New Mexico Supercomputing Challenge | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
New Mexico High School
|
Scientific Content | 30% |
Effectiveness of Approach | 30% |
Creativity | 20% |
Originality | 10% |
Clarity | 10% |
Sponsors and groups awarding prizes in special categories choose the winners in their particular area.
Awards Day. The Challenge concludes with participants visiting LANL to see the supercomputers on which they have worked, hear about current scientific and industrial applications, and attend the Awards Ceremony. Challenge sponsors supply numerous awards. First and second place team members receive savings bonds, and their schools gain new computer equipment. Outstanding team leaders receive scholarships; while trophies, plaques, or computing supplies are presented to winners in many different categories.
Evaluation & Feedback. Feedback is continually gathered and monitored to meet the needs of all participants and fine-tune each year's program.
LANL provides supercomputing capability for all participants, develops and coordinates the educational component of the program, and hosts the final judging and Awards Day. New Mexico Technet handles program administration and network connections. The University of New Mexico provides administrative support for the Kickoff Conference and throughout the year. SNL coordinates the project advisors for the teams. The universities and colleges host the Regional Training Workshops and the preliminary project evaluation sessions.
A number of other organizations throughout the state contribute funds, in-kind services, and awards. Personnel from these organizations often volunteer as project advisors. Strong grass-roots support has always been an important part of the Challenge. Sponsors and contributors list.
One cost-control measure has been to give schools the responsibility for monitoring educational material so it remains at the school for future participants and does not need to be reissued. Moving the Kickoff Conference from an expensive metropolitan hotel to a self-contained conference center has also reduced costs.
Each sponsor contributes in its particular area of expertise and according to its own constraints. All sponsors are strongly committed to the program.
Administration of the program has been reinforced by applying strict deadlines at regular intervals throughout the year. With periodic check points, participants are better able to organize their time, and teacher feedback tells us that the deadlines are a positive motivation for continued work---students do not want to be dropped from the Challenge and lose their computer accounts.
In the very first Challenge, the need for additional instruction and support during the year became apparent. Five midyear regional workshops were established in the second year of the program, and a sixth workshop was added in the fifth year to accommodate the increase in enrollment.
During the early years, some confusion was caused by the availability of computers with different operating systems. The current computers all run the UNIX operating system so participants need to learn only one operating system, besides their own PC or Macintosh system. In addition, to make it easier for participants to interact with the machines and each other, software, such as the PINE electronic mail program, has been incorporated.
In fiscal 1995, LANL procured funding to conduct a long-anticipated Summer Teacher Training Session, and in August of 1995, 27 teachers came to Los Alamos for two weeks of intensive training. While a few were from the metropolitan centers, most came from small rural high schools. Session participants attended classes in C++ programming language, UNIX operating system, Internet navigation, and HyperText Markup Language (HTML). The teachers also received hands-on experience with the National Education Supercomputer Program at Lawrence Livermore National Laboratory and designed a course curriculum for their own computer students.
At the outset of the workshop, teachers took a pretest to measure their knowledge of the subjects to be taught. The test was repeated at the end of the two weeks with markedly different results. In addition to the test scores indicating a gain in knowledge, the teachers submitted evaluations that showed they definitely felt an increased confidence in their own computing skills.
Teachers attending the two weeks of training were provided with housing and a stipend. They earned three units of undergraduate credit from the University of New Mexico, Los Alamos Branch, in August of 1995. Many of the participants requested another workshop. In the first Summer Teacher Training Session, 27 of the 118 Challenge high school teachers were reached; the future goal is to continue training additional teachers each year.
In the summer of 1996, two training sessions were offered and 23 teachers attended the Summer Teacher Training Session at Eastern New Mexico University in Portales in June and 33 teachers attended the Summer Teacher Training Session at New Mexico State University in Las Cruces in July. Participants in these STTS classes received three units of graduate credit.
