

The Multi-Dimensional

Encryption of Data

New Mexico Adventures In
Supercomputing Challenge

Final Report
April 5, 2006

Team 005

Albuquerque Academy

Project Member:

Wesley Smalls

Sponsoring Teacher/Project Mentor:

Jim Mims

 1

Table of Contents

Executive Summary 3

Introduction 4

Description and Methods 6

Results 18

Analysis 20

Conclusions 21

Project Achievements 22

Recommendations 24

Acknowledgements and Citations 26

Appendices

 A: Report Figures (Includes flowchart and diagrams) 28

 B: CEncryption Code (Class Module, for all Encryptions) 33

 C: CProject Code (Class Module, for all Projects) 39

 D: CUser Code (Class Module, for all Users) 41

 E: EncryptionBuilder Code (.bas Module, holds two common routines) 44

 F: ProjectLoader Code (.bas Module, Loads Projects, Users, and Encryptions) 45

 G: MainMenu Pictures and Code (Form, Main Menu / Starting Form) 47

 H: NewProjectCreation Pictures and Code (Form, used to create new Projects) 49

 I: ProjectBrowser Pictures and Code (Form, used to Browse Projects) 54

 J: Encrypter Pictures and Code (Form, used to create new Encryptions) 66

K: Decrypter Pictures and Code (Form, used to view Encryptions) 69

L: ProjectMaintenance Pictures and Code (Form, used to maintain Projects) 70

M: NewUserRegistry Pictures and Code (Form, used to register new Users) 76

N: Pictures of Forms without Code 78

 2

Executive Summary

 Cryptography is an indispensable tool used around the world to protect people’s important

information. It is for this reason that countries world-wide spend billions of dollars every year

researching new encryption methods. This project attempts to display the security power of a new

Multi-Dimensional encryption routine through its ability to encrypt simple text messages into a

completely unreadable format.

In order for the program to be useful under any circumstances, the user must be able to

easily understand the interface. Also, the program required many specific built-in functions in order

to operate properly. Because these reasons, I chose Visual Basic 6.0 as my programming language.

Visual Basic 6.0’s spectacular user interfaces and natural syntax made the aesthetics simple, and

left me more time to concentrate on creating the code for the complex encryption algorithms.

The method that the program uses to encrypt the data is based on three main concepts: the

use of the “Keyword” version of the Caesar-Shift encryption method, the conversion of the data into

numbers, and the Multi-Dimensional encryption routine.

The “Keyword” version of the Caesar-Shift encryption method is one based on the original

Caesar Shift. The use of the “Keyword” version is the basis behind most large-scale encryption

routines used today due to the fact that there are an almost infinite number of possible passwords.

I chose to use the “Keyword” version because of this fact.

The method used to convert the encrypted text into a string of numbers is one of the

project’s most important routines. By converting the text into numbers, the program is able to

manipulate the data in ways that would be impossible if it were using the ASCII characters. I chose

to use this method because of its versatility and because it could be used under any circumstances.

The Multi-Dimensional encryption routine is one that utilizes a multi-dimensional array

consisting of six dimensions (Appendix A, Figure 3). The data is added to and then removed from

the array in unrelated orders. I chose to use the Multi-Dimensional encryption routine as the

backbone for the project because of the fact that it brings many powerful aspects into the overall

algorithm. These aspects include: an almost untraceable method of scrambling the data, the ability

to make many messages of differing sizes the same length, and the ability to add random data into

the end result so as to further mislead people trying to gain illegal access to the encrypted data.

The results from the program’s testing showed that the algorithm was completely effective.

It successfully converts all of the message’s data to numbers, shifts those numbers using the

Caesar-Shift method, and scrambles the numbers using the Multi-Dimensional encryption routine.

It was a major success for the Project.

 3

Introduction

 In selecting a project idea, I wanted to choose something that would present me

with a challenge. I eventually chose to research cryptography because of its uses in home

and business security and, in the end, I chose to create a program that could encrypt a

message into a completely unreadable format. Hopefully, this program will be the

forerunner to various, more advanced encryption routines that will help to both ensure

security on the highest level, and increase our understanding of new encryption methods.

 By using this program, notes, messages, and entire papers can be successfully

encrypted with relative ease. However, because of the resource-intensive nature of the

encryption routine the program uses, extremely long messages can often take some time

to encrypt. Because of this reason, a supercomputer’s resources and speed would be

required to fully demonstrate the program’s usefulness and ability, making the project very

appropriate for the AiS Challenge.

 There are many different types of encryption schemes known today, the most

common being “Shifts” and “Scrambles”. Shifts are both easy to use and simple to

compute. Scramble methods on the other hand, are more difficult to compute because of

the fact that the program must be able to move freely among the string being encrypted.

However, Scramble methods are much more difficult to crack, and so therefore desirable

in encryption routines. Because both of these were fairly easy to compute, I decided to

implement both of them into the encryption routine.

Shift ciphers are methods that relate characters such as letters to arbitrary

numbers, and then “shift” the characters up by a certain number, producing a new

character. The most common type of Shift cipher is the Caesar Shift method. In the Caesar

Shift, letters of the alphabet are assigned to the numbers 1 through 26 so that: a = 1,

b = 2, c = 3, etc. If the letters were shifted by 3, then: a = 4, b = 5, c = 6, and so on. All the

encryption routine would have to do then is substitute in the letter corresponding to the

shifted number. In this case, the conversion would go as follows: a = 1, 1 + 3 = 4, and

4 = d.

 4

 Scrambling methods tend to be more complex than simple Shift methods. For

instance, in a “Rail Fence” scramble, a new message is created by taking, in turn, every

other letter in the original message and adding it to the end of the new message. An

example of this would be the message “In the closet.” The scrambled version would be

“I h lstntecoe.” As you can see, it is quite confusing, and therefore very useful in encryption

methods and routines.

