
Statistical Analysis Of Parallel Code, Year 2

New Mexico Adventures in

Supercomputing Challenge

Final Report

April 25, 2006

Team #28

Manzano And Eldorado High School

Team Members

Stephanie McAllister

Vincent Moore

Teacher

Stephen Schum

Project Mentor

Sue Goudy

 2

Table Of Contents

Executive Summary 3

Final Report 4-20

References 21

Appendices 22-80

 3

Executive summary

 This year we have been able to run many of the standard benchmarks

used to determine the speed and overall usefulness of a computing platform. In

the constantly changing and improving computer world that we live in, finding

where the slowdowns are within the platform can improve the performance

significantly. In running the benchmarks and post-processing the statistical

numbers that we generated, we can come up with where the bottlenecks of the

platforms lie. We are mostly looking for communication slowdowns. This was

tested by the standard benchmarks. The control benchmark that we used was

the Numerical Aerospace Simulation Benchmark code of Embarrassingly

Parallel, which has the least communication. We hope that our findings will be

able to help improve future platforms and also future benchmarking codes and

general programs that need to be run on parallel machines.

 4

 This project is a continuation from last year, yet we have made many

improvements and have essentially redone everything that was done last year.

The major portions of the project that were done previously were research into

what the Numerical Aerospace Simulation (NAS) codes did in general

computation. We found that Embarrassingly Parallel (EP) has very little

communication and each of the processors are trying to come up with the same

random number as the other nodes. Conjugate Gradient (CG) does a steepest

descent problem using an easier method called conjugate gradient. Lower and

Upper Triangle Matrices (LU) decomposes an N*N matrix into a lower and upper

triangle matrix. This is an easier way to solve many variables [13].

 The Perl script to post-process the outfiles generated from the NAS

benchmarks was also written last year. This script goes through the NAS outfile

generated from the run and pulls out the values that we are interested in by a

brute force method.

 Additionally, we completed several runs on Feynman and C-Plant. The

runs that were previously made on Feynman are no longer valid because the

operating system was upgraded, which also upgraded the libraries and services

on the machine. If these results were combined with the results that we have

obtained this year, there would be major discrepancies that could not be

explained accurately and could not be retested. These results were so small that

it did not matter that we could not use them as it takes a larger sample to get

accurate numbers. C-plant is no longer a working system, as it was

 5

decommissioned over the past summer, so the results do not have any value to

the project [13].

 Though we did not get much done on the project last year, the skills that

were gained made up for the lack of results and data. One such skill was the

ability to write Perl scripts. This has greatly benefited the team because the Perl

scripts are relatively quick and easy to write now. This has prepared the team for

future projects, work in college, and improved the ability of all to dissect code and

understand what it is doing. The other team member took a Java class and was

able to benefit the team by writing the computational code and writing the outfile

for graphing with Microsoft Excel.

This year:

Hypothesis

 At the start of this year, the team sat down with our mentor and discussed

the background information that had been figured out last year. From this

information and with a little clarification from Sue, we came up with a hypothesis:

We believe that EP will run the most efficiently because it has the least amount of

communication and seems to be the most stable code on any given platform

because of the communication patterns that it would display [15].

Scope

 6

 The scope of the project originally included many things that we have not

been able to accomplish because they were too broad for this program. There

are groups that have spent years doing the same studies and calculations on

parallel platforms that we are doing, but they have more funding to do so and

have been able to broaden the scope of their work [14]. The main points that we

have been looking at, and continue to analyze, are the interconnect times and

how the architecture and type or brand effects the overall performance of the

parallel system and the codes that are being run on it. Part of the established

way to analyze the overall efficiency of the interconnects on a particular system

is to look at the latency [5]. Latency is defined as the total time from the initial

sending to the finish of receiving a message across the interconnect, or the

amount of time it takes to send a zero length message. This means that there is

overhead for every interconnect and latency is the way to measure how much

overhead there is. This depends on the switches that are used and time that it

takes to construct the header on the packet (the message), transfer the packet

down through the operating system layers to the network chip, onto the network,

and over to the node that it is being sent to. The node then has to unpack the

packet that was sent. This series is independent of the code running. So,

latency is basically the time between when a message starts and when another

message can start.

 The scope of the project also included statistical analysis, through

computing the mean and standard deviation, of the message passing interface.

This was done to insure that the data sets that were collected were accurate

 7

samplings. The mean is the average of how long the run takes or the average of

how many Mega-Operations per second (MOps). The value for mean is a true

but unknown value for performance. Standard Deviation for a sample shows

how much variation is in the sample compared to the mean. The reason that we

compute this is because it is useful in other calculations to tell if the sample mean

is really representative of the true mean. This shows us if the sample mean is

accurate enough or not by the size of the standard deviation. If the standard

deviation is large, the sample mean is not a good representation of the true

mean; if the standard deviation is small, the representation is a much more

accurate model of the true mean.

 The original scope of the project included possible slowdowns and their

causes. Though we acknowledge that these are inevitably part of the project, we

did not allot for them in the calculations because they tend to be very irregular

when they show up. This has others very puzzled as well. To avoid looking up if

there were specific hardware problems or software interrupts during a run, the

standard deviation is calculated to ensure that the possible error from run to run

is within a certain range. If the runs do not vary by much, then a much smaller

sample is needed for accurate calculations, giving the best results and being

more predictable. Additionally, there tends to be a difference between 32- and

64-bit processors and the performance that is gained with either. Part of the

investigation that was planned was to look at how much of a difference this

caused and if 64-bit processors are more efficient for high performance

computing codes, even if they are written for a 32-bit operating system and

 8

chipset. We have not been able to investigate the differences between 32-bit

and 64-bit chipsets.

HPC

 The High Performance Computing Challenge publishes a set of

benchmarks (HPC), used for determining a list of the top 500 supercomputers in

the world [12]. These benchmarks are a package of many tests wrapped

together. The package that we used also had multiple configurations to use.

These included the MPI package that we used, Version 1.0.0. Out of the many

tests that HPC runs, we picked High Performance Linpack (HPL), Parallel Matrix

Transpose (PTRANS), Giga Updates per second (GUPs), Fast Fourier

Transform (FFT) [1]. HPL measures the floating point rate of execution for

solving a linear system of equations. PTRANS is a test of the total

communications capacity of the network because it has communication of pairs

of processors at the same time. GUPs is just an output of how many updates

there are per second. FFT computes a complex Discrete Fourier Transform and

measures the floating point rate of execution of double precision [1].

NAS

 The NAS benchmarks do not come packaged as one like the HPC codes

do. Instead, each one must be built on the platform separately. The

configuration that we used was MPI only, instead of the serial communication.