To foster creativity in devising computational solutions to original scientific problems and to make a positive difference in students' lives, motivating them to prepare for the workforce of the future.These goals have been met year after year. In 1993 and 1995, follow-up surveys were conducted among students who had participated in the Challenge two years prior (1990-91 and 1992-93). Questions were asked about the current situation as well as the future plans of these former participants. The results showed that the Challenge had made a positive difference in their lives and that it helped prepare the majority for their current jobs or schooling. The 1995 survey showed that among the participants from two years earlier, 89% were attending college, and 80% of that number were majoring in science or engineering.
The Challenge State Executive Committee has developed six objectives to support the program's goals. Each objective is listed and is followed by a discussion of its achievement.
Provide access to high-performance computers so that teams can conduct complex scientific inquiry, experimentation, and visualization.
New Mexico Technet's statewide network provides all participating students, teachers and project advisors access to the supercomputers. New Mexico Technet has added local phone numbers in many communities around the state to support the Challenge. Participants use this network to connect to LANL's supercomputers at the Kickoff Conference and to work on them throughout the year. Access is also provided from New Mexico Technet's network to supercomputers at SNL, New Mexico State University, the University of New Mexico, and other locations as needed by the participants.
Increase high school students' interest in science related disciplines and promote careers in science and engineering by instilling enthusiasm for science in students, their families, and their communities.
Data from questionnaires and interviews show that the Challenge positively influenced students in their attitudes toward computing, science, math, and advanced education. In the 1995 survey of 1992-93 students, 80% of the respondents were attending a university, and 80% of that number were majoring in science or engineering.
The Challenge has also helped some students to realize that their interest lay elsewhere. When asked about the long-term effect of the Challenge, one student replied, ``It gave me the knowledge that I did not, after all, want a career in computing.''
Develop students' confidence to perform complex problem solving through their participation in a rigorous academic competition.
Many students said that as a result of their experience in the Challenge, they felt confident they could achieve success in a scientific field. When the 1995 survey of students asked if the Challenge positively influenced their self confidence, 85% responded that they had been positively affected, and 71% of that number measured the effect as ``very much'' or ``a lot''.
Institute electronic networking among all schools to reduce the isolation of students and teachers in remote locations.
This objective was unquestionably met! When students were asked on the evaluation form for the January 1995 Regional Training Workshop to rank their ability to use e-mail, 89% of teachers and 93% of students responded with the highest rating of 5 on a scale of 1 to 5. Students not only use electronic communication between team members, but also with project advisors, LANL and New Mexico Technet computer consultants, and scientists studying the research problems internationally. During the fifth year, some SLIP (Serial Line Internet Protocol) accounts were available, and plans for the future include expanding the use of SLIP to improve the networking capability of the schools.
Provide an educational experience that is otherwise unavailable in the regular curricula.
Teachers emphatically point out that the Challenge provides an educational experience unavailable to students through the regular curricula. The Challenge has positively affected schools to offer better technological support for students by providing software, hardware, phone lines, and courses of study. Teachers as well as students have indicated that they have become more excited about learning because of the Challenge.
Design a science and math program that can be replicated in other parts of the United States.
The Challenge has always encouraged other areas of the country to implement similar programs. Papers describing the program have been published, and representatives from the Challenge executive committee have attended a number of national computing and education meetings and conferences to share information about the program.
Several states have requested information about the program. In October 1995, three people from the Maui High Performance Computing Center attended the Kickoff Conference to observe its organization and implementation. They were very impressed and are planning their own version for the Hawaiian Islands.
An unwritten goal of the Challenge has been to encourage students to remain in New Mexico for their college education and future employment. Several scholarships are given each year by the institutions of higher education in New Mexico. Regional Training Workshops are held at college and university campuses to acquaint students with the local schools. In the 1995 survey, 56% of those pursuing post-high school education were attending in-state schools.
