

Computer Modeling of the Spread
and Containment of Computer Viruses

Adventures in Supercomputing Challenge
Final Report
April 6, 2005

Team # 054
Sandia Preparatory School

 Team Members
John P. Korbin (12th)

 Robbie Herbertson (9th)
 Garrett Lewis (10th)

Zach Rosenberg (10th)

 Teacher
 Neil D. McBeth

 Mentor
 Erik P. Debenedictis

Table of Contents

Executive Summary .. 3

Introduction... 4

Description of Project ... 6

Results... 10

Conclusions... 11

Recommendations... 13

Acknowledgements... 14

Bibliography ... 15

Appendix A... 16

Team # 054 Page 2 of 26

Executive Summary

In today’s world of connectivity, computer viruses and worms pose a serious problem to
America’s communication and business infrastructure. The purpose of this project was to use
historical data of virus and worm attacks to create a model that will accurately simulate the
activities of both viruses and worms within a given computer network. Using this model we
predict vulnerabilities within a dynamic system and find solutions to alleviate these problems.
The model created during this project has applications beyond our use: examples are a “Red”
testing tool for system administrators that could help them predict holes in security caused by
user lever changes, and a program that can use information of a network to warn a user of their
personal security risks. The project’s importance is not only security of private systems but also
the security of systems around the world.

We began our project with the target of designing a novel and innovative technique of modeling
worms and virus. To accomplish our objective we began by learning about worms and virus, the
way they are created, how they penetrate a system, and the ways that they propagate.

Educating ourselves about the world of worms and virus was a much more daunting task than we
initially intended. Becoming acquainted with worms and virus led us to the domain of computer
security. An area we found has a number of experts and opinions on appropriate measures to
protect a particular environment. This project also facilitated our understanding of how viruses
mutate, proliferate, and infiltrate a particular system.

Team # 054 Page 3 of 26

Introduction

Significant factors in today’s world of telecommunications, computer viruses and worms have
the capacity, if implemented under the proper conditions, to decimate large segments of human
life, from monitoring a premature infant in the hospital to launching nuclear warheads from
Trident Submarines in quantities capable of destroying the world several times over. Should
either one of these fail, life and capital would be lost. For that purpose, we are attempting to
model a virus with given growth and detection parameters in such a manner so as to be able to
better understand and more effectively fight the spread of viral infections within a system of
computers.

Malicious programs (MP’s) fall into two basic types those that require a host program and those
that are independent. When considering MP’s that require a host program a number may be
involved including trap doors, logic bombs, Trojan horses, and viruses. When considering MP’s
that are independent, two fundamental types are considered viruses and worms.

One type of host MP, a trap door, requires a secret entry point to a program or system and can
generally penetrate without the usual security access procedures. Generally, a trap door is
initiated when it recognizes some special sequence of inputs, or special user identification.

Another type of host MP, a logic bomb requires an embedded entry point to a program or system
and can generally explode or penetrate the legitimate program when unique pre-established
conditions are met.

Another type of host MP, a Trojan horse requires a stealthy placement or hidden location in an
apparently useful host program. The attack occurs or performing some unwanted/harmful
function when the host program is executed.

Although these host MP’s are fascinating in their own right this project focused on worms and
viruses. A worm uses network connections to spread from system to system. Viruses act quite
differently they “Infect” a program by modifying it and can be self-copied into the program to
spread. The distinguishing factor of viruses is their four-stage life cycle. In the generalist of
terms they have a dormant phase, a propagation phase (generally allowing them to be an
attachment to email), a triggering phase, and an execution phase. Because of these unique
qualities we chose to select these two independent MP’s for our project.

To model a virus first one must understand its configuration. First there must be an identifier of
the virus program, followed by a special mark to infect or not infect. The purpose of the virus
program is to find uninfected programs infect and identify as vulnerable, damage or create havoc
to the underlying code, and ultimately to return to programs original intent masking the fact that
something is about to happen. This avoidance of detection is frequently accomplished by
compressing /decompressing the original program.

Viruses themselves fall into a number of categories: parasitic viruses which search and infect
executable files; memory-resident viruses that infect running programs; Boot sector viruses that

Team # 054 Page 4 of 26

spread whenever the system is booted; Polymorphic viruses which encrypt part of the virus
program using randomly generated key; and Macro viruses that are actually executables
embedded in a word processing document.