The version that we used was 3.1. The tests we ran are EP, CG, and LU. EP

distributes the program to each node [3]. They are all trying to come up with the

 9

same random number, which is generated with a “seed” a character that starts

the random number generator. Each node receives a different seed, and the

communication between nodes only happens when they have all come up with a

number. These are collective MPI communication calls. This means that all of

the nodes report through MPI to a single node. This differs from CG because

though the messages are all passed to the same node, the root node does not

distribute a message to the other nodes, they just report to the root node. CG is

an iterative method to do a steepest descent problem. We originally thought that

it was a random communication pattern, but upon dissection of the code

discovered that it does collective communication. We decided to pick through

the code because after we graphed it, we did not understand why the data and

results did not look like LU, so we went back and found out. Though this test did

not do the communication pattern that we had thought, it is still useful in our

project because we are studying the communication times and types used by

parallel computing platforms. CG is still useful because the communication that it

does is known as “all-reduce” which is a very different communication pattern

from those used in LU.

Supercomputers

 The majority of the high performance computers that were used in our

project reside at Sandia National Laboratory. All of the computer systems are

parallel platforms, meaning that there are multiple processors and RAM (Random

Access Memory) that are linked together to do a mathematical computation.

 10

These computations can be a simulation, visual or purely computational, though

visualizations generally need a separate area and program for viewing. The

most basic level at which parallel computing can be explained is that there are

many nodes (nodes consist of 1-2 processors, a motherboard, RAM, and

sometimes a hard drive) which are all connected with an interconnect, and they

are organized in such a way that they can all communicate with one another and

solve part of a problem or simulation. The “mother nodes” write to the outfile and

compile all of the data from the nodes collectively as well as distribute the code

to all the nodes prior to processing. The main part of the supercomputers that

we are looking at is the interconnect and the speed at which they can do

computations. Five of the six machines that we are using come from Sandia, the

other comes from Los Alamos National Laboratory. At Sandia, we are running

on Feynman, Red Squall, Spirit, Red Storm and Thunderbird.

 Feynman has Intel Xeon Processors, which run at 2GHz (Giga-Hertz);

Myrinet interconnect, which is in a star topography and has a band width of

350Mbs (Mega-byte per second) [6]. A star topography is where every node is

connected to a router, switch or hub. This means that all network traffic must go

through one of the routers/switches/hubs in order to get passed to another node.

The weakest spot of this network is the router/switch/hub because it gets bogged

down with communications before the bandwidth of the cable can be reached

from message passing. There has also been an Operating System (OS)

upgrade since last year. This OS upgrade included a new set of compilers which

can also have an impact on the efficiency of the code running on the platform.

 11

The new OS is Red Hat Enterprise Linux 3, and the full version is on the I/O

nodes, which control the computational nodes and are also known as “mother

nodes”. The runs (iterations through running the benchmarking codes) that we

have done so far were to re-run the tests from last year, seeing as the machine is

different and it would not be a good idea to combine data sets from different

machines. This also helps us to get an approximate figure of how many runs we

would need to do to get good results. According to statisticians [5], we need at

least 30 runs. As the runs increase, our odds of getting an accurate number

increase.

 Red Squall is another platform from Sandia that we are running on. It has

258 nodes, two-processors per node, 12 Terabytes (TB) of storage, and 792 TB

of RAM. The processors range from 2.0 to 2.2 GHz and range from 2 GB to 4GB

of RAM on the compute nodes [7]. It runs on a 256 port Quadrix Elan4 high

speed interconnect [7]. The OS is Linux based, though we have not been able to

find out which version it runs.

 Spirit runs Intel Xeon 3.4 GHz dual processors on the compute nodes.

The OS is Red Hat Enterprise Linux WS, release 3 [8].

 Red Storm is a Cray XT3 system [9]. It is the 6th fastest supercomputer in

the world, according to the HPC Challenge's 26th Annual Top 500 list at the

Supercomputing Conference (SC|05) in November of 2005 [12]. It runs on 64-bit

AMD Opteron Processors, clocked at 2.0GHz, and has 140 TB of disk space.

The OS that the compute nodes run on is called Catamount [9]. It is a lightweight

kernel based on ASCI Red, instead of being a full version of Linux. The

 12

lightweight kernel eliminates some of the interrupts that tend to cause slowdowns

with the computations. The I/O nodes run with a full version of SuSE Linux

(8.2.99, a server version). The I/O nodes need to have full Linux installed so that

programs can be compiled and run. The interconnect is a Cray proprietary

interconnect called SeaStar [9]. It has a very low latency.

 Thunderbird is ranked 5th on the HPC Challenge's Top 500 list of 2005

[12]. Many of the student interns at Sandia were able to help and contribute to

the effort to set it up over the past summer. One member of our team was also

able to be a part of the team and did a little bit more than other student interns

could. The interns helped with the cabling, Break/Fix, hardware

replacement/troubleshooting, BIOS configuration, network

configuration/troubleshooting, and system configuration/troubleshooting. Having

been a part of the team who built Thunderbird, our team has been able to use the

platform for this project. The hardware configuration includes Infiniband (IB)

interconnects, dual processors on every node, and over 5,120 compute nodes

[10].

 Mauve is located at Los Alamos National Laboratory [11]. It is comprised

of Intel Itanium 2, 1.3 GHz processors. It has 1TB of globally addressable RAM,

and runs the Altix OS, which is based on Red Hat Linux. It also has 50 TB of

scratch space and uses the Load Sharing Facility (LSF) batch system [11]. This

machine differs from other because of having to load the modules by hand. We

have built the HPC benchmarks on this platform. Part of doing so was loading

 13

modules by hand, as they are not previously loaded. We had to do some

research into what modules we needed to be able to run the HPC code.

NAS Perl

 The NAS Perl script picks through the outfiles from the NAS benchmarking

codes and pulls out the values that we are interested in, creating a new file with

the values inside it. This was done by finding certain character strings, finding the

lines with the values that we are interested in, and putting the values into a

variable [2]. The outfiles all built upon each other, so there had to be multiple

iterations through the script, done by a while loop. The starting and stopping

values were found with an if loop followed by a while loop and a last if loop. The

while loop just tells the program to continue with the inside of the while loop. The

insides consist of if and elsif loops. The loops basically say that if it finds a

certain character string, put it into a variable. The variables are stored and put

into a file outside of the while loop, but still inside the first if loop (See Appendix

A). The file written to was named by the script and the convention was

appending an “.out” to the original file name, which was specified on the

command line before running the script. This is known as a “brute force” way to

pull out values because it is specific to the NAS benchmark's outfile. [2]

HPC Perl

 14

 The HPC Perl script does much of the same thing that the NAS script

does, but in a different and more efficient way. The file being put in to read

through is still specified on the command line and the naming convention is the

same. The main difference is that instead of pulling out certain values, the

keywords are linked to the values by a hash table [2]. The values are put into the

table by a regular expression within the last if loop under the while and if loops

(See Appendix B). The main benefit to this method is that if we chose to modify

what values we wanted, it was easy to just tell it to output them to the file by the

keyword. In this case, the keywords are the values in the outfile that describe

what we were looking at. For instance, the Fast-Fourier Transform (FFT) data

that we were interested in is MPIFFT_time, which is the amount of time that the

computation takes. In the hash table, all that we would had to do to specify

printing this value out was to tell it to print MPIFFT_time. This method made it

very simple to add and change what values go into the outfile. The way that we

chose to output the data into the outfile was to put it first into arrays specifying

where all of the data goes, and then go outside the first if loop, as above, to print

out the values of each test to the outfile. This was the most efficient way that we

could think of to do this.