This trend of increasing participation will undoubtedly continue. In long-term follow-up surveys taken in 1993 and 1995, former participants unanimously recommended the Challenge for high school students. In the 1995 survey, a number of respondents mentioned that they were encouraging siblings and friends to participate.
While enrollment increases are significant, the number of teams completing the Challenge is even more important. This number has increased each year in both the competitive and noncompetitive categories. Over the years, organizers have developed guidelines and strategies to promote successful participation through the entire year.
With the nonselective policy of the Challenge, it is expected that some students will be unable to participate for the entire year. In the fifth Challenge (1994-95) the completion rate was 80% of the teams eligible to submit final reports. This number is more than 50% of the initial enrollment. Even though some students cannot complete the entire program, they benefit from the introduction to computer technology, networking, and problem solving. Many of those who must withdraw early reenter the following year and successfully complete the program.
Other measurement tools used during the six years include:
Influence on Attitudes. In long-term follow-up surveys done in 1993 (1990-91 participants) and in 1995 (1992-93 participants), respondents indicated that the Challenge had a positive influence on their attitudes toward science, math, and computing as well as other areas. The 1993 study had a return of 26% of 225 surveys sent, and the 1995 study had a 13% return from 450 surveys mailed. (The variation in return rate may be a factor of the time of the year when the surveys were conducted. The 1993 survey was done in December, and the 1995 survey was sent out in August.)
The 1995 survey also queried the former participants about their attitude toward advanced education. Most (86%) said that the Challenge had a positive influence in this area. The majority of the respondents (80%) had completed their high school education with 87% of that number presently enrolled in college.
Education/Career Choice. In both surveys, the majority of college students (87% in 1993 and 73% in 1995) listed their majors as engineering, science, or computer science. In interviews, former award winners pointed out that the Challenge had helped to define their career paths. One said, ``I leaned toward studying engineering, but I didn't really know how engineering worked...the Challenge gave me an insight into computer science, engineering, and math that I didn't have before.'' A Civil Engineering student observed, ``I was impressed by the contact with scientists and engineers who helped with our project. These contacts influenced my career path.''
Interest in Scientific Subjects. Science, math, and computing take on new meaning through Challenge participation. A former participant, who has also been a project advisor to an award winning teams, stated, ``Most kids see science as dull and mundane. The Challenge gives a `face lift' to science. Many students have learned to love science and embrace it.'' Another prize winner commented, ``The Challenge taught me that science was not mysterious; it is something I can do.''
Intellectual Achievement. Along with an increased interest in math, science, and computing, Challenge participants report the benefit of being involved in a mind-stretching endeavor. One award winner said, ``I learned a new way of thinking: examining options, working with others and considering their ideas, and carrying the project through to completion.'' Another participant commented, ``I learned new techniques of solving problems. It was an opportunity to work on large sized, complex problems. We learned to take the answers we got, find if they were useable, and keep them in the context of the problem. We learned to analyze what we put in and the results we got back.''
Personal Development. Improved self-confidence, character development, and expanded horizons are added benefits of Challenge participation. With the extra work and enthusiasm for learning generated by the program, grades improve, and this success carries over into other areas. Comments such as the following confirm these gains: ``Gave me confidence to explore new worlds,'' ``The personal feeling of achievement when we turned in our final report was awesome,'' and ``Sparked an interest in a scientifically oriented career. Whereas, I hadn't previously considered it seriously.''
Teachers attribute many successes to Challenge participation. One teacher said ``I come from an isolated area with many Navajo students. The Challenge lets these students see that they can do it too. It lets them see what is available; it expands their horizons.'' A number of teachers have related experiences with students who discovered their strengths and blossomed as a result of their participation. One teacher concluded such a story by saying, ``The Challenge has taken a very shy, quiet, uninvolved individual and turned him into a confident, self-assured, involved member of our student body.''
