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Executive Summary: 
 

In this project, I attempted to gain insight into the nature of predator/prey 

relationships in respect to migration.  The task was to compute, using a Monte Carlo 

based model, the development of a population of predators and preys when migration is 

allowed and to search for stable solutions.   

Solutions of the predator/prey problem are generally unstable; however, Lokta 

and Voltera, separately, showed that stable solutions exist when migration is ignored. 

Does the problem, once modified to allow for migration, still have stable solutions?  My 

results indicate a possible stable solution, which should be explored with a parallel 

implementation.  The results also show that in the absence of migration this possible 

stable solution deteriorates rapidly, reflecting the importance of migration on the 

evolution of a population of predators and prey. 
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Introduction: 

The problem of predator/prey relationships has many applications, not only in the 

wild world from where it comes, but in the interaction of reactants in chemistry as well.  

The predator/prey problem has been well researched when the spatial conditions of the 

problem are ignored.  However, the behavior of this problem, when modified to allow for 

migration by adding a spatial grid, is not well described.  In order to tie my interest in 

learning Monte Carlo with an idea of my mentor, we decided to explore the behavior of 

predator/prey relationships in respect to migration.  The goal was to find stable oscillating 

solutions in the populations of predators and prey.   

 

Methods: 

 Any physical system can be described in two ways, the first is to find governing 

equations that represent the system, the second is to observe the system and note the 

relative frequency with which various events occur.  One can then mimic that behavior 

by randomly sampling these occurrences in a computation at the observed relative 

frequency.  This class of modeling techniques is generally known as the Monte Carlo 

method. 

 Extrapolating from the Lokta-Voltera model (see appendix A), we developed the 

following rules for the system: 

 

1. Geometry, extent and boundary conditions 
1.1 Temporal:  150 cycles.  (A cycle represents a day.) 
1.2 Spatial: 10 by 10 distance units (miles).  The problem will evolve 

within this domain, thus there are 100 cells (100mi2) in the problem. 
1.2.1 A trajectory of either predator or prey that would attempt to leave 

this extent is reflected off the boundary, back into the problem as if 
the boundary were water. 

1.2.2 The predator/prey evolution is localized to the populations within 
each cell.  The rules for the evolution are described below.   

 
2. Initial conditions 
2.1 Predator population: 500 predators are distributed uniformly across the 

spatial grid.  They are given isotropic initial directions.  Their initial 
velocity is 0.1 [cells/ cycle]. 
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2.2 Prey population: 500 preys are distributed uniformly across the spatial 
grid.  They are given isotropic initial directions.  Their initial velocity 
is 0.1 [cells/cycle].  

 
3. Predator evolution constraints 
3.1 Starvation: a predator will be removed from the simulation if it has not 

eaten a prey within 10 consecutive cycles. 
3.2 The probability of eating a prey is 0.55 [per cycle] if the local prey 

population is non-zero. 
3.3 Reproduction: the probability that one new predator is inserted into the 

simulation is 0.48 [per meal]. 
3.4 Trajectory: the probability that a predator will change direction, 

isotropically, is 0.3 [per cycle].  The predator’s speed will be 
0.1*(1.05^days since last meal) (i.e., it will range further the hungrier 
it gets). 

 
4. Prey evolution constraints 
4.1 Preys are removed from the simulation as they are consumed by 

predators within the local cell of the predator.  
4.2 Reproduction: the probability that prey reproduce is 0.0632 [per 

cycle].  Six (6) new preys are inserted in the simulation upon a 
reproduction. 

4.3 Trajectory: the probability that a prey will change direction 
isotropically is 0.3 [per cycle].  The prey’s speed is based on the 
population concentration within the cell using the formula 0.1*[10^ 
(population in the cell/total population)] (i.e., prey will move faster the 
more crowded they become). 

 
 The simulation initializes the system by creating a linked list of creatures 

randomly assigned (with 50/50 probability) to predator or prey.  Preys have initial weight 

six, and predators, weight one, as described in the rules.  Each is given a random location 

and direction and a velocity of 0.1.  The program counts the population within each cell.  