 Though “Shifts” and “Scrambles” seem almost laughably easy for a computer to

decrypt when they are used on their own, with the right combination of the two types of

methods, an almost unbreakable code can be achieved. In an attempt to create one of

these “perfect” codes, the encryption routine developed in this project was made to use

both the “Keyword” version of the Caesar Shift method and a Multi-Dimensional encryption

Routine. The routine was then augmented by the addition of a routine that manipulates

and changes the data by converting it to numbers and systematically changing the

numbers’ values.

 5

Description and Methods

 This program strives to make full use of three different methods in an attempt to

create an unbreakable encryption. These methods are: the “Keyword” version of the Caesar

Shift method, a Multi-Dimensional encryption routine, and the manipulation of data

through the process of converting that data into numbers and changing the numbers’

values. In my originally simplified program, each method was used to create a separate

type of encrypted file. I used this program to perfect each of the methods to the point

where they could be successfully combined to achieve my goals.

 During my research, I found that the order in which I implemented each algorithm in

conjunction with the others was very important. After consulting my mentor, Jim Mims, I

decided that the best method to use to create the correct algorithm was to try all of the

different possible combinations until I came up with the best fit choice.

 Before starting on the application, I had to select a programming language. After

reviewing the different languages and what it was I wanted to accomplish, I chose Visual

Basic 6.0. As the name suggests, it is very visually and interface oriented which was very

important to the outcome of the program. Also, the natural-language syntax made it

considerably easier to write the complex code than it would have been in other languages.

These properties allowed me to easily create an interface that is both user-friendly and

aesthetically pleasing, while being able to spend most of my time working on the many

complex algorithms involved. For a simpler, more concise view of my algorithm and

general approach, see the flowchart in Appendix A, Figure 1.

 In order to have the program be able to effectively manipulate all of the encrypted

messages, I had to create an interface and program structure that was heavily object

oriented. Object Oriented Programming, or OOP, is a method of programming that utilizes

“objects” of a “class” and then manipulates these objects for the user’s purpose. The

reason that OOP is so useful in this project is because the program needs to be able to

manipulate each encrypted message separately. To do this, all of the encrypted messages

must be uniform and possess all of the same properties. Also, the program can be easily

expanded upon by adding additional properties or methods to the class. In these ways,

OOP helps to increase the efficiency and functionality of the program.

 6

In my original prototype program, I focused on the development of each method

separately. In the prototype, each method was used to create separate encryptions that

would be compared to expected results obtained from research. At the end of this “testing”

phase, all three separate algorithms would me melded into one large algorithm.

 The first method to be perfected was the “Keyword” version of the Caesar Shift

method. The original Caesar Shift Method, or CSM, is a simple monalphabetic shift method

that uses the arbitrary value of a single letter (or simply a number) to shift the values of all

the letters in any given message up or down and uses the letters corresponding to the new

values to create the ciphertext (encrypted text). Although the CSM has been used for

centuries and is still used today, it is a very simple method of encryption and so easily

decrypted. However, the “Keyword” version of the CSM is a much more complex method. It

is implemented in much the same way as the original CSM, but instead of using a single

letter to encrypt a message, it sequentially uses the individual values of the letters in the

Keyword (password) to shift corresponding letters in the plaintext (un-encrypted text) so as

to create the ciphertext. In this way, depending on the lengths of the plaintext and the

password, there is essentially no limit to the number of possible combinations.

 The next method to be adapted for use in my program was the manipulation of data

by converting it to numbers and systematically changing the numbers’ values. There were

many different ways that I could have gone about implementing this method. However

after reviewing the pros and cons of many different types, I chose to use a method that

treated the numbers as strings so that the program could manipulate them both as

numbers and as strings. The method creates a fixed length string (4 characters long) and

assigns the product of the value of a letter and an arbitrary number to the string. After

completing this, zeros are added to the front of the string (so the value doesn’t change)

until the total character count of the string equals 4, and the string is reversed. By using

this method, the original value of the letter can be hidden very effectively.

 The third and final method that I used was the Multi-Dimensional Encryption

Routine, or MDER. This routine is definitely the most important part of the program. It

creates an array consisting of six dimensions and uses the array to scramble the plaintext.

Each character in the plaintext is sequentially added to the elements of the array. This is

accomplished by adding a character of the plaintext to one set of coordinates in the array,

changing one of the coordinates, and then adding the next character to the new

 7

coordinates. The algorithm continues in this way until the entire plaintext is contained

within the array. Because of the fact that there are usually empty spaces left in the array,

these empty spaces are then filled with random data. When the array is completely full,

the data is removed in much the same way as it was entered into the array. The only

difference is that the starting coordinates and the order in which the coordinates are

changed are different from the way in which the data was entered into the array.

 Because I designed the program for use with multiple people, I based the interface

and program structure around maximum security. However, because of the increasing

complexity of the program, it became clear to me that it would need a certain, pre-runtime-

created folder and file structure in order to be able to operate correctly. It was because of

this that I decided to create a simple installer; a support program that would create this

folder and file structure in a directory decided upon by the user. Because I decided to build

the program around a maximum security model, I created three different classes: CUsers,

CProjects, and CEncryptions. Each class has a set of properties that are used in

identification and security. I also decided to create two BASIC modules: ProjectLoader and

EncryptionBuilder. ProjectLoader contains Procedures used to extract information about

Users, Projects, and Encryptions from their corresponding files. EncryptionBuilder contains

two Procedures that are used to encrypt and decrypt the properties of Projects and

Encryptions.

CUsers is the class that deals with different user profiles. Before a person can use

the program, they must register a user-name and password with the program so that it can

create their user-profile. This is done so that only registered users can use the program.

CUsers contains several properties: Name (the property that holds the user’s name),

Password (used to hold the user’s password), Encryption (holds the contents of the

encrypted file that stores the user’s profile), EntryAttempts (holds the number of times the

user has entered the wrong password; Used to decide if someone is attempting to illegally

use the user’s account), and LockedOut (used to determine if the user can use the

program). These properties are used by the program’s driving routines in order to allow the

user to interface with the program correctly and securely.