Runs

 Our mentor has helped us greatly by building the benchmarks on most of

the systems, since we do not really have the knowledge to build them yet. We

 15

have been able to build the NAS parallel benchmarks on many platforms. These

include Red Squall, Feynman, Spirit, and Thunderbird. From all four we have

gotten runs, though they vary in number. HPC has also been built on many

platforms. Feynman and Spirit were built early, as was Red Squall. The other

systems came slightly later, including Thunderbird and Red Storm. We built the

HPC code by ourselves on Mauve, and have been able to get several runs and

results. We have gotten several runs on each platform and intend to get even

more as we continue this project (See Sample outfile, Appendix C and D).

Java

 The Java program is written and running. One of the main reasons that

we chose to do the computations in Java was to utilize the entire team's abilities,

as one member had previous knowledge from a programming class. Java is also

more efficient for calculations. We found out after the Java program was written

that Perl has the same abilities that Java does for calculations.

 The java code is designed to take the reduced values from the out files

produced by the Perl scripts and puts the values for each run and inserts them

into a custom designed object. This object holds the size of the program run, the

number of processors used, the time it took, and the number of operations done

(MOps). This object has two more stored values only used when the data used a

HPC benchmark run. The main java program also keeps track of whether the

run is HPC or NAS and from that decides the maximum number of processors it

 16

will provide room for in the array it will output. After taking each line of the output

file and inserting relevant data into the ArrayList of benchmarking objects, the

main program searches the ArrayList for benchmarks fitting each criteria based

on processors used and class of program.

(class/processors) (class/processors)

NAS HPC

s/1,s/2,s/4,s/8,s/16 etc. ptrans/1,ptrans/4,ptrans/9 etc.

a/1,a/2,a/4.a/8 etc. HPL/1,HPL/4,HPL/9 etc.

b/1,b/2,b/4 etc. GUPS/1,GUPS/4 etc.

c/1,c/2 etc. FFT/1 etc.

d/1 etc.

Then the java program calculates the mean or average value and provides an

output value for each class/processor set's time and MOps. It also calculates

and outputs the standard deviation for each class/processor set's time and MOps

(For full Java code, see Appendix F - G). The files that are imported into excel

are “.csv”’s and are just comma separated values (See Appendix H).

Calculations

 The calculations that we are doing is to compute the mean:

This equation basically calculates the mean through a summation[5]. The

standard deviation is computed by taking the square root of the variance:

 [5]

We know that these are the correct formulas through our communication with a

statistician[4] who does this for a living.

Graphs

 There were many ways that we thought of to graph the results of this

project. Our original conceptual graph, did not quite work as it was intended to.

We were not able to figure out how to tell Excel to shade in parts of the lines to

indicate the standard deviation. Instead, we decided to put the data into bar

graph format with the standard deviation plotted as a line through the bar graphs.

This seemed to work well to demonstrate the point (see Appendix I).

 17

Time
Mops

Nodes

Time
(MOps)

Nodes

Results

 We are still working on analyzing the graphs and data that we received

from the runs that we have done statistical analysis on. Most of the professionals

that do this for a living end up looking at graphs and data, wondering what is

really going on. This is not an exact science, so the results are always shaky at

best. For preliminary results, please see Appendix I.

Future Work

 We intend to continue our work for as long as we can. We will be working

on getting better results and conclusions for the Adventures in Supercomputing

Challenge's Expo at Los Alamos National Laboratory, though if it is not totally
 18

 19

satisfactory, we will still continue to work. We also intend to improve our

graphing method. There are small issues that we need to fix in Excel. We also

want to be able to graph multiple machines on the same axis to be able to

compare certain tests and other information through Kiviat diagrams. Kiviat

diagrams are more commonly known as star plots. We are also actively working

on collecting more runs of HPC. The Java program works for HPC numbers, but

we are in the process of writing a class that can handle HPC data better. This

work will continue at least through summer, if not longer.

Thanks

 We would like to thank our mentor, Sue Goudy, for all of the help that she

has given us in our project and for keeping us accountable to deadlines. Also

deserving of thanks is Mr. Schum for sponsoring a class during the day for credit

to participate in the Supercomputing Challenge and to Mr. Whalen for supporting

all of the students from Manzano High School to be in this program. Many

thanks go to the Thunderbird team for allowing students to participate in the

building of the machine, allowing it to seem more personal and allowing students

to use their resource. Also the help that they have given us in compiling the

benchmarking code and to Sophia Corwell for Perl scripting help. Thanks to

Sandia National Laboratory for the use of the computing resources, Los Alamos

National Laboratory for sponsoring the program and making computing

resources available to the students. As always, we were very appreciative of the

 20

entire team of consult@challenge.nm.org. Thanks to all of you! Special thanks

on the consult team go to David Kratzer for going out of his way to help us get an

account on Mauve and for the guidance that he gave us throughout the year.

Tom Laub for organizing the Sandia Tour and helping it get started, as well as his

help to many teams in the challenge. A special thanks to Celia Einhorn for all of

the support that she continually gives to the students in the challenge.

mailto:consult@challenge.nm.org

 21

References

1. HPC Website: http://icl.cs.utk.edu/hpcc/index.html

2. O’Reilly Perl CD Bookshelf

3. NAS Website: http://www.nas.nasa.gov/Software/NPB/Specs/npb2_0/

npb2_0.html

4. Rob Easterling

5. Lilja, David J., Measuring Computer Performance: A Practitioner’s Guide,

Cambridge University Press, 2000.

6. Feynman

7. Red Squall: Frequently Asked Questions list maintained by the system

administrator.

8. Spirit: Information from the /proc/cpuinfo available on all linux machines.

9. Red storm: John Noe, Sandia National Laboratories, Tour of Red Storm

20March2006.