The simulation then executes one day, in accordance with the rules, keeping track 

of the death toll but not removing the deceased prey from the list.  The next step is to 

“cull”—remove the proper number of prey from the list—and to adjust the velocity of the 

prey in each cell in accordance with the new population figures.  The predator velocity is 

also updated at this time.  During this process, weight control is used (on prey only) to 

help free memory of insignificant list members, and to divide large list members (25% of 

cell population) into multiple list members to better model real behaviors. 

Results are then displayed. 

5 



Results: 

The model gives a solution that oscillates  Figure 1:  

 within the range examined.  A second trial 

shows a similar oscillation.  
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Running the program again but eliminating 

the grid so that there is only one cell, and 

hence no migration, causes the population to 

die off almost immediately. 
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Conclusions: 

 The oscillation shows that m

further exploration to see if it m

population.  Also the rapid elimination of the population in the trial that excluded 

migration, shows that migration has a significant effect on the problem and is deserving 

of the time and effort put into it so far, and is deserving of further study as well. 
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Recommendations: 

The next step is to carry the simulation over a larger time interval to see if the 

.  Although, while in the process of finding this solution I tried many 

onstan , 

e 

er.   

My mentor, Steve White, and teacher, Ms. Gerlach, were an invaluable source of 

 

oscillation continues

c ts, trial of further constants is recommended.  To test the reality of the problem

however, the simulation needs to be compared to the reality of different animals or 

chemical reactions, to see where in the real world it may be applied.  I hope to explore th

stability of my possible solution with a parallel implementation in the coming summ

 

Acknowledgements:   

motivation and aid.   
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Appendix A: 
 
The Lokta-Voltera Model: 
 

R(n+1) = R(n) + a*R(n) - b*R(n)*F(n) 
F(n+1) = F(n) + e*b*R(n)*F(n) - c*F(n)

Where the parameters are defined by:  

• a is the natural growth rate of rabbits in the absence of predation,  
• c is the natural death rate of foxes in the absence of food (rabbits),  
• b is the death rate per encounter of rabbits due to predation,  
• e is the efficiency of turning predated rabbits into foxes.  1 

 

                                                 
1 From http://www.stolaf.edu/people/mckelvey/envision.dir/nonDE.lotka-volt.html   
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Appendix B:  The Program 
 
The Header file: 
 
/* Predator/ Prey Library */ 
 
struct R2 {                   // Vector for 2-D Location and direction 
 float x, y; 
} ; 
 
struct cx {                   // cell index in 2-D grid 
 int i, j; 
} ; 
 
#define PRED 0 
#define PREY 1 
 
struct pxy {             // used for both predator and prey 
 struct R2 xy_l;       // location 
 struct R2 xy_d;       // direction 
 double xy_wt;         // weight 
 double xy_v;          // velocity 
 double xy_t;          // time 
 struct pxy *xy_next;  // pointer to next linked list element 
 char xy_tag;          // PRED or PREY 
} ; 
 
#define NI 10                // number of cells in x direction 
#define NJ 10                // number of cells in y direction 
#define NX 200               // initial number of predators 
#define NY 200               // initial number of prey 
#define NCYCLES 150     // number of cycles (time) for simulation 
 
#define STARVE 10            // cycles without a meal before predator dies 
#define WT0  6               // number of progeny/prey/cycle 
#define VEL0 0.1             // intial velocity, in cells/cycle 
#define VELY 10              // increase prey velocity with cell prey population 
#define VELX 1.05            // increase predator velocity as hunger increases 
 
#define PEAT 0.55             // number eaten/prey/cycle 
#define PXREP .48           // predator reproduction probability/predator/meal 
#define PDIR 0.3              // probability to change direction (isotropically) 
#define PYREP .0632           // prey reproduction probability /prey/cycle 
#define wc1 0.25              // weight control: split 
#define wc2 0.01              // weight control: roulette 
 
 
The Program: 
 
/* ppxy.c 
* ---------------------- 
* Predator Prey Problem:  A Monte Carlo Simulation including Migration 
*/ 
 
#include <stdio.h> 
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#include <stdlib.h> 
#include <math.h> 
#include "pxy.h" 
 
void initialize (); 
void process (); 
void cull (); 
void viewem (void); 
double urand (void); 
void iso (struct pxy *); 
void migrate (struct pxy *); 
double db (struct pxy *); 
int cell (struct pxy *); 
 
struct pxy *xyhead; 
float *lpop, *dpop, *mpop; 
 
