
Statistical Analysis Of Parallel Code

New Mexico Adventures in
Supercomputing Challenge

Final Report
April 6, 2005

Team 033

Manzano High School

Team Members:
Stephanie McAllister
Matthew Bailey

Teacher:
Mr. Stephen Schum

Project Mentor:
Sue Goudy

Table of Contents

Executive summary … … … … … … …1
Final Report ... … … … … … … … …2
Appendices ... … … … … … … … …6

Executive Summary
 Our problem is to do statistical analysis of parallel code running on
two different supercomputers at Sandia National Laboratories. We will
accomplish our objective by writing a C++ program that will analyze the out
files and a result that can be used to find out which systems are running
better for the equations that we are running. This will be run on a range of
file sizes and on two different systems that have two different hardware
systems and two different operating systems. Both of these systems run on a
Myrinet communication system that will help to keep the experiments even.

 The hypothesis hat we have developed is that EP (embarrassingly
parallel) will run faster than CG (Conjugant Gradient) or LU decomposition.
EP is a system for solving a system of matrices that involves very little
communication between nodes. EP can do this because LU is a way that
uses random pairs of processing nodes to decompose an N*N matrix into an
upper and lower triangle matrix in an attempt to solve a system of liner
equations. CG was designed as an iterative method for solving large systems
of linear equations and sparse matrices. It was originally designed as a
quicker and easier way to do steepest descents. Through every iteration, the
equation gets much bigger, so CG was designed to find the constants quickly
in each iteration of the problem.
 The objective of our statistical analysis is to determine which of the
two types of parallel systems will run faster Feynman or C-Plant. The major
difference from a hardware perspective is that Feynman has two Alpha
processors while C-plant has only one Xeon. When we run our comparisons
they will by run on Feynman using both processors while C-plant uses its
single processor. The object of this is that since C-plant was designed to use
only one processor and Feynman two the only fair comparison would be
with both systems running at maximum efficiency. We are comparing the
entire system instead of just the Operating System or the processors.
 Another difference between C-plant and Feynman is their operating
systems. Feynman runs on a full Linux system that has all of the demons
that can kick an executable file off of the computing nodes for a short time.
C-plant, however, does not have all the demons of the full Linux system it
can stop and then restart the executable. There is another demon that is
associated with the batch system that could cause a significant impact on our
runtimes. The batch system is a scheduling system PBS which stands for
portable batch system that find available node after a job is submitted and
schedules the executable to be carried out. This makes the start and stops of
Feynman more variable than C-Plant. This stop and start can have an effect
on computing times and the more variability can cause a longer or shorter
break. Since Feynman can bring dynamic libraries and those dynamic
libraries are subject to change this is another possibility for variation that we
will have to check. C-plant is designed to not use dynamic libraries and is
another way that variations could make the single-processor system faster.
 Both systems use Myrinet to communicate so they operate on a level
playing field as far as the capacity for communication. Myrinet runs at 200
Mb/s and another piece of data to look at is whether or not the data is
stressing the communication limitations Of the Myrinet connection. The
communication between nodes works on a nearest neighbor system the

nearest neighbor is the next node that has the shortest communication path
between them. Since C-Plant is a system that is used very heavily used there
are fewer available nodes. These factors need to be taken into account that
our results are not coming to us from a system in a vacuum and as a result
have variations that could cause unexpected results.
 C++ program is used to separate between the four classes and
compute mean and standard deviation. The classes refer to the size of the
out file the four classes that we are using are S, A, B, C. There is a fifth
class D but will not be using it in our project. The largest class that we will
be running is C with the smallest being S. The mean that is being referred
to is the mean time it takes to compute one out file or all of the individual
operations in an entire file. The standard deviation is the difference between
the times it takes one file to run on one system as compared to how long it
takes on another system.
 In order to insure that our results are authentic is to run the experiment
a second time under a different set of circumstances and see how a change in
the variables influences the end results. Hopefully we will be able to
determine which system runs faster under different sets of systems and
circumstances.
 At this point we have not been able to run our programs on the out
files to get any results to either verify or negate our hypothesis. As a result
we have been unable to garner any results from analyzing our results.

Acknowledgements:
 We would like to acknowledge and thank our teacher, Mr. Schum, our
project mentor, Sue Goudy, for all of the help and time that they have put
into helping us develop and work on the project. We would also like to
thank Sandia National Labs for letting us conduct this project on the clusters
C-Plant and Feynman and to the administrators of the machines who gave us
permission to perform system analysis and put new code onto them. The
specific administrator who helped us the most with support issues who we
would like to recognize is Sophia Corwell. Thanks so much to all of you
and for all of your support!

Appendix 1: Perl Program

#!/usr/bin/perl -w

#Stephanie McAllister "PerlGrabPB.pl"
#last mod. 15feb05

#iterating through each of the input files specified
#on the command line
foreach $input (@ARGV)
{
 print "reading input file ...$input\n";

 #print STDOUT "Please enter the filename to be searched.\n";
 #$file=<STDIN>;

 #print STDOUT "Please enter the name of the file to be written to.\n";
 #$fn=">".<STDIN>;

 $output = $input . ".out";
 print "output file = $output\n";

 open(WRITE, "> $output");
 open(READ, "< $input");

 $verify = 0;

 #read 1 line at a time
 while (<READ>){
 #if pattern is found,
 #write to file and screen
 #store as an array
 if (/CG Benchmark Completed./) {
 while (<READ>){
 last if /Compile options:/ ;
 if (/Class/) {
 @class = $_;
 @class = split ' ', $_;
 }

 elsif (/Size/){
 @size = $_;
 @size = split ' ', $_;

 }

 elsif (/Time in seconds/){
 @time = $_;
 @time = split ' ', $_;

 }
 elsif (/Total processes/){
 @Tprocs = $_;
 @Tprocs = split ' ', $_;

 }
 elsif (/Mop\/s total/){
 @Mops = $_;
 @Mops = split ' ', $_;

 }
 elsif (/Verification/){
 last if /SUCCESSFUL/;
 $verify = 1;
 }#end if verification

 @block = $_;
 @block = split ' ', $_;
 print "\n\n@block\n";#print whole @ to keep us sane

 $verify = 0;

 }#end while loop

 #when vari. $verify is negated
 #the false statement(0) is made true(1)
 #and so w/ line, will call up func below

 if (!$verify)
 {
 #input file "SUCCESSFUL" Verification
 #print all needed info-class,size,time,Tprocs,Mops
 print (WRITE " $class[2] $size[2] $time[4]
$Tprocs[3] $Mops[3]\n");
 }#end print if statement
 else{
 print "UNSUCCESSFUL RUN";#print to screen
only
 }#end print else statement

 }#end Benchmark Completed if statement

 }#end 1st while (READ)

 close(READ);
 close(WRITE);
}