Anti-virus schemes therefore must consider prevention or limited contact to outside world;
detection and identification; removal and various software using
simple scanners or known “signatures” of viruses; heuristic scanners using
integrity checking; activity traps that search for specific actions, and full-featured protection
where all known and suspect actions are investigated.

We therefore structured our model to predict propagation and damage; understand spreading
characteristics and assessed effective mitigation techniques.

To follow the spread of such a virus, one must first understand what a virus is. Essentially, it is a
self-propagating code that invades a system, acting in much the same fashion as a biological
virus would. Once in a system, a virus may do significant harm to a computer (Although this is
not always the case) and/or quickly spread across the server before it is detected and destroyed,
wreaking havoc and possible destroying several interconnected systems in the process. This is
where a model applies, allowing the researcher to study several parameters at once or in quick
succession without resorting to tests on closed testbed networks.

The spread of the virus then depends upon its design. It may propagate by any one of several
methods including email, Internet, or individual diskettes, largely defining the rate of expansion
of the virus and thus severity of same. All of these examples however, have in common the fact
that they are not entirely homogeneous e-mail is affected by whether the infected message is
opened, Internet by frequency of use, and diskettes by personal interaction of the people using
the infected disk. Herein lies a problem with many models; they tend to treat every computer in
their model as one that is perfectly equal to all others while not considering the varying infection
parameters.

Also contrary to the homogeneous model is the level of protection within one system or
individual. Besides the apparent differences in such consideration such as firewall protection,
one must consider detection and neutralization rates within a unit and, once this process has been
completed, whether the protection becomes available to all system and, if it does, at what rate.
One then must consider whether a computer may be infected multiple times with a virus or that
the virus may have the capacity to update itself. All of the above strictures and many more play
a role in the intensity of a viral outbreak.

Team # 054 Page 5 of 26

Description of Project
A basic program based on earlier models has been written in C++ to model the spread and
detection of a virus using a system of variable parameters. Each subject computer was given
beginning class of susceptible, infected, or detected. The probability of any given computer
entering one of these classes is directly relative to the category before in the form of a very basic
Markov chain which was moving from susceptible to infected, and then to detected over a given
period of time.

In 2002, the number of known computer viruses surpassed 70,000 (www.securitystats.com).
Since computer viruses work in the wild and few, if any, companies would be willing to turn off
their anti-virus software to be part of a control group; their study must be done by computer
modeling. One of the most important parts of the detection and analysis of viruses is the way
that they spread from computer to computer. If an accurate model of the spread of viruses can be
created that would keep track of the amount of the time it takes for an anti-virus company, like
Norton, to create a definition of the virus and distribute it to all of its uses, it would be easier to
create a temporary stopgap measure that may help keep viruses from infiltrating a network, or
perhaps to find a way of identifying new kinds of viruses based on their pattern of distribution.
The word virus is used to denote any malicious code. These codes fall into three main categories:
virus (in technical sense), Trojan horses, and worms.

Using C++ it was possible to create a program, building on an already written program by HP,
that created an on the fly model of how the viruses propagate which allowed manipulation of
the time needed to create and distribute an anti-virus definition. The model was based on the
following premise of how the average virus spreads:

1. The virus is released into the wild by its creator

2. The virus spreads freely, infecting machines and delivering its payload

3. The virus is eventually noticed and the company is alerted

4. The company then works to isolate the virus and generate a “signature” that can be used in
scanning software to detect the presence of the virus

5. Then the company distributed the signature to its clients through a central server regularly
polled by the client machines looking for updates

The goal was to use a computer or cluster node to create a model in graphical form of how the
virus spreads initially and then to monitor how long it took to purge all, or most of, the
computers of the virus. Note: no “live” viruses were used in this model. The machines (in the
model) moved between four states:

1. Susceptible machines which are vulnerable to infection. (S)

2. Infected machines that have contracted the virus and are actively spreading it. (I)

3. Machines in which the viruses has been detected and are prevented from spreading the virus.
The state includes computers that have been disconnected from its network when a virus is

