and how they spiral into harmful ideologies. In other

words, this work is not just about studying misinformation—it’s about recognizing when belief ma-

nipulation turns into a societal threat. The Counter-Terrorism Committee Executive Directorate

(CTED) in a 2020 survey reports that, “69% of respondents stated that countering terrorism has

become more challenging as a result of the pandemic”[Dir21]. Thus to address such concerns, my

work aligns with modern counterterrorism efforts, which in the US as shown here “promote US

National security by developing coordinated strategies and approaches to defeat terrorism abroad

and secure the counterterrorism cooperation of international partners.” My work will be one such

strategy and approach.

3 Introduction

The COVID-19 pandemic was not just a biological crisis but also an informational epidemic, where

rumors and conflicting narratives shaped public perception. These narratives are part of what scholar

Yuval Noah Harari calls intersubjective realities—shared beliefs that exist only in the human mind

but are given power through collective belief, or recognition by at least 2 or more people. Yet the

3

propagation of such narratives reached unprecedented heights, when millions stuck at home resorted

to screens and leveraged digital technologies and platforms like social media to stay connected to

the rest of the world while quarantined. For example, the amount of Facebook users went up to

about 1.9 billion worldwide by the end of 2020, marking an 8.7% increase over 2019[Wil]. And

other social media platforms saw similar surges in popularity. Thus to understand the nature of

pandemic-related discourse I turn to social media data (Twitter or X), and specifically use the

COVID-19 Rumors dataset [Che+21], focusing on how misinformation and competing narratives

form and evolve over time. Using Natural Language Processing (NLP), we track how rumors behave

within the framework of chaos theory. Unlike static ideological structures, digital discourse is inher-

ently nonlinear, meaning that small fluctuations—such as a single viral tweet—can unpredictably

alter the trajectory of public perception. Online discourse, especially on platforms like Twitter,

exhibits complex, nonlinear dynamics, making it an ideal system to analyze through chaos theory.

The chaotic spread of misinformation, the convergence and divergence of narratives, and their unpre-

dictable shifts mirror the properties of dynamical systems, where small changes in initial conditions

can lead to vastly different outcomes. By mapping pandemic-related sentiments in a phase space,

we analyze how belief-driven discussions shift, stabilize, or fragment into new patterns—much like

turbulent flows in physical systems. These patterns of belief formation are a manifestation of inter-

subjective realities, where shared ideas constructed through collective engagement shape the social

fabric of digital communication. To quantify these shifts, we construct recurrence networks and use

symbolic dynamics to assess how belief transitions (support, deny, neutral) emerge, stabilize, or spi-

ral into chaos. Measuring these transitions through entropy helps us understand the unpredictability

of discourse and the moments when narratives undergo sudden, irreversible transformations. This

study is grounded in the Three V’s framework (Lukić), which defines the chaotic nature of online

information networks: These properties make digital discourse highly chaotic and sensitive to ini-

tial conditions, meaning that small perturbations can lead to significant, unpredictable shifts in

dominant narratives. By bridging chaos theory with computational discourse analysis, this research

provides a novel framework for understanding the spread of misinformation, uncovering the under-

lying patterns that govern belief formation in the digital age. Through time series modeling and

network-based methods, we map the evolution of online narratives, shedding light on the turbulent

4

Table 1: Three V’s

V Description

Volume The vast scale of pandemic-
related tweets, reflecting the
sheer magnitude of discourse.

Velocity The rapid rate at which narra-
tives emerge, spread, and trans-
form in real time.

Variety The diversity of content and sen-
timent, encompassing conflicting
perspectives, emotions, and mis-
information.

flow of information and its impact on public perception during the pandemic.

4 Background

4.1 Intersubjective Realities

The swift entrance of Gutenberg’s Printing Press in 1440 galvanized the rest of the Afro-Eurasian

world into an unprecedented era where information and knowledge became public currency. Informa-

tion, as scholars often term it, was democratized. Quickly the masses embraced Gutenberg’s 42-line

Bibles and even flocked to other printed works. One such text that took the medieval world by storm

in the 15th century was Malleus Maleficarum, or Hammer of Witches, written by Heinrich Kramer in

1485, and a witch-hunting guide that warned witches were part of a satanic-led campaign to destroy

humanity. The books popularity reflected in its immediate impact, as the narrative sparked outrage

and violent responses for many in fear of their safety. Preaching to enraptured Alpine peasants, the

book extends from Exodus 22:18 that, “You shall not permit a sorceress to live.”[Enc]

5

Figure 1: Malleus Maleficarum

The books dual biblical nature and call to legal action, turned credence to violence and mass

hysteria. It is estimated that between 40,000 to 60,000 were killed after being tried and accused

of witchcraft as a result. Yuval Noah Harari in his book Nexus: A Brief History of Information

Networks from the Stone Age to AI considers the European witch craze an intersubjective real-

ity, writing, “But witches became an intersubjective reality. Like money, witches were made real

by exchanging information about witches.”[Har24] Harari borrows from the philosophical lexicon

of Edmund Husserl (1859 - 1938) who describes intersubjectivity as “the interchange of thoughts

and feelings, both conscious and unconscious, between two persons or ‘subjects,’ as facilitated by

empathy.” [knuthwebsite]Husserl introduces intersubjectivity as part of a conceptual hierarchy of

realities (objective, subjective and intersubjective) shown below:

6

Figure 2: Realities Perception Framework

Harari injects this definition into a modern analysis of society, where he views intersubjectivity as

shared fictional realities and social constructs upon which society depends like money, nations, and

human rights, which only become real when enough people believe in them and have considerable

influence. The European Witch Craze of the late 15th century becomes an intersubjective reality,

when mass belief and hysteria overtakes much of Europe and results in extensive corporal loss.

Harari’s thesis, as professor of law at Northeastern University Beth Simone Noveck puts it “is

profound, albeit obvious: technology is inherently political, shaped by those who wield it, and

often reinforces existing power structures.”[Nov] In other words, the influence of intersubjective

realities is also determined by who and how it is propagated, which as Harari illustrates have

become increasingly less human. From the social media algorithms that largely dictate the flow of

information in social media platforms and more recently AI, which “increasingly determines what we

read about, think about, and talk about”[Nov], studying intersubjective realities in the digital age or

age of information introduces a new layer into the research-algorithmic radicalization or the idea that

as the Observer Research Foundation expands “Algorithms usually promote emotionally provocative

or controversial material by focusing on metrics such as likes and shares, creating feedback loops

that amplify polarising narratives.”[Awa] For this project this means the structures of discourse and

emergence of narratives we discover will be more pronounced than ever, and thus riper for analysis.

7

4.2 Chaos Theory as a Novel Way to Understand at Linguistic Intersub-

jective Realities in the time of Social Media

Chaos theory, often associated with physical systems, is a mathematical framework used to describe

complex, dynamic systems that are highly sensitive to initial conditions. This sensitivity posits

that small changes in the starting conditions of a system can lead to vastly different outcomes over

time. The classic paradigm of these sensitivities is the culturally famous “Butterfly Effect” which

imagines how the flap of a butterflies wings can cause a hurricane on the other side of the world. In

the context of social media and online discourse, this concept is particularly relevant, as seemingly

minor posts or viral tweets can trigger widespread shifts in public perception and belief systems.

In the digital age, platforms like Twitter, Facebook, and Reddit serve as a breeding ground for

the formation of intersubjective realities—shared beliefs and narratives created through collective

human engagement. As Yuval Noah Harari suggests, these intersubjective realities only become

”real” when enough people collectively believe in them, regardless of their factual accuracy. The

chaotic nature of online discourse, where rumors, misinformation, and competing narratives circulate

rapidly, mirrors the principles of chaos theory.

The propagation of misinformation on social media is an inherently nonlinear process. A single

viral post or tweet can escalate rapidly, becoming a global phenomenon, while other topics or

narratives, despite similar initial traction, may dissipate into obscurity. Additionally, this process is

buttressed by the advent of social media algorithms. Twitter’s algorithm works by first “learn[ing]

about users based on their clicks, likes, and responses. Then, it takes this information and turns it

into outputs. In this situation, that information helps create the main ’For You’ feed on the Twitter

platform.” [Tea]On March 31, 2023, Twitter became the first social media platform to release it’s

engagement formula which is shown in the figure below:

8

Figure 3: Twitter Engagement Formula

Chaotic systems, while they exhibit seemingly random and unpredictable behavior, are governed

by deterministic laws. The butterfly and the hurricane both exist in a world governed by the same

physical laws, and similarly the social networks on social media platforms are governed by the

determinstic rules like the engagement formula above, but still characterized by unpredictability

and randomness given it’s sheer variety, velocity and volume as per Lukic et al.’s 3 V’s Framework

as shown in Table 1. This unpredictability in the evolution of online discussions can be modeled

using chaotic systems, where the smallest changes can lead to divergent or turbulent outcomes.

Furthermore, by applying chaos theory to linguistic data, we aim to uncover patterns in the way

rumors and misinformation spread through online platforms. Similar to the behavior of dynamical

systems, these patterns of discourse exhibit critical points where narratives transition from stability

to instability, where once solid beliefs splinter into competing factions or where a seemingly benign

topic may spiral into a full-blown conspiracy theory. Using techniques from chaos theory, such as

recurrence analysis and symbolic dynamics, this study explores how shifts in linguistic patterns and

sentiment lead to the formation, consolidation, or collapse of intersubjective realities within the

9

digital realm.

In summary, chaos theory provides a valuable lens through which to understand the unpredictable

and highly sensitive nature of belief systems on social media. It allows us to explore how small

fluctuations in discourse—such as the introduction of a new rumor or a change in sentiment—can

lead to large-scale shifts in the collective psyche, highlighting the fragile and volatile nature of digital

ideologies.

4.3 Natural Language Processing and State of the Field

Natural Language Processing (NLP) is a subfield of artificial intelligence (AI) that focuses on the

interaction between computers and human language. NLP involves designing algorithms and models

that enable machines to understand, interpret, and generate human language in a meaningful way.

The complexity of human language, with its nuances, slang, and context-dependent meanings, makes

NLP a challenging area of AI. However, NLP techniques have made significant advancements in

recent years, allowing computers to process and analyze vast amounts of textual data effectively.

In the context of my project, NLP provides the tools necessary to handle the large-scale textual

data generated on social media platforms during the COVID-19 pandemic. Social media platforms

like Twitter contain millions of posts, tweets, and comments that express varying beliefs, opinions,

and narratives about the pandemic. NLP techniques allow for the extraction of relevant insights

from this vast and unstructured data, enabling a deeper understanding of the complex dynamics of

belief formation and the spread of misinformation.

The primary objective of this research is to analyze the evolution of beliefs, rumors, and compet-

ing narratives surrounding the COVID-19 pandemic. Given the massive volume of data, as suggested

in the 3 V’s framework, involved and the unstructured nature of textual content on social media,

manual analysis would be impractical. Thus, by using NLP, we can automatically process, catego-

rize, and analyze textual data to extract meaningful insights that would otherwise be difficult to

uncover.

For example, with the help of NLP techniques, we can detect topics that are being discussed,

track how those topics evolve over time, and observe how beliefs and ideologies form, stabilize, or

fragment in response to external events. The ability to process large datasets with NLP makes it

10

possible to study the dynamics of public discourse at scale, providing insights into the spread of

misinformation, the formation of intersubjective realities, and the relationship between language

and belief systems.

4.3.1 State of the Field

Collectively these abilities of NLP, have brought it substantial popularity in research on conspira-

torial narratives or other types of discourse. For instance Albladi et. al in their paper Detection

of Conspiracy vs. Critical Narratives and Their Elements using NLP, use the BERT (Bidirectional

Encoder Representations from Transformers) NLP model developed by Google, and the RoBERTa

model which proposed in RoBERTa: A Robustly Optimized BERT Pretraining Approach by Yinhan

Liu, Myle Ott to identify conspiracy theories[Ais24]. On the more analytical side of this kind of

research, Haupt et.al in their paper, Detecting nuance in conspiracy discourse: Advancing methods

in infodemiology and communication science with machine learning and qualitative content coding,

use NLP and qualitative content coding to explore the 5G conspiracy popular during the Covid-19

Pandemic[Haupt]. While this is just a small snapshot into the breadth of scholarship on NLP in

Thus I was given a wealth of avenues to use NLP in studying Twitter discourse and choose the

following techniques and process.

4.3.2 Topic Modeling and Latent Dirichlet Allocation (LDA)

Topic modeling is an NLP technique used to discover the hidden thematic structure in a large

collection of texts. The goal of topic modeling is to automatically identify the underlying topics that

are present in a corpus of documents, without prior knowledge of what those topics might be. This

is crucial for understanding the wide array of subjects being discussed on social media platforms,

especially in a context as complex as the COVID-19 pandemic. Below is a graphic explaining the

process of Topic Modeling:

11

Figure 4: Topic Modeling

One of the most popular algorithms for topic modeling is Latent Dirichlet Allocation (LDA). LDA

is a probabilistic model that assumes each document (in this case, a tweet or social media post) is

a mixture of topics, and each topic is represented by a distribution over words. Furthermore, LDA

generates topics by tracking frequency of co-occurrence (how likely is a word to appear with another

word) and individual word frequency, using Gibbs equation to assign topics to words. Gibbs equation

is shown below,

Figure 5: Gibbs Equation

Where the first ratio is the probability of topic t in some corpus of text d, and the second ratio

is the probability of the word w belonging to topic t. The model uses these distributions to identify

12

latent (hidden) topics in the corpus based on the co-occurrence of words. LDA assumes that there

is a fixed number of topics in the collection and seeks to uncover the mixture of topics that best

explains the observed word distributions in the data. [Jac]

In my research, LDA plays a critical role in identifying the various themes and narratives being

discussed throughout the pandemic. By applying LDA to the COVID-19 Rumors dataset, I can

extract a set of topics that represent key areas of discourse, such as ”Government Response,” ”Health

Measures,” ”Vaccines,” and ”Conspiracy Theories.” Understanding these topics allows for a more

structured analysis of how public perception evolves over time and how misinformation or competing

narratives form and spread.

4.3.3 Preprocessing Techniques

Preprocessing is a critical step in any NLP pipeline. The raw text data collected from social media

platforms is often noisy, inconsistent, and unstructured. Therefore, preprocessing techniques are

applied to clean and prepare the text for further analysis. In the context of this project, the

following preprocessing techniques were employed:

Tokenization: This process splits the text into individual words or smaller units (tokens), which

are the basic building blocks for any subsequent analysis. For example, the sentence ”Masks save

lives” would be tokenized into [”Masks”, ”save”, ”lives”].

Lowercasing: To avoid distinguishing between words due to case sensitivity, all text was converted

to lowercase. This ensures that words like ”Mask” and ”mask” are treated as the same word.

Removing Stopwords: Stopwords are common words (such as ”the”, ”and”, ”is”) that carry little

meaning on their own and are often removed to reduce noise in the dataset. Removing stopwords

helps to focus on the more meaningful words in the text.

Lemmatization: Lemmatization reduces words to their base or root form. For example, ”running”

is lemmatized to ”run”. This ensures that variations of a word are treated as the same entity,

improving the consistency of the analysis.

