
Mathematically Modeling the Spread
of Smallpox

New Mexico Adventures in Supercomputing

Challenge
Final Report

April 6th, 2005

Team 055
Sandia Prep

Team Members
Alex Clement
Greg Fenchel
Jayson Lynch
Beryl Wootton

Teacher
Neil McBeth

Mentor
Ara Kooser

Executive Summary

The objective of these simulations is to

mathematically model the spread of smallpox. This would

create a more in-depth understanding of how smallpox is

transmitted as well as its vectors. This could potentially

lead to the development of new vaccines, advances in anti

bio-terrorism (Legal Consumer Guide. http://www.legalconsumerguide.com

/world_trade_center/anthrax/small_pox.html 12-8-04), and the improvement in

the health of the general populace. The models could also

be altered slightly to deal with other disease that spread

by contact such as the flu.

The first model was written in the programming

language Starlogo. It is an agent based simulation. Agents

are individuals in a program that follow specific

instructions. This simulation was based upon the SIRS

mathematical model, using differential equations. In it all

the agents wandered around in a “city” composed of outer

impassable boundaries and semi-permeable boundaries within

the city. One agent would start out infected and whenever

an infected agent comes into contact with a susceptible

agent there is a percent chance that it will become

infected.

 2

http://www.legalconsumerguide.com%20/world_trade_center/anthrax/small_pox.html
http://www.legalconsumerguide.com%20/world_trade_center/anthrax/small_pox.html

The second model was a percolation model written in

the programming language Python. Percolation models were

originally used to model water flowing through pores in

rock. The percolation model is used to mathematically model

the movement of agents through a given system. Our model

traced the spread of smallpox through a given population.

In the Starlogo model the whole city and its

surroundings became infected with a high population

density. In smaller populations the virus would die out

before infecting large numbers of agents. The behavior of

the star logo model recreates real world data. In the

Python model showed how the disease could be transmitted

through interacting communities. Certain communities with

high population densities allowed the smallpox to spread

rapidly and jump from one grouping to another

These models provide valuable information. The star logo

model accurately represented the smallpox epidemic and

could be used to help determine how the disease will spread

and where vaccinations and quarantines would be most

effective. The Python model provides information about how

smallpox spreads through socially connected communities and

what the critical population density for a world wide

epidemic.

 3

Table of Contents

Introduction……………………………………………………………………………………………5
Results……7
Starlogo………………………………………………………………………………………………………7
Python………8
Conclusion…………………………………………………………………………………………………10
Acknowledgements…………………………………………………………………………………12
Sources Consulted………………………………………………………………………………13

Figures

Figure 1A……………………………………………………………………………………………………7
Figure 1B……………………………………………………………………………………………………7
Figure 2A……………………………………………………………………………………………………8
Figure 2B……………………………………………………………………………………………………9
Figure 2C……………………………………………………………………………………………………9
Figure 2D……………………………………………………………………………………………………9

 4

Introduction

This report was written by Alex Clement, Gregory

Fenchel, and Beryl Wootton, from Sandia Prep. We worked on

making a mathematical model of the spread of smallpox over

a population. A mathematical model is defined as the

general characterization of a process, object, or concept,

in terms of mathematics, which enables the relatively

simple manipulation of variables to be accomplished in

order to determine how the process, object, or concept

would behave in different situations (OALJ Law Library, Dictionary of

Occupation of Occupational Titles, Glossary. http://www.oalj.dol.gov/

public/dot/refrnc/glossary.htm)

 We chose smallpox to model because of the importance

of information on the subject. If smallpox were used as a

bio-terrorism weapon and nobody could predict how it would

behave, the results would be devastating. Although Smallpox

is currently well contained (Saffer, Barbara. Smallpox. Farmington Hills:

Lucent Books, 2003), there is always the threat of an outbreak,

either by accidental release, or release in a bio-terrorist

attack. At the moment, the world is ill-equipped to deal

with any sort of out-break at all. Vaccinations were

stopped in the USA in 1980, when smallpox was eradicated

 5

http://www.oalj.dol.gov/%20public/dot/refrnc/glossary.htm
http://www.oalj.dol.gov/%20public/dot/refrnc/glossary.htm

from natural existence (Frampton, david. When Plague Strikes. New York: Harper

Collins, 1995).

We first used a starlogo, agent-based simulation of

the spread of smallpox throughout a city and the outlaying

areas using real-world data about the disease. We collected

real-world data on smallpox, and figured that there is an

80% transmission rate, and about a 2 to 3 week incubation

period (Oldstone, Michael. Viruses, Plagues, and History. Questia Media America.

http://www.questia.com/PM.qst?a=o&d=83255564. 12-8-04). We then used a

percolation model written in the Python programming

language to trace the movements of smallpox through a

population.