Job Opportunities. Technical skills, learned and refined while working on Challenge projects, have led to part-time technical jobs for many participants while still in high schools or in college. One former participant told us, ``The Challenge exposed me to the Internet, and now I'm working to get an Internet service provider up and running as a business.'' In the 1995 survey of former participants: part-time jobs held by students included computer consultant (2), computer programmer (2), systems integrator/network manager, technical assistant, computer sales person, designer (CAD), administrator of a discovery lab at a children's museum, and a number of summer intern positions at the scientific laboratories.
Teamwork Skills. A significant number of previous participants noted the benefits of teamwork. They considered this to be one of the most beneficial aspects of their Challenge experience. In the 1995 survey, 26% of the replies mentioned this aspect. The comments included, ``Teamwork is used in all professions; I'm glad that we were introduced to that aspect.'' and ``I learned the importance of group effort and teamwork. We found our individual strengths and divided the tasks. We developed real team solidarity.''
Influence on Nonparticipating Students. An unanticipated finding was the positive effect that the Challenge has had on nonparticipating students. One teacher commented, ``It is amazing to see how the Challenge has changed the lives of students who are not in the program. Challenge students have had an influence in our area, and now local electronic bulletin boards are springing up because of these students. More regular (nonparticipating) students are convincing their parents to buy computers AND modems.'' Another teacher said that because the Challenge gives weight and credibility to other technology-based classes, he was able to start a computer class for at-risk students. Participation in this class led to a complete turnaround for one student who had been considered incorrigible. During four years in the computer class, this individual went from failing grades, truancy, and a police record to the honor roll.
Equipment. During the first year of the Challenge, 82% of the participating schools needed to borrow equipment in order to take part, and dedicated phone lines were almost nonexistent. A teacher told of having to bring his personal computer to school and taping down the disconnect buttons on the phone in the school office when they wanted to connect to the network. By the fifth Challenge, 70% of the teachers who had participated previously felt that the equipment at their school was adequate and another 15% said that the situation was improving. A teacher stated, ``We have built our system up because of the Challenge.'' Another said, ``Yes, compared to previous years.'' One expressed the hope, ``No, but soon.'' Only two of the 54 schools in the 1994-95 Challenge needed equipment loans.
Challenge awards have helped schools acquire equipment. Winning teams receive computing equipment for their schools in addition to the personal prizes to the team members. One student remarked, ``Our school has been gifted with excellent teams that have won computers, modems, etc. that are hard to come by in public schools.'' A number of schools have taken advantage of the expertise of team project advisors to help them choose the best type of new equipment and to get it installed and operating. A number of schools also are acquiring direct connections to the Internet.
Curricula Expansion. Both students and teachers attest to the Challenge prompting the offering of new and higher level technical classes in many schools. One teacher mentioned, ``The Challenge has helped in getting the backing of the administration for advanced classes. Computers are now used in science and math classes, especially physics and chemistry.''
Pride in Academic Achievement. Participants report that the Challenge promotes a feeling of school pride and increases faculty confidence in the ability of the students. These attributes seem to be especially important in small rural schools. One student of a winning team said, ``While our school had competed well in some sports in the past, it had never had any sense of academic achievement before winning the Challenge.'' Another student observed, ``The Teachers realized that just because we were from a small school didn't mean we couldn't compete.'' A student from another part of the state remarked, ``It was nice to have our school recognized for its academic achievement instead of all its problems.''
Of the teachers completing an evaluation form at the end of the fifth Challenge, at least 83% were confident in their ability to use e-mail and find information on the Internet. More than 50% had some confidence in writing and debugging a computer program. This is a significant change from the early years of the program when the typical comment from a participating teacher was, ``I don't know anything about computers, but I think my students should know about them.''