Removing Non-Alphanumeric Characters: Social media posts often include special characters

like punctuation, hashtags, and URLs. These were removed unless they were relevant to the topic

modeling process (e.g., hashtags might indicate the topic of a tweet).

13

Stemming (if necessary): Although not applied in this project, stemming can also be used to re-

duce words to their stem form (e.g., ”running” becomes ”run”). However, lemmatization is generally

preferred for its ability to handle words more intelligently.

The cleaned and preprocessed text data is then ready for analysis using NLP models, such as

topic modeling or clustering algorithms. Effective preprocessing ensures that the data is structured

in a way that allows for accurate insights into the dynamics of online discourse during the pandemic.

5 Methodology

5.1 Preprocessing and Data Collection

5.1.1 Data

Dataset Selection: The primary data source used in this study is the COVID-19 Rumors dataset

[Che+21], which contains a rich collection of social media posts, primarily from Twitter, that discuss

rumors and narratives related to the pandemic. The dataset includes both original posts and re-

sponses, accompanied by engagement metrics (likes, retweets, replies), making it ideal for analyzing

social media discourse. There were 2,705 identified tweets and 34,847 retweets/comments associated

with the posts. Additionally as shown in the images below the rumor dataset, twitter replies and

posts had individual datasets and different accompanying metadata :

Figure 6: Twitter Comments

14

Figure 7: Twitter Posts

The column of metadata most important to me was the stance column. Stance as Cheng et.al

define is, “The attitude of the author or editor of the rumor source. We follow classical rumor stance

classification and define four classes of stance: support, deny, comment, and query. The stances are

labeled and cross-validated manually by going through the context of each website.”[Che+21] Other

important pieces of metadata to my study are veracity, or labeling the posts/rumors as true(T)

or false(F) or unverified(U), which were all manually labeled and cross-validated by referencing

authoritative websites like Snopes , Politifact and Boomlive, and the reply, retweet and likes numbers

for posts and comments. In their discussion of their dataset, Cheng et al. write,

“We envision the downstream applications or usage cases of this dataset to include but

not restricted to (i) the identification, prediction, classification of rumor, misinformation,

disinformation, and fake news; (ii) the study of rumor spread trend and rumor/misin-

formation/disinformation/fake news combating and/or control; (iii) social network and

complex network-related studies in terms of information flow and transition; and (iv) the

natural language processingrelated studies of rumor sentiment and semantic.”

[Che+21]

The scope of my research speaks to (ii) and (iii), as I am studying the development of rumors

and narratives on twitter as a form of risk analysis.

Data Cleaning: In order to ensure the integrity of the analysis, several preprocessing steps were

conducted:

Numeric Conversion: Engagement metrics, such as the number of likes, retweets, and replies,

were converted into numeric values for easy analysis.

15

Text Cleaning: The text of each post was standardized by removing stopwords, correcting typo-

graphical errors, and eliminating irrelevant content such as URLs, special characters, and repeated

symbols.

Topic Modeling: LDA was used to extract topics and classify each tweet into 10 different topics.

Additionally I visualized topics with pyLDAvis. Below are the images of my python code for topic

modeling using the Gensim library and the visualization outputted for Topic 0:

1 # Train LDA model

2 lda_model = gensim.models.LdaModel(corpus=corpus , id2word=id2word , num_topics =10,

random_state =100)

3

4 # Extract topics

5 def get_lda_topics(model , num_topics , top_n_words):

6 word_dict = {}

7 for i in range(num_topics):

8 word_dict[f"Topic # {i+1:02d}"] = [word [0] for word in model.show_topic(i, topn

=top_n_words)]

9 return pd.DataFrame(word_dict)

10

11 topics_df = get_lda_topics(lda_model , 10, 10)

12 print(topics_df)

13 # Function to assign the most likely topic to each tweet

14 def get_dominant_topic(text , id2word , lda_model):

15 bow = id2word.doc2bow(text) # Convert text to bag -of-words

16 topic_probs = lda_model.get_document_topics(bow) # Get topic probabilities

17 return max(topic_probs , key=lambda x: x[1]) [0] if topic_probs else ’Unknown ’ #

Return highest probability topic

18

19 # Assign topics to each tweet

20 tweets_df ["topic "] = tweets_df [" tokens "]. apply(lambda x: get_dominant_topic(x,

id2word , lda_model))

16

Figure 8: LDA Visualization for Topic 0

Topic Assignment: Topics for each post were assigned using TopicGPT from Pham et.al’s Top-

icGPT: A Prompt-based Topic Modeling Framework. Using the generate topic lvl1 function I was

able to generate high-level and generalizable topics. This allowed me to analyze how specific ru-

mors and narratives evolved within certain thematic domains, such as government response, health

measures, or public perceptions of the pandemic.[Pha+23]

Handling Missing Data: Missing or incomplete engagement data was handled by replacing

NaN (Not a Number) values with zero, assuming no engagement occurred. This approach is standard

for ensuring that incomplete posts don’t disrupt the continuity of engagement analysis.

5.2 Natural Language Processing

Text Vectorization: To facilitate the computational analysis of text, I utilized NLP techniques

such as tokenization, lemmatization, and vectorization. Each tweet was converted into a vector of

word embeddings, using a pretrained word2vec model that encodes semantic relationships between

words.

17

Stance Detection: The stance of each post was classified into one of three categories: Support,

Deny, or Neutral. This classification was accomplished through a supervised machine learning model

trained on labeled data. The model uses a variety of linguistic features, including sentiment polarity,

word frequency, and topic-specific keywords, to assign a stance to each post.

5.3 Engagement Analysis over Time

Timestamp Processing: To analyze how discussions and engagement evolved over time, the

timestamp of each tweet was extracted and standardized. Invalid timestamps were removed, and

valid entries were aggregated by day and by topic, allowing for a temporal analysis of engagement

metrics (likes, retweets, replies) for each topic.

Engagement Aggregation: Engagement metrics were aggregated at both the post and topic

levels, considering interactions across the entire dataset. The number of retweets, replies, and likes

for each post was summed daily, providing a time series of engagement for each topic. This step is

critical for tracking shifts in public interest and engagement with different narratives over the course

of the pandemic.

Stance Ratio Calculation: To examine the spread of conflicting beliefs, I calculated the ratio

of support to denial stances for each topic. This ratio was smoothed using a 5-point rolling window

to reduce the effect of outliers and to capture long-term trends in belief evolution. This metric gives

insights into how narratives shift between support for and opposition to particular topics over time.

5.4 Recurrence Network Analysis

Distance Calculation: To construct a recurrence network, pairwise distances between smoothed

stance ratios were computed using the pdist function from the scipy library. These distances were

based on the Euclidean distance metric, which measures the similarity between two time points

based on their stance ratios.

Recurrence Matrix Construction: A binary recurrence matrix was generated by applying

a 10th percentile threshold to the distance values. This matrix indicates the recurrence of similar

stance ratios, i.e., whether the discourse at a given time point is similar to that at another time

point. This recurrence matrix serves as the foundation for network analysis.

18

Network Graph Creation: The recurrence matrix was converted into a network graph, where

nodes represent time points, and edges represent the similarity (recurrence) between them. This

network allows for the visualization of how discourse evolves over time and which time points are

most similar to each other. Below is an image of the Network produced for topic 3:

Figure 9: Network produced for Topic 3

Network Metrics Calculation: Several network metrics were calculated to assess the structure

of the recurrence network. Specifically, the average clustering coefficient was computed to evaluate

how interconnected neighboring nodes (time points) are. A higher clustering coefficient indicates a

more tightly-knit network, which suggests that certain beliefs or narratives are more likely to spread

within closed groups, fostering echo chambers.

19

5.5 Symbolic Dynamic Analysis

Discretization of Stance Data: To analyze stance transitions over time, the smoothed stance ratio

was discretized into three symbolic categories: Deny, Neutral, and Support. This discretization was

achieved by dividing the stance ratio data into quantiles, which allowed us to represent continuous

stance changes as discrete states.

Transition Matrix Construction: The transitions between the symbolic states were encoded

in a transition matrix, where each element represents the probability of transitioning from one state

to another (e.g., from Deny to Support). The transition matrix was normalized to sum to 1 across

each row, ensuring that the probabilities are valid. Below is an image of the transition matrix

produced for topic 3:

Figure 10: Transition Matrix for Topic 3

Entropy Calculation: To quantify the unpredictability of discourse transitions, I computed the

entropy of the transition matrix. Entropy is a measure of randomness or disorder, and higher entropy

values indicate more erratic and unpredictable shifts between stances over time. This measure

20

provides insight into how stable or unstable certain narratives are as they evolve. Below is an image

of the calculations for entropy and clustering coefficient of transitions for topic 6:

Figure 11: Calculations on Entropy and Clustering Coefficient for Topic 6

5.6 Social Network Analysis

5.6.1 Network

Network Construction For each of the ten topics, a directed network is constructed using pythons

NetworkX library where nodes represent tweets (posts and comments), edges represent interactions

between tweets, such as comments and retweets. Additionally, weights on edges correspond to

engagement levels (sum of likes, replies, and retweets). Finally posts are assigned a node attribute

(label) indicating their veracity, with values mapped as:

1 (True)

0 (Uncertain)

-1 (False)

5.6.2 Network Analysis

Furthermore, for each topic analysis is done using NetworkX’s built in functions to calculate between-

ness centrality, closeness centrality and degree centrality. The top 5 nodes (labeled with Twitter ID

and respective measure of centrality) with the highest of each respective measure of centrality are

shown. A description of each form of centrality analysis is featured in the table below and the result

for all three forms of centrality analysis for topic 3 is pictured below:

21

Table 2: Three V’s

Centrality Analysis Description

Degree Centrality Measures the number of direct
connections a node has.

Closeness Centrality Assesses how close a node is to
all other nodes in the network.

Betweenness Centrality Evaluates the extent to which a
node lies on shortest paths be-
tween other nodes.

Figure 12: Calculations on Centrality for Topic 0

5.7 Veracity Analysis

Finally I associated each topic with a veracity score shown in the equation below:

V =
T

T + F
(1)

Where V is the veracity score and T is the number of posts related to a topic with veracity labels

of True (T) and F is the number of posts related to a topic with veracity labels of False (F).

6 Discussion

6.1 Conclusion

My analysis of conspiracy theory discussions on Twitter, leveraging recurrence networks and sym-

bolic dynamics, reveals distinct structural and dynamical patterns in the spread of misinformation.

I observed that topics with stronger local connectivity, such as Topic 8 (clustering coefficient =

0.7500) and Topic 6 (clustering coefficient = 0.7622), likely represent tightly-knit echo chambers

22

where individuals engage primarily within a closed community. These echo chambers may perpet-

uate misinformation by reinforcing existing beliefs. On the other hand, topics with more diffuse

interactions, such as Topic 2 (clustering coefficient = 0.5474) and Topic 4 (clustering coefficient =

0.5714), may foster more open yet still biased discussions, facilitating the spread of conspiracy the-

ories to a broader audience. The symbolic dynamics analysis, highlighting stance transitions, shows

that denial (D) and support (S) are highly stable in most topics, contributing to the persistence of

conspiratorial narratives. These states reinforce each other, while neutral (N) states exhibit more

variability, suggesting that neutral stances play an intermediary role in discourse evolution. Topics

with high entropy, like Topic 8 (entropy = 3.1357) and Topic 6 (entropy = 3.0783), show greater

unpredictability and dynamic shifts in conversation, potentially fostering more fluid, yet still misin-

formed, discussions. Furthermore, the integration of veracity scores indicates a correlation between

the structural properties of the network and the truthfulness of the discourse. Topics like Topic 3,

which show the lowest veracity (0.1069) and high clustering, suggest that misinformation thrives in

more rigid, tightly connected communities. Conversely, topics with higher veracity scores, such as

Topic 5 (0.2238) and Topic 4 (0.2086), exhibit more openness in their discourse, indicating a greater

potential for corrective discourse or less virulent misinformation spread. Additionally, in looking at

centrality measures of the network of posts and comments, weighted by retweets and likes, I also

looked at veracity. I calculated mean veracity for the top degree centrality, betweenness centrality

and closeness centrality nodes. Topic 3 seems to show a neutral trend for degree centrality (mean

veracity = 0.0), but betweenness and closeness centrality are slightly more negative, indicating that

while many of the most connected nodes might not be spreading misinformation, those controlling

the information flow or with closer connections are more likely to be involved in less reliable con-

tent.Topic 0 and Topic 9 show that higher degree centrality doesn’t necessarily mean more reliable

content, with negative mean veracity. Topic 6, on the other hand, shows higher mean veracity for

closeness centrality nodes, which suggests that for this topic, nodes that are more central in the

network tend to be more truthful.

23

Table 3: Labels of Topics

Topic Manual Label

0 Public Health and Data
1 China’s Response to Covid-19
2 Government and Official Re-

sponse
3 Health Measures and Masks
4 Citizens, Infections, and Spread
5 Confirmed Cases and Deaths
6 Testing and Positive Cases
7 China’s Fight Against the Out-

break
8 Medical Professionals and Time
9 Hygiene and Cure Efforts

6.2 Qualitative Contextualization

Contextualizing my conclusions within the manual labels assigned to each topic, particular attention

should be given to topics 3 (Health Measures and Masks), 4 (Citizens, Infections, and Spread), 5

(Confirmed Cases and Deaths), and 6 (Testing and Positive Cases). My research suggests that Topic

3, with its low veracity and high clustering, is especially vulnerable to misinformation propagation.

This aligns with the fact that mask-wearing became a highly polarizing issue during the Covid-19

pandemic, fueling divided beliefs. Conversely, topics related to pandemic statistics, such as Topics

4, 5, and 6, exhibited higher veracity, entropy, and more open structural dynamics, suggesting that

discussions in these areas were more fluid and corrective, as factual claims and evidence are harder to

dispute. Together, these findings highlight the complex dynamics of misinformation and its spread,

demonstrating the chaotic nature of belief systems in the digital age. This research emphasizes

the importance of understanding and addressing the forces shaping public discourse, with potential

implications for improving communication strategies and combating misinformation in future crises

7 Achievements

My greatest achievement was learning how to perform NLP in python as well as be able to produce

a great number of visualizations that succinctly and effectively presented my analysis.

24

8 Acknowledgments

I’d like to thank my sponsoring teachers Ms.Jocelyne Comstock for providing the space for me to

work and help from Dr. Mark Galassi on this project.

9 Data Availability

The Covid-19 Rumors Dataset I used in this study can be found in online repositories. The names of

the repository/repositories and accession number(s) can be found below: https://github.com/MickeysClubhouse/COVID-

19-rumor-dataset.

Works Cited

[Che+21] Mingxi Cheng et al. “A COVID-19 Rumor Dataset”. In: Frontiers in Psychology 12

(2021), p. 1566.

[Dir21] Counter Terrorism Committee Executive Directorate. “Update on the impact of the

COVID-19 pandemic on terrorism, counter-terrorism and countering violent extremism”.

In: United Nations Security Council, 2021.