Team # 054 Page 6 of 26

detected to prevent further spreading of the virus as well as computers that have been
incapacitated by the virus and thus, are inactive and no longer spreading the virus. (D)

The removed state consists of machines that are immune to the virus. The state includes
machines that are not susceptible to the virus to begin with as well as machines in which the
virus has been removed and is made immune to the virus by the anti-virus software

Markov Chains

The mathematics behind the project is centered on the Markov Chain. Named for the Russian
mathematician, Andrei Markov, it is simply defined as a series of events in which the probability
of one event occurring is based solely and wholly on the preceding event. This may be
exemplified by a person throwing free throws in a basketball game. If he makes his first shot, he
may feel confident about himself and as such improve his chances of making the second shot.
However, if he misses his first shot, he may become dejected, hurting his chances at making the
second shot. Thus, we have the matrix equation:

Where P(B) is the probability of making a basket and P(M) refers to the probability of

missing the basket. The first matrix refers to the probability of the events (make/miss) occurring
on the second shot, the second matrix indicating the probability of the events occurring on the
first shot, and the third matrix referring to the probability of either event occurring in the second
shot relative to the outcome of the first. A general matrix similar to the third above appears
below with a 3x3 matrix to which numerical values have been applied. Note that the sum of the
values within the latter matrix add to a total probability of 1.

1

At this point, we will

replace the matrices with
symbols to simplify the
equation’s appearance such that,

P2 = P1 ∏

[] [] ⎥
⎦

⎤
⎢
⎣

⎡
⋅=⋅

)M¦P(M)M¦P(B
)B¦P(M)B¦P(B

)P(M)P(B)P(M)P(B
1212

1212
1122

Team # 054 Page 7 of 26

Where each letter represents its respective matrix.

If the basketball player were to continue shooting while reacting to his successes and failures in
the same manner as above, the equation, it would stand to reason, would simply continue to
expand on each successive probability by multiplying it by ∏ as follows:

P3 = P2 ∏

= (P1 ∏)* ∏

=P1 ∏ 2

Therefore, we see that:

Pn = P1 ∏ n-1

This equation gives the probability of making (or missing) the nth shot in any series as a part of a
continuous Markov Chain. It is to be noted, however, that at any given point in the series, the
probability of making the immediately following shot is drawn from ∏ with only the data from
the shot immediately before, not from the entire equation. It must also be recognized that as a
system expands to contain states, as in the case of this project, that ∏ may expand to become a
significantly larger matrix.

Team # 054 Page 8 of 26

Up until this point every example has been one in continuous time, that is, the nodes
continuously rotate among the various states. However, in virus research the ultimate goal is the
elimination of the virus by immunizing all of the vulnerable nodes, and as such, a continuous
chain in which the computers return to a vulnerable state becomes undesirable. Here we find a
use for discrete time in which not all nodes communicate with each other and in which many
only have one way communication, as in the case of this study and computer virus research in
general. Two examples of such a chain may be seen below, the latter being quite similar to the
model used herein.

2

3

Here, we find four states- susceptible, infected, detected, and removed- arranged in such a manner so as to

move only forward, that is, from left to right on this diagram. This motion prevents the virus from returning to the
system once it is removed, and thus represents the desired model for a good model of a virus protection program.

Team # 054 Page 9 of 26

Results

The results of the first build of our program (Appendix A) demonstrated the average virus cycle.
At first a single computer is infected, and then the virus begins to spread to other computers.
Eventually people and/or anti-virus software identifies that a computer is infected. Lastly the
computer is patched, eliminating the virus and removing the weakness in the computer software
that the virus exploited to infect the computer.

The goal for this project was to simply attempt to recreate, as accurately as possible, of an
average virus attack. Usually a virus’s infection rate increases exponentially as the number of
infected computers increases; our results matched this pattern (see the graph bellow).

Because of the rather limited computer power available, this model has been simplified to make
it easier to look at just the initial growth rate of the virus and does not take into account the
possibility that a computer could be re-infected or that an infected computer could be in any
number of infected states; if a computer is infected it is actively spreading the virus.

This particular virus took ten thousand time steps, a time step being any set amount of time:
second, minute, hour, day, etc., to infect the entire population of 100 computers and for them to
be identified as infected and subsequently patched.