The two Procedures (Sub Procedures) in CUser are Encrypt and Decrypt. Encrypt is

used to create a ciphertext containing the user’s password. This ciphertext is created with

 8

the user’s name as the “password” for the encryption. The Full Encryption Routine, or FER,

which is described in the CEncryption Class, is the routine used. After Encrypt has created

the ciphertext, it stores it in a file created for the user. Decrypt is the routine that decrypts

the ciphertext stored in the user’s file and assigns the decrypted plaintext (the user’s

password) to the Password property of the user’s user-profile. Decrypt uses the Full

Encryption Routine Decrypter, or FERD, to decrypt the plaintext. The FERD will also be

discussed in the CEncryption Class.

CProject is the class that deals with all of the users’ projects. Objects of CProject,

called Projects, can be thought of as the folders that hold all of a user’s important

documents (Encryptions). A project must be created by a registered user and has three

modes: Public, Limited, and Private. In Public mode, any user with the project’s password

can access it. In Limited mode, only certain, pre-registered users who know the project’s

password can access it. In Private mode, only the user who created the project can use it.

Projects have several properties: Name (holds the project’s name), Password1 (holds the

project’s first password), Password2 (holds the project’s second optional password), EType

(holds the project’s current mode), CreationDate (when the project was created), EDate

(when the project was last edited), ENumber (used in the number manipulation of the FER),

Owner (holds the name of the user that created the project), Status (states whether the

project is open or closed), and Encryption (holds the ciphertext of the file that stores the

project). These properties are used by the program to assist with the user-interface as well

as with the program’s overall security level.

CProject’s Procedures are: Encrypt, SmallEncrypter, and Decrypt. Encrypt is the

Procedure that is called when the project is being created and/or edited. It sets the

project’s EDate property to the current date and time (separated by a space) and creates

the proper folder and file structure for the project in the program’s installation directory.

After it has done all of this, it calls SmallEncrypter.

SmallEncrypter is what actually encrypts the project’s data. SmallEncrypter creates

two fixed length strings of 4 characters each: L and Temp. It then sets the project’s

Encryption property to empty, and sets the ENumber property to a randomly generated

integer from 1 to 39. After that, it sets the values of two variables in the BASIC module (a

code module that is public and can be accessed from any form or class) EncryptionBuilder:

 9

ENumber and Pass, to the values of the project’s ENumber property and Owner property

respectively. After performing these preliminary steps, SmallEncrypter then begins to

encrypt each of the project’s properties. It does this by setting the fixed length string

variable L to the length of the property and passing L to the public function LengthCheck.

LengthCheck takes the string passed to it, and adds zeros to the beginning of the string

until it is exactly 4 characters in length. Upon L’s return from the LengthCheck function,

SmallEncrypter sets the value of a variable in EncryptionBuilder, EncypteeLen, to the value

of L. L is then passed to the built-in function StrReverse. StrReverse reverses the order of

the characters in the string passed to it. For example, if you passed the string “Cat” to

StrReverse, it would return the string “taC”. When L is passed back from StrReverse, it is

added to the project’s Encryption property. SmallEncrypter then sets the value of

EncryptionBuilder’s variable, Encryptee, to the value of the property being encrypted and

calls EncryptionBuilder’s Encrypt Procedure. EncryptionBuilder’s Encrypt Procedure is like

the FER except for the fact that it doesn’t implement the MDER in its algorithm. The MDER

was removed from EncryptionBuilder’s Encrypt Procedure because the Encrypt Procedure

is also used by the CEncryption class; if it were included, the properties would be

indistinguishable from the encrypted ciphertext and the Decrypt routine would be unable to

successfully decrypt it. EncryptionBuilder’s Encrypt Procedure assigns the ciphertext to the

public variable Encryptee. After SmallEncrypter calls EncryptionBuilder’s Encrypt

Procedure, it adds EncryptionBuilder’s Encryptee variable to the end of the project’s

Encryption property. SmallEncrypter applies this method of encryption to the following

properties in their respective order: CreationDate, EDate, EType, Password1, Password2,

and Status. It then passes the project’s ENumber property to the LengthCheck function,

and sets the value of the fixed length string variable Temp to the returned value.

SmallEncrypter’s last step is to add Temp to the end of the Encryption property and write

the Encryption property to the project’s file for storage.

The last Procedure in the CProject Class is the Decrypt Procedure. The Decrypt

Procedure is essentially the reverse of the Encrypt procedure and is called only when the

project’s Encryption property has the project’s ciphertext in it. Decrypt uses no local

variables at all, but instead relies on many interwoven functions to assign values from the

ciphertext to the project’s properties. Decrypt’s first step is to set the project’s ENumber

property to the integer value of the right 4 numbers of the Encryption property and then

 10

remove these four numbers from the right of the Encryption property. Decrypt then sets

EncryptionBuilder’s variables: ENumber and Pass to the values of the projects ENumber

and Owner properties respectively. After performing these preliminary steps, Decrypt

begins to decrypt the ciphertext (the Encryption property) into the project’s properties.

Decrypt’s first step in decrypting the actual ciphertext into the individual properties

is to pass the left 4 numbers in the ciphertext to the StrReverse function, and assigning the

integer value of what is passed back to EncryptionBuilder’s EncrypteeLen variable. Decrypt

then removes those four numbers from the beginning of the ciphertext and sets

EncryptionBuilder’s Encryptee variable to the remainder of the ciphertext. The four

numbers that were removed represent the length of the property that is next in line in the

ciphertext. Because of this, Decrypt can then remove a number of characters from the

ciphertext equal to the product of the value of those four numbers and the number 4. In so

doing, Decrypt removes that portion of the ciphertext and is then able to move on to the

rest of the ciphertext. Decrypt then calls EncryptionBuilder’s Decrypt Procedure, which will

decrypt the EncryptionBuilder’s Encryptee variable using the opposite algorithm as its

Encrypt Procedure in order to produce the project’s property. Decrypt then assigns the

project’s corresponding property to EncryptionBuilder’s Encryptee variable (now the

decrypted plaintext). Decrypt uses this method to decrypt all of the following properties in

their respective orders: CreationDate, EDate, EType, Password1, Password2, and Status.