10. Thunderbird: https://computing.sandia.gov/platforms/thunderbird/

11. Mauve: http://computing.lanl.gov

12. HPC Challenge 26th Top500 list: http://top500.org/lists/2005/11/basic

13. Last Year’s Final Report: http://challenge.nm.org/archive/04-

05/finalreports/33.pdf

14. Performance Modeling: http://www.sandia.gov/perfmod/

15. Weekly Meeting Log

http://www.nas.nasa.gov/Software/NPB/Specs/
http://computing.lanl.gov/
http://top500.org/lists/2005/11/basic

 22

Appendices

Appendix A – NAS Perl Script 23-27

Appendix B – HPC Perl Script 28-32

Appendix C – Sample outfiles (NAS) 33-42

Appendix D – Sample outfiles (HPC) 43-48

Appendix E – Java Flow Chart 49

Appendix F – Java Code: AiSC2 50-56

Appendix G – Java Code: NAS Class 57-61

Appendix H – Comma Separated Variable Sample File 62

Appendix I – Preliminary Graphs 63-80

 23

Appendix A

#!/usr/bin/perl -w

#Stephanie McAllister "PerlGrabPB.pl"

#last mod. 15feb05

#iterating through each of the input files specified

#on the command line

foreach $input (@ARGV)

{

 print "reading input file ...$input\n";

 #print STDOUT "Please enter the filename to be searched.\n";

 #$file=<STDIN>;

 #print STDOUT "Please enter the name of the file to be written to.\n";

 #$fn=">".<STDIN>;

 $output = $input . ".out";

 print "output file = $output\n";

 open(WRITE, "> $output");

 24

 open(READ, "< $input");

 $verify = 0;

 #read 1 line at a time

 while (<READ>){

 #if pattern is found,

 #write to file and screen

 #store as an array

 if (/CG Benchmark Completed./) {

 while (<READ>){

 last if /Compile options:/ ;

 if (/Class/) {

 @class = $_;

 @class = split ' ', $_;

 }

 elsif (/Size/){

 @size = $_;

 @size = split ' ', $_;

 }

 25

 elsif (/Time in seconds/){

 @time = $_;

 @time = split ' ', $_;

 }

 elsif (/Total processes/){

 @Tprocs = $_;

 @Tprocs = split ' ', $_;

 }

 elsif (/Mop\/s total/){

 @Mops = $_;

 @Mops = split ' ', $_;

 }

 elsif (/Verification/){

 last if /SUCCESSFUL/;

 $verify = 1;

 }#end if verification

 @block = $_;

 @block = split ' ', $_;

 26

 print "\n\n@block\n";#print whole @ to keep us sane

 $verify = 0;

 }#end while loop

 #when vari. $verify is negated

 #the false statement(0) is made true(1)

 #and so w/ line, will call up func below

 if (!$verify)

 {

 #input file "SUCCESSFUL" Verification

 #print all needed info-class,size,time,Tprocs,Mops

 print (WRITE " $class[2] $size[2] $time[4] $Tprocs[3]

$Mops[3]\n");

 }#end print if statement

 else{

 print "UNSUCCESSFUL RUN";#print to screen only

 }#end print else statement

 }#end Benchmark Completed if statement

 27

 }#end 1st while (READ)

 close(READ);

 close(WRITE);

}

 28

Appendix B

#!/usr/local/bin/perl

#Monty - diff...

!/usr/bin/env perl

#manzano specific

!/usr/bin/perl -w

#Sandia specific (undo space to select)

Perl script to get HPC data out through hash...

Stephanie McAllister "PerlHPChash"

last mod 23Jan06

ch. 5-1, 5-2 of Learning Perl

read in file... HPC specific...

foreach $input (@ARGV)

{

 print "reading input file ... $input\n";

 $output = $input . ".out";

 print "output file = $output\n";

 29

 open(WRITE, "> $output");

 open(READ, "< $input");

 #init hash table - outside loop!

 %H=();

 while (<READ>){

 if (/Begin of Summary section./){

 while(<READ>){

 last if /End of Summary section./ ;

 #put everything into a hash table here...

 #read in values/keywords

 #split by line

 #use regexpr to get values fr each side of =

 m/(\w+)\s*=\s*(.*)\s*$/;#find out exactly what I say

#for future reference: to avoid picking up whitespace with above line syntax,

#just have to remove the \s... The (.*)means anything on either side of =.

 $H{$1}=$2;

 #put into hash table

 30

 }#end while read 2

 }#end start/end param. if statement

 #new hash value MPIFFT_time (++ all time records for MPIFFT)

 #declare arrays to print,

 @hplData =

 ("HPL", "$H{HPL_N}", "$H{HPL_time}",

"$H{CommWorldProcs}",

"$H{HPL_Tflops}");

 @ptransData =

 ("PTRANS", "$H{PTRANS_n}", "$H{PTRANS_time}",

"$H{CommWorldProcs}", "$H{PTRANS_GBs}");

 @gupsData =

 ("GUPs", "$H{MPIRandomAccess_N}",

"$H{MPIRandomAccess_time}","$H{CommWorldProcs}",

"$H{MPIRandomAccess_GUPs}");

 @fftData =

 31

 ("FFT", "$H{MPIFFT_N}", "$H{MPIFFT_time}",

"$H{CommWorldProcs}",

"$H{MPIFFT_Gflops}");

 if ($H{Success}==1)

 {

 #do calc for MPIFFT_time

 $H{MPIFFT_time}=$H{MPIFFT_time0}+$H{MPIFFT_time1}+

$H{MPIFFT_time2}+$H{MPIFFT_time3}+$H{MPIFFT_time4}+$H{MPIFFT_time5}

+$H{MPIFFT_time6};

 print "@hplData\n@ptransData\n@gupsData\n@fftData\n";

 print (WRITE

"@hplData\n@ptransData\n@gupsData\n@fftData\n");

 }#end if statement

 else{

 print "UNSUCCESSFUL RUN";#print only to screen!!

 }#end else statement

 }#end while statement 1

 close(READ);

 close(WRITE);

 32

}#end of foreach beginning statement...

 33

Appendix C

NAS Parallel Benchmarks 3.1 -- CG Benchmark

 Size: 14000

 Iterations: 15

 Number of active processes: 64

 Number of nonzeroes per row: 11

 Eigenvalue shift: .200E+02

Contacting node allocation daemon...

64 nodes are allocated to your job ID 3424.

Awaiting synchronization of compute nodes before beginning user code.

Application processes begin user code.

>>> Exit code 1 on node 253 <<<

>>> further messages suppressed

We're sending a SIGTERM to your application.

Awaiting compute node completion messages.

If no response within 60 seconds, try interrupting yod with control-C.