Teachers value the opportunity the Challenge provides for interacting with their peers from other parts of the state and with practicing scientists. Teacher participants report that they have an increased confidence and enthusiasm for teaching. One student observed, ``It gave the teachers more of an insight into what is going on with computers, how they are changing, and how they will affect us, the students.'' A teacher who has been in all six Challenges said, ``The Challenge has had a tremendous effect on my teaching career. It encouraged me to learn programming, UNIX, and the Internet on my own. I now teach a class on supercomputing at my high school and teach a class on the Internet at the Community College.''
Many Challenge projects focus on local problems. Teams have tackled such diverse topics as pollution caused by smelter emissions, ground water contamination from fuel storage tanks, breaching of a local dam, and even the sports stadium's parking lot configuration. In a number of cases, the solutions proposed by the students have been presented to local officials for consideration. Such activities instill community responsibility and pride.
Local communities are impressed to see Challenge sponsors and contributors working directly with their students. One project advisor to a small-town team said ``The community became aware of LANL and the other sponsors helping in their community. They saw the effort and money spent to get their kids involved.''
The Challenge increases both the quality and number of students entering technical careers. The results of the 1993 and 1995 follow-up surveys indicate that the Challenge positively influenced participants' attitudes toward science, engineering, and math, and that it had a definite effect on their choice of academic major or career area.
In addition to the statistical evidence, comments from participants also support the effect of the Challenge. ``I changed my major from nonscience to computer science. The Challenge gave me an interest in computers,'' is a commonly heard remark.
Laboratory personnel have developed a curricula to address the needs of beginning as well as experienced participants. The curriculum gives participants a good grounding in the basics of computing and also enables the advanced students to explore and develop new skills. Many of the classes are taught by LANL staff. In addition, a large number of Laboratory employees have volunteered their personal time as team project advisors.
LANL introduced special classes and hands-on laboratories for teachers at the Kickoff Conference. In addition to this training, the Laboratory has sponsored one Summer Teacher Training Session and hopes to hold additional ones in the future.
Each participant in the Challenge has an account on a Cray supercomputer at LANL. Records of computer use were kept during the first three and a half years and showed that the usage time increased dramatically. During the fourth Challenge, a Cray YMP-EL was dedicated to educational programs, and computer use for Challenge participants was no longer recorded.
Through the Advanced Computing Laboratory (ACL) at LANL and the Massively Parallel Computing Research Laboratory at SNL, teams whose projects could take advantage of parallel computing technology, have been given access to parallel processing machines. The ACL has provided access to massively parallel Connection Machines, and SNL has made an nCUBE machine available. Some teams have used a Cray YMP at New Mexico State University and the IBM SP2 at the Maui High Performance Computing Center, which is operated by the University of New Mexico.
At recent Awards Day activities nearly 100 LANL employees participated by giving talks and demonstrations or escorting groups of participants on the tours. The staff looks forward to taking part in the event each year because they see the value of the Challenge and how it positively affects the participants.
Interviews with former participants also confirm this fact. One said ``LANL stopped being a `mystical hilltop.' Instead I began to think of it as a mecca of technology where people shared my interest and worked on projects that were large scale versions of what I worked on in the Challenge. LANL finally became relevant to me. It became a place that produced things that I cared about, that interested me, that affected me.''
The Challenge executive committee would like to see at least one school from every school district in the state taking advantage of the Challenge. New Mexico has 89 independent school districts, and in 1995, only 39 of those districts had schools participating in the Challenge. In 1996, 44 districts has schools participating in the Challenge. Many of the nonparticipating districts are in remote parts of the state and will require extra attention so that they can be electronically connected.
Increasing participation by female and ethnic minorities will continue to be a priority. Strategies to increase not only the number enrolling, but also the number successfully completing the program are critical. Frequently the successful strategies in this area are subtle in nature: using promotional materials that show women and minorities actively participating, having a significant number of women and ethnic minority instructors for technical classes, and alerting instructors, lab assistants, and project advisors to include every participant in the activity, not just the assertive ones. Continuing to work in conjunction with other LANL sponsored programs that target female and minority participation in technical areas can also increase participation in the Challenge.