[Far21] Francesco Farinelli. “Conspiracy theories and right-wing extremism – Insights and rec-

ommendations for P/CVE”. In: EU publications (2021).

[Pha+23] Chau Minh Pham et al. “TopicGPT: A Prompt-based Topic Modeling Framework”. In:

arXiv (2023). eprint: 2311.01449 (cs.CL).

[Ais24] Albladi Cheryl D. Seals Aish Albladi. “Detection of Conspiracy vs. Critical Narratives

and Their Elements using NLP”. In: Notebook for the Lab at CLEF 2024 (2024).

[Har24] Yuval Noah Harari. Nexus: Nexus: A Brief History of Information Networks from the

Stone Age to AI. Penguin Random House, 2024. isbn: 9783328603757.

[Awa] Soumya Awasthi. From clicks to chaos: How social media algorithms amplify extremism.

url: https://www.orfonline.org/expert-speak/from-clicks-to-chaos-how-

social-media-algorithms-amplify-extremism.

25

2311.01449
https://www.orfonline.org/expert-speak/from-clicks-to-chaos-how-social-media-algorithms-amplify-extremism
https://www.orfonline.org/expert-speak/from-clicks-to-chaos-how-social-media-algorithms-amplify-extremism

[Enc] The Editors of Encyclopaedia Britannica. Malleus maleficarum work by Kraemer and

Sprenger. url: https://www.britannica.com/topic/Malleus-maleficarum.

[Jac] Eda Kavlakoglu Jacob Murel Ph.D. What is Latent Dirichlet allocation ? url: https:

//www.ibm.com/think/topics/latent-dirichlet-allocation.

[Nov] Beth Simone Noveck. The Dark Side of Progress: Harari’s Grim AI Predictions in Nexus.

url: https://rebootdemocracy.ai/blog/nexus.

[Tea] The QuickFrame Team. How Does the Twitter (X) Algorithm Work in 2025. url:

https://quickframe.com/blog/the-twitter-algorithm/#:~:text=Twitter’s%

20algorithm%20learns%20about%20users,feed%20on%20the%20Twitter%20platform..

[Wil] Debra Aho Williamson. Global Facebook Users 2020: The Pandemic Brought Back Mo-

mentum in Lagging Regions and Led to Even Higher Growth in Others. url: https:

//www.emarketer.com/content/global-facebook-users-2020.

26

https://www.britannica.com/topic/Malleus-maleficarum
https://www.ibm.com/think/topics/latent-dirichlet-allocation
https://www.ibm.com/think/topics/latent-dirichlet-allocation
https://rebootdemocracy.ai/blog/nexus
https://quickframe.com/blog/the-twitter-algorithm/#:~:text=Twitter's%20algorithm%20learns%20about%20users,feed%20on%20the%20Twitter%20platform.
https://quickframe.com/blog/the-twitter-algorithm/#:~:text=Twitter's%20algorithm%20learns%20about%20users,feed%20on%20the%20Twitter%20platform.
https://www.emarketer.com/content/global-facebook-users-2020
https://www.emarketer.com/content/global-facebook-users-2020

Understanding and
Predicting Trail

Maintenance Needs Using
Machine Learning

Techniques

Data Science, Machine Learning

Luke Rand, Isaac Olson

Final Report

New Mexico Supercomputing Challenge 2024-2025
Santa Fe Preparatory School

Santa Fe, NM, US
March 30 2025

Contents

1 Introduction 3
1.1 Executive Summary . 3
1.2 Problem Statement . 4
1.3 Tools Used . 4
1.4 Current State of the Field . 4

2 Methodology 5

3 Research and Interviews 5

4 Data 6
4.1 Database . 6
4.2 Primary Datasets . 6

4.2.1 Projects Dataset . 7
4.2.2 Lines Dataset . 7

4.3 Creating Working Table . 9
4.3.1 Determining Mileage . 10

4.4 Secondary Data . 12
4.4.1 Precipitation . 12
4.4.2 Slope . 12
4.4.3 Traffic . 12

4.5 Multithreading . 13

5 Sub-segmenting Dataset 14

6 Machine Learning 14
6.1 Linear Regression . 14
6.2 Multivariate Linear Regression 14
6.3 Complete Model . 16

7 Analysis 17

8 Results of the Model 17
8.1 Data Insights . 17
8.2 Model Application . 18

9 Conclusion 20
9.1 Conclusions . 20
9.2 Limitations . 20

9.2.1 Data Limitations . 20
9.2.2 Financial Limitations . 21

9.3 Solutions . 21
9.4 Foundation and Government Applicability 22
9.5 Acknowledgments . 22
9.6 Generative AI Use . 23

1

9.7 Additional Links . 23

10 Works Cited 24

2

1 Introduction

1.1 Executive Summary

Countless Miles of Trail have been built across the United States. With
limited funds and man hours to maintain those trails, improper allocation of
resources harms the overall health of our trail systems and in turn limits com-
munity access to the outdoors, which is important to mental, physical, and
emotional health. Our project achieves a method to better understand and stan-
dardize trail maintenance needs, allowing both large and small trail maintenance
organizations to allocate funds and resources in a way that better maintains the
health of the entire system.

This study used supervised machine learning to train a model to predict trail
maintenance hours from environmental factors by providing a dataset of human
determined maintenance. Geographic and maintenance hour data was obtained
as a dependent variable from the Pacific Crest Trail Association, deemed the
most efficient and leading group in trail maintenance due to the size of their
organization and detailed reporting. Independent variables such as traffic, slope,
and precipitation data were then correlated with maintenance hours in order
to create the training data for a machine learning model. Before generating
the model, multiple graphs were created to analyze to determine the model’s
accuracy. Lastly, the model was tested on a local trail.

This process determined that these environmental variables do influence trail
maintenance needs, or at least how often the Pacific Crest Trail Association
maintains the trail. Increased slope and traffic both increase maintenance, while
increased precipitation decreases maintenance, likely because both slope and
traffic encourage erosion, while precipitation discourages it by encouraging the
fostering of healthy plant root systems. Still, the correlation between these
variables and maintenance is existent, but somewhat weak. Thus, the model
provides insight as a starting point, but is imperfect. However, the ability to
estimated maintenance hours of a trail using a function that interfaces with
our model provides an invaluable starting point for government and local trail
organizations.

The model’s limitations highlight that the Pacific Crest Trail Association does
not determine maintenance data purely using the above variables, despite citing
them as the most influential. Thus, the model could be improved with more
perfect data, perhaps by analyzing a smaller acreage of trail more carefully and
performing maintenance truly as needed, discovering additional independent
variables, or working with the Pacific Crest Organization to improve both their
methods and our model. However, despite the limitations of the model, the
project is import framework which contributes to producing more efficient trail
maintenance practices. Additionally, the ability to create a dataset for each of

3

these environmental variables at a latitude-longitude point is invaluable on its
own to many of these organizations.

1.2 Problem Statement

Routine trail maintenance is necessary to maintain the health of our trail
systems. Due to limited funding, limited resources are available to complete this
maintenance and sustain or trail systems for the community. At the same time,
physical activity improves mental and bodily health and fosters relationships
between people and with the environment, and trails provide learning spaces for
children, improving emotional, physical, and mental health. The importance of
trails to a healthy community and world is undeniable. As such, it is important
to properly allocate available funding and resources to maintain these systems.
Currently, resource allocation decisions are made by humans, leaving some areas
of trails prone to being under maintained or receiving more maintenance than
necessary at the determent of other trails. Inefficient trail maintenance results
in the United States Forest Service spending $80 Million yearly while still having
a 157,000 mile maintenance backlog.1 Our model seeks to streamline the trail
maintenance process and ensure that all trails receive the necessary maintenance
to be a sustainable resource to the community.

1.3 Tools Used

The model was developed using Python, a programming language known for
its numerous libraries and readability. DynamoDB was chosen as the database
software for its scalability and price. Git and GitHub streamlined the process
of working in a team by allowing for version control and a remote repository.2

Essential libraries included boto3, a tool for interacting with the DynamoDB
remote database, threading, a library for implementing multithreading, scikit-
learn, a machine learning library, matplotlib for graphic representations,
PIL for image handling in webscraping, and pyppeteer for webscraping. A
full list of libraries used can be found on GitHub.

1.4 Current State of the Field

Currently both government and private trail maintenance organizations make
decisions about trail maintenance allocation based on trail assessments by users
and agency personnel. The United States Forests Service has a program, Trail
Assessment and Condition Surveys (TRACS) that keeps track of trail condition
based on surveys completed by personnel and trail crews. Although this program
does help allocate trail maintenance, our research yields no organizations that
use machine learning models to predict trail maintenance need. Our model
is a first step in automating trail maintenance planning and has the potential

1Data from 2018
2GitHub linked in 9.7

4

to standardize and revolutionize the field in a way never done before. The
application of machine learning in this field has the potential to democratize
the trail maintenance process and ensure that all trails are maintained to the
community standard at drastically decreased annual spending numbers.

2 Methodology

• First, extensive research was conducted in order to determine the factors
that influence trail maintenance. Slope, weather, and traffic were deter-
mined to be the primary independent variables.

• Next, datasets from the Pacific Crest Trail Association containing infor-
mation on trail maintenance projects with geographic data were used to
generate a table of geographic points containing the hours of maintenance
per mile per year at the location.

• Independent variables were taken from API’s or web scraped at the loca-
tion of each point and appended to the items of the table.

• Two dimensional graphs were constructed relating each independent vari-
able to the maintenance value, and then linear regression was performed.

• Three dimensional graphs relating two independent variables to the de-
pendent variable were constructed with multivariate linear regression.

• All five graphs were analyzed to determine whether patterns were present
in the data and to understand the efficacy and accuracy of the linear
regressions performed.

• A four dimensional model relating all three independent variables with
the work on the trail was constructed to allow smaller or less efficient
organizations to emulate the process of the Pacific Crest Trail Association
to more effectively carry out maintenance.

• The model was further tested and verified using local trails in Santa Fe.

3 Research and Interviews

Initial research was conducted using Internet resources and reaching out to lo-
cal and national trail maintenance organizations. Multiple organizations shared
informative information about how they conduct trail maintenance and what
factors they take into account when allocating their resources. These resources
were valuable and were the basis for choosing trail slope, traffic, and precipita-
tion as independent variables for the model.

5

The Pacific Crest Trail Association (PCTA) responded to our email and was
kind enough to provide us with a large amount of trail maintenance data and
allow us to conduct an interview. An extensive interview was conducted with
Galen Keily, the Geographic Information System (GIS) Specialist at the PCTA.
Mr. Keily explained how the PCTA trail maintenance data set was collected
and laid out. He then outlined how the PCTA conducts trail maintenance with
the goal of maintaining its trails in accordance with the PCTA Comprehensive
Management Plan. Further insights provided by Mr. Keily and in this docu-
ment around how the PCTA makes decisions around trail maintenance proved
invaluable in understanding the outcomes of the model, and aided in determin-
ing the PCTA to be the leading organization in maintenance efficiency, and thus
a strong provider of training data.3

4 Data

4.1 Database

Due to the relatively large size of the datasets that we use for this project,
setting up a database was necessary to implement persistent and flexible storage.
Additionally, a remote database reduced the size of the git repository and local
storage requirements. With large amounts of data, this was a necessity. The
DynamoDB NoSQL cloud database solution was elected due to being flexible,
free, fast, and lending itself well to the project schema. A NoSQL database
was selected for its scalability and dynamic nature, a requirement for a project
where it was not certain from the beginning how many entries would be required
and which additional fields may have became necessary. DynamoDB, like many
other NoSQL databases, operates using keys which query a particular entry in
a table and allows for reading of values from the entry.

Each initial primary dataset was uploaded to the database, and then op-
erations were performed on these datasets to create new working tables.4 In
order to efficiently access entries in the database, a JavaScript Object Notation
(JSON) file containing all the keys in an array was saved. This allows for lo-
cal iteration through objects in order to make requests to the database. While
saving these files required storage space, it was significantly less than locally
storing the entire contents of the database.

4.2 Primary Datasets

The primary datasets used, which provided dependent variables and means
to collect independent variables, were roughly 4 years of digital logs from the
Pacific Crest Trail Association (PCTA). The PCTA manages 4265 kilometers

3Elaborated in 8
4Elaborated in 4.2

6

of nearly continuous trail along the western coast of the United States, cover-
ing varying environment and human conditions, including rain, snow, wildfire,
mountainsides, bike traffic, and hikers. This data was provided by Galen Keily,
the Geographic Information System (GIS) Specialist at the PCTA. Two datasets
were made available.

4.2.1 Projects Dataset

The first dataset is a list of trail maintenance projects performed by the
PCTA. Entries contain a unique ID and numerous fields. The fields applicable
to the project are those that contain the number of total hours spent on the
project, across all volunteers and staff members, titled ”hours”, and the date
range for the project, titled ”date”. The entries begin in the middle of 2021 and
extend through early 2025. This dataset contains 11742 items, although many
of the entries do not contain corresponding geographic data, and thus were not
used. The dataset was provided in ShapeFile format and was converted to JSON
before iterating through the object and uploading entries to the remote table
(fig. 1).5

Figure 1: Selected items in the projects table.

4.2.2 Lines Dataset

The second dataset contains 1621 lines on a map of the world, denoted as a list
of points in Mercator Web Projection (EPSG:3857),6 and the project ID which
each of these lines is associated with (fig. 2). To upload to the database, the
ID was selected as the primary key, while the list of points (line) was uploaded
in json format as a string (fig. 3). However, since multiple lines can share an
ID for a project that spans multiple areas, each item contains an array of lines,
and IDs with only one line contain an array with a single line.7

5”Table” will be used to refer to data on the remote database, while ”dataset” will be used
for other forms.

6Mercator Web Projection is a coordinate system that uses the distance in meters from
the latitude-longitude coordinate of (0,0)

7Note that each line is additionally a two dimensional array, holding points with a latitude
and longitude coordinate.

7

Figure 2: Project lines from the PCTA overlaid on a map.

Figure 3: Selected item in the lines table.

8

4.3 Creating Working Table

Using the data for any machine learning techniques or other analysis requires
correlating the data with additional variables and creating a set of uniform
items with fields to be correlated. The solution used was to create an additional
table that used geographic points located on the PCTA as the primary key, and
contained as values the hours spent per mile at the point for each year. Next, an
average was calculated from the three years with complete data, 2022, 2023, and
2024, and appended as a value to the point. Secondary data was later added as
additional values. Since the value for work done is in hours per mile per year,
it is not necessary for the points to be equidistant, as the hours per mile in an
area is intrinsic to a point.

This was accomplished by iterating through the list of ids and determining the
hours spent on each project and the dates of work from the projects table.
Next, the coordinates of the corresponding trail were queried from the lines
table, and the length of trail worked on for the project was determined.8 Next,
each point from the line was assigned a value for hours per mile, calculated as
project hours/trail length. The point was uploaded to the database, and the
hours per mile value was appended to the point in a field titled as the year the
project began, determined by parsing the date value. If a previous project had
already updated the year field, the value was added to the existing value. This
process was repeated for each project with associated lines, creating a table
of 97,825 points. Next, an average was calculated using the three complete
years. Finally, a field was added containing the latitude and longitude values
in standard form for each point, converted from the previous Web Mercator
Projection, to ease computation when correlating secondary data. Thus, the
points table was fully prepared for independent variables (fig. 4).