The final class used in this project is CEncryption. CEncryption is the class that deals

with all of the individual encryptions. Objects of CEncryption, Encryptions, can be thought of

as the important documents that go into users’ folders (Projects). An encryption can only

be created from within a project, and so only by a registered user. Encryptions have several

properties: Name (holds the encryption’s name), ProjectName (holds the name of the

encryption’s containing project), ProjectOwner (holds the name of the encryption’s

containing project’s owner), Password (holds the encryption’s Password), BackupPassword

(holds the encryption’s randomly generated backup password), CreationDate (when the

encryption was created), EDate (when the encryption was last edited), ENumber (used in

the number manipulation of the FER), Encryption (holds the ciphertext of the file that

stores the Encryption), EScript (holds the plaintext; used in the FER), and Status (states

 11

whether the Encryption is locked or unlocked). These properties are used by the program to

assist with the user-interface as well as with the program’s overall security level.

CEncryption’s procedures are: EncryptScript EncryptData, PassCreator, Scramble,

Writer, Recorder, SmallRecorder, DecryptScript, DecryptData, EncryptionUnlock, and

Placer. EncryptScript, EncryptData, PassCreator, Scramble, Writer, and Recorder make up

the FER while DecryptScript, DecryptData, EncryptionUnlock, and Placer make up the

FERD. EncryptScript is the Procedure that is called when the Encryption is being created or

when the user makes a direct change to the encrypted message and is responsible for

calling many of the other Procedures in CEncryption (the Procedures that make up the

FER). It sets the Encryption’s ENumber property to a randomly generated integer value

between 0 and 39. It then creates a randomly generated backup password of a randomly

generated length of up to 30 characters. After doing this, EncryptScript calls the

Procedures: EncryptData, PassCreator, Scramble, Writer, and Recorder. Between calls to

CEncryption’s other Procedures EncryptScript updates progress bars and certain labels on

the Encrypter and Decrypter forms in order to keep the user informed of the Procedure’s

current process.

The Procedure EncryptData can be best described as a clone of CProject’s

SmallEncrypter Procedure as it only deals with the encryption of the Encryption’s

properties. However, there are some differences. For instance, unlike CProject’s

SmallEncrypter, EncryptData does not use the fixed length string variable Temp.

EncryptData’s first step is to set the Encryption’s EDate property to the current date and the

current time (separated by a space). It then assigns the Encryption’s ENumber property’s

value to EncryptionBuilder’s variables ENumber and Pass and sets them to the

Encryptions’s ENumber property and ProjectName and ProjectOwner (separated by a

space) properties respectively. From there EncryptData encrypts all of the Encryption’s

properties in exactly the same way as CProject’s SmallEncrypter.

PassCreator is a fairly minor Procedure. It is used to create the Multi-Dimensional

array by calculating the smallest number that when raised to the sixth power is greater

than the length of the plaintext. It then ReDims a dynamic array of type String called

EncryptionArray with six dimensions, each with a number of elements equal to the

“smallest number” referred to earlier in this paragraph. EncryptionArray is used to hold the

 12

plaintext/ciphertext during the encryption process. PassCreator’s final step is to assign the

public variable EncryptionNum the value of the “smallest number”.

Unlike PassCreator, Scramble is one of the more important (not to mention large)

Procedures in CEncryption. Scramble is responsible for assigning the plaintext to the

elements of EncryptionArray and then implementing the CSM and Number Manipulation

Routine, or NMR. Scramble uses several Long type variables: i, e, f, g, x, y, z, and n. Of

these, six (i, e, f, g, x, and y) are used to represent the coordinates within EncryptionArray,

while the other two (n and z) are used as counter variables. Scramble also uses a string

variable called Pass which represents the password being used for the encryption and a

fixed length string of length 4 characters called Letter that is directly used in the

encryption. There are also two variables of type Double called Num1 and Num2 which are

used to keep track of the Encryption’s progress and update the progress bars on the

Encrypter and Decrypter forms. Scramble’s first step is to set Num1 equal to the quotient

of 50 (representing 50% of the Encryption’s progress, the other 50% is covered in the

second For Loop of Writer) over the value of EncryptionNum squared. This is done in order

to create a highly exact interval by which to increment the progress bars. Scramble’s next

step is to decide upon the password that it will use in the encryption process. If the

Encryption has a valid user-made password (it is optional), then Pass is assigned the

Encryption’s Password property, otherwise Pass is assigned the value of the randomly

generated BackupPassword property. The remaining code in Scramble is made up of six

nested (within each other) For Loops (looping structures based whose terminating

condition is the value of a numerical variable). Each For Loop’s counting variable

represents one of the coordinate slots for Encryption Array. All of the Loops’ counting

variables are set to 0 and all of their terminating points are set to one less than Encryption

Num (because of the offset in numbers created when Dimensioning an Array). Each of the

Loops will count in increments of 1 from 0 to their terminating points. Each time a Loop

runs through its internal code (the code contained within the Loop structure), the counting

variable for the Loop within it is set to equal 0 so that the coordinates can be reset to an

empty element of EncryptionArray after each pass-over.

The second nested Loop contains code that adds the value of Num1 to the Value of

Num2, and then assigns the Num2’s value to the Value property of the progress bars on

 13

the Encrypter and Decrypter forms. This segment of code is done to keep the user informed

of the Encryption’s progress.

The sixth nested Loop is the Loop containing the CSM and NMR code. It selects a

character from the plaintext and assigns the value of the product of that character’s ASCII

number and the Encryption’s ENumber property to Letter. The ASCII value of a character

from Pass is then added to the value of Letter and the total is then passed to the

LengthCheck function and the returned string is then assigned to Letter. Letter is then

assigned to the element of EncryptionArray that the coordinates currently point to. After

each cycle of the Loop, the next characters of the plaintext and Pass are selected.