The Results of The First Build of The Program

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time Step

infected

discovered

patched

We learned that, while being able to predict how a virus will spread is a very important
endeavor, it is very hard to create a model that takes into account every variable, especially the
human ones. While we were successful at creating a computer program that accurately simulates
a virus attack, it is still limited in its abilities.

Team # 054 Page 10 of 26

Conclusions

Overall, the project goals were attained as the project successfully modeled the spread of a
hierarchically propagating computer virus through a system of nodes while allowing the user to
define the spread parameters as he or she sees fit. This design allows the model to be used to
study the propagation of a virus, real or hypothetical, with any desired parameters, thus allowing
for an improved understanding of its ability, or lack thereof, to damage a system and possibly
leading to an improved opportunity to implement security measures.

The ability to modify the spread
parameters in the program is especially
important in modeling the
superabundance of viruses in today’s
world where there are innumerable
variations in every type of virus possible,
from primitive disk viruses to Code Red,
which quickly implanted itself among its
target population almost immediately
after its release. Code Red was, of
course, a scanning virus and therefore
expanded along a slightly different curve
than e-mail viruses, which are better
suited to this program due to their
hierarchical nature.

The above diagram shows the rapid expansion of Code Red
v.2 from its first outbreak in 2001

Serazzi, p. 8.

The e-mail viruses toward which the program is directed are quite important in today’s world of
ever-expanding usage. Yahoo! Groups, for example, have thousands of groups ranging in size
from as low as four members to well over 100,000 members,4 where each of the e-mail groups
serves the role of a group of nodes hierarchically connected to each other. Should a virus strike
such a large population of nodes and successfully propagate across the system, there could be
untold economic damage, and it is to the prevention of this end that this project is geared, a goal
which has been, to an extent, achieved in the model by allowing researchers to predict the virus’s
expansion before it is released and prepare for such an event. This comparison may be seen
between the program’s data and that which is pictured in the diagram below.

4 Zou, “E-mail Virus,” p. 5.

Team # 054 Page 11 of 26

Although the program does not allow for
discrepancies and variations in individual
nodes, such as connectivity, bandwidth,
and anti-virus software, one sees that the
general trend is accurate and trustworthy,
varying only in the rate of propagation as
defined by the user. This alone in itself
may not offer a solution for a viral attack,
but it gives researchers data pertaining to
the time in which they have to react and
the time required to disinfect the system
once the process has been initialized.
This greatly aids in preventing
overreacting as well as excessive
leniency should an outbreak occur, thus
improving the overall actions taken
against the intrusion.

 Zou, p. 9

Team # 054 Page 12 of 26

Recommendations

The program could be easily modified to create a more accurate model in a couple of ways. First,
modify the program to allow more variables on each individual node. The problem with this kind
of program is the fact that it requires a lot of computer power and is very slow on the laptop we
were using to run the program. The program is also designed to allow the user to modify the
number of clients in the model; however, any more than about hundred nodes would be very
slow and hard to run on the computers to which we had access.

Our most significant achievement on the project can clearly be stated in that we learned a lot
about mathematics and computer virus spread. We also learned that creating a model of a large-
scale computer network requires a lot of computing power to be both accurate as well as
executable.

Team # 054 Page 13 of 26

Acknowledgements
Our team would like to thank the Sandia Preparatory School administration and staff for
providing us with the opportunity and financial support to participate in the challenge. In
particular, we acknowledge the transportation, school computer resources, after-school
meetings, and overall enthusiasm provided by SPS. We appreciate our advisor Mr. Neil
D. McBeth for the encouragement, tenacity, and patience to endure our difficulties.

We wish to express our sincere thanks to our Sandia National laboratory Technical
advisor, Mr. Erik P. Debenedictis. His real world experience with the Red Storm Project
brought to the project a unique perspective. Further, his drive, creativity, and confidence
in our abilities truly mentored and inspired each of the team members.

We wish to express our thanks to Mr. Edward Bedrick of the University of New Mexico
Statistics department. His knowledge and application of statistics greatly influenced our
project.