1 # Function to create the points table using the lines and

projects table.↪→

2 def create_points(ids): # pass in a list of project ids for

indexing↪→

3 #iterate through each project

4 for id in ids:

5 #get project from database

6 project = dynamodb.get_item(id) #function simplified for

readability↪→

7

8 #get time (total hours by all people) and date

9 time = project['hours']

10 date = project['date']

11

12 #get line from database

13 line = dynamodb.get_item(id)

8Elaborated in 4.3.1

9

14

15 # get points

16 point_data = json.loads(line['points']) # needs to be

loaded from a string↪→

17

18 # lines is for distance calculation, points is just all

the points involved↪→

19 lines, points = combine_lines(point_data)

20

21 # get trail mileage

22 length = get_distance(lines)

23

24 # determine the year

25 date1,date2 = date.split(" - ")

26 date2=datetime.strptime(date2, date_format)

27 year=date2.year

28

29 # calculate hours per mile

30 hourspermile = time/length

31

32 # create or modify an entry for each point in the line

33 for point in points:

34 roundedpoint = [int(round(var, 0)) for var in point]

#round the point so small changes in gps don't

duplicate points

↪→

↪→

35

36 update_point(roundedpoint,hourspermile,year) # create

or update the point in the database↪→

Figure 4: Selected item in the points table before correlating independent vari-
ables. Hours represent the hours per mile at the location of the point.

4.3.1 Determining Mileage

In order to construct the points table and understand maintenance needs,
trail length data was required. Calculating mileage of the lines dataset proved
difficult, as multiple lines contributed to each project and often had overlap,
yet did not share exact point values. This was remedied by combining lines
where points were within one meter of each other using the following code,
and finally calculating the entire distance of the lines associated with a project

10

using a simple multi-point distance algorithm. The unit of miles was chosen
over kilometers because the outputs of the prediction model will likely be used
primarily by United States residents outside of academia.

1 # Function to combine lines with tolerance

2 def combine_lines(lines):

3 #familiar_points contains points seen before, and is used to

generate the working table, while combined is the

combined lines

↪→

↪→

4 familiar_points = []

5 combined = []

6

7 # iterate through each of the lines in order to remove

duplicated areas↪→

8 for line in lines:

9 newline = []

10 lastpoint = None

11 for point in line:

12 is_familiar = False #used to track familiarity of the

point↪→

13

14 # if points are familiar, cut the line segment off,

and restart when they stop being familiar↪→

15 for checkpoint in familiar_points:

16 if close(point, checkpoint):

17 is_familiar = True

18 lastpoint = checkpoint

19 if is_familiar:

20 newline.append(point)

21 if len(newline) > 1:

22 combined.append(newline)

23 newline = []

24 else:

25 if len(newline) == 0 and lastpoint != None:

26 newline.append(lastpoint)

27 newline.append(point)

28 familiar_points.append(point)

29 lastpoint = point

30

31 # add the line to the combined set of lines

32 if len(newline) > 1:

33 combined.append(newline)

34

35 # the returned values will be used to calculate mileage and

create the working table↪→

36 return (combined,familiar_points)

11

4.4 Secondary Data

4.4.1 Precipitation

Precipitation data was collected using the Open Meteo Weather API, which
provides historical weather data for the continental United States. Due to pric-
ing barriers, weather data was collected using the last 90 days of data and
yearly predictions were calculated, as earlier data is exclusive to a paid API
key.9 The API was accessed through the Python ”requests” library. A python
function, get average rainfall(lat, lon), takes latitude and longitude
as parameters and returns an estimated annual rainfall in millimeters. Another
function calls get average rainfall() for each point in the points table,
adding annual rainfall as an independent variable.

4.4.2 Slope

Slope data was obtained using the open Meteo Elevation API. This API
provides elevation at a specific point with 90-meter resolution. Higher resolution
elevation data is available from other APIs with a paid API key.10 A python
function, find slope(lat, lon) takes 8 points in a circle with a radius of
100 meters around the given latitude and longitude and finds their elevation
using the Python ”requests” library. The function then takes the difference
between the maximum and minimum elevations and the distance between the
two points to calculate the slope of the ground surrounding the trail. Finally,
the slope is converted to degrees using an inverse tangent formula.

4.4.3 Traffic

A relative unit of trail traffic is obtained via web scraping from an open
source map project, freemap.sk. This map has a trail use heatmap layer that is
scraped from trail use data on a popular athlete social media site called Strava.
Trail traffic data is scraped from freemap.sk instead directly from the Strava
heatmap due to a friendlier web scraping environment and background map
layers that area easier to isolate from the heatmap data.11 A Python function
trail use scraper opens freemap.sk on chrome using the Python library
”pyppeteer”, a Python port to the Node.js library puppeteer. The function
then calls another function enter coordinate(). This function navigates
to the entered coordinate and desired zoom level to take a screenshot (fig. 5).
It then isolates all pixels of the heatmap and calculates the average luminosity
of the pixels, determining an indicative value for traffic. The returned value is
representative of trail traffic because the method used effectively reverses the
process used in the heatmap to visually represent trail use.

9Elaborated in 9.2.2
10Elaborated in 9.2.2
11Elaborated in 9.2.1

12

Figure 5: Example manipulated screenshot from webscraping for traffic deter-
mination.

Thus, the points table was finalized with independent variables and ready
for analysis and constructing a model, with each point containing average hours
per mile per year, latitude-longitude pairs in both Mercator Web Projection and
standard form, annual precipitation, slope, and cumulative traffic (fig. 6).

Figure 6: Selected item in the points table after correlating independent vari-
ables. Yearly maintenance values are hidden for readability

4.5 Multithreading

Many of the operations performed in the generation of the points table
involved a significant number of input-output requests to external databases or
APIs. Additionally, other aspects of the project such as generating graphs and
constructing the model involved many queries to the remote database. Thus,
the runtime of many operations that were performed in relation to entire tables
of multiple thousands of entries were limited not by compute speed, but rather

13

by internet latency. Thus, implementing multithreading across many parts of
the code-base, including integration of all secondary variables, querying from
the database, uploading to the database, and interfacing with APIs, reduced
runtime drastically. Multithreading, in contrast to multiprocessing, does not
utilize multiple processors, but rather rotates through many threads in quick
succession on a single processor, creating the illusion of concurrency. This allows
many input-output requests to be sent in quick succession without waiting for
the previous request to complete.

5 Sub-segmenting Dataset

Many of the API’s used had limitations on requests for the free tier of access.12

Thus, we were forced to use only a sub-segment of the table to allow for inte-
gration of independent variables on all points of the dataset. 1000 points were
randomly selected from the points dataset and used for correlation of secondary
data, analysis, and construction of the model.

6 Machine Learning

Our data is visualized and the model is constructed using single variable and
multivariate linear regression, a simple supervised machine learning technique.
Supervised machine learning uses input data and correlated output data to
develop a model that fits the provided data. Thus, if the input data follows
a specific pattern, the machine can create predicted output data when given
unfamiliar input data. Linear regression techniques develop a linear model that
is designed to fit the data provided, and thus can predict outputs. Our dataset
contains inputs of multiple variables and an output of maintenance hours per
mile per year, making it a perfect candidate for machine learning to create a
predictive model that can determine maintenance needed on unfamiliar data.

6.1 Linear Regression

To initially understand our data, three two dimensional graphs were produced,
and linear regression was performed on the relationship between each of our
secondary variables and the dependent variable of work hours per mile per year.
This generated 3 graphs for analysis (fig. 7).

6.2 Multivariate Linear Regression

To improve understanding of our data, graphs correlating two independent
variables with work hours were produced. Thus, three graphs correlating each
pair of independent variables with the dependent variable provide further insight
into the working dataset.

12Elaborated in 9.2.2

14

(a) (b)

(c)

Figure 7: Graphs correlating independent variables with yearly maintenance
requirements, with linear regression.

15

Multivariate linear regression was performed on each of these. In contrast
with the single variable regressions, these models were developed using only 800
points of the 1000 point dataset, reserving the remaining 200 to understand the
validity of the model. The graphs below show the prediction model overlaid
with the 200 test points (fig. 8).

(a) (b)

(c)

Figure 8: Graphs correlating two independent variables with yearly maintenance
requirements, with multivariate linear regression.

6.3 Complete Model

Additionally, a linear regression model taking all three independent variables
into account was produced, although it cannot be visually displayed and ana-
lyzed as a graph would occupy 4 dimensions. We can, however, understand its
efficacy and reliability using the other graphs.

16

7 Analysis

Studying the first three graphs (fig. 7), it is evident that both traffic and
precipitation hold less significance than slope in determining the amount of
maintenance performed by the PCTA.13 Across the entire span of traffic data,
from 10.82 to 13.33,14 the projected change in yearly hours per mile is 5.444.
Thus, traffic has some effect, with increased traffic implying increased mainte-
nance. Across the spread of yearly precipitation, the projected hours decrease
by 7.418, implying that precipitation causes slightly decreased trail maintenance
hours. Slope appears the most significant influence on trail maintenance needs,
with a positive difference of 27.52 hours per mile per year across the range of
slopes. It is worth noting, however that slopes above roughly the halfway point
are rare, so a spread of around 18 can be understood as more significant. It is
additionally clear that none of the lines represent a strong fit, as many of the
points are far from the line of best fit. This implies that the data does not hold
a strong pattern.

The three dimensional graphs add little understanding, and share many of
the same traits as the two dimensional graphs, including their lack of certainty
due to poor fitting of the data. They do help us to understand that the highest
projected maintenance occurs at low weather and high slope, low weather and
high traffic, and high traffic and high slope, respectively, a fact that can be
inferred from the two dimensional graphs.

The imprecision in the two dimensional and three dimensional regressions
casts doubt on the validity of a predictive model constructed using this data.
Thus, we can, at best, understand the four dimensional model constructed as a
best guess or starting point that attempts to emulate the work of the PCTA.15

8 Results of the Model

8.1 Data Insights

Although the model is built on somewhat weak data, the model can still offer
some interesting insights into trail maintenance necessity. Our model shows that
more maintenance is needed at high slope, high traffic, and low weather area.
An area with these characteristics is also one that is most likely to be susceptible
to erosion. Large amounts of trail use can degrade trails overtime. Along with
this, larger slopes create more damage from water runoff and, although it is
counterintuitive, lower amounts of precipitation will likely increase erosion. Low

13It is important to note that this does not necessarily reflect optimal work hours, as will
be elaborated in 9, 9.2.1 and 9.3

14These are relative values calculated from luminosity of heatmap pixels, and has no stan-
dalone meaning

15This uncertainty is a result of data, not procedure, as will be elaborated in 9

17

precipitation generally indicates lower vegetation density and thus less organic
matter such as roots is present to hold together the topsoil. With no structure
holding together the soil, major weather events will cause much more erosion.

Although we originally expected to see a larger correlation between trail traffic
and maintenance need, the more uniform results offer an insight into the PCTA
trail maintenance strategy. The slight upward trend in trail maintenance when
traffic increases indicates that the PCTA spends slightly more time maintaining
higher traffic areas but it also full fills its commitment to manage all 4265
kilometers of trail in its purview. A disproportionally large amount of work in
only the high traffic areas could negatively affect the heath of the trail system
in the long run.

8.2 Model Application

The model was applied to a trail in our local area, the Atalaya mountain trail
(fig. 9).

Figure 9: Atalaya trail Shapefile line overlaid on map.

The model was then applied to various points along the trail, which generated
values of work hours per mile per year at each point. These values from along
the length of the trail were averaged to get a final value of 27.31 hours per
mile per year. Given a trail length of 2.2 miles, our model recommends that
an organization maintaining this stretch of trail dedicates 60.09 work hours per
year across all workers in order to maintain the trail in accordance with the trail
maintenance standards outlined in the PCT comprehensive management plan.
This comes out to roughly a standard day of trail work for a crew of 7 people.

1 #Return value for trail maintenance need in hours per mile per

year at a specific point↪→

2 def run_point(lat,lon):

3 # download the presaved model

4 with open('model.pkl', 'rb') as file:

5 model = pickle.load(file)

6

18

7 # get the average precipitation at the point

8 weatherval = weather.get_average_rainfall(lat,lon)

9

10 #convert latlon to meters. This is necessary because the

slope and traffic functions takes coordinates in Mercator

format.

↪→

↪→

11 transformer = Transformer.from_crs("WGS84", "EPSG:3857")

12 lat,lon = transformer.transform(lat,lon)

13

14 #get slope at the point

15 slopeval = slope.find_slope(lat,lon)

16

17 # get the relative traffic value at the point. Called

asyncronously↪→

18 trafficval = asyncio.run(trailuse2.scrape_one(lat,lon))

19

20 # initialize the input data

21 ind = {"weather":[weatherval], "slope":[slopeval],

"traffic":[trafficval]}↪→

22 X = pd.DataFrame(ind)

23

24 #Run model using the values found for weather, slope, and

traffic.↪→

25 return model.predict(X)[0] #returns a single item array, so

we take the first value↪→

26

27 #This function takes an array of points along a trail and the

length of trail in order to return suggested maintenance

amount in # of work hours per year

↪→

↪→

28 def run_trail(trail_points, trail_miles):

29 #add together the values of hours per mile per year for each

point↪→

30 trail_vals = []

31 for point in trail_points:

32 #find value at each point

33 trail_vals.append(run_point(point))

34

35 #average values and return total number of hours

36 hours_per_mile_per_year = statistics.mean(trail_vals)

37 return(hours_per_mile_per_year*trail_miles)

19

9 Conclusion

9.1 Conclusions

Our model uses supervised machine learning to predict trail maintenance
need based on training data from the Pacific Crest Trail Association and a
variety of independent variables recommended by trail maintenance experts.
The model provides a way for trail maintenance organizations to allocate their
limited funding in a way that ensures all trails are up kept to a certain standard.
This functionality offers exciting possibilities in trail maintenance and ensuring
our trail remain a valuable resource for the community.

The data set for the model provides interesting insights into understanding
the science of trial maintenance. The data collected demonstrates how the en-
vironmental variables that were recommended to us by experts in the field, do
affect trail maintenance necessity. The correlations in the data between these
environmental variables and trail maintenance need aligns with how experts
predicted it would. Although the correlation between these environmental vari-
ables is undeniable, it is somewhat weak. This suggests that the PCTA does
not only base its trail maintenance decisions on these variables. This limitation
of the model is not based in its methodology, rather, it represents data set error.
The same procedure could be expanded on with a stronger dataset to obtain
more accurate results.16

Although the model is imperfect due the data it is built upon. It still offers
exciting prospects for the field of trail maintenance. As demonstrated in 8.2 the
model can easily and effectively be applied to trail systems around the country.
If the model is applied to a complete trail system by an organization, it will
completely revolutionize trail management. The ability to accurately predict
trail maintenance need across an entire system will allow for easier resource
budgeting and more effective resource allocation.