 CEncryption’s next Procedure is Writer. Like the relationship between EncryptData

and CProject’s SmallEncrypter, Writer is essentially a clone of scramble. However, Writer’s

nested loops are arranged in a different order than Scramble’s (the reverse order to be

precise). The changed order is done so that the data can be removed from the array in a

different order from that which it was entered. However, despite what seems rather

obvious from simply reversing the order, this does not produce a reversed plaintext, but

instead shuffles the original message beyond recognition. In all reality, the only difference

between Scramble and Writer is the fact that Writer does not deal with the CSM, but

focuses more on the NMR. In Writer’s sixth For Loop all of EncryptionArray’s empty

elements are filled with random numbers that the computer will disregard upon

decryption. These random numbers range from the product (the highest number attainable

for the ciphertext) of the Encryption’s ENumber property and 255 (the total number of

characters in the ASCII table), through 9999. All of the elements are then reversed using

the StrReverse function and added to the end of the Encryption’s Encryption property.

Finally, ENumber is passed to the LengthCheck function and the returned value is added to

the end of the ciphertext (Encryption property).

 Recorder is the next Procedure in CEncryption. Recorder is used to create the

Encryption’s file and write the Encryption property (the ciphertext) to it. Other than that,

Recorder adds the Encryption’s name to the its containing Project’s Encryption Registry file

so that it will be loaded the next time the program is run.

 SmallRecorder is used by the program to save changes to the Encryption’s

properties. It was created as a shortcut around the time and resource-consuming

EncryptScript Procedure. SmallRecorder is only used after the encryption is made and so

 14

only has to add the pre-encrypted EScript property to the end of the pre-compiled

Encryption property (the program will always call the EncryptData Procedure before calling

SmallRecorder) and then call Recorder.

 The four remaining Procedures in CEncryption are: DecryptScript, DecryptData,

EncryptionUnlock, and Placer. All four of these procedures make up the FERD

 DecryptScript can be thought of as the reverse of EncryptScript. It is very simple,

containing only two Procedure Calls, the rest of its code being oriented toward the user

interface. The two calls are to EncryptUnlock and Placer respectively.

 DecryptData is very closely related to CProject’s Decrypt Procedure. It sets the

ENumber property equal to the value of the last four numbers of the Encryption property,

and then removes the four numbers from the ciphertext (Encryption property). It then sets

EncryptionBuilder’s ENumber and Pass variables to the encryptions ENumber Property and

the ProjectName and ProjectOwner (separated by a space) properties. From there on

DecryptData decrypts most of the Encryption property into the following properties in their

respective orders: BackupPassword, CreationDate, EDate, Name, Password, and Status.

The EScript property is then set to equal the remainder of the Encryption property.

 EncryptionUnlock is closely related to Writer in that it also utilizes six For Loops in

order to access EncryptionArray. However, it is also related to Scramble in that it assigns

data to the elements of EncryptionArray. EncryptionUnlock essentially has the reverse of

PassCreator built into its first lines of code. It assigns EncryptionNum the value of the

smallest number who when raised to the sixth power is equal to the length of the

ciphertext divided by 4 (the ciphertext, EScript, is made up of numbers and is 4 times as

long as the decrypted plaintext). It then ReDimensions EncryptionArray to fit the plaintext.

From there on the six For Loops are used to assign the ciphertext to EncryptionArray.

 Like the second For Loops in Scramble and Writer, the second For Loop in

EncryptionUnlock uses the Num1 and Num2 variables to constantly update the progress

bar on the Decrypter form in order to keep the user informed of the Encryption’s progress.

The second Loop in EncryptionUnlock deals with the first 50%, and the second Loop in

Placer deals with the last 50%.

 The sixth Loop in EncryptionUnlock is very simple. It reverses all of EncryptionArray’s

element’s values, and if they are deemed to be random data, the element is emptied. The

element’s value is deemed random by whether or not it is greater than the product (the

 15

highest number attainable for the ciphertext) of the Encryption’s ENumber property and

255. If it is found to be higher, it is deemed random.

 CEncryption’s final Procedure is called Placer. Placer is closely related to both Writer

as it deals with the removal of data from EncryptionArray’s elements, and to Scramble, in

that they deal with the CSM and the order of their For Loops are the same. Like in

Scramble, Placer decides what its Pass variable will be depending on the Encryption’s

Password property. After Pass is decided upon, Placer’s remaining code is composed of the

six For Loops.

 The second Loop, just as in Scramble, Writer, and EncryptionUnlock, is used mainly

to update the progress bar on the Decrypter form in order to keep the user informed of the

Encryption’s progress. This particular Loop deals with the last 50% of the bar.

 Placer’s sixth Loop deals with the last steps of the FERD. It subtracts the ASCII value

of a character in Pass from the current element of EncryptionArray, and then divides the

remaining value by the Encryption’s ENumber property. The value of the element of

EncryptionArray is then equal to some character in the ASCII table. The FERD’s final step is

to add that character to a textbox on the Decrypter form called Display.

 The BASIC modules ProjectLoader and EncryptionBuilder play an important role in

both how the program processes the various objects of CUser, CProject, and CEncryption;

and in encryption and decryption of the objects’ properties.

EncryptionBuilder contains four public variables and two sub procedures. The

variables are called Encryptee and Pass (of type String), and EncrypteeLen and ENumber

(of type Long). The Procedures are called Encrypt and Decrypt, and are essentially smaller

versions of the FER and the FERD. They are smaller because of the fact that they do not

utilize the Multi-Dimensional array in their routines. It was removed because of the fact

that the routines are used to encrypt and decrypt individual properties, and if it were

included, the resulting ciphertext would be unable to be decrypted once the program was

shut down and the objects’ plaintext properties were lost.