#define MIN(a,b) ((a)< (b) ? (a):(b)); 
#define MAX(a,b) ((a)> (b) ? (a):(b)); 
 
void main () { 
 int n = NCYCLES; 
 
 //allocate memory for global variables 
 lpop = (float *) calloc (NI*NJ, sizeof (float)); 
 dpop = (float *) calloc (NI*NJ, sizeof (float)); 
 mpop = (float *) calloc (NI*NJ, sizeof (float)); 
 
 //Begin application 
 randomize();  //starts the random number generator with a new random seed 
 initialize (); //creates linked list of creatures 
 viewem ();     //displays results to screen 
 
 //Begin Simulation in Ernest 
 while (n--) { 
  process (); 
  cull (); 
  viewem (); 
 } 
} 
 
/* Urand()  takes no input returns a uniformly distributed random number 
*          between zero and one 
*/ 
 
double urand () { 
 return (1.0*rand ()/RAND_MAX); 
} 
 
/*initialize()  takes no input, creates a linked list of predators and preys (in 
*              random order) and initializes the values of type, location, 
*              velocity, speed, direction, weight and type for the creatures 
*/ 
 
void initialize () { 
  int m, n, i; 
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  int nxy = NX + NY;          //number pred & prey 
  double px = 1.0*NX/nxy;     // Probability initial item is a predator 
  struct pxy *p; 
 
 
  for (i=0; i<NI*NJ; i++) {    //Set all global variables to zero 
  lpop[i] = 0; 
  dpop[i] = 0; 
  mpop[i] = 0; 
  } 
 
  for (n = 0; n < nxy; n++) {  //Create structure, link to top of list 
  p = (struct pxy *)calloc (1, sizeof (struct pxy)); 
  p->xy_next = xyhead; 
  xyhead = p; 
           // 
initialize scalars 
  p->xy_t = 0; 
  p->xy_v = VEL0; 
           // 
initialize loc/ dir  
  p-> xy_l.x = NI*urand (); 
  p-> xy_l.y = NJ*urand (); 
  iso (p); 
 
  if (urand()< px) {          //set as predator or prey and assign weight 
   p->xy_tag = PRED; 
   p->xy_wt = 1.0; 
  } else { 
   p-> xy_tag = PREY; 
   m = cell (p); 
   p-> xy_wt = WT0; 
   lpop[m] += WT0;          //accumulate local population 
  } 
 } 
} 
 
/* Viewem ()  takes no input and prints the current population, by cell, to the 
*             screen 
*/ 
 
void viewem () { 
 struct pxy *p; 
 int *xp = calloc (NI*NJ, sizeof (int));         //predator population by cell 
 double *tb = calloc (NI*NJ, sizeof (double));   //average time since last fed 
 double *xv = calloc (NI*NJ, sizeof (double));   //average pred speed 
 double *yv = calloc (NI*NJ, sizeof (double));   //average prey speed 
 int i, j, m; 
 
 for (p=xyhead; p; p=p->xy_next) { //accumulate totals over all list members 
  m = cell (p); 
  if (p->xy_tag==PRED) { 
  tb[m] += p->xy_t; 
  xv[m] += p->xy_v; 
  xp [m] ++; 
  } else { 
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  yv[m] += p->xy_v; 
  } 
 } 
 for (i=0; i<NI; i++) {                //Prints Results to screen 
  for (j = 0; j < NJ; j++) { 
   m = j*NI +i; 
   if (xp[m]) { 
    tb[m] /= xp[m]; 
    xv[m] /= xp[m]; 
   } 
   if (lpop[m]) yv[m] /= lpop[m]; 
   printf ("cell:%d %d xpop:%d tf:%f xv:%f   lpop:%f yv:%f\n", 
         i, j, xp[m], tb[m], xv[m], lpop [m], 
yv[m]); 
  } 
 } 
 free (xp); free (tb); free (xv); free (yv); 
} 
 