9.2 Limitations

9.2.1 Data Limitations

Data availability limitations somewhat handicapped the effectiveness of the
model. The trail maintenance data provided by the Pacific Crest Trail Associ-
ation (PCTA) is an incredible data set and invaluable to the functioning of the
model. However, the PCTA has only been tracking their trail maintenance in
this form for about 4 years so the data set is still relatively young. As data for
more years becomes available the model will be able to produce more accurate
insights into trail maintenance necessity.

16Expanded in 9.3

20

Our model also ran into limitations surrounding trail use data. As mentioned
in 3.4.3, the trail use data originates from the athlete social media site Strava.
Strava offers access to its raw trail use data through its program Strava Metro to
urban planners, trail networks, and city governments to help improve mobility
infrastructure. We reached out to Strava Metro in order to include their data
in the model, however, Strava Metro denied our partnership request citing a
large volume of requests and therefore only providing data to groups directly
involved in active transportation infrastructure planning. Due to this limitation
our model was forced to use a relative unit of trail use derived from heatmap
web scraping. If a large trail maintenance organization such as the PCTA were
to use our model in trail maintenance planning it is likely that Strava Metro
would approve the partnership application and provide more accurate trail use
data.

9.2.2 Financial Limitations

The model was forced to use less accurate approximations for both weather
and slope data due to API paywalls. We were unwilling to pay for this data but a
larger government or non profit institution using the model for trail maintenance
planning would have the financial bandwidth to pay these relatively small fees
that are used for API upkeep. An API key to the more accurate weather and
slope data APIs only costs a total of 99 dollars per month putting the data well
within reach of any organization planning on implementing the model for trail
maintenance planning on a larger scale.

9.3 Solutions

As outlined above in 9, the correlation between the environmental variables
and trail maintenance necessity is present but not perfect. This manifests in a
less accurate model, however, the problem is not one of methodology and could
be fixed with a stronger data set.

The weaker than expected correlation suggests a limit in the accuracy of
the PCTA trail maintenance data. Although the PCTA is one of the leading
trail maintenance organizations in the nation it is still probable that much of
their trail maintenance resources are not allocated in the ideal way. One possible
solution would be to work with the PCTA or a similar organization and segment
off smaller sections of their trail to perform trail maintenance in that area truly
as needed. This new data would serve as the ideal training data for our model
and eliminate problems with the current trail maintenance dataset.

Strengthening the independent variable data would also improve the accuracy
of the model. As outlined in 9.2.1, insufficiency with the current data set could
be easily resolved by a larger organization using the model for trail maintenance
planning. It is also possible that another interdependent variable needs to be

21

added to the model to improve its efficacy, which further research would alumi-
nate. If the PCTA is making trail maintenance decisions based on an additional
variable, this could throw off the model if is not included.

9.4 Foundation and Government Applicability

As mentioned in section 1.4, the United States Forest Service currently makes
decisions around trail maintenance resource allocation using the Trail Assess-
ment and Condition Surveys program (TRACS). The TRACS program currently
is an organized framework for collecting data on trail conditions by agency per-
sonnel in order to better allocate resources towards trails in the worst state of
disrepair. Although this program is has a large amount of value in ensuring trail
health, it is purely a reactionary strategy that only responds to trail degrada-
tion when trail functionality is already limited. Our model has the potential to
further develop this program by optimizing maintenance scheduling. The model
will prioritize maintenance spending by predicting areas that are most likely to
deteriorate soon, effectively switching the entire trail maintenance strategy from
reactive to proactive.

The implementation of this model also has the potential to reduce the overall
cost of trail maintenance. A more uniform and proactive approach to trail
maintenance will allow personnel to identify and fix smaller problems with the
trail before there are large problems that are costly to repair. This will also lead
to a greater ability to predict trail maintenance costs giving managers a clearer
picture of upcoming budgetary needs. This allows for better financial planning
and reduces problems with overspending.

Additionally, an understanding of how the PCTA actually runs maintenance
and how that interacts with environmental factors will allow them to improve
their pipeline. Addressing these factors would not only improve PCTA mainte-
nance, but allow for the training of a stronger model in future years, creating a
feedback loop of improvement and benefiting the entire industry.

9.5 Acknowledgments

The Pacific Crest Trail Association made this project possible by kindly shar-
ing the trail maintenance data that is the foundation of our project. We would
like to specifically thank Galen Keily, the GIS specialist for the PCTA, for gener-
ously donating his time to explain the data set as well as allowing us to conduct
an interview to better understand the trail maintenance process. Additionally,
we would like to acknowledge our club sponsor Ms. Comstock for providing
valuable guidance and a framework for achieving success. Lastly, we would like
to thank the New Mexico Supercomputing Challenge for their feedback and aid
across all stages of the project.

22

9.6 Generative AI Use

In the interest of using industry standards and utilizing available tools, the
generative artificial intelligence Chat GPT was used in select cases to streamline
the coding process and improve efficiency. Due to the limitations of the technol-
ogy itself, it was used to write small snippets of code (database queries and API
requests), or given pseudo code to transform for more simple functions whose
work was heavily syntactical as opposed to logical (querying the weather API
and calculating line distance). Lastly, in the interest of education and because
Chat GPT is incapable of correctly programming complex functions, and often
makes mistakes on simpler ones, the technology was utilized only for simple
functions (those that could easily be logically planned and understood within
seconds), and the human programmers carried out appropriate research and
learning beforehand to fully understand the outputted code in order to debug.
Essentially, Chat GPT was used to generate only code that the programmers
could have written themselves with minimal cognitive stress, and was purely
used to increase efficiency.

9.7 Additional Links

https://github.com/lukerand/trails

23

10 Works Cited

References

[1] ”Benefits of Hiking.” National Park Service,
www.nps.gov/subjects/trails/benefits-of-hiking.htm. Accessed 19 Dec.
2024.

[2] Bevans, Rebecca. “Multiple Linear Regression — a Quick Guide (Exam-
ples).” Scribbr, 22 June 2023, www.scribbr.com/statistics/multiple-linear-
regression.

[3] ”Docs Open-Meteo.com.” open-meteo.com/en/docs.

[4] ”Elevation API Open-Meteo.com.” open-meteo.com/en/docs/elevation-api.

[5] “Freemap Slovakia, Digital Map.” Freemap Slovakia, www.freemap.sk.

[6] Kirvan, Paul. “Multithreading.” WhatIs, 26 May 2022,
www.techtarget.com/whatis/definition/multithreading.

[7] ”Machine Learning, Explained — MIT Sloan.” MIT Sloan, 21 Apr. 2021,
mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained.

[8] Pacific Crest Trail Association. “Pacific Crest Trail Association - Preserving,
Protecting and Promoting.” Pacific Crest Trail Association, 20 Feb. 2018,
www.pcta.org.

[9] Ray, Tyler. “Congress Passes Trail Inclusive Spending Bill.” American Hiking
Society, 6 Aug. 2021, americanhiking.org/congress-passes-trail-inclusive-
spending-bill.

[10] Smallcombe, Mark. “SQL Vs NoSQL: 5 Critical Differences.” Integrate.io, 15
Feb. 2024, www.integrate.io/blog/the-sql-vs-nosql-difference.

[11] ”Trail Assessment and Condition Surveys (TRACS).” US Forest Service
www.fs.usda.gov/managing-land/trails/trail-management-tools/tracs. Ac-
cessed 1 Apr. 2025.

[12] ”COMPREHENSIVE MANAGEMENT PLAN for the PACIFIC
CREST NATIONAL SCENIC TRAIL” US Forest Service
www.fs.usda.gov/Internet/FSE DOCUMENTS/stelprdb5311111.pdf.
Accessed 2 Apr. 2025.

[13] ”Why Trails Matter: Outdoor Learning.” American Trails,
www.americantrails.org/resources/why-trails-matter-outdoor-learning.
Accessed 19 Dec. 2024.

24

Analyzing Pre-Indo-European Theory of Etruscan Language Origins

Using Topological Data Analysis

New Mexico

Supercomputing Challenge

Final Report

April 2, 2025

Welch Homeschool

Team Members:

Helena Welch

Teacher:

Cindy Welch

Project Mentor:

Paul Welch

Executive Summary

High-dimensional data is often difficult to analyze because of the exponential growth of the

size of the space in which the data lives as the dimension increases. [16, 3] One example of

high-dimensional data comes from language, which contains many different characteristics (di-

mensions) with which it can be quantified, but not always sufficient data to detect patterns in it.

This is especially true for ancient languages, as there is a sparsity of texts from which to draw. [6]

The ancient Etruscan language is currently classified as a non-Indo-European isolate. However,

the Etruscans lived in an Indo-European-speaking region and appear to be genetically related to

Indo-Europeans. [12, 28] This study aims to bring a quantitative measure, topological data analysis

(TDA), to ongoing investigations of Etruscan to more concretely determine Etruscan’s similarity to

different Indo-European languages. Phonetic patterns in a specific word list translated into different

languages by large-language models are encoded, and the distance between two given phonemes

based on this encoding is calculated. Results indicate that Sanskrit has the highest correlation to

Etruscan. Etruscan appears similar to older Indo-European languages and thus may be older than

neighboring languages, explaining its uniqueness compared to Indo-European languages that de-

veloped later in time.

1

Introduction

The Questions Behind Etruscan as a Non-Indo-European Language

Etruscan was spoken in the Etrurian region of Italy around 800 to 100 BC (see Figure 1). [12]

With more than 13,000 examples of Etruscan text, we have enough data to understand a fair amount

of vocabulary but not to concretely determine the origins of the language. [12] In addition, while

much about the language is unknown, linguists have been able to reconstruct in part the sounds of

the language because the Etruscan alphabet was borrowed from that of the Euboean Greeks and

subsequently passed on to the Romans. [4] Thus, the phonology of the language is fortunately

available for use in this study.

The current reigning theory posits that Etruscan was one of the few Pre-Indo-European lan-

guages not displaced by the arrival of the Indo-European language family. The only languages

that seem most certainly to be related to Etruscan are the obscure Rhaetic and Lemnian languages,

of which only a handful of texts are extant. [37] Despite this, however, a recent genetic analysis

indicates that the Etruscans were indigenous to Italy and had very similar genes to those of the

Romans. [28] If this is the case, then why is their language believed to be so different from that of

their Indo-European-speaking relatives?

Etruscan

Hittite, Lydian, Luwian

La Tène Celtic

Rhaetic

LemnianGreekLatin

Old Norse

Figure 1: Etruria compared to regions where other ancient languages were spoken. [18]

2

Other Theories

While the Pre-Indo-European theory is currently most popular, other studies have suggested

alternatives. The Anatolian theory originates from writings of the ancient historian Herodotus,

which claim that the Etruscans were Lydians who migrated from Anatolia (modern-day Turkey)

to Italy. [30] If this is true, Etruscan should exhibit similar linguistic properties to Hittite, a better-

recorded relative of Lydian. Others suggest Etruscan was a Greek creole language made up of a

mixture of the Greek dialects. The enigma of Etruscan’s origin runs so deep that even hypothetical

links between Old Norse, the Celtic languages, and Aryan languages such as Sanskrit have been

suggested. [32, 13, 7, 15]

Purpose of Project

This project compares the phonology of ancient and contemporary Indo-European languages

to that of Etruscan using topological data analysis (TDA), with the aim of discovering which Indo-

European languages are most closely related to Etruscan. While statistics aims to fit data points to

lines or other geometries, TDA quantifies the distance between data points in a high-dimensional

space using topological structures such as n-dimensional holes. [31, 35, 33] This means that

it captures higher-level information about the inherent structure of data rather than looking for

specific patterns in it that might not exist. [31, 38] Because of this, previous studies have used TDA

to detect similarities between languages based on their phonological and grammatical structures.

[26, 38] It is known to perform well in comparison to other techniques because of its insensitivity to

sparsity of data and noise, which could make it particularly useful in analyzing poorly-documented

ancient languages. [38, 35, 33]

Prior Works

While TDA appears to be a novel approach to implement comparative linguistics, two studies

that develop a methodology for doing so for different aspects of linguistics are cited here. The first

uses TDA to compare grammatic parameters between modern languages [26], while the second

proposes an algorithm for comparing the phonetics of languages [38]. The methodology of this

study is largely based on the latter’s work.

3

Wolfram’s study (2017) performed TDA for large families of modern languages using a list of

200 words and, although laying an extensive groundwork for future work, ultimately determined

that a larger data set was needed to prove more conclusive results. In contrast, this study chooses

a set of 1700 words and performs Wolfram’s (2017) methodology on an ancient language whose

ancestry is uncertain. In order to obtain a larger dataset than Wolfram (2017) could acquire, this

study uses large-language models (LLMs) to translate a single word list into different languages.

Methods

Data Collection and Preparation

A word list of 1700 Etruscan words and their English translations is drawn from McCallister

[1999], and each phoneme in an Etruscan word is then converted to its corresponding International

Phonetic Alphabet (IPA) character using conversions provided by Rix [2008] and Ager [Omniglot.

2023]. IPA is a system for encoding phonemes spoken in different languages such that the list of

sounds is universal across all languages.

Having acquired an Etruscan word list with its corresponding English translation and converted

it to IPA, translations of the word list into other languages are then obtained through the use of

large-language models (LLMs). LLMs are chosen to overcome the roadblock of limited available

translation data that previous studies met. [38] Each of five LLMs is run from the Ollama server

[24] on one of two desktop computers (see Table 1), depending on the size of the models. In

addition, a relatively larger model, ChatGPT4o, is run from the OpenAI server. [25] Its running

time and cleanliness of the output are notably better.

Each LLM is passed a message communicating its role as an assistant, as well as the prompt, “I

will give you a number of words to translate into [a language]. Provide the International Phonetic

Alphabet. Do not provide any notes or commentary. Use the format: English: [language]: /IPA/.”

The list of 1700 words in English is then read from a file and passed in batches of five words as

input to the model. Output is then written to a file and parsed to obtain a list of the translation

in IPA. While all LLMs are fairly consistent in providing output in the correct format, manual

parsing of certain sections in models mistral-small and nous-hermes is required. In addition, all

4

model parameters vocabulary size

ChatGPT4o [34] 200 billion 175k

Mistral-large [20] 123 billion 128k

Mistral-small [22] 22 billion 32k

Command-r [10] 35 billion 128k

Nous-hermes [36] 34 billion 64k

Mistral-nemo [21] 12 billion 128k

Table 1: Characteristics of the large-language models used to translate the Etruscan word list into

other languages.

IPA characters outputted across all LLMs are researched, and outdated or nonstandard symbols

are replaced to ensure that all translations of the word list conform to the same IPA encoding.

Ultimately, this results in an IPA character list of 34 symbols. Etruscan phonology consists of 21

of those characters. [29]

Following the procedure designed by Wolfram 2017, the contextual relations between different

IPA characters within a given language are quantified by creating a list of the IPA characters that

come before and after each IPA character in a word. This is known as the context list. For example,

the context list of ū for the English IPA word list Sūt, St, sūn, rn would consist of (S,t),(s,n), and

the context list of would be (S,t),(r,n). The cosine similarity C between two such characters for a

given language is then calculated, where S is number of contexts two characters share, N1 and N2

are the length of each character’s context list, and C is defined as:

C =
S√

N1 ∗
√
N2

(1)

This quantifies how irreplaceable one phoneme is with another within a given language. [38] One

would expect, for example, that two vowels would have a higher cosine similarity than a vowel

and a consonant.