We appreciate the support and affirmation provided by our Parents

Finally, we wish to thank all those that sponsor the supercomputing challenge for the
opportunity.

Team # 054 Page 14 of 26

Bibliography

Billings, Lora, William M. Spears and Ira B. Schwartz. “A unified prediction of computer virus
spread in connected networks.” Physics Letters.

Chen, Zesheng, Lixin Gao and Kevin Kwiat. “Modeling the Spread of Active Worms.”

Chess, David M. and Steve R. White. “An Undetectable Computer Virus.”

Eugene, Ng Aik Meng, Chan Ying Ming Colin and Choo Yanqing. “An Epidemiological Model of
Computer Virus Spread and Countermeasures.”
http://staff.science.nus.edu.sg/~parwani/sim/simproject2/computervirus.doc.

Kephart, Jeffery O. and Steve R. White, “Directed-Graph Epidemiological Models of Computer
Viruses.” ANTIVIRUS RESEARCH - Scientific Papers.

http://www.research.ibm.com/antivirus/SciPapers/Kephart/VIRIEEE/virieee.gopher.html (5 Jan
2005).

Moore, David, Colleen Shannon, Geoffrey M. Voelker and Stefan Sabage. “Internet Quarantine:
Requirements for Containing Self-Propagating Code.”

Nachenberg, Carey. “Understanding and Managing Polymorphic Viruses.”
http://www.madchat.org/vxdevl/vdat/epunders.htm (14 Feb 2005).

Nazario, Jose, Jeremy Anderson, Rick Wash and Chris Connelly. “The Future of Internet Worms.”
http://www.crimelabs.net.

Norris, James, “Markov Chains,” http://www.statslab.cam.ac.uk/~james/Markov/. Cambridge
University Press, 2004.

Serazzi, Giuseppe and Stefano Zanero. “Computer Virus Propagation Models.”

Vogt, Tom. “Simulating and optimizing worm propagation algorithms.”

Wang, Chenxi , John C. Knight and Matthew C. Elder. “On Computer Viral Infection and the Effect
of Immunization.”

White, Steve R. “Open Problems in Computer Virus Research.”
http://www.research.ibm.com/antivirus/SciPapers/White/Problems/Problems.html (14/feb/2005).

Williamson, Matthew M. and Jasmin Leveille. “An epidemiological model of virus spread and
cleanup.” http://www.hpl.hp.com/techreports/2003/HPL-2003-39.pdf.

Zou, Cliff C., Don Towsley and Weibo Gong. “Email Virus Propagation Modeling and Analysis.”

Zou, Cliff Changchun, Lixin Gao, Weibo Gong and Don Towsley. “Monitoring and Early Warning
for Internet Worms.” CCS’03, October 27-30, 2003, Washington DC.

Zou, Cliff Changchun, Weibo Gong and Don Towsley. “Worm Propagation Modeling and Analysis
under Dynamic Quarantine Defense.” Worm’03, October 27, 2003, Washington DC.

Team # 054 Page 15 of 26

http://www.research.ibm.com/antivirus/SciPapers/Kephart/VIRIEEE/virieee.gopher.html%20(5
http://www.crimelabs.net/
http://www.statslab.cam.ac.uk/%7Ejames/Markov/
http://www.research.ibm.com/antivirus/SciPapers/White/Problems/Problems.html
http://www.hpl.hp.com/techreports/2003/HPL-2003-39.pdf

Appendix A Code Build 1

// HamEggAndSpam.cpp : Defines the entry point for the console application.
// Better random numeber gen
#include <stdafx.h>
#include <math.h>
#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <fstream.h>
#include <string.h>
#include <time.h>

ofstream fout;

struct computer{

 bool infected;
 computer * friends [10];

};

int main(void)
{
 float infection = 0;
 float patch = 0;
 float discovered = 0;
 long num_computers = 0;
 long counter = 0; //counter for first for loop
 long infected_computers = 1;
 long discovered_computers = 0;
 long patched_computers = 0;
 int time = 1; //starting time step
 double time_discovery;
 double time_patch;
 int a;
 char sys_time[15];
 char sys_date[15];

 _strtime(sys_time);
 _strdate(sys_date);

#if 0

 do
 {

 cout <<"Enter Infection constant: ";
 cin >>infection;