/* process()  takes no input and exectutes the process of a day, accumulates 
*             death toll rather than killing off the prey as they are eaten 
*/ 
 
void process (){ 
 struct pxy *p, *pp, **q; 
 int i, m, m2; 
 q = &xyhead; 
 
 while (p = *q) {        //execute day over all list members 
  m = cell (p); 
  if (p-> xy_tag == PRED) { 
   if (p->xy_t++ > STARVE) {             //predator starves 
    *q = p->xy_next; 
    free (p); 
   } else { 
    if (lpop[m] + dpop[m] + mpop[m]> 0) { 
     if (urand () < PEAT ){         //predator hunts 
      p->xy_t = 0; 
      dpop[m] -= WT0*urand();     //prey death recorded 
      if (urand() < PXREP) {      //predator reproduces 
        //Child list member created 
        pp = (struct pxy* )calloc (1, sizeof (struct pxy)); 
                     pp->xy_l.x = p-> xy_l.x;     //same position as parent 
        pp->xy_l.y = p-> xy_l.y; 
        iso (p);                     //new direction 
      pp->xy_t = 0; pp->xy_v = VEL0; pp->xy_wt = 1; 
       pp->xy_next = xyhead; 
       xyhead = pp; 
      } 
     } 
    } 
    migrate (p); 
    q = &p->xy_next; 
   } 
  } else { 
   if (urand () < PYREP) p->xy_wt *= (1.0 + WT0*urand ()); //prey reprod. 
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    migrate (p);                   //prey migrates 
    m2 = cell(p); 
    if (m!= m2) {                  //migration between cells recorded 
     mpop[m]-= p->xy_wt; 
     mpop[m2] += p->xy_wt; 
     } 
    q = &p->xy_next; 
   } 
  } 
 for (i=0; i<NI*NJ; i++)  mpop[i] = 0;  //reset migrant population 
 } 
 
 /* Cull ()  takes no imput, other that the global variables, and updates the 
 *           the list to reflect the occurances in process () 
 */ 
 
 void cull () { 
  struct pxy *p, *pp, **q; 
  int i, m, n; 
  double w, t, td, tl; 
  int mx=0; 
  int nc = NI*NJ; 
  FILE *outfile; 
/* To save data to be plotted to a different file change name within the quotes*/ 
  outfile= fopen ("clean.txt", "a+"); 
  if (outfile==NULL) printf ("error, bad file"); 
 
  for (i=0; i<nc; i++) lpop[i] = 0; //reset lpop 
  n = mx; 
  for (p = xyhead; p; p = p-> xy_next) { 
   n++;                 //count number of list members 
   if (p-> xy_tag == PREY) { 
    m = cell (p); 
    if ((w = dpop[m]) < 0.0) { //if cell has diminished population 
     t = p->xy_wt;           //reduce the weight of prey list member 
     t = MIN (t, -w);        //in cell 
     p->xy_wt -= t; 
     dpop[m] += t; 
    } 
    lpop[m] += p-> xy_wt; 
   } else mx++;                //count number of predators 
  } 
  td = tl = 0.0;                   //zero population counters 
  for (i=0; i<nc; i++) { 
   td += dpop[i];     // total discrepant diminished population 
   tl += lpop[i];     // total prey population 
   dpop[i]= 0.0; 
  } 
 
  /*Display results of cull, and save agregates to file*/ 
  printf ("cull: #:%d preds:%d tdd:%f preys:%f \n", n, mx, td, tl); 
      fprintf (outfile, "%d      %f\n", mx, tl); 
  fclose (outfile); 
 
  /*Update list to reflect population changes*/ 
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  for (q = &xyhead; p = *q;) { 
   m = cell (p); 
   if (p->xy_tag == PREY) { 
 
     /*Implement Weight Control*/ 
     if (p-> xy_wt < wc2*lpop[m]) {  // if prey weight is small relative 
     lpop[m] -= p->xy_wt;          //to local population remove it 
     *q = p-> xy_next;             // from the list 
     free (p); 
     } else { 
     if (p->xy_wt > wc1*lpop [m]) { //if prey weight is large 
      p->xy_wt *= .5;             //relative to the local 
population 
            