This information can be encoded in a matrix, where each axis is the set of IPA characters and

5

each value is the cosine similarity between any two IPA characters in a given language. [38] As

such, the matrix should be a symmetric, square matrix with values of 1 along the diagonal, as the

cosine similarity between two identical IPA characters is 1. A visualization for Etruscan’s cosine

similarity matrix can be seen in Figure 2, where characters are arranged by vowels (top left corner)

and consonants (bottom right). The lighter the color, the more two characters have in common.

Dark rows and columns indicate that a given character does not appear in a language.

Figure 2: Colorplot for Etruscan’s cosine similarity matrix created in matplotlib. [14]

Having quantified the relation between every two IPA characters in a given language, each

character is embedded in a coordinate system such that its coordinate axis is the set of cosine

similarities between it and each other IPA character. Thus, this point cloud lives in a space with the

same number of dimensions as there are IPA characters, which, in this case, is a 34-dimensional

space. If an IPA character does not occur in the word list translated into a given language, its cosine

similarity with each other character is set to 0. The particular TDA used in this study, persistent

homology, is then performed on the point cloud.

6

Persistent Homology

Figure 3: Example 2-simplex.

Persistent homology is performed using the Scikit-TDA python library Ripser. [31] Persistent

homology is a type of topological data analysis that draws nth-dimensional balls, n-balls, around a

point cloud in an nth-dimensional space. [38] At a set radius of the n-ball, all n-balls that overlap

are connected by an n-simplex An, where an An is the simplest geometry determined by (n + 1)

connected points in the Euclidean space Rn. [38] For example, 0-simplex A0 is 1 point, 1-simplex

A1 is 2 connected points (a line segment), and 2-simplex A2 is three connected points (a triangle).

An n-chain is a sum of n-simplices. It can be described by its boundary δ:

δ(An) = A
(n−1)
0 +A

(n−1)
1 + . . .+A(n−1)

n (2)

for n-simplices An.

For example, the boundary of an n-chain that contains one simplex, a 2-simplex shown in

Figure 3, is

δ(A2) = A
(1)
0 +A

(1)
1 +A

(1)
2 (3)

For this 2-simplex, the boundary of the boundary is defined as:

δ(δ(A2)) = δ(A1
0 +A1

1 +A1
2)

7

= δ(A1
0) + δ(A1

1) + δ(A1
2)

= [(v1)− (v0)] + [(v2)− (v1)] + [(v0)− (v2)] = 0

(4)

Because of the 2-simplex’s orientation, the boundary of each edge (1-simplex) is defined as the

difference of its endpoints (the vertices of the 2-simplex). Summing the edges causes vertices to

cancel, leaving δ(δ(A2)) = 0. This tells us that the vertices of the 2-simplex are connected. This

generalizes to higher-dimensional simplices.

The homology group of the nth dimension, then, is the set of all n-chains that do not cause

vertices to cancel. Thus, it describes groups of simplices that are unconnected and have δ(δ(An)) ̸=

0:

Hn =
Zn

Bn

(5)

where Zn is the set of all n-chains and Bn ∈ Zn that have δ(δ(An)) = 0. [23, 8]

Essentially, Hn measures which points are not connected at a certain radius of the n-balls

through calculation of nth dimension holes, where n is the dimension of the simplex. [31] Since a

0-dimensional hole describes the disconnected parts of a 0-simplex, the H0 homology group is the

set of components that are not connected to each other. Each given component, then, contains all

points in the 34-dimensional space that are connected by n-balls at a given radius. Each component

is known as a cluster.

H1 measures 2-dimensional holes, and H2 measures cavitites, known as voids. Note that in the

case of language studies, topological structures of a higher order than clusters and holes are often

noise and, thus, will not be considered in this study. [38, 27]

Ripser encodes relations between simplices of different dimensions in a boundary matrix,

8

where each row is an n-simplex and each column represents an (n + 1) simplex. If the n-simplex

is part of the (n+ 1)-simplex’s boundary, it is encoded as a non-zero value in the matrix. [31]

Persistence Diagrams

The Persim library within Scikit-TDA [31] is then used to generate persistence diagrams describ-

ing results of the TDA. Figure 4 gives two such graphs, one for German and one for Dutch. These

diagrams display the radius of the n-balls at which each cluster or hole is “born” (when it first

appears) or “dies” (when it is consumed by another topological structure). Each axis describes the

birth or death radius of a topological structure. All clusters (H0) should fall on a vertical line, since

all are born at radius r = 0, and it follows that only one will remain as r approaches ∞.

Figure 4: Persistence diagrams for German (left) and Dutch (right); input data for TDA were drawn

from mistral-small translations.

Holes (H1, shown in orange) tend to be near the diagonal, or when birth radius is equal to death

radius. The farther a hole is from the diagonal, the larger the radius must become before clusters

are joined and the hole disappears. Linguistically, this indicates how similar various IPA characters

are to each other, based on how often they appear in the same context in a given language’s word

list.

Comparison Methods for Persistence Diagrams

After generating persistence diagrams, Persim compares those for Etruscan and eight other lan-

9

guages. Thus far, these languages consist of Latin, Breton, Koine Greek, Homeric Greek, Modern

Greek, Icelandic, Hittite, and Sanskrit. Languages were chosen based on the time and proximity to

Etruscan (see Figure 1), as well as availability of LLMs to accurately provide words from their vo-

cabulary. (Icelandic, for example, is known to be linguistically similar to the less well-documented

Old Norse.)

For each persistence graph representing a language, the Betti number βn gives the number

of nth dimensional holes across all radii of the n-balls. Thus, β0 represents the total number of

clusters, and β1 represents the total number of holes. [8] As n increases, βn decreases; thus, there

will be fewer holes than clusters for each language. Since not all IPA characters are used in a given

language, the number of clusters and holes for different languages’ persistence diagrams will vary.

In this study, the Bottleneck distance B is used to compare persistence diagrams:

B∞(X, Y) = inf
η:X→Y

sup
x∈X

||x− η(x)|| (6)

where X and Y are persistence diagrams showing a certain homology group and inf sup, or the

infimum of the supremum, is the largest minimum distance between a point x in X and its bijection

in Y , η(x). [1]

Conceptually, the Bottleneck distance minimizes the maximum distance between two neigh-

boring clusters or holes of two different diagrams, and B itself is that maximum distance. In the

event that one language has more of one topological feature than the other, extra points are paired

with the diagonal. [31]

A similar method of comparing persistence diagrams, sliced Wasserstein distance W , approxi-

mates distances between birth-death pairs by slicing them N number of ways and projecting them

onto one-dimensional lines. Mathematically, it is defined as:

W∞(X, Y) =
1

N

N∑
i=1

||µi − νi|| (7)

where µ and ν are the distribution of points for X and Y , respectively, projected onto one-

dimensional lines. [5] This metric is similar to the Bottleneck distance, but rather than taking

10

only the largest distance between two nearest-neighbors into account, it averages across all pairs

of clusters or holes.

11

Validation

Figure 5: Visualization of cosine similarity matrices for German (left), Dutch (middle), and French

(right) before TDA is performed on them.

To determine accuracy of the method detailed above, this study performed TDA on a set of

thirteen modern Indo-European languages. Visually, the mistral-small translations for German and

Dutch appear more similar through their cosine similarity matrices than German and French (see

Figure 5). They can be compared quantitatively using the Frobenius norm metric F , which is

defined as:

F = ||A−B||F =
m∑
i=1

n∑
j=1

|aij − bij|2 (8)

where A and B are cosine similarity matrices and (m,n) describes their dimensions. [9] Quantita-

tively, the Frobenius metric agrees with the visual colorplots, with F for German and Dutch being

much smaller than F for German and French (see Figure 6).

12

Du
tc

h

Fr
en

ch

Ge
rm

an

Ice
la

nd
ic

Ku
rd

ish

La
tv

ia
n

Lit
hu

an
ia

n

No
rw

eg
ia

n

Pe
rs

ia
n

Ru
ss

ia
n

Sw
ed

ish

Uk
ra

in
ia

n

W
el

sh

0

5

10

15

20

Fr
ob

en
iu

s

Mistral Small Frobenius
 Comparison to German

Du
tc

h

Fr
en

ch

Ge
rm

an

Ice
la

nd
ic

Ku
rd

ish

La
tv

ia
n

Lit
hu

an
ia

n

No
rw

eg
ia

n

Pe
rs

ia
n

Ru
ss

ia
n

Sw
ed

ish

Uk
ra

in
ia

n

W
el

sh

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
as

se
rs

te
in

Mistral Small Wasserstein Distance
 for Clusters to German

Du
tc

h

Fr
en

ch

Ge
rm

an

Ice
la

nd
ic

Ku
rd

ish

La
tv

ia
n

Lit
hu

an
ia

n

No
rw

eg
ia

n

Pe
rs

ia
n

Ru
ss

ia
n

Sw
ed

ish

Uk
ra

in
ia

n

W
el

sh

0.00

0.05

0.10

0.15

0.20

0.25

W
as

se
rs

te
in

Mistral Small Wasserstein Distance
 for Holes to German

Figure 6: Frobenius norm between cosine similarity matrices compared to sliced Wasserstein dis-

tances after TDA.

Now we perform TDA on each cosine similarity matrix and compare persistence diagrams for

the above languages using the sliced Wasserstein metric for clusters and holes (see Figure 6). While

the more sensitive H0 sliced Wasserstein distance agrees that German is more similar to Dutch than

French, there are some deviations from the patterns in the Frobenius metric. However, this is to

be expected, as the purpose of TDA is to detect higher-level information about the language’s

structure than other metrics (like the Frobenius metric) provide. Thus, validation confirmed that

results make sense given general knowledge of modern languages, while also demonstrating the

utility of TDA in analyzing data from a different perspective.

Because of biases introduced by variability in LLM translations and using one specific word

list, the study must also investigate whether results can be distinguished from arbitrary results. If

persistence diagrams do not differ greatly from randomly generated matrices, then results in this

13

study carry no meaning due to the arbitrary nature of obtaining data. Thus, this study follows

Wolfram’s (2017) approach in comparing TDA performed on randomly generated matrices with

the same symmetry and diagonal as the input cosine similarity matrices. Figure 7 shows three such

randomly generated matrices, and Figure 8 gives their corresponding persistence diagrams.

Figure 7: Random cosine similarity matrices generated in numpy and plotted in matplotlib. [11, 14]

Figure 8: Persistence diagrams corresponding to the above cosine similarity matrices.

Persistence of clusters and holes in the random matrices did not match that of the language data;

each topological feature appeared to have less variation in birth and death radii, and β1 tended to

be larger than for the language data. Thus, trends in my data were not random.

14

Results

Figure 9 gives the persistence diagram for Etruscan. Figure 10 then compares it using the bot-

tleneck distance to each of the eight other languages across the six LLMs. While this is a valid

and popular measure, this study found that it produced a very low distinguishability between data,

especially for holes.

Figure 9: Persistence diagram for Etruscan.

Br
et

on

La
tin

Ho
m

er
ic

Gr
ee

k

Ko
in

e
Gr

ee
k

Hi
tti

te

Ice
la

nd
ic

M
od

er
n

Gr
ee

k

Sa
ns

kr
it0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H 0

Bottleneck Distance between Clusters
gpt4o
mistral-large
mistral-small

nous-hermes
command
mistral-nemo

Br
et

on

La
tin

Ho
m

er
ic

Gr
ee

k

Ko
in

e
Gr

ee
k

Hi
tti

te

Ice
la

nd
ic

M
od

er
n

Gr
ee

k

Sa
ns

kr
it0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

H 1

Bottleneck Distance between Holes
gpt4o
mistral-large
mistral-small

nous-hermes
command
mistral-nemo

Figure 10: Bottleneck distances between Etruscan and eight other languages.

Figure 11 then performs the comparison using the more sensitive sliced Wasserstein distance.

15

While Figure 11 shows more variation in the data, there is still no clear trend.

Br
et

on

La
tin

Ho
m

er
ic

Gr
ee

k

Ko
in

e
Gr

ee
k

Hi
tti

te

Ice
la

nd
ic

M
od

er
n

Gr
ee

k

Sa
ns

kr
it0

2

4

6

8

10

12

H 0
Wasserstein distance between clusters

gpt4o
mistral-large
mistral-small

nous-hermes
command-r
mistral-nemo

Br
et

on

La
tin

Ho
m

er
ic

Gr
ee

k

Ko
in

e
Gr

ee
k

Hi
tti

te

Ice
la

nd
ic

M
od

er
n

Gr
ee

k

Sa
ns

kr
it0.0

0.1

0.2

0.3

0.4

0.5

H 1

Wasserstein distance between holes
gpt4o
mistral-large
mistral-small

nous-hermes
command-r
mistral-nemo

Figure 11: Sliced Wasserstein distances between Etruscan and eight other languages.

We must now consider the size of each LLM. To test the correlation between size of model and

similarity in translations, each model’s translation of the word list to Latin is compared to that of

ChatGPT4o, the largest LLM. TDA is performed, and the sliced Wasserstein distances for H0 and

H1 are shown in Figure 12. Mistral-large, the next largest model, produced the most similar Latin

translations to that of ChatGPT4o. Thus, larger models will produce more similar translations. One

can now hypothesize that as model size increases, a trend of the most similarity between Etruscan

and a particular language from those tested will emerge.

m
ist

ra
lla

rg
e

m
ist

ra
lsm

al
l

no
us

he
rm

es

co
m

m
an

d

m
ist

ra
ln

em
o0

5

10

15

20

25

30

H 0

Wasserstein Distance between Clusters
 for LLMs Comparing Latin

m
ist

ra
lla

rg
e

m
ist

ra
lsm

al
l

no
us

he
rm

es

co
m

m
an

d

m
ist

ra
ln

em
o0.00

0.05

0.10

0.15

0.20

0.25

0.30

H 1

Wasserstein Distance between Holes
for LLMs Comparing Latin

Figure 12: Comparison of LLMs to ChatGPT4o using Latin translations.

Figure 13 gives the sliced Wasserstein distance for H0 between Etruscan and each of eight

16

other languages, arranged from greatest to smallest based on ChatGPT4o’s output. As can be seen

in the figure, ChatGPT4o translations point towards the Indo-Aryan language Sanskrit as being

phonetically closest to Etruscan. A distinct trend can now be visualized; as models increase in

size, they vary less from the results of ChatGPT4o, and the sliced Wasserstein distance between

Sanskrit and Etruscan becomes progressively smaller (right side of Figure 13). Mistral-large and

mistral-small agree that Sanskrit is closest to Etruscan. However, the smaller models of nous-

hermes, command-r, and mistral-nemo show less of a trend, and other languages have a smaller

sliced Wasserstein distance to Etruscan.

Figure 13: Sliced Wasserstein H0 distance shows a correlation between Sanskrit and Etruscan.