 Name Rank Node SPID Elapsed Exit Signal

 34

------------------- ---- ---- ----- -------- ---- ------

 node.n-21.t-32 0 1036 1866 04:01:05 killed by SIGTERM request

 node.n-22.t-32 1 1037 1507 04:01:05 killed by SIGTERM request

 node.n-23.t-32 2 1038 1507 04:01:05 killed by SIGTERM request

 node.n-24.t-32 3 1039 1382 04:01:05 killed by SIGTERM request

 node.n-17.t-32 4 1032 1528 04:01:05 killed by SIGTERM request

 node.n-10.t-36 5 929 1954 04:01:05 killed by SIGTERM request

 node.n-11.t-36 6 930 1924 04:01:05 killed by SIGTERM request

 node.n-12.t-36 7 931 1954 04:01:05 killed by SIGTERM request

 node.n-9.t-16 8 672 3129 04:01:05 killed by SIGTERM request

 node.n-10.t-16 9 673 2890 04:01:04 killed by SIGTERM request

 node.n-29.y-10 10 244 619 04:01:04 killed by SIGTERM request

 node.n-30.y-10 11 245 619 04:01:05 killed by SIGTERM request

 node.n-31.y-10 12 246 619 04:01:05 killed by SIGTERM request

 node.n-32.y-10 13 247 619 04:01:05 killed by SIGTERM request

 node.n-29.t-45 14 500 623 04:01:05 killed by SIGTERM request

 node.n-30.t-45 15 501 623 04:01:05 killed by SIGTERM request

 node.n-31.t-45 16 502 623 04:01:05 killed by SIGTERM request

 node.n-32.t-45 17 503 623 04:01:05 killed by SIGTERM request

 node.n-1.t-47 18 504 621 04:01:05 killed by SIGTERM request

 node.n-2.t-47 19 505 621 04:01:05 killed by SIGTERM request

 node.n-3.t-47 20 506 621 04:01:05 killed by SIGTERM request

 node.n-4.t-47 21 507 621 04:01:05 killed by SIGTERM request

 35

 node.n-1.y-11 22 248 619 04:01:04 killed by SIGTERM request

 node.n-2.y-11 23 249 619 04:01:04 killed by SIGTERM request

 node.n-3.y-11 24 250 619 04:01:05 killed by SIGTERM request

 node.n-4.y-11 25 251 619 04:01:05 killed by SIGTERM request

 node.n-5.y-11 26 252 619 04:01:05 killed by SIGTERM request

 node.n-6.y-11 27 253 619 04:01:04 killed by SIGTERM request

 node.n-7.y-11 28 254 619 04:01:05 killed by SIGTERM request

 node.n-8.y-11 29 255 619 04:01:04 killed by SIGTERM request

 node.n-31.y-8 30 182 1109 04:01:04 killed by SIGTERM request

 node.n-25.t-25 31 880 679 04:01:05 killed by SIGTERM request

 node.n-26.t-25 32 881 679 04:01:05 killed by SIGTERM request

 node.n-27.t-25 33 882 679 04:01:05 killed by SIGTERM request

 node.n-28.t-25 34 883 679 04:01:05 killed by SIGTERM request

 node.n-25.t-35 35 624 677 04:01:05 killed by SIGTERM request

 node.n-26.t-35 36 625 677 04:01:05 killed by SIGTERM request

 node.n-27.t-35 37 626 677 04:01:05 killed by SIGTERM request

 node.n-28.t-35 38 627 677 04:01:04 killed by SIGTERM request

 node.n-2.t-33 39 633 1547 04:01:05 killed by SIGTERM request

 node.n-3.t-33 40 634 1538 04:01:05 killed by SIGTERM request

 node.n-4.t-33 41 635 1538 04:01:04 killed by SIGTERM request

 node.n-5.t-33 42 636 1524 04:01:04 killed by SIGTERM request

 node.n-6.t-33 43 637 1963 04:01:04 killed by SIGTERM request

 node.n-7.t-35 44 606 1502 04:01:05 killed by SIGTERM request

 36

 node.n-8.t-35 45 607 1502 04:01:04 killed by SIGTERM request

 node.n-4.t-40 46 283 784 04:01:04 killed by SIGTERM request

 node.n-30.y-11 47 277 780 04:01:04 killed by SIGTERM request

 node.n-29.t-40 48 308 1235 04:01:05 killed by SIGTERM request

 node.n-30.t-40 49 309 1235 04:01:04 killed by SIGTERM request

 node.n-31.t-40 50 310 1235 04:01:05 killed by SIGTERM request

 node.n-32.t-40 51 311 1235 04:01:05 killed by SIGTERM request

 node.n-22.t-37 52 557 1092 04:01:05 killed by SIGTERM request

 node.n-23.t-37 53 558 1092 04:01:05 killed by SIGTERM request

 node.n-24.t-37 54 559 1092 04:01:05 killed by SIGTERM request

 node.n-21.t-17 55 812 1094 04:01:04 killed by SIGTERM request

 node.n-22.t-17 56 813 1094 04:01:05 killed by SIGTERM request

 node.n-23.t-17 57 814 1094 04:01:04 killed by SIGTERM request

 node.n-24.t-17 58 815 1094 04:01:04 killed by SIGTERM request

 node.n-21.t-30 59 780 1094 04:01:05 killed by SIGTERM request

 node.n-20.t-47 60 523 944 04:01:04 killed by SIGTERM request

 node.n-17.t-30 61 776 1086 04:01:04 killed by SIGTERM request

 node.n-18.t-30 62 777 1086 04:01:05 killed by SIGTERM request

 node.n-18.t-17 63 809 1822 04:01:04 killed by SIGTERM request

 NAS Parallel Benchmarks 3.1 -- CG Benchmark

 37

 Size: 75000