ProjectLoader can be thought of as one of the driving forces behind the program’s

structure. It is what imports the Users, Projects, and Encryptions from their files and

creates their corresponding objects. It then adds the objects to Collections, which are

essentially like dynamic arrays that hold objects in their elements. ProjectLoader also

 16

contains a very important string variable called Insat. When the program is run, the

MainMenu form’s Form_Load procedure opens a file on the C drive that was created by the

Installer. It then retrieves the single piece of information the file contains and assigns it to

Insat. The piece of information is the directory in which the program’s important folders

and files are located. Without Insat, The program would not be able to run because it would

not be able to find any of the user-profiles, projects, or encryptions.

The Installer (support program) that I created is very simple and is composed of

nothing more than a few procedures that create a folder and file structure that the main

program can recognize in a directory decided upon by the user. This folder and file

structure, though absolutely crucial to the main program, is relatively simple and small,

consisting of a main folder called “Saati Encryption Center” which contains two folders

called “Projects” and “Users”. Within the “Users” folder is a file called “Registered Users”

that contains the User’s encrypted file (the ciphertext of the user’s password). Within the

“Projects” folder is a file called “Projects”. This file contains the names and owners of all of

the projects created by the main program. A more detailed picture of the folder and file

structure can be found in Appendix A, Figure 2.

 17

Results

The results from normal use of the program are represented in three ways. The

primary output is through a textbox called Display on the Decrypter form. When the

program is run successfully, the fully decrypted plaintext is displayed in the textbox. The

plaintext is displayed because of the successful retrieval and decryption of the ciphertexts

corresponding to the User, the User’s Project, and the Project’s contained Encryption.

The secondary form of output for the program is in the form of the interface. After

all of the appropriate ciphertexts have been decrypted into their corresponding plaintexts,

the interface uses many of the properties of all three classes to enrich the interface

between the program and the user. For example, whether a project is open or closed is

blatantly obvious in the form of words and a colored (red or green depending on whether it

is open or closed) shape on the ProjectBrowser form. Also, properties such as the Users’

EntryAttempts property are used to inform the user how many times they have entered the

wrong password and how many tries they have left before their user-profile becomes

locked out of the program.

The program’s third form of output is through the encrypted files that it creates to

store information about all of the Users, Projects, and Encryptions. In earlier forms of the

program, the output files would be riddled with empty spaces or obviously too short for the

message that was encrypted (an early error that was solved with the introduction of the

NMR). However, in the finished program, the outputted files are all uniformly random in

appearance, and appear to be completely encrypted because of the fact that they are

essentially one long string of numbers with no obvious reference points.

 18

From my research in cryptography methods, I learned that the best encryption

would have absolutely no reference points from which to begin using the brute force

method to decrypt it.

By adapting the Procedures in EncryptionBuilder to mimic the output of the FER, I

was able to seamlessly combine the two routines’ output into a single string that had

absolutely no reference points. Because of the proper meshing of the two Routines, that

nice, even transition between their outputs was achieved. (Appendix A, Figure 4)

 19

Analysis

From the Display textbox on the Decrypter form, one can easily view the contents of

an Encryption. The results from many, many tests of the program show that there is

absolutely NO difference between the original plaintext, and the current plaintext. Also, the

outputted files all show consistency and uniformity with no gaps or prolonged occurrences

of a single digit or patter. This shows that the program is completely accurate in all of its

routines and procedures, which is a very important point to be extracted from the results.

 In addition, the program’s interface shows no imperfections or errors of any kind in

regards to the individual parts that are tied directly to the properties and procedures of the

classes, the BASIC module ProjectLoader, or the program’s driving procedures and

routines. This also verifies that the project is working perfectly.

 These positive results indicate that my program is ready to become useful to

anyone wishing to safely encrypt a message. Although I have only created a very basic

version of the FER, the outputs that I have observed from the program indicate that the

code is sound and, rather than being changed, only needs to be improved upon.

 Overall, it would appear that the outputs from the program coincide with those of

cryptologists’ theoretical knowledge. These results, though not often truly difficult to

achieve in the field of cryptography, offer hope that this encryption routine might one day

be powerful enough to use in businesses and militaries around the world. However, while

my program would be more than sufficient enough to safely encrypt anyone’s private

messages, however, there is always room for improvement.

 20

Conclusions

 There are many conclusions that I am able to draw from the results I achieved,

especially because most of the results indicate that the routines are all working properly.

One of the major conclusions that I arrived at after reviewing all of the results is that a

Multi-Dimensional encryption Routine can be successfully used in an encryption algorithm

in order to completely scramble the plaintext into an unintelligible ciphertext. I also

concluded that the “Keyword” version of the Caesar Shift method is a very versatile

encryption method that, though based on an incredibly simple principle, is still very

powerful. Another conclusion which I arrived at is that the encrypting power of an

encryption algorithm can be significantly augmented by the addition of a routine that

converts the characters of the plaintext into numbers and then arbitrarily manipulates their

values so as to create completely unrelated values. However, the greatest conclusion that I

was able to extract from the results was that the combination of a Multi-Dimensional

encryption routine, the “Keyword” version of the Caesar Shift method, and a routine for

manipulating the numbers behind the data in the plaintext can create an incredibly

powerful encryption tool that could stump even the most adept hackers.

 21

Project Achievements

 The most rewarding achievement of my project in the field of research that I chose

was the working Encryption algorithm that I was able to create. Even though the algorithm

is still in its infancy developmentally, it is suitable to use in my fairly basic program. It was

important to realize that I was trying to create an algorithm that would be the basis for

future algorithms to come. Because of this, I tried to keep the algorithm as simple as

possible while still using all three of the principle encryption methods that I chose.