The idea of Etruscan as a relative of Sanskrit is not currently a mainstream theory. There is

little evidence that the Etruscans, supposed relatives of the Romans, were Aryans and spoke a

variant of Sanskrit. How, then, do these results make sense? Since Sanskrit is the oldest Indo-

European language considered here, it may be closer linguistically to the original Indo-European

language, Proto-Indo-European (PIE), than other languages. Two other languages older than the

majority of the dataset, Homeric Greek and Latin, appear next-most-similar to Etruscan using

ChatGPT4o data. This is summarized in Figure 14, which shows a moderate correlation between

age of the Indo-European language and its sliced Wasserstein distance to Etruscan. Thus, Etruscan

appears most similar to the oldest of the Indo-European languages, indicating that it may be older

than Latin and other languages spoken nearby. This would explain why the Etruscans’ language

appears unique compared to that of their genetically related neighbors.

17

Figure 14: H0 sliced Wasserstein distance vs. age of language compared to Etruscan.

Conclusions

Analysis of Results

In conclusion, results negate the Anatolian and Greek theories discussed in the Introduction,

instead implying that Etruscan is most phonologically similar to older languages than to its neigh-

bors. As such, it may have developed at an earlier time than some Indo-European languages. This

would explain why the Etruscans lived in an Indo-European-speaking region and appear to be ge-

netically related to the Romans but spoke a seemingly different language.

To test this hypothesis, access to phonological data for the original Indo-European language,

PIE, is needed. However, PIE is a reconstructed language, and its IPA characters do not conform

to those of better-understood languages. [17] In addition, LLMs even as large as ChatGPT4o may

not provide translations to PIE to an adequately high percent of accuracy.

Analysis of Biases and Limitations

While this algorithm can be extended to a variety of other languages, the results obtained are

dependent on the word list chosen, as well as the accuracy of the LLMs in providing transla-

tions. This study aimed to eliminate such biases by picking Etruscan words that are not proper

names shared across languages, regardless of their inherent phonetic similarity, and utilizing mul-

tiple LLMs for translation to other languages. In addition, results could be skewed in the case of

multiple IPA characters denoting the same phoneme, as the cosine similarity would not encode

18

all similarities that exist between two IPA characters. In fact, using more IPA characters than is

linguistically accurate biases comparisons between persistence diagrams; the more noisy IPA char-

acters are generated in a particular machine translation, the larger the bottleneck distance between

that translation and Etruscan (see Figure 15).

30 40 50 60 70 80 90 100 110
Number of IPA Characters

0.5

1.0

1.5

2.0

2.5

3.0

Bo
ttl

en
ec

k
Di

st
an

ce

Length of IPA List vs. Bottleneck Distance for Clusters
mistral-nemo
mistral-small
command-r

nous-hermes
mistral-large
ChatGPT4o

Figure 15: The greater the number of distinct IPA characters in a machine translation and language,

the larger the Bottleneck distance between that translation and Etruscan.

To mitigate this bias, all IPA characters were researched, and superseded and nonstandard sym-

bols were replaced to ensure that all translations of the word list conform to the same IPA encoding.

Ultimately, this resulted in an IPA character list of 34 symbols.

Next Steps

Having constructed a working model for phonetic comparison between Etruscan and other lan-

guages, a more in-depth analysis of current findings and a study of Etruscan compared to a variety

of other languages can be conducted. Immediate next steps also include comparing Etruscan to

not only Indo-European languages but others language families (Semitic, Sino-Tibetan, etc.). In

addition, more LLMs run on online servers, such as Claude and Gemini, will be used in collecting

19

translation data, and output of TDA will be analyzed through other metrics, such as the distribution

of Betti numbers. [38] Hence accuracy of data will be improved.

Summary

Ultimately, the purpose of this project is threefold:

1. To determine the amount of variability between LLMs based on the parameter space in

machine translations,

2. To discover the effectiveness of persistent homology as a more quantitative method for com-

parative historical linguistics, and

3. To conclusively compare the phonetic structure of Etruscan to various Indo-European lan-

guages in an effort to determine its origins and thus provide insight into the history behind

the Etruscan people.

20

Appendix

Mathematical Glossary

topological data analysis (TDA): mathematical method of analyzing structure in data using topo-

logical features such as clusters and holes

persistent homology: form of TDA used in this study; analyzes how clusters and holes within a

data structure persist over multiple scales

simplex: simplest method of connecting a given number of points in a given space; 0-simplex:

point, 1-simplex: line segment, 2-simplex: triangle; etc.

n-chain: combination of simplices

birth radius: radius of n-balls drawn around each point in an nth-dimensional point cloud at

which a topological feature is formed

death radius: radius of n-balls drawn around each point in an nth-dimensional point cloud at

which a topological feature is consumed by another feature

persistence diagram: plot of death radius vs. birth radius for every cluster, hole, etc., that occurs

in a point cloud

Linguistic Glossary

phonology: the system of sound values associated with different written characters in a given lan-

guage

phoneme: a single sound associated with one or multiple written characters

Indo-European: language family from which the majority of Eurasian languages derive

Proto-Indo-European: a completely reconstructed language from which scholars believe all Indo-

European languages derive

International Phonetic Alphabet (IPA): system for encoding phonemes as characters that are

standardized across all languages

21

Acknowledgments

This project could not have been initiated without the helpful advice from my parents; their

encouragement and the deeper understanding of science, computer science, and mathematics they

have given me have been irreplaceable. I would also like to thank the many judges and reviewers

from Science Fair and the Supercomputing Challenge, who generously provided me with feedback

along the way, and the authors of the numerous papers that contributed to my knowledge of the

project’s background. Together they have given me the motivation to see this project to completion.

22

References

[1] Sarit Agami. Comparison of persistence diagrams, 2020. URL

https://arxiv.org/abs/2003.01352.

[2] Simon Ager. Etruscan (mekh rasnal). https://www.omniglot.com/writing/etruscan.htm,

Omniglot. 2023.

[3] Naomi Altman and Martin Krzywinski. The curse(s) of dimensionality. Nature Methods, 15

(6):399–400, 2018. doi: 10.1038/s41592-018-0019-x. URL

https://doi.org/10.1038/s41592-018-0019-x.

[4] Giuliano Bonfante and Larissa Bonfante. The Etruscan Language: an Introduction.

University of Manchester Press, 2002.

[5] Mathieu Carrière, Marco Cuturi, and Steve Oudot. Sliced wasserstein kernel for persistence

diagrams, 2017. URL https://arxiv.org/abs/1706.03358.

[6] R Drikvandi and O Lawal. Sparse principal component analysis for natural language

processing. Ann. Data. Sci., 10(1):25–41, 2023. doi: 10.1007/s40745-020-00277-x.

[7] John Fraser. The Etruscans: Were They Celts? Maclachlan & Stewart, Edinburgh, 1879.

URL https://archive.org/details/etruscanswerethe00fras.

[8] Ulderico Fugacci, Sara Scaramuccia, Federico Iuricich, and Leila De Floriani. Persistent

homology: A step-by-step introduction for newcomers. 10 2016. doi:

10.2312/stag.20161358.

[9] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins, 3 edition,

1996.

[10] Aidan Gomez. Introducing command r7b: Fast and efficient generative ai.

https://cohere.com/blog/command-r7b, 2024.

23

https://arxiv.org/abs/2003.01352
https://doi.org/10.1038/s41592-018-0019-x
https://arxiv.org/abs/1706.03358
https://archive.org/details/etruscanswerethe00fras

[11] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,

David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert

Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,

Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin

Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and

Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362,

September 2020. doi: 10.1038/s41586-020-2649-2. URL

https://doi.org/10.1038/s41586-020-2649-2.

[12] Csaba Horvath. Redefining pre-indo-european language families of bronze age western

europe: A study based on the synthesis of scientific evidence from archaeology, historical

linguistics and genetics. European Scientific Journal, 15(26):1–25, 2019. doi:

10.19044/esj.2019.v15n26p1.

[13] Caleb Howells. The surprising etruscan influence on the early celts. The Collector, 2023.

URL https:

//www.thecollector.com/etruscan-influence-celts-connection/.

accessed Jan 24, 2025.

[14] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,

9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[15] Milorad Ivankovic. Etruscan as an aryan indo-european language. 11 2021.

[16] Eamonn Keogh and Abdullah Mueen. Curse of dimensionality. Enclyclopedia of Machine

Learning and Data Mining, 2017.

[17] Winfred P. Lehmann. Proto-indo-european phonology: 2. pie phonology.

https://lrc.la.utexas.edu/books/piep/2-pie-phonology, 2005.

[18] maix. Image own work based on: Europe countries.svg by tintazul, cc by-sa 3.0.

https://commons.wikimedia.org/w/index.php?curid=1636794.

24

https://doi.org/10.1038/s41586-020-2649-2
https://www.thecollector.com/etruscan-influence-celts-connection/
https://www.thecollector.com/etruscan-influence-celts-connection/

[19] Rick McCallister and Silvia McCallister-Castillo. Etruscan glossary, 1999. URL

https://etruscans1.tripod.com/Language/EtruscanIntro.html.

accessed Jan 24, 2025.

[20] Mistral AI. Au large. https://mistral.ai/news/mistral-large, 2024.

[21] Mistral AI. Mistral nemo. https://mistral.ai/news/mistral-nemo, 2024.

[22] Mistral AI. Mistral small 3. https://mistral.ai/news/mistral-small-3, 2025.

[23] Prerna Nadathur. An introduction to homology. 2007. URL

https://api.semanticscholar.org/CorpusID:1431656.

[24] OLLAMA Website. Ollama. https://ollama.com/, 2025.

[25] OpenAI. Chatgpt4o (may 24 version). https://platform.openai.com/docs/overview, 2022.

[26] Alexander Port, Iulia Gheorghita, Daniel Guth, John M. Clark, Crystal Liang, Shival Dasu,

and Matilde Marcolli. Persistent topology of syntax, 2015. URL

https://arxiv.org/abs/1507.05134.

[27] Alexander Port, Iulia Gheorghita, Daniel Guth, John M. Clark, Crystal Liang, Shival Dasu,

and Matilde Marcolli. Persistent topology of syntax. Mathematics in Computer Science, 12

(1):33–50, 2018. doi: 10.1007/s11786-017-0329-x. URL

https://doi.org/10.1007/s11786-017-0329-x.

[28] Cosimo Posth, Valentina Zaro, Maria A. Spyrou, Stefania Vai, Guido A. Gnecchi-Ruscone,

Alessandra Modi, Alexander Peltzer, Angela Mötsch, Kathrin Nägele, Åshild J. Vågene,

Elizabeth A. Nelson, Rita Radzevičiūtė, Cäcilia Freund, Lorenzo M. Bondioli, Luca

Cappuccini, Hannah Frenzel, Elsa Pacciani, Francesco Boschin, Giulia Capecchi, Ivan

Martini, Adriana Moroni, Stefano Ricci, Alessandra Sperduti, Maria Angela Turchetti,

Alessandro Riga, Monica Zavattaro, Andrea Zifferero, Henrike O. Heyne, Eva

Fernández-Domı́nguez, Guus J. Kroonen, Michael McCormick, Wolfgang Haak, Martina

25

https://etruscans1.tripod.com/Language/EtruscanIntro.html
https://api.semanticscholar.org/CorpusID:1431656
https://arxiv.org/abs/1507.05134
https://doi.org/10.1007/s11786-017-0329-x

Lari, Guido Barbujani, Luca Bondioli, Kirsten I. Bos, David Caramelli, and Johannes

Krause. The origin and legacy of the etruscans through a 2000-year archeogenomic time

transect. Science Advances, 7(39):eabi7673, 2021. doi: 10.1126/sciadv.abi7673. URL

https://www.science.org/doi/abs/10.1126/sciadv.abi7673.

[29] Helmut Rix. Etruscan, page 141–164. Cambridge University Press, 2008.

[30] Adelle Rogers. Theories on the origin of the etruscan language. Open Access Theses, page

1587, 2018. URL

https://docs.lib.purdue.edu/open_access_theses/1587.

[31] Nathaniel Saul, Michael Catanzaro, Kostya Lyman, and Roberto Panai. scikit-tda/scikit-tda:

v1.1.1, jul 2024.

[32] Ulrich Schädler. Greeks, etruscans, and celts at play. Archimède. Archéologie et

histoireancienne, 6:160–174, 2019. doi: 10.47245/archimede.0006.ds2.08.

[33] Rohit P. Singh, Nicholas O. Malott, Blake Sauerwein, Neil Mcgrogan, and Philip A. Wilsey.

Generating high dimensional test data for topological data analysis. In Sascha Hunold,

Biwei Xie, and Kai Shu, editors, Benchmarking, Measuring, and Optimizing, pages 18–37,

Singapore, 2024. Springer Nature Singapore.

[34] Shaun Sutner. Openai advances llm with gpt-4o; google gemini update looms.

https://www.techtarget.com/searchenterpriseai/news/366584023/OpenAI-advances-LLM-

with-GPT-4o-Google-Gemini-update-looms, 05 2024.

[35] Funmilola Mary Taiwo, Umar Islambekov, and Cuneyt Gurcan Akcora. Explaining the

power of topological data analysis in graph machine learning, 2024. URL

https://arxiv.org/abs/2401.04250.

[36] Ryan Teknium, Jeffrey Quesnelle, and Guang Chen. Hermes 3 technical report.

https://arxiv.org/abs/2408.11857, 2024.

26

https://www.science.org/doi/abs/10.1126/sciadv.abi7673
https://docs.lib.purdue.edu/open_access_theses/1587
https://arxiv.org/abs/2401.04250

[37] Bouke Van der Meer. Etruscan origins: Language and archaeology. BABESCH, 79:51–57,

2004. doi: 10.2143/BAB.79.0.504735.

[38] Catherine Wolfram. Persistent homology on phonological data: a preliminary study.

https://math.uchicago.edu/ may/REU2017/REUPapers/Wolfram.pdf, 2017.

27

Modeling Fast Moving Objects in Crowded Astronomical Neighborhoods

New Mexico

Supercomputing Challenge

Final Report

April 2, 2025

Welch Homeschool

Team Members:

Kalliope Luna Welch

Teacher:

Cindy Welch

Project Mentor:

Paul Welch

Executive Summary

The purpose of this project is to model the motions of ‘Oumuamua (an unidentified astro-

nomical object) as it traveled through our Solar System. ‘Oumuamua attracts the attention of

astronomers due to its sudden increase in acceleration after its slingshot around the Sun. I used

Gravitational Particle Dynamics (applying the force and kinematic equations) to create a model of

‘Oumuamua in the gravitational field of our Solar System. I compared this to the observed data

of ‘Oumuamua’s actual motions. The model and observed data did not match, suggesting that

‘Oumuamua’s acceleration was not solely gravitational. To test other theories on ‘Oumuamua’s

origins and its cause of acceleration, I applied extra forces to the model. I shall continue to add

more forces in the future.

1

Introduction

The movements of a certain set of traveling interstellar objects can be discovered without di-

rectly observing them. One can do this by modeling the objects using Gravitational Particle Dy-

namics.