 6

http://www.questia.com/PM.qst?a=o&d=83255564

Results:

Starlogo

In the Starlogo model the

entire population became

infected in the models with

populations greater than

about 400 agents. With

smaller populations (~100

agents) full percolation

did not occur. Meaning all

the agents did not become

infected. We know that the

whole population became

infected because the lines that represented total

population and the total immune population met. Even

though the infect rate is only eighty percent everybody

became infected. This is because the population density is

very high even with small numbers of people because the

area is so small. This causes an agent to be exposed to

the disease many times. As expected the disease spread the

fastest in the urban area and typically arrive at the most

isolated suburb last.

Fig. 1A

Fig. 1B

 7

Python

 Our Python model is a percolation/Game of Life model.

The base units are communities. The model is programmed to

connect social communities (ones with neighbors). Many

times, except for when the population density is very high,

there are groups of communities that are not social. The

individual communities do not become infected because the

communities do not move around. Therefore, unless the

communities are close together and social it is highly

unlikely to get full percolation of small pox. The only

way to consistently get full percolation is to increase the

population density which also holds true to a certain

degree in starlogo.

This is a world with a small population density. There are many communities that are not connected at all.

Fig. 2A

This is an example of our Python model with a high population model. Most of the communities are
interconnected as shown by the @’s.

 8

Fig. 2B

Here is the same density model that has been infected and run for about 14 repetitions. It infects a small
area because it is not connected to very many communities.

Fig. 2C

This is a world with a small population density. There are many communities that are not connected at all.

Fig. 2D

When this world is infected the infection does not spread throughout the population because many of the
community groups are not connected.

 9

Conclusion

 In the Starlogo model we experienced successful

transmission of smallpox in almost every test. We believe

that this model is a moderately accurate model of how a

smallpox epidemic would spread through a small population

and is surrounding suburbs. It spreads in a similar way to

the past epidemics that move through large populations

(Smallpox. Center for Disease Control. http://www.bt.cdc.gov/agent/smallpox/overview/

disease-facts.asp 12-7-04). The Starlogo model uses the SIRS

differential equations to model the transmission of

smallpox through a population.

SIRS Model equations

ds/dt = − β is, s(0) = so ≥ 0,
di/dt = β is − γ i, i(0) = io ≥ 0,

These equations were programmed into the Starlogo program. We were unable to model large populations

with Starlogo, but we built a model using the Python language using an abstraction of population.

The model coded in Python demonstrates how smallpox

moves through communities that are socially connected (have

nearest neighbors). The population is handled in an

abstracted way. The population is represented as immobile,

interacting communities. Communities that are not

connected do not contract small pox. This is better in many

ways though because the models interpretation is not just

limited to specific populations, it can be interpreted to

 10

http://www.bt.cdc.gov/agent/smallpox/overview/%20disease-facts.asp
http://www.bt.cdc.gov/agent/smallpox/overview/%20disease-facts.asp

represent people or cites or even countries.

 11

Acknowledgements

 Many thanks to Ara Kooser, our mentor. Without his

help our project would not have advanced as far as it did.

He provided the moral support as well as the mental support

we needed to finish and continue. If we encountered a

problem that didn’t seem to have a solution, he helped us

find one. Love for Ara!

 Thanks to Anita Gallagher for lending her work office

to us for meeting times whenever they were needed, as well

as snacks, beverages, and the necessary hardware. Also,

thanks for the time. =)

 Thanks to Neil McBeth for the assurance of organized

schedules and sponsorship. The program at our school

wouldn’t exist, and we wouldn’t know about Adventures in

Supercomputing without him.

 Finally, thanks to our interim presentation

evaluators, who provided much useful feedback and

information, and came all the way down to Socorro to offer

it to us!

 12

Sources Consulted

1. Legal Consumer Guide. Legal Consumer Guide.
http://www.legalconsumerguide.com/world_trade_center/anthra
x/small_pox.html 12-8-04

2. Oldstone, Micheal. Viruses, Plagues, And History.
Questia Media America.
http://www.questia.com/PM.qst?a=o&d=83255564. 12-8-04