 Iterations: 75

 Number of active processes: 64

 Number of nonzeroes per row: 13

 Eigenvalue shift: .600E+02

 iteration ||r|| zeta

 1 0.13257071746643E-12 59.9994751578754

 2 0.54021441387552E-15 21.7627846142538

 3 0.57508155930725E-15 22.2876617043225

 4 0.58907101679580E-15 22.5230738188352

 5 0.59342235842271E-15 22.6275390653890

 6 0.59736634325665E-15 22.6740259189537

 7 0.60192883908490E-15 22.6949056826254

 8 0.59984965235397E-15 22.7044023166871

 9 0.60134110898017E-15 22.7087834345616

 10 0.59805179779153E-15 22.7108351397172

 11 0.60025777990273E-15 22.7118107121337

 12 0.59913684339943E-15 22.7122816240972

 13 0.59723882884624E-15 22.7125122663245

 14 0.59499172777344E-15 22.7126268007597

 15 0.59980600694896E-15 22.7126844161817

 16 0.59727336571335E-15 22.7127137461758

 38

 17 0.59706054162841E-15 22.7127288401997

 18 0.59345450712132E-15 22.7127366848298

 19 0.59923959756901E-15 22.7127407981219

 20 0.59496553997991E-15 22.7127429721364

 21 0.59446318554205E-15 22.7127441294028

 22 0.58988939248615E-15 22.7127447493899

 23 0.59217087079768E-15 22.7127450834528

 24 0.58787300236184E-15 22.7127452643879

 25 0.58903467315753E-15 22.7127453628459

 26 0.59200179652152E-15 22.7127454166513

 27 0.59215841938171E-15 22.7127454461693

 28 0.58711115670319E-15 22.7127454624205

 29 0.59053141180686E-15 22.7127454713970

 30 0.58794595971476E-15 22.7127454763705

 31 0.58532270282392E-15 22.7127454791336

 32 0.58837215167381E-15 22.7127454806729

 33 0.58948683125210E-15 22.7127454815324

 34 0.58760605201307E-15 22.7127454820135

 35 0.58386041680778E-15 22.7127454822834

 36 0.58482665918172E-15 22.7127454824351

 37 0.58581294813970E-15 22.7127454825206

 38 0.58237872387978E-15 22.7127454825687

 39 0.58486977936419E-15 22.7127454825960

 39

 40 0.58080883423072E-15 22.7127454826114

 41 0.58250016557550E-15 22.7127454826202

 42 0.58195491440239E-15 22.7127454826250

 43 0.57864286207501E-15 22.7127454826279

 44 0.57910875164293E-15 22.7127454826295

 45 0.58505851554448E-15 22.7127454826304

 46 0.57918994944012E-15 22.7127454826310

 47 0.58296854721644E-15 22.7127454826312

 48 0.57528473820291E-15 22.7127454826315

 49 0.57588570941779E-15 22.7127454826316

 50 0.57693091994436E-15 22.7127454826317

 51 0.57276400822640E-15 22.7127454826316

 52 0.57703284240136E-15 22.7127454826318

 53 0.57503199475455E-15 22.7127454826316

 54 0.57605692609382E-15 22.7127454826317

 55 0.57539360462044E-15 22.7127454826317

 56 0.57685337146103E-15 22.7127454826317

 57 0.57678312016558E-15 22.7127454826318

 58 0.57295403745889E-15 22.7127454826317

 59 0.56607975123872E-15 22.7127454826317

 60 0.56355991533483E-15 22.7127454826318

 61 0.56893759583559E-15 22.7127454826318

 62 0.57020409279203E-15 22.7127454826318

 40

 63 0.56325761140624E-15 22.7127454826317

 64 0.56820850502029E-15 22.7127454826318

 65 0.56776003788522E-15 22.7127454826317

 66 0.56899540556826E-15 22.7127454826317

 67 0.56801610048611E-15 22.7127454826317

 68 0.56636836583971E-15 22.7127454826317

 69 0.56592767005805E-15 22.7127454826317

 70 0.55954678746835E-15 22.7127454826317

 71 0.56651782063012E-15 22.7127454826317

 72 0.56570323464977E-15 22.7127454826316

 73 0.56447181225459E-15 22.7127454826317

 74 0.56170922419328E-15 22.7127454826317

 75 0.56106180093612E-15 22.7127454826318

 Benchmark completed

 VERIFICATION SUCCESSFUL

 Zeta is 0.227127454826E+02

 Error is 0.347251034577E-13

 CG Benchmark Completed.

 Class = B

 Size = 75000

 Iterations = 75

 41

 Time in seconds = 145.25

 Total processes = 64

 Compiled procs = 64

 Mop/s total = 376.64

 Mop/s/process = 5.89

 Operation type = floating point

 Verification = SUCCESSFUL

 Version = 3.1

 Compile date = 10 Nov 2004

 Compile options:

 MPIF77 = $(CPtop)/bin/f77

 FLINK = $(CPtop)/bin/f77

 FMPI_LIB = -lfmpi -lmpi

 FMPI_INC = (none)

 FFLAGS = (none)

 FLINKFLAGS = (none)

 RAND = randi8

 Please send the results of this run to:

 NPB Development Team

 42

 Internet: npb@nas.nasa.gov

 If email is not available, send this to:

 MS T27A-1

 NASA Ames Research Center

 Moffett Field, CA 94035-1000

 Fax: 650-604-3957

 43

Appendix D

Begin of Summary section.