    //split it into two list members 
      pp = (struct pxy *) calloc (1, sizeof( struct pxy)); 
      pp->xy_l.x= p->xy_l.x;    pp->xy_l.y= p->xy_l.y; 
      pp->xy_t = p->xy_t; pp-> xy_v = p->xy_v; 
      pp->xy_wt = p->xy_wt; pp->xy_tag = PREY; 
      iso (pp);      //give new creature a new direction 
      pp-> xy_next = xyhead; 
      xyhead = pp; 
     } 
 
      if (tl) {             //increase speed proportional relative 
                                                                       //to local population 
      p->xy_v = VEL0*pow(VELY, (lpop[m]/tl)); 
      }  
     q = &p->xy_next; 
     } 
   } else { 
    p->xy_v = VEL0*pow (VELX, 1.0* p->xy_t); //increase predator 
                                                                 //speed relative to hunger 
    q = &p->xy_next; 
   } 
  } 
 } 
 
 /* iso (struct pxy *p) given a pointer to a list member isotropically selects 
 *                      a new direction for that list member. 
 */ 
 
 void iso (struct pxy *p ) { 
  double th = 2*M_PI*urand ();  //sample isotropic direction 
  p-> xy_d.x = cos (th);        //assign direction 
  p-> xy_d.y = sin (th); 
 } 
 
 /* migrate (struct pxy *p) given a pointer to a list member it updates the 
 *                          location of the list member in accordance with 
 *                          current velocity. 
 */ 
 
 void migrate (struct pxy *p) { 
   double d, v, b, test; 
   double wx = p->xy_d.x; 
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   double wy = p->xy_d.y; 
   double x = p->xy_l.x; 
   double y = p->xy_l.y; 
 
   for (v = p->xy_v; v>0; v-= d)  { //travel distance for one cycle at the    
                            //speed 'v'; if one encounters the 
                            //problem boundary first, reflect back 
               //in to the problem and repeat until the   
               //cycle's distance is met 
 
   b = db(p);                       //find distance to problem boundary 
   d = MIN (b, v); 
   x += d*wx;            // advance list member 
   test =  MAX (0, x); 
   x = MIN ( test, NI ); 
   y += d*wy; 
   test = MAX (0, y) 
   y = MIN (test , NJ ); 
 
   if (x==0 || x==NI) wx = -wx;     //reflect off of top/bottom boundary 
   if (y==0 || y==NJ) wy = -wy;     //reflect off of left or right 
   if (urand ()<PDIR) iso (p);      //update direction 
   else { 
   p->xy_d.x = wx; 
   p->xy_d.y = wy; 
   } 
 } 
 p->xy_l.x = x; 
 p->xy_l.y = y; 
} 
 
/* db (struct pxy *p)  given a pointer to a list member finds the distance to boundary for the 
*         list member.  Returns distance to boundary. 
*/ 
 
double db (struct pxy *p ) { 
 double d = 1e10; 
 double w, s; 
 
 if (w = p->xy_d.x)  {      //if not horizontal, find smallest positive 
   s = (NI - p->xy_l.x)/w;    //distance to top or bottom boundary 
   if (s > 0) d = MIN (d, s); 
   s = (0 - p->xy_l.x)/w; 
   if (s > 0) d = MIN (d,s); 
 } 
 if (w = p->xy_d.y)  {      //if not vertical, find smallest positive 
   s = (NJ - p->xy_l.y)/w;    //distance to right or left boundary 
   if (s > 0) d = MIN (d, s); 
   s = (0 - p->xy_l.y)/w; 
   if (s > 0) d = MIN (d,s); 
 } 
 if (d==1e10) {                  //neither: must be on the problem boundary 
   d=1e-3;                      //give it a nudge, because otherwise 
            
 // it causes problems 
 } 
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 return (d); 
} 
 
/* Cell(struct psy p*) given a pointer to a list member finds the cell of 
*                      location of the list member. 
*/ 
 
int cell (struct pxy *p) { 
 int i = p->xy_l.x;   //read in x coordinate 
 int j = p->xy_l.y;   //read in y coordinate 
 
 i = MAX (0, i); i = MIN (i, NI-1);   //convert to cell 
 j = MAX (0, j); j = MIN (j, NJ-1); 
 return (j*NI + i); 
} 
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