3. Smallpox. Center For Disease Control.
http://www.bt.cdc.gov/agent/smallpox/overview/disease-
facts.asp 12-7-04

4. Saffer, Barbara. Smallpox. Farmington Hills: Lucent
Books, 2003.

5. Frampton, David. When Plague Strikes. New York: Harper
Collins, 1995.

 13

Appendix

Starlogo Program Listing

Turtle Code

turtles-own [age infecttime fertrate kids gender [male female] deathrate health [healthy latent sick
recovered] lastx lasty lasth]

to go
 infect
 recover
 check-health
 if (health = sick) or (health = latent)
 [setinfecttime infecttime + 1]
end

to infect
 rt random 60
 lt random 60
 cpatches
 fd 1
 if health = healthy
 [if (((health-of one-of-turtles-here) = sick) or ;if turtle you meet is sick or latent
 ((health-of one-of-turtles-here) = latent))
 and ((random 100) <= 80) ;then with some chance
 [sethealth latent setinfecttime 0]] ;become latent and note time of infection
end

to recover
 if health = sick
 [if infecttime > 49
 [ifelse (random 100) <= 70 ;recover with some chance
 [sethealth recovered] [die]]]
end

to check-health
 if health = healthy [setc green]
 if health = latent [ifelse infecttime > latent-time
 [sethealth sick]
 [setc yellow]]
 if health = sick [setc red]
 if health = recovered [setc blue]
end

to city
 setc 5
 fd 10
 pd
 rt 90
 fd 10
 repeat 4[rt 90 fd 21]
 fd 2

 14

 rt 90
 fd 21
 rt 90
 fd 2
 rt 90
 fd 21
 rt 90
 setc red
 fd 23
 rt 90
 fd 21
 rt 90
 fd 23
 lt 90
 repeat 2 [
 fd 20
 rt 90
 fd 21
 rt 90
 fd 20
 lt 90]
 fd 20
 rt 90
 fd 21
 rt 90
 fd 20
 die
end

to cpatches
 if pc-ahead = red [rt 90 rt random 180 cpatches]
 if pc-ahead = 5 [if (random 100) > g [rt 90 rt random 180 cpatches]]
end

Observer Code

globals [dead time-step pop]

to startup
 plotid 3
end

to setup
 plotid 3
 clearplot
 setplot-title ""
 ca
 crt 1
 ask-turtles [city]
 setdead 0
 settime-step 0.1
 crt number
 ask-turtles [setinfecttime 0
 setfertrate 0
 if who > number / 3 [setxy 22 0]
 if who > number / 2 [setxy 0 20]

 15

 if who > number * 2 / 3 [setxy 46 0]
 if who > number * 5 / 6 [setxy 0 42]
 ifelse who < infected
 [sethealth sick setinfecttime random (sick-time + latent-time)]
 [sethealth healthy]
 check-health
 rt random 360
 fd random 10]
 setup-graph
end

to setup-graph
 pp1 ppreset setppc green ;healthy
 pp2 ppreset setppc red ;sick
 pp3 ppreset setppc blue ;recovered
 pp4 ppreset setppc yellow ;latent
 pp5 ppreset setppc grey ;pop
 setplot-yrange 0 number
 setplot-xrange 0 50
 setplot-title "Population vs. Time"
end

to graph
 pp1 ppd plot healthy#
 pp2 ppd plot sick#
 pp3 ppd plot recovered#
 pp4 ppd plot latent#
 pp5 ppd plot pop
end

to start
 startgobutton
 startgraphbutton
end

to sick#
 output (count-turtles-with [health = sick])
end

to recovered#
 output (count-turtles-with [health = recovered])
end

to latent#
 output (count-turtles-with [health = latent])
end

to healthy#
 output (count-turtles-with [health = healthy])
end

to deaths
 output (number - pop)
end

to population

 16

 setpop count-turtles
 output pop
end

to sick-%
 output (((count-turtles-with [health = sick]) / number) * 100)
end

to recovered-%
 output (((count-turtles-with [health = recovered]) / number) * 100)
end

to latent-%
 output (((count-turtles-with [health = latent]) / number) * 100)
end

to healthy-%
 output (((count-turtles-with [health = healthy]) / number) * 100)
end

to stopit
 stopgobutton
 stopgraphbutton
end

Python Program Listing

"""Percolation/Game of Life Model for SmallPox Transmission"""

Version 1.0 March, 20th 2005
Original code provided by Danny Yoo (Conway's Game of Life)

Sandia Prep High School Team: Jayson Lynch, Alex Clement, Greg Fenchel, Beryl Wootton

Modified by Ara Kooser (mentor for Sandia Prep Team)

Additonal coding by Ara Kooser, Jayson Lynch, Alex Clement
Addtional support, code, and ideas from: Danny Yoo, Lee Haar, Max Noel, Kent Johnson

Many thanks to the Python Tutor List at http://mail.python.org/mailman/listinfo/tutor
and Alan Gauld's Tutorial at http://www.freenetpages.co.uk/hp/alan.gauld/
##

print """
Please pick your option:
1) Run the percolation/game of life model
"""

option = raw_input("Press [1] to start? ")

#if option == '1':