VersionMajor=1

VersionMinor=0

VersionMicro=0

VersionRelease=b

LANG=C

Success=1

sizeof_char=1

sizeof_short=2

sizeof_int=4

sizeof_long=8

sizeof_void_ptr=8

sizeof_size_t=8

sizeof_float=4

sizeof_double=8

sizeof_s64Int=8

sizeof_u64Int=8

CommWorldProcs=1

MPI_Wtick=1.000000e-07

HPL_Tflops=0.00256814

HPL_time=16.6232

 44

HPL_eps=1.11022e-16

HPL_RnormI=1.18972e-11

HPL_Anorm1=1036.81

HPL_AnormI=1030.27

HPL_Xnorm1=4331.44

HPL_XnormI=4.79451

HPL_N=4000

HPL_NB=80

HPL_nprow=1

HPL_npcol=1

HPL_depth=1

HPL_nbdiv=2

HPL_nbmin=4

HPL_cpfact=R

HPL_crfact=C

HPL_ctop=1

HPL_order=R

HPL_dMACH_EPS=1.110223e-16

HPL_dMACH_SFMIN=2.225074e-308

HPL_dMACH_BASE=2.000000e+00

HPL_dMACH_PREC=2.220446e-16

HPL_dMACH_MLEN=5.300000e+01

HPL_dMACH_RND=1.000000e+00

 45

HPL_dMACH_EMIN=-1.021000e+03

HPL_dMACH_RMIN=2.225074e-308

HPL_dMACH_EMAX=1.024000e+03

HPL_dMACH_RMAX=1.797693e+308

HPL_sMACH_EPS=5.960464e-08

HPL_sMACH_SFMIN=1.175494e-38

HPL_sMACH_BASE=2.000000e+00

HPL_sMACH_PREC=1.192093e-07

HPL_sMACH_MLEN=2.400000e+01

HPL_sMACH_RND=1.000000e+00

HPL_sMACH_EMIN=-1.250000e+02

HPL_sMACH_RMIN=1.175494e-38

HPL_sMACH_EMAX=1.280000e+02

HPL_sMACH_RMAX=3.402823e+38

dweps=1.110223e-16

sweps=5.960464e-08

HPLMaxProcs=1

HPLMinProcs=1

DGEMM_N=2000

StarDGEMM_Gflops=3.8561

SingleDGEMM_Gflops=3.88734

PTRANS_GBs=0.353082

PTRANS_time=0.0906304

 46

PTRANS_residual=0

PTRANS_n=2000

PTRANS_nb=80

PTRANS_nprow=1

PTRANS_npcol=1

MPIRandomAccess_N=8388608

MPIRandomAccess_time=10.3096

MPIRandomAccess_CheckTime=2.16439

MPIRandomAccess_Errors=0

MPIRandomAccess_ErrorsFraction=0

MPIRandomAccess_ExeUpdates=33554432

MPIRandomAccess_GUPs=0.00325468

MPIRandomAccess_TimeBound=60

RandomAccess_N=8388608

StarRandomAccess_GUPs=0.0174565

SingleRandomAccess_GUPs=0.0174559

STREAM_VectorSize=5333333

STREAM_Threads=1

StarSTREAM_Copy=4.14207

StarSTREAM_Scale=2.44942

StarSTREAM_Add=2.67901

StarSTREAM_Triad=2.28045

SingleSTREAM_Copy=4.14207

 47

SingleSTREAM_Scale=2.44942

SingleSTREAM_Add=2.67918

SingleSTREAM_Triad=2.28045

FFT_N=2097152

StarFFT_Gflops=0.541913

SingleFFT_Gflops=0.542553

MPIFFT_N=1048576

MPIFFT_Gflops=0.348073

MPIFFT_maxErr=1.47582e-15

MaxPingPongLatency_usec=0

RandomlyOrderedRingLatency_usec=1.33732

MinPingPongBandwidth_GBytes=1e+90

NaturallyOrderedRingBandwidth_GBytes=1.09809

RandomlyOrderedRingBandwidth_GBytes=1.09885

MinPingPongLatency_usec=1e+105

AvgPingPongLatency_usec=0

MaxPingPongBandwidth_GBytes=0

AvgPingPongBandwidth_GBytes=0

NaturallyOrderedRingLatency_usec=1.32

FFTEnblk=16

FFTEnp=8

FFTEl2size=1048576

M_OPENMP=-1

 48

omp_get_num_threads=0

omp_get_max_threads=0

omp_get_num_procs=0

MemProc=-1

MemSpec=-1

MemVal=-1

MPIFFT_time0=1.2e-06

MPIFFT_time1=0.0359416

MPIFFT_time2=0.0617188

MPIFFT_time3=0.0182264

MPIFFT_time4=0.129112

MPIFFT_time5=0.0388648

MPIFFT_time6=1.4e-06

End of Summary section.

Appendix E

Start

Name of
file
t d

End
of

“Named file”

Read
next

N

Y

Calculate mean
Time and

MOps
For each

Class size and
of processors

Store data
In internal
Array list

Write
Mean times

Write
Mean MOps

Calculate St.
dev.

Time and
MOps

For each
Class size and

Write
St. dev. times

Write
St. dev. MOps

Data Progression of

End

 49

 50

Appendix F

import java.util.*; // allows use of arraylists and Math functions

import java.lang.*; // allows use of wrapper classes

public class AiSC2{

 private static ArrayList all;

 public static void main(String[] args){

 int maxProcs=9;

 boolean hpc=false;

 Input in=new Input();

 System.out.println("what file should I analyse?");

 String f=in.readWord();

 if(f.indexOf("HPC")>=0){

 maxProcs=16;

 hpc=true;

 readFromHPC(f);

 }

 else{

 readFromNAS(f);

 } // holds all NAS objects

 double[][][] mean =new double[5][maxProcs][2];

 51

/*[order(0=s,1=a,etc...)] [#of nodes (2^thisValue)] [0=time,1=mop/s] */

 for(int o=0;o<5;o++){ // order

 for(int n=0;n<maxProcs;n++){ //nodes used = 2^n

 double totalTime=0;

 double totalMops=0;

 int numberFound=1;

 for(int c=0;c<all.size();c++){ // search the array for qualities

 NAS now =new NAS((NAS)all.get(c));

 if(now.getOrderInt()==o && now.getProcs()==Math.pow(2,n) && !hpc){

 totalTime+=now.getTime();

 totalMops+=now.getMops();

 numberFound++;

 }

 else{

 if(now.getOrderInt()==o && now.getProcs()==Math.pow(n,2)){

 totalTime+=now.getTime();

 totalMops+=now.getMops();

 numberFound++;

 }

 }

 }

 if(numberFound!=0){

 mean[o][n][0]=totalTime/numberFound;

 52

 mean[o][n][1]=totalMops/numberFound;

 }

 }

 }

 double[][][] varience =new double[5][maxProcs][2];

/*[order(0=s,1=a,etc...)] [#of nodes (2^thisValue)] [0=time,1=mop/s] */

 for(int o=0;o<5;o++){ // order

 for(int n=0;n<maxProcs;n++){ //nodes used = 2^n

 double varTime=0;

 double varMops=0;

 int numberFound=1;

 for(int c=0;c<all.size();c++){ // search the array for qualities

 NAS now =new NAS((NAS)all.get(c));

 if(now.getOrderInt()==o && now.getProcs()==Math.pow(2,n) && !hpc){

 varTime+=(Math.pow(now.getTime()-mean[o][n][0],2));

 varMops+=(Math.pow(now.getTime()-mean[o][n][1],2));

 numberFound++;

 }

 else{

 if(now.getOrderInt()==o && now.getProcs()==Math.pow(n,2)){

 varTime+=(Math.pow(now.getTime()-mean[o][n][0],2));

 varMops+=(Math.pow(now.getTime()-mean[o][n][1],2));

 53

 numberFound++;

 }

 }

 }

 if(numberFound!=0){

 varience[o][n][0]=Math.pow(varTime/numberFound,0.5);

 varience[o][n][1]=Math.pow(varMops/numberFound,0.5);

 }

 }

 }

 double[][][] deviation =new double[5][maxProcs][2];

/*[order(0=s,1=a,etc...)] [#of nodes (2^thisValue)] [0=time,1=mop/s] */

 for(int o=0;o<5;o++){ // order

 for(int n=0;n<maxProcs;n++){ //nodes used = 2^n

 for(int ToM=0;ToM<2;ToM++){ // Time or Mop/s

 deviation[o][n][ToM]=varience[o][n][ToM];

 }

 }

 }

 CSPrintWriter outMeanTime =new CSPrintWriter(f+"-MeanTime.csv");

 CSPrintWriter outVarTime =new CSPrintWriter(f+"-VarTime.csv");

 CSPrintWriter outDevTime =new CSPrintWriter(f+"-StDevTime.csv");

 54

 CSPrintWriter outMeanMops =new CSPrintWriter(f+"-MeanMops.csv");

 CSPrintWriter outVarMops =new CSPrintWriter(f+"-VarMops.csv");