The first Summer Teacher Training Session was an outstanding success. This opportunity must be extended to more teachers. The training that the teachers receive benefits not only Challenge students, but all the subjects and classes taught by those teachers in future years. Technically knowledgeable teachers also have a positive impact on their peers and the curricula of their schools.
Having a project advisor can be a critical factor in a team's success. Teams in remote regions are frequently at a disadvantage because they do not have access to people knowledgeable in the scientific areas of their projects. Strategies must be devised to expand the pool of project advisors in all areas of the state. These strategies may include recruiting from professional societies, tapping the retiree community, making a concerted effort to locate potential advisors in rural areas, and encouraging electronic communication between a team and its advisor.
Our country needs a technologically literate population if it is to compete in the world market. The Challenge has proven that it positively contributes interested and trained students to the scientific pipeline feeding the workforce of the future. Evidence shows that participants not only gain immediate personal and academic benefit from the experience but also realize a definite advantage in pursuing future career success. The program positively impacts the educational environment by enhancing equipment, curricula, and teacher knowledge.
In the six years of its existence, the Supercomputing Challenge has made a difference in the lives of students, teachers, schools, and communities. The Challenge looks forward to its contributions to the future participants and the world in which they will live.
New Mexico Technet, Inc. | Cray Research, Inc. |
Los Alamos National Laboratory | CHECS, Inc. |
Phillips Laboratory | Eastern New Mexico University |
Sandia National Laboratory | Digital Equipment Corporation |
University of New Mexico | Intel Corporation |
New Mexico State University | National Education Supercomputing Program |
The Albuquerque Tribune | New Mexico Institute of Mining and Technology |
Anixter, Inc. | New Mexico School for the Visually Handicapped |
Apache Peak Observatory | New Mexico State Department of Education |
Aquila Technologies | New Mexico State General Services Department |
Computer Science Corporation | New Mexico State Human Service Department |
Fort Lewis College | New Mexico State University at Grants |
Four Corners Technology, Inc. | San Juan College |
General Telephone Company | Santa Fe Community College |
Hewlett-Packard | Thinking Machines Corporation |
IBM | University of Arizona |
Klein Enterprises | University of New Mexico, Gallup |
KOAT TV, Channel 7 | University of New Mexico, Los Alamos |
KOB TV, Channel 4 | Very Long Baseline Array |
KRQE TV, Channel 13 | Western New Mexico University |
New Mexico Highlands University | White Sands Missile Range |
New Mexico Junior College |
First Annual Challenge
- Albuquerque Academy
- Career Enrichment
- Los Alamos High School
- Valley High School
- Portales High School
- Silver High School
Second Annual Challenge
- Espanola Valley High School
- Moriarty High School
- Del Norte High School
- Los Alamos High School (2 teams)
Third Annual Challenge
- Las Cruces High School
- Albuquerque Academy
- Espanola Valley High School
- Hatch Valley High School
- Moriarty High School
- Socorro High School
Fourth Annual Challenge
Fifth Annual Challenge
- Albuquerque Academy
- Highland High School
- Los Alamos High School
- Espanola Valley High School
- Moriarty High School
- Pecos High School
- Albuquerque Academy (3 Teams)
- Espanola Valley High School
- Albuquerque High School
- Highland High School
Sixth Annual Challenge
- Bowker Home School
- Highland High School (2 teams)
- Clayton High School
- Espanola Valley High School
- Tularosa High School
The 1992-93 winning team from Las Cruces presents President Bill Clinton with Challenge T-shirts for his family as LANL Director Sig Hecker and CIC Division Leader Hassan Dayem look on during the President's visit to Los Alamos National Laboratory in May of 1993.
``I challenge business and industry and local government throughout our country to make a commitment of time and resources so that by the year 2000, every classroom in America will be connected."President Bill Clinton, September 21, 1995