 }while (infection < 0 || infection > 1);

Team # 054 Page 16 of 26

 do
 {

 cout <<"Enter Discovery constant: ";
 cin >>discovered;

 }while (discovered < 0 || discovered > 1);

 do
 {

 cout <<"Enter Patch constant: ";
 cin >>patch;

 }while (patch < 0 || patch > 1);

 do
 {

 cout <<"Enter Number of Computers: ";
 cin >>num_computers;

 }while (num_computers <= 0);

 do
 {

 cout <<"Enter time_discovery: ";
 cin >>time_discovery;

 }while (time_discovery <= 0);

 do
 {

 cout <<"Enter time_patch: ";
 cin >>time_patch;

 }while (time_patch < time_discovery);

#else

 infection = 0.5; //chance of getting infected
 discovered = 0.5; //chance of getting discovered to be patched
 patch = 0.5; //chance of getting patched 0.5 = 50:50
 num_computers = 100; //number of computers in the network
 time_discovery = 100; //time it takes to get discovered (in steps)
 time_patch = 100; //time untill a patch is made (in steps)

 fout.open("output.txt", ios::app); //outputfile open

Team # 054 Page 17 of 26

#endif

 double x;
 double y;
 double b;
 double c;
 double d;
 double e;
 cout << "0, " << infected_computers << "\n";
 computer * net = new computer[num_computers];

 for (int i = 0; i < num_computers; i++){

 net[i].infected = 0;

 for (int j = 0; j < 10; j++){

 net[i].friends[j] = 0;

 }

 net[i].friends[0] = i==0 ? 0 : &net[i-1];
 net[i].friends[1] = i==9 ? 0 : &net[i+1];

 }

/* do
 {
 counter = 1;
 while (counter <= (num_computers - infected_computers))
 {

 x = rand()/(double)RAND_MAX;
 y = (infection*((double)infected_computers/(double)num_computers)/1000); // 2 is a constant that has no real
reason to be there

 if (x <= y)
 {
 infected_computers++;
 }

 counter++; //increments counter by one

 }

 cout << time << ", " << infected_computers <<"\n";

 time++;

 }while (time < time_discovery);

Team # 054 Page 18 of 26

 cout<<"discover" << "\n";

 //there is a problem in the logic below that needs to be corrected
 */

 do
 {

 counter = 1;

 while (counter <= num_computers)
 {
 x = rand()/(double)RAND_MAX;
 y = (infection*((double)infected_computers/(double)num_computers)/1000);

 if (patched_computers < num_computers && x < y && infected_computers < num_computers &&
infected_computers < (num_computers-patched_computers))
 {
 infected_computers++;

 if (discovered_computers > 0)
 {
 discovered_computers--;
 }
 if (patched_computers > 0)
 {
 patched_computers--;
 }
 }

 b = rand()/(double)RAND_MAX;
 c = (discovered*((double)infected_computers/(double)num_computers)/1000);

 if (infected_computers >= 1 && b < c && discovered_computers < num_computers)
 {
 discovered_computers++;
 //infected_computers--; <- major fix to logic
 }

 d = rand ()/(double)RAND_MAX;
 e = (patch*((double)discovered_computers/(double)num_computers)/1000); //<- /1000 was *1000

 if (discovered_computers >= 1 && d < e && patched_computers < num_computers)
 {
 patched_computers++;
 }

 if (infected_computers > patched_computers && infected_computers + patched_computers == 100 &&
patched_computers > 0)
 {
 infected_computers--;
 }
 if (infected_computers < patched_computers && infected_computers + patched_computers == 100)
 {
 patched_computers--;
 }

Team # 054 Page 19 of 26

 counter++;

 }

 cout << time << ", " << infected_computers << ", " << discovered_computers<< ", " << patched_computers<<
"\n";
#if 0

 fout << time << ", " << infected_computers << ", " << discovered_computers<< ", " << patched_computers<<
"\n"; //outputfile write

#endif
 time++;