The object analyzed in this project is known as ‘Oumuamua. When first discovered on Oct. 19,

2017, by the Pan-STARRS1 telescope (funded by NASA’s NEOO), ‘Oumuamua was speculated

to be a large chunk of metal and rock that came to our solar system by chance from the distant star

Vega. [2, 10] It attracted the attention of astronomers due to its sudden increase in acceleration that

occurred while it passed through the orbits of the inner planets. There are many theories as to why

it did this.

The first of these theories is that ‘Oumuamua is not made of metal, but of a type of N2 ice

similar to what is found on the surface of Pluto. This theory explains ‘Oumuamua’s movements

based on the non-gravitational acceleration caused by evaporating N2 ice. Furthermore, N2 gas is

difficult to detect, and the red color and sloping surface of ‘Oumuamua are similar to that found on

Pluto. ‘Oumuamua’s odd shape could be a result of mass loss the ice suffered as a result of coming

too close to the Sun. [9]

A second theory is that ‘Oumuamua is a light sail, or an object that was blown by the solar

winds of the sun. This theory hypothesizes that ‘Oumuamua was a comet-like object that was

propelled by the Sun’s solar winds (thus explaining the anamolous accleration). [3] A question

regarding this theory is whether or not the solar winds of the Sun are powerful enough to counteract

the force that had caused it to travel its former course.

The third theory concerning ‘Oumuamua’s origins is that it is an alien spaceship, sent to exam-

ine the Sun. [4] A question regarding this theory is that an object moving at the rate of ‘Oumuamua

may take a long amount of time to reach the Sun from another star system.

‘Oumuamua is currently difficult to directly view due to the distance between it and the Earth.

I modeled it through the application of Gravitational Particle Dynamics to constrain the several

theories concerning its origins.

2

Methods

Retrieving Data

The first step to this project was obtaining the positions of planetary objects in our Solar Sys-

tem. To do this, I obtained data from NASA JPL Horizons Ephemeris files [6] for the Solar System

(JPL Ephemeris DE421) and ‘Oumuamua (JPL Ephemeris 3788040) and used the Python library

of Skyfield [11] to calculate the positions of these planetary objects for an 80-day period in which

‘Oumuamua passed through our Solar System. The second step was to obtain ‘Oumuamua’s po-

sitions during these same 80 days. This also required the loading of an Ephemeris file using

SPKType21. [12]

Effects of Gravity on ‘Oumuamua

I used this data to gain ‘Oumuamua’s initial position and velocity over the aforementioned 80-

day period in the gravitational field of the Solar System. I then applied the force and kinematic

equations to simulate the motions of ‘Oumuamua due to gravity. These included the equation for

gravitational force (F⃗) (Equation 1), Newton’s first law (Equation 2), the equation for acceleration

(⃗a) (Equations 3-4), and the equation for velocity (v⃗) (Equation 5).

F⃗ = (−Gm1m2/r
3)r̂ (1)

F⃗ = m1a⃗ (2)

By setting Equation 1 as equal to Equation 2, I get the result of Equation 3.

a⃗ = ((−Gm1m2/r
3) ∗ r̂)/m1 (3)

a⃗ = ∆v⃗/∆t (4)

v⃗ = ∆r⃗/∆t (5)

In these equations, t is time, G is gravity, m1 represents the mass of ‘Oumuamua, m2 represents

the mass of each planetary object in our Solar System, and r is a position magnitude:

3

r2 = x2 + y2 + z2 (6)

The total gravitational force affecting ‘Oumuamua is found by adding up the forces due to

each planetary object. The gravitational force resulting from Equation 1 is then used in Equation

2 (Newton’s first law) to find ‘Oumuamua’s acceleration. Although m1 is an unknown variable, it

cancels out in the equation for acceleration (Equation 3), and we do not need to know it to calculate

the effect of gravity.

For each day in the 80-day time period, I applied the Velocity Verlet Algorithm, as described in

Equations 7 - 9. These equations are given for the x-component of the position. There are similar

expressions for the y- and z-components. [7]

Solve for x(t+∆t):

x(t+∆t) = x(t) + vx(t)∆t+ 1/2ax(t)∆t2 (7)

Solve for vx(t+∆t):

vx(t+∆t) = vx(t) + 1/2ax(t)∆t (8)

Calculate ax(t+∆t)from the gravitational force (as described in Equations 1 - 4) using x(t+∆t).

Solve for vx(t+∆t):

vx(t+∆t) = vx(t+∆t) + 1/2ax(t+∆t)∆t (9)

The Theory of N2 Outgassing

To calculate the effect of the outgassing of N2, I used the rocket propulsion equations (10 - 12).

F⃗ = m1a⃗ = v⃗e
dm1

dt
(10)

Equation 10 is Newton’s first law, in the situation of an object (‘Oumuamua) changing in mass.

The solution of Equation 10 is shown in Equation 11. [5]

(v(t)− vg(t))

ve
= ln

m1

m1,0

(11)

4

Equation 12 gives the speed of gases that would be ejected from cometary outflows, a phenomena

similar to that of N2 outgassing.

ve = −τ
√

8kT/πm3 (12)

In Equations 10 - 12, v(t) is ‘Oumuamua’s observed speed and vg(t) is ‘Oumuamua’s calculated

speed; m1/m1,0 is the mass ratio of ‘Oumuamua (where m1,0 is the initial mass); t is time; ve is the

speed of the gases that are ejected from the outgassing ‘Oumuamua; T is the surface temperature

of ‘Oumuamua; m3 is the mass of N2 (which is 28 g/mol); τ has a value of 0.45; and k (or the

Boltzmann constant) is 1.28 × 1023 J/K. In this calculation, τ is an efficiency factor, which is put

in to compensate for the fact that N2 gas spreads out in many different directions as it is ejected

from ‘Oumuamua. [9].

‘Oumuamua as an Alien Spaceship

To simulate ‘Oumuamua as an alien spaceship, I used rocket propulsion Equations 10 - 11 to

calculate the effects of rocket boosters on a spaceship. These were exactly the same equations as

were used in the calculation for N2 outgassing, excluding Equation 12, which calculates cometary

outgassing. As Equation 12 does not apply, ve (the speed of the gases ejecting from ‘Oumuamua)

was assumed to be 3 km/s, a typical value for rocket propellants.

Computational Resources

To do these calculations, I used Python and the Python library Numpy, graphing the results

with Matplotlib [8] and visualizing the model and data with Paraview. [1] My processor was an

AMD Ryzen 9.

Results

The Velocity Verlet Algorithm and kinematic equations were used to a create a model of ‘Ou-

mumua’s motions under the influence of gravity. When the created model of ‘Oumuamua and the

observed data taken from the Ephemeris file were placed side by side, they evidently did not match.

Figure 1 illustrates the difference in position between the simulated and observed ‘Oumuamua over

the course of the chosen 80-day time span. This difference was calculated at each day. As the plot

5

shows, the difference increased over time. Figure 2 displays the difference in speed between the

simulated and observed ‘Oumuamua (also over the chosen 80-day time span, and also calculated

at each day). The velocities in this circumstance also changed over time. Figure 3 illustrates the

difference in acceleration between the simulated and observed ‘Oumuamua, which was a decrease

over the 80-day period of time.

0 10 20 30 40 50 60 70 80
Observation Day

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

|r|
 (a

u)

1e 5 Difference in Position

Figure 1: The difference in the positions of calculated and observed ‘Oumuamua data increased

over time.

6

Figure 2: The difference in the velocities of calculated and observed ‘Oumuamua data changed

over time.

0 10 20 30 40 50 60 70 80
Observation Day

0.5

1.0

1.5

2.0

2.5

3.0

|a
| (

au
/d

ay
2)

1e 7 Difference in Acceleration

Figure 3: The difference in acceleration decreased over time.

7

Rocket Equation Implications

After obtaining the results portrayed in Figures 1-3, I used the rocket propulsion equations to

calculate the effects of N2 outgassing and and rocket boosters to account for the difference in speed

between the observed and calculated ‘Oumuamua. The next step was to theorize which option was

more likely from the calculated motions of each model force.

Figure 4 portrays the mass loss of an outgassing object over time and temperature. While

an extreme change in temperature or mass and a sudden change in acceleration would suggest

that ‘Oumuamua is an alien spaceship, neither of these were the case. ‘Oumuamua’s acceleration

was shown to be too gradual for rocket boosters, and the changes in temperature and mass were

(although still significant) relatively mild. This would suggest that ‘Oumuamua is made of N2

ice. The model of an outgassing ‘Oumuamua that was created in the course of this project closely

matched the model proposed by Jackson and Desch[9], who proposed the N2 theory. In their

model, ve = 62 m/s, and the mass ratio is 88% (or 12% mass loss) at Observation Day 25 and a

temperature of 25 K. In my calculations, the % mass loss at Day 25 and 25 K was 11.55%.

Figure 5 shows the mass loss of a rocket with boosters over time. The time was spread across

80 observation days (with an increment of one day). A rocket booster would not have used much

fuel to achieve the small mass loss shown in Figure 5. The plotted results do not suggest that there

was a sudden jump in mass, making it unlikely that ‘Oumuamua is an alien spaceship.

8

Figure 4: Calculated mass loss due to temperature (in K) over time.

Figure 5: Calculated mass loss due to propulsion from rocket boosters over time.

9

Conclusions

In conclusion, the motions of the modeled ‘Oumuamua did not match the motions of the

observed ‘Oumuamua; this implies that ‘Oumuamua’s acceleration was not solely gravitational.

Upon applying the forces of an alien spaceship’s rocket boosters and the outgassing of N2 ice,

the model created throughout the course of this project suggests that ‘Oumuamua was most likely

made of N2 ice. To continue this project, I plan to explore the idea of another additional force that

would test the light sail theory. This force would calculate the impact of solar winds on ‘Oumua-

mua. Should the light sail calculations disagree with the observational data, I would be able to

conclude that ‘Oumuamua is most likely made of N2 ice given the theories presented.

10

References

[1] J. Ahrens, B. Geveci, and C. Law. Paraview: An end-user tool for large data visualization.

Elsevier, 2005.

[2] A. Barnett. ‘oumuamua. https://science.nasa.gov/solar-system/comets/oumuamua/, accessed

Oct. 26, 2024, 2024.

[3] S.J. Curran. ‘oumuamua as a light sail – evidence against artificial origin. Astronomy &

Astrophysics, 649:L17, 2021.

[4] M. Elvis. Research programs arising from ‘oumuamua considered as an alien craft. arXiv,

page 2111.07895, 2021. URL https://arxiv.org/abs/2111.07895.

[5] Douglas C. Giancoli. Physics for Scientists & Engineers with Modern Physics. Pearson

Prentice Hall, 2008.

[6] J.D. Giorgini and JPL Solar System Dynamics Group. NASA/JPL Horizons On-Line

Ephemeris System, https://ssd.jpl.nasa.gov/horizons/, data retrieved 2025-Jan-10.

[7] H. Gould, J. Tobochnik, and W Christian. An Introduction to Computer Simulation Methods:

Applications to Physical Systems, Revised Third Edition. CreateSpace Independent Publish-

ing Platform, 2017.

[8] J.D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,

9(3):90–95, 2007. URL https://doi.org/10.1109/MCSE.2007.55.

[9] A. P. Jackson and S. J. Desch. 1i/‘oumuamua as an n2 ice fragment of an exo-pluto sur-

face: I. size and compositional constraints. Journal of Geophysical Research: Planets, 126:

e2020JE00670, 2021.

[10] Karen J. Meech, Robert Weryk, Marco Micheli, Jan T. Kleyna, Olivier R. Hainaut, Robert

Jedicke, Richard J. Wainscoat, Kenneth C. Chambers, Jacqueline V. Keane, Andreea Petric,

Larry Denneau, Eugene Magnier, Travis Berger, Mark E. Huber, Heather Flewelling, Chris

11

https://arxiv.org/abs/2111.07895
https://doi.org/10.1109/MCSE.2007.55

Waters, Eva Schunova-Lilly, and Serge Chastel. A brief visit from a red and extremely

elongated interstellar asteroid. Nature, 552:378–381, 2017.

[11] B. Rhodes. Skyfield: High precision research-grade positions for planets and earth satellites

generator. Astrophysics Source Code Library, record ascl:1907.024, 2019.

[12] S. Uetsuki. spktype21 0.1.0. https://pypi.org/project/spktype21/, accessed Jan 18, 2025,

2018.

12

	front-cover
	final_report_intro2425
	1-plohr-final-report
	2-FinalReport-PCR
	Point Cloud Surface Reconstruction
	​Abstract
	1. Introduction
	1.1 Background Information
	2. Related Work
	3. Signed Distance Field Representation
	3.1 Signed Distance Pipeline
	3.2 Surface Tension Simulation
	3.3 Isosurface Extraction
	3.4 Hybrid Reconstruction Pipeline
	4. Octree Data Structures
	4.1 Octree Pipeline Integration
	4.2 Nearest Neighbor Query
	4.3 Min-Heap Binary Trees
	5. Validation
	5.1 Results
	5.2 Versitility and Limitations
	6. Summary
	6.1 Final Remarks
	References
	Future Reading

	blank-page
	3-Supercom final report
	Table of Contents
	Abstract
	Introduction
	The Problem
	The Objective

	Solution
	Orbit Generation
	Orbit Visualization
	The Setup
	Optimization
	Dataset Generation

	Object Detection
	The Structure of YOLO
	Attempts at Making a Custom Network
	Training YOLOv5 Instead

	Results
	Conclusion
	Acknowledgements
	Works Cited
	Links To Products
	Graphs and Tables
	Graph of loss and precision during training
	Confidence Curve
	Precision-Recall Curve
	Precision-Confidence Curve
	Recall-Confidence Curve

	blank-page
	4-AATeam1-final-report
	Albuquerque Academy Team 1 Additive Manufacture Kinetics and Thermodynamics Model
	Table of Contents -------------------------
	Executive Summary -----------------------
	Problem -------------------------------------
	Methodology and Algorithms ------------
	Verification and Validation ------------
	Results: Analysis and Conclusions -----------
	Future Use: Development and Testing -------
	Bibliography and Acknowledgements -------
	Appendix A - Building the Hexagonal Grid -

	blank-page
	5-Intersubjective_Realities
	Executive Summary
	Statement of the Problem
	Introduction
	Background
	Intersubjective Realities
	Chaos Theory as a Novel Way to Understand at Linguistic Intersubjective Realities in the time of Social Media
	Natural Language Processing and State of the Field
	State of the Field
	Topic Modeling and Latent Dirichlet Allocation (LDA)
	Preprocessing Techniques

	Methodology
	Preprocessing and Data Collection
	Data

	Natural Language Processing
	Engagement Analysis over Time
	Recurrence Network Analysis
	Symbolic Dynamic Analysis
	Social Network Analysis
	Network
	Network Analysis

	Veracity Analysis

	Discussion
	Conclusion
	Qualitative Contextualization

	Achievements
	Acknowledgments
	Data Availability

	blank-page
	6-SFP_Luke_and_Isaac_Final_Report
	blank-page
	7-TeamShapeSifterX-final-report
	8-Team-InterstellarBat-final-report_0
	blank-page
	blank-page
	blank-page