 When speaking in terms of Computer Science, the project’s most important

achievements would have to be the methods by which I managed to create the FER

algorithm and that allow for easy expansion of the project. While developing the code for

the prototype program, I kept it very modularized, so as to make it easy to not only find

and trap errors, but to add to and edit the program. After I eventually created the three

classes, I continued to keep the code modularized and so continued to keep the code easy

to read and expand upon. When someone decides that they want to build upon the original

algorithm that I have created, they will be able to do so with the utmost ease and the

smallest chance of causing errors in the rest of the program. In a case such as this, where

the complexity and power of the algorithm depend only on how much time the

programmer has, this approach becomes extremely important.

 A second achievement of the project in Computer Science was the Multi-

Dimensional encryption routine. This was a routine that I came up with after being inspired

by the many different types of 2-Dimensional scrambling methods that I researched. It

forms the backbone of the program and offers unprecedented scrambling capabilities. It is

also very important because of its versatility. It can be molded to an infinites number of

 22

dimensions, and there is essentially no limit to the number of elements in the array itself,

so there would be no limit to what it could encrypt. This routine was very important, not to

mention effective.

 23

Recommendations

 Because of any encryption algorithm’s inherent volatility and tendency to become

more advanced over time, the program could have an innumerable amount of different

methods and routines added to it. Not to mention the number of properties that could be

added to the classes and used by the program to both enrich the interface and provide

even deeper layers of security. However, the more properties and routines that are

implemented, the more system resources would be taken up by the encryption routine.

Eventually, if the routine became too complex, it could cause a slower computer to crash.

So, if I, or anyone else for that matter, decide to expand upon the program, I should insert

code that would perhaps store part of the array to file so as to save on the amount of

resources that the computer would be using (Appendix A, Figure 5).

 The results that I extracted from the program’s various outputs indicate that the

code is sound, but the interface is still fairly basic. If I were allowed more time, I would

likely leave the encryption routines as they are and focus on the task of improving the user

interface. Perhaps after adding a form from which the user could change things about their

user profile, I would add the EntryAttempts and LockedOut properties to CProject and

CEncryption. The point of these properties is to prevent hackers from using the brute force

method to break into someone’s account. Currently, a user is allowed three wrong

password entries before the program locks the user out. When a user is locked out, they

simply have to restart the program and try again. This would certainly deter hackers who

were attempting to use the brute force method, but it is not a terribly strong deterrent,

actually it’s more of just a nuisance because they simply have to restart the program and

can try again. So, if I had more time, I would also expand upon those two properties so that

 24

they were included in the encrypted ciphertext for each Project and Encryption, that way, I

could use them in conjunction with the EDate property to lock a user out for a length of

time, such as an hour or even a whole day. Another approach would be to have a single

user (perhaps the first to use the program) register as the program’s administrator so that

when a User became locked out, the Administrator would be required to enter their

password in order to “unlock” the user.

 Yet another thing that I could work on would be to convert the plaintext textboxes

on the Encrypter and Decrypter forms into rich textboxes so as to allow the user a way to

encrypt a specially formatted document, such as a résumé. This would simply entail doing

some work on the user interface and the addition of some of the rich textbox’s properties

into the CEncryption Class. After that, all I would have to do is add those new properties to

CEncryption’s EncryptData and DecryptData Procedures.

 Eventually I would hope that all of this and more will be added to the program so

that the user will find it as comfortable to use as some of Microsoft’s other applications

such as Microsoft Word. However, if all of these things were to happen, then the time and

resource demands of the program would mean that everyone using it would have to be

running it on supercomputers (or at least computers more powerful than the home PCs

that I have been testing it on).

 25

Acknowledgements and Citations

 I would like to thank Jim Mims, my teacher and project mentor, for all of his time

and effort. Before the completion of this project, I might not have been able to handle such

a large program and project. Now, because of his help and guidance, I am able to do many

of things with much greater proficiency and speed. He has taught me many new ways to

approach problems and challenges that have been helpful with this project, as well as

outside of it.

 I would also like to extend thanks to Kelvin Smalls, my father. His invaluable time

and patience has helped me pull the project out of the gutter countless times. I would also

like to thank Mr. Yasuaki Nagatomo, my Shotokan Karate Sensei, whose outlook on

problem solving and on life in general was a constant inspiration for me.

 Finally, I would like to thank all of my many friends here at Albuquerque Academy

and elsewhere that supported and encouraged me throughout the entire process. I would

not have made it without them.

Citations

Books

Kippenhahn, Rudolf, CODE BREAKING A HISTORY AND EXPLORATION, Peter Mayer Publishers Inc.,

The Overlook Press, March 1999, 326 pages

Menezes, Alfred J., van Oorschot, Paul C., and Vanstone, Scott A., The Handbook of Applied

Cryptography, CRC Press, October 1996, 816 pages

Singh, Simon, THE CODE BOOK, Random House Inc., Doubleday, New York, August 2000, 432

pages

 26

Websites

Why Cryptography Is Harder Than It Looks

<http://www.schneier.com/essay-037.html>

The Cryptography Introduction and Guide

<http://www.cryptographyworld.com/ >

Computer Generated Random Numbers

< http://world.std.com/~franl/crypto/random-numbers.html>

Center For TECHNOLOGY & DEMOCRACY

< http://www.cdt.org/crypto/>

Cryptography World

< http://www.cryptographyworld.com/>

International Association for Cryptologic Research (IACR)

< http://www.iacr.org/>

RSA Laboratories

< http://www.rsasecurity.com/rsalabs/node.asp?id=2152>

Cryptography and Security

< http://theory.lcs.mit.edu/~rivest/crypto-security.html>

Quadraylay’s Cryptography Archive

< http://www.austinlinks.com/Crypto/>

Microsoft Research, Cryptography

< http://research.microsoft.com/crypto/>

Information on Cryptography

< http://www.cs.berkeley.edu/~daw/crypto.html>

 27

Appendix A: Report Figures

Continued on next page

 28

Figure 1: A simplified flowchart of the Full Encryption Routine (FER)

 29

Figure 2: A visual representation of the program’s File and Folder system. Please Note: bold type represents

a file/folder’s actual name; normal type means that the name is user generated.