 }while (patched_computers < num_computers);

 fout <<"--" <<"\n";
 fout <<sys_time <<" "<<sys_date <<"\n";
 fout <<"--" <<"\n";

 delete net;
 cout <<"Done. Press any key to exit/> ";
 cin >>a;
 return 0;
}

Code Build 2

// virusim.cpp : Defines the entry point for the console application.
// Better random numeber gen needed <--- DONE being tweaked!!
#include <stdafx.h>
#include <math.h>
#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <fstream.h>
#include <string.h>
#include <time.h>
#include "randomc.h"
#include "mersenne.cpp"
#include "userintf.cpp"

 int32 seed0 = time(0);
 TRandomMersenne rg0(seed0);

 int32 seed = time(0);
 TRandomMersenne rg(seed);

 int32 seed1 = time(0);
 TRandomMersenne rg1(seed1);

Team # 054 Page 20 of 26

 int32 seed2 = time(0);
 TRandomMersenne rg2(seed2);

 float infection = 0;
 float patch = 0;
 float discovered = 0;
 long num_computers = 0;
 long counter = 0; //counter for first for loop
 long infected_computers = 1;
 long discovered_computers = 0;
 long patched_computers = 0;
 int time1 = 1; //starting time step, also changed from name to time due to new RNG implementation
 double time_discovery;
 double time_patch;
 int a;
 char sys_time[15];
 char sys_date[15];

 double r; // random number
 int32 ir;

ofstream fout;

struct computer
{
 bool infected;
 bool patched;
 bool discover;
 computer * friends [10];

};

int main(void)
{
 _strtime(sys_time);
 _strdate(sys_date);

#if 0

 do
 {

 cout <<"Enter Infection constant: ";
 cin >>infection;

 }while (infection < 0 || infection > 1);

 do
 {

Team # 054 Page 21 of 26

 cout <<"Enter Discovery constant: ";
 cin >>discovered;

 }while (discovered < 0 || discovered > 1);

 do
 {

 cout <<"Enter Patch constant: ";
 cin >>patch;

 }while (patch < 0 || patch > 1);

 do
 {

 cout <<"Enter Number of Computers: ";
 cin >>num_computers;

 }while (num_computers <= 0);

 do
 {

 cout <<"Enter time_discovery: ";
 cin >>time_discovery;

 }while (time_discovery <= 0);

 do
 {

 cout <<"Enter time_patch: ";
 cin >>time_patch;

 }while (time_patch < time_discovery);

#else

 infection = 0.5; //chance of getting infected
 discovered = 0.5; //chance of getting discovered to be patched
 patch = 0.5; //chance of getting patched 0.5 = 50:50
 num_computers = 100; //number of computers in the network
 time_discovery = 100; //time it takes to get discovered (in steps)
 time_patch = 100; //time untill a patch is made (in steps)

// fout.open("output.txt", ios::app); //outputfile open

#endif

/* double x;
 double y;
 double b;

Team # 054 Page 22 of 26

 double c;
 double d;
 double e;
*/

 cout << "0, " << infected_computers << "\n";
 computer * net = new computer[num_computers];
/*
 for (int i = 0; i < num_computers; i++){

 net[i].infected = 0;

 for (int j = 0; j < 10; j++){

 net[i].friends[j] = 0;

 }

 net[i].friends[0] = i==0 ? 0 : &net[i-1];
 net[i].friends[1] = i==9 ? 0 : &net[i+1];

 }

 do
 {

 counter = 1;

 while (counter <= num_computers)
 {
 x = rg.Random();///(double)RAND_MAX;
 y = (infection*((double)infected_computers/(double)num_computers)/1000);

 if (patched_computers < num_computers && x < y && infected_computers < num_computers &&
infected_computers < (num_computers-patched_computers))
 {
 infected_computers++;

 if (discovered_computers > 0)
 {
 discovered_computers--;
 }
 if (patched_computers > 0)
 {
 patched_computers--;
 }
 }

 b = rg1.Random();
 c = (discovered*((double)infected_computers/(double)num_computers)/1000);

 if (infected_computers >= 1 && b < c && discovered_computers < num_computers)
 {
 discovered_computers++;