 CSPrintWriter outDevMops =new CSPrintWriter(f+"-StDevMops.csv");

 for(int chooser=0;chooser<3;chooser++){ // chooser decides

which

file to print to

 for(int o=0;o<5;o++){ // order

 for(int n=0;n<maxProcs;n++){ //nodes used = 2^n

 switch(chooser){

 case 0:

 outMeanTime.print(mean[o][n][0]+",");

 outMeanMops.print(mean[o][n][1]+",");

 break;

 case 1:

 outVarTime.print(varience[o][n][0]+",");

 outVarMops.print(varience[o][n][1]+",");

 break;

 case 2:

 outDevTime.print(deviation[o][n][0]+",");

 outDevMops.print(deviation[o][n][1]+",");

 }

 }

 55

 outMeanTime.println(","); // starts new lines

 outVarTime.println(",");

 outDevTime.println(",");

 outMeanMops.println(","); // starts new lines

 outVarMops.println(",");

 outDevMops.println(",");

 }

 }

 outMeanTime.close();

 outVarTime.close();

 outDevTime.close();

 outMeanMops.close();

 outVarMops.close();

 outDevMops.close();

 }

 private static void readFromNAS(String file){

 Input in =new Input(file);

 all=new ArrayList();

 while(!in.eof()){ // eof = end of file

 String order=in.readWord();

 all.add(new NAS(in.readInt(),in.readDouble(),in.readInt(),in.readDouble()));

 }

 }

 56

 private static void readFromHPC(String file){

 Input in =new Input(file);

 int type= -1;

 all=new ArrayList();

 while(!in.eof()){ // eof = end of file

 String order=in.readWord();

 if(order.equals("HPL")){type=0;}

 if(order.equals("PTRANS")){type=1;}

 if(order.equals("GUPS")){type=2;}

 if(order.equals("FFT")){type=3;}

 all.add(new

NAS(true,type,in.readInt(),in.readDouble(),in.readInt(),in.readDouble()));

 }

 }

}

 57

Appendix G

import java.lang.*;

public class NAS{

 private double mops=0, time=0;

 private int procs=0, size=0, hType=0; // 0=hpl 1=ptrans 2=gups 3=fft

 private boolean hpc=false;

 NAS(){

 }

 NAS(NAS old){

 mops=old.getMops();

 time=old.getTime();

 procs=old.getProcs();

 size=old.getSize();

 hpc=old.gethpc();

 }

 NAS(boolean h,int T,int s,double t,int p,double m){

 size=s;

 time=t;

 procs=p;

 mops=m;

 hpc=h;

 hType=T;

 58

 }

 NAS(int s,double t,int p,double m){

 size=s;

 time=t;

 procs=p;

 mops=m;

 }

 public boolean gethpc(){

 return hpc;

 }

 public void sethpc(boolean h){

 hpc=h;

 }

 public int getOrderInt(){

 if(!hpc){

 switch (size){

 case 1400: //cg s

 return 0;

 case 4096: //lu s

 return 0;

 case 25: //ep s=2^n

 return 0;

 case 14000: //cg a

 59

 return 1;

 case 262144: //lu a

 return 1;

 case 29: //ep a=2^n

 return 1;

 case 75000: //cg b

 return 2;

 case 1061208: //lu b

 return 2;

 case 31: //ep b=2^n

 return 2;

 case 150000: //cg c

 return 3;

 case 4251528: //lu c

 return 3;

 case 33: //ep c=2^n

 return 3;

 case 1500000: //cg d

 return 4;

 case 67917312: //lu d

 return 4;

 case 37: //ep d=2^n

 return 4;

 60

 }

 }

 else{

 return hType;

 }

 return -1;

 }

 public double getMops(){

 return mops;

 }

 public void setMops(double m){

 mops=m;

 }

 public double getTime(){

 return time;

 }

 public void setTime(double t){

 time=t;

 }

 public int getProcs(){

 return procs;

 }

 public void setProcs(int p){

 61

 procs=p;

 }

 public int getSize(){

 return size;

 }

 public void setSize(int s){

 size=s;

 }

 }

 62

Appendix H

293.1176190476191,302.6634146341464,493.7914285714285,537.3166666666

666,0.0,0.0,0.0,0.0,0.0,,

0.0,0.0,550.1661904761904,889.0495238095239,1310.5528571428572,1985.24

66666666667,2303.7276923076925,0.0,2303.7276923076925,,

0.0,0.0,0.0,0.0,1145.9580952380954,2011.4876190476193,2646.446923076923

7,2254.25,2646.4469230769237,,

0.0,0.0,0.0,0.0,0.0,1814.2014285714288,2780.599230769231,2814.935,2780.59

9230769231,,

0.0,0.0,0.0,0.0,0.0,0.0,0.0,1125.15,0.0,,

Appendix I

Feynman 1ppn CG

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 63

Feynman 1ppn CG

Processors

Ti
m

e

Series1
Series2
Series3
Series4
Series5
Series6
Series7
Series8
Series9
Series10

 64

Feynman 1ppn EP

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Feynman 1ppn EP

Processors

Ti
m

e

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 65

Feynman 1ppn LU

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Feynman 1ppn LU

Processors

Ti
m

e

Series1
Series2
Series3
Series4
Series5
Series6
Series7
Series8
Series9
Series10

 66

Feynman 2ppn LU

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 67

Feynman 2ppn LU

Processors

Ti
m

e

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Feynman 2ppn CG

Processors

M
O

ps

Series1
Series2
Series3
Series4
Series5
Series6
Series7
Series8
Series9
Series10

 68

Feynman 2ppn CG

Processors

Ti
m

e

Series1
Series2
Series3
Series4
Series5
Series6
Series7
Series8
Series9
Series10

 69

Feynman 2ppn EP

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 70

Feynman 2ppn EP

Processors

Ti
m

e

Series1

Series2
Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 71

Spirit 1ppn LU

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Spirit 1ppn LU

Pprocessors

Ti
m

e

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 72

Spirit 1ppn EP

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 73

Spirit 1ppn EP

Processors

Ti
m

e

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Spirit 1ppn CG

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 74

Spirit 1ppn CG

Processors

Ti
m

e

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Spirit 2ppn LU

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 75

Spirit 2ppn LU

Processors

Ti
m

e

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Spirit 2ppn EP

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 76

Spirit 2ppn EP

Processors

Ti
m

e

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Spirit 2ppn CG

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 77

Spirit 2ppn CG

Processors

Ti
m

e

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Squall 1ppn CG

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 78

Squall 1ppn CG

Processors

Ti
m

e

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Squall 1ppn LU

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Squall 1ppn LU

Processors

Ti
m

e

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 79

Squall 1ppn EP

Processors

M
O

ps

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Squall 1ppn EP

Processors

Ti
m

e

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

 80