 30

Figure 3: A visual representation of six dimensions and their relative “cube” structures. The sixth

dimensional “cube” represents the Multi-Dimensional array used in the program.

 31

Sample Program Input: Gettysburg Address excerpt

Four score and seven years ago our fathers brought forth on this continent, a new nation, conceived in Liberty, and dedicated to the

proposition that all men are created equal.

Program’s Output:
6300311150012583775300235892722458112052739326515910922235528370318125523390716158112070128222733372777356224572551281149051915071616

5523424677379710200159032018190319041903390159095018460319068901311320195016111139022013660725137410200159032018190319041903390159095

0184603190689013111401789061111390698036607251374171005631509106127312012215813912931262915260202178817881931209819112201260003102149

1430272228591338180007161760261027402418131025091788176313389299679604038936798811258198876815584483759129036631525373686068859127116

9655911217846227263993271618939112899076988135269238551227688128358132881836939102885355414945678547191219687719386072777825688631995

8355291258866877960123956564938634624879112479863585912508588464168117828297802159529577960894572182107757745563712847637075912036565

7976810797092838601329304979600989683651899588281991129056534677125178586526497106645678023828235930916729862815023995460993910128558

9988184375558615502164098501264381159768143959726844653790057992296464697386037358485183567840129979126760987902275689646629593970786

7960927792457802220646680915797503379881201994571012416912757091803615193712718576057091016922867286108522775912286734691102022872250

2373879867619120188633513223916222655305169117638604447242893915318200940383259954911027826128835810836794946894298587595124728583858

8167491676040949563549759114888638386085684659843684185397780246865379371246282698890617365075101289495856780286057725551212694385169

1357913851822756651690889893835865791532702283212599462478499396805993860456599181012105510943122172955471912226977787091019693680959

0199048638609035327519120767289920978559200938029999904779916948536566940537150931226729381510123945522942659916287719124528406796026

0594847033740869448386025863646399107682436591294194877101253174594358111863289929644796796780263283495399116453676721830891815309101

9543765291405687871390152552389512233910889481864636496038700678973802271686355912561821376457136928575291708991491741051835062387593

5479419121295565797914749959928574655328735811428572897606587247941388137770910124617339899808747189897607857935838607137426997608546

6565341587680227579173754939501259496756886868098966529111863797129119375219782078786846768137942837709122260397612537695307780219490

9257402677638595016311949253712179522365291925571552527822822695012823667089112085758375526913952271291529920855291229589176685229574

9651221146218734815777273572912365733759028168878510902066065800394357282758604236175759028838896859865518091634812167017898029238165

5348164956305189191452385789103066358175553657317978185942508189197787648840649261565586075288185770269652447043921157266159199493735

5860135683391257785919451090268937895191615784384947669993987612514522487012113683385191421776845122793859487702513925077777003930263

7603649441779128418687923999549197658600968693978915638851958601265297776125665110579123179983666494246745979122626058737602428613964

0867652256348196591387999127958597778980891908586056690267519127291417620687384487376081050317558138667639172776962929161257760875376

0895901287291733632193391670514569091697691275058745927559991914941677702196694269756345970561222147607569091064685753539732916491612

2626373637600148754674279618415551918598592935029855400987379629097558602239449494123386125718666946511794120168012916126858681968590

26612361522341678283760010705665907850665970018

Figure 4: Sample input and output from the program. Please note that due to the size of the input most of

the output in this example is random data created by the computer to fill the empty elements within the

array.

Largest value that a long variable can hold = 2,147,483,647

2,147,483,647 ^ 6 = 9.80797143413853 X 10 ^ 55 = maximum number of elements in the six-dimensional array.

3.45811922179568 X 10 ^ 44 Terabytes = maximum output file size from the program.

Figure 5: Miscellaneous figures about the six-dimensional array and program.

 32

Appendix B: CEncryption Code

‘Code written in Microsoft Visual Basic 6.0, line comment character is ‘

‘Property and Global variable Dimensioning

Public Name As String 'Encryption's name
Public ProjectName As String 'Name of the Encryption's project
Public ProjectOwner As String 'Name of the owner of the Encryption's project
Public Password As String 'User created password
Public BackupPassword As String 'Randomly generated backup password
Public CreationDate As String 'Date that the Encryption was created
Public EDate As String 'Date that the Encryption was last changed or edited
Public ENumber As Integer 'Used in the FER
Public Encryption As String 'stores the ciphertext while the encryption is not being used
Public EScript As String 'Stores the plaintext while the encryption is not being used
Public Status As String 'States whether the Encryption is "locked" or "Unlocked"
Dim EncryptionNum As Long 'Used in the FER
Dim EncryptionArray() As String ' The multi-dimensional array

Public Sub EncryptScript()
 Randomize
 ENumber = Int(Rnd * 38) + 1 'Creates random encryption number
 e = Int(Rnd * 30) + 1 'Sets length for Backup Password
 For i = 1 To e 'Creates random backup password
 BackupPassword = BackupPassword & Chr(Int(Rnd * 244) + 1)
 Next i
 Call EncryptData
 Call PassCreator
 If Encrypter.Visible = True Then Encrypter.Progress.Caption = "Loading Data" 'Updates progress displays
 If Decrypter.Visible = True Then Decrypter.Progress.Caption = "Loading Data" 'Ditto
 Call Scramble
 If Encrypter.Visible = True Then Encrypter.Progress.Caption = "Recording Data" 'Ditto
 If Decrypter.Visible = True Then Decrypter.Progress.Caption = "Recording Data" 'Ditto
 Call Writer
 Call Recorder
 If Encrypter.Visible = True Then Encrypter.Progress.Caption = "Complete!" 'Ditto
 If Decrypter.Visible = True Then Decrypter.Progress.Caption = "Complete!" 'Ditto
 If Encrypter.Visible = True Then Encrypter.Percent.Caption = "100%" 'Ditto
 If Decrypter.Visible = True Then Decrypter.Percent.Caption = "100