Team # 054 Page 23 of 26

 //infected_computers--; <- major fix to logic
 }

 d = rg2.Random();
 e = (patch*((double)discovered_computers/(double)num_computers)/1000); //<- /1000 was *1000

 if (discovered_computers >= 1 && d < e && patched_computers < num_computers)
 {
 patched_computers++;
 }

 if (infected_computers > patched_computers && infected_computers + patched_computers == 100 &&
patched_computers > 0)
 {
 infected_computers--;
 }
 if (infected_computers < patched_computers && infected_computers + patched_computers == 100)
 {
 patched_computers--;
 }

 counter++;

 }

 cout << time1 << ", " << infected_computers << ", " << discovered_computers<< ", " << patched_computers<<
"\n";
#if 1

 fout << time1 << ", " << infected_computers << ", " << discovered_computers<< ", " << patched_computers<<
"\n"; //outputfile write

#endif
 time1++;

 }while (patched_computers < num_computers);

 fout <<"--" <<"\n";
 fout <<sys_time <<" "<<sys_date <<"\n";
 fout <<"--" <<"\n";

 delete net;
 cout <<"Done. Press any key to exit/> ";
 cin>>a;
 */

 return 0;
}

get_random_friends (int i, computer*net) //the number of friends can not excede 10
{
 double number_friends = rg0.IRandom(0,10);

Team # 054 Page 24 of 26

 for (int q = 0; q < number_friends; q++)
 {
 if (net[i].friends[q] == 0)
 {
 net[i].friends[q] = &net[int((rg0.Random()*num_computers))];
 for (int j = 0; j < 10; j++)
 {
 if (net[q].friends[j] == 0)
 {
 net[q].friends[j] = &net[i];
 }
 }
 }
 }
 return 0;
}

infect_net(int i, computer*net) //new way of getting infected
{
 double x = rg.Random();
 double y = (infection*((double)infected_computers/(double)num_computers));

 for (int z = 0; z < 10; z++)
 {
 if (x < y && net[i].friends[z]->infected == 1 && net[i].infected == 0 && net[i].patched == 0)
 {
 net[i].infected = 1;
 infected_computers++;
 }
 }
 return 0;
}

discover_net (int i, computer*net) //new way of discovery
{
 double x = rg1.Random();
 double y = (infection*((double)infected_computers/(double)num_computers));

 if (net[i].infected == 1 && net[i].discover == 0 && x < y)
 {
 net[i].discover = 1;
 discovered_computers++;
 }
 return 0;
}

patch_net (int i, computer*net) //new way of getting patched
{
 double x = rg2.Random();
 double y = (infection*((double)infected_computers/(double)num_computers));

 if (net[i].discover == 1 && net[i].patched == 0 && x < (y*100)) // it is now 100 times more likely to get a patch if
it is infected
 {
 net[i].patched = 1;
 infected_computers--;

Team # 054 Page 25 of 26

 }
 else if (net[i].discover == 0 && net [i].patched == 0 && x < y)
 {
 net[i].patched = 1;
 infected_computers--;
 }
 return 0;
}

Team # 054 Page 26 of 26

	Table of Contents
	Executive Summary
	 Introduction
	Significant factors in today’s world of telecommunications, computer viruses and worms have the capacity, if implemented under the proper conditions, to decimate large segments of human life, from monitoring a premature infant in the hospital to launching nuclear warheads from Trident Submarines in quantities capable of destroying the world several times over. Should either one of these fail, life and capital would be lost. For that purpose, we are attempting to model a virus with given growth and detection parameters in such a manner so as to be able to better understand and more effectively fight the spread of viral infections within a system of computers.
	Malicious programs (MP’s) fall into two basic types those that require a host program and those that are independent. When considering MP’s that require a host program a number may be involved including trap doors, logic bombs, Trojan horses, and viruses. When considering MP’s that are independent, two fundamental types are considered viruses and worms.
	One type of host MP, a trap door, requires a secret entry point to a program or system and can generally penetrate without the usual security access procedures. Generally, a trap door is initiated when it recognizes some special sequence of inputs, or special user identification.
	 Description of Project
	 Results
	 Conclusions
	 Recommendations
	Our most significant achievement on the project can clearly be stated in that we learned a lot about mathematics and computer virus spread. We also learned that creating a model of a large-scale computer network requires a lot of computing power to be both accurate as well as executable. Acknowledgements
	
	