 17

print "Instructions"

elif option == '1':

 import random
 import copy

 PERSON, EMPTY, CONNECTED, INFECTED = '*', '.', '@', 'I'

 perc = raw_input("Please enter a thresold between 0-1. ")
 perc = float(perc)

 def percolation(perc):
 """Sets up a percolation threshold value"""
 randval = random.random()
 if randval > perc:
 return EMPTY
 else:
 return PERSON

 n = int(raw_input("Please enter a n dimension. "))
 m = int(raw_input("Please enter a m dimension. "))

 def random_world(M, N):
 """Constructs random world of size MxN."""
 world = {}
 for j in range(N):
 for i in range(M):
 world[i, j] = percolation(perc)
 world['dimensions'] = (M, N)
 return world

 small_world = random_world(m,n)

 def print_world(world):
 """Prints out a string representation of a world."""
 M, N = world['dimensions']
 for j in range(N):
 for i in range(M):
 print world[i, j],
 print

This section starts the percolation part of the code to show connections
betweeen all the points on the world that are occuipied.

 def get_state(world, i, j):
 """Returns the state of the cell at position (i, j)in the world"""

 18

 return world.get((i, j), EMPTY)

 def count_live_neighbors(world, i, j):
 """Returns the number of live neighbors to this one."""
 live_count = 0
 for i_delta in [-1, 0, 1]:
 for j_delta in [-1, 0, 1]:
 if (i_delta, j_delta) == (0, 0):
 continue
 if get_state(world, i+i_delta, j+j_delta) == PERSON:
 live_count += 1
 return live_count

 def is_connect(world, i, j):
 """Returns True if the cell at (i, j) is connected by 1-8 other"""
 return (get_state(world, i, j) == PERSON and
 (1 <= count_live_neighbors(world, i ,j) <= 8))

 def next_world(world):
 """Shows which points are connected by denoting them with a @"""
 M, N = world['dimensions']
 new_world = copy.copy(world)
 for j in range(N):
 for i in range(M):
 if is_connect(world, i, j):
 new_world[i, j] = CONNECTED
 for j in range(N):
 for i in range(M):
 world[i, j] = new_world[i, j]

 print_world(small_world)

 raw_input("Press return to percolate the world")
 print ""
 print ""
 next_world(small_world)
 print_world(small_world)
 print "The @ indicates points that are interconnected."

###The infection portion of the code starts here

 raw_input("Press return to infect the world")

 print "The upper left hand corner of the world is point (0,0)"

 def infect_world(world):
 """Rebuilds the world with a single infected point"""
 M, N = world['dimensions']
 new_world = copy.copy(world)

 19

 i = int(raw_input("Please enter a m value to infect "))
 j = int(raw_input("Please enter a n value to infect "))

 new_world[i, j] = INFECTED
 for j in range(N):
 for i in range(M):
 world[i, j] = new_world[i, j]

 infect_world(small_world)
 print_world(small_world)

This portion spreads the pox around

 def count_infected_neighbors(world, i, j):
 """Returns the number of live neighbors to this one."""
 infected_count = 0
 for i_delta in [-1, 0, 1]:
 for j_delta in [-1, 0, 1]:
 if (i_delta, j_delta) == (0, 0):
 continue
 if get_state(world, i+i_delta, j+j_delta) == INFECTED:
 infected_count += 1
 return infected_count

 def infect_connect(world, i, j):
 """Returns True if the cell at (i, j) is connected by 1-8 other"""
 return (get_state(world, i, j) == CONNECTED and
 (1 <= count_infected_neighbors(world, i ,j) <= 8))

 def next_infected_world(world):
 """Shows which points are connected by denoting them with a @"""
 M, N = world['dimensions']
 new_world = copy.copy(world)
 for j in range(N):
 for i in range(M):
 if infect_connect(world, i, j):
 if random.random() < .81:
 new_world[i, j] = INFECTED
 for j in range(N):
 for i in range(M):
 world[i, j] = new_world[i, j]

This section contains the loop that evolves the infection in the world

 def death() :
 for j in range(N):
 for i in range(M):
 if world[i,j] == INFECTED :
 if random.random() < .31 :
 new_world[i, j] = EMPTY

 20

 def infect_repeat():
 L = int(raw_input("Number of repetations (in whole numbers) "))
 P = int(raw_input ("To print every world, press 1 or just final world, press 2 "))
 r = 0
 if P == 1 :
 while r < L :
 next_infected_world(small_world)
 print """

 """

 print_world(small_world)
 r = r + 1
 death
 elif P == 2 :
 print """"

 """
 while r < L :
 next_infected_world(small_world)
 r = r + 1
 death
 print_world(small_world)
 else :
 print "You have choosen an incorrect value"
 infect_repeat()

 infect_repeat()
 print "Goodbye and thanks for using the Sandia Prep smallpox model"
 print "Press return to exit"
 raw_input()

elif option == '2':
 print "Goodbye and thanks for using the Sandia Prep smallpox model"

else:
 print "The computer is your friend, however you have choosen an invalid command"
 input ()

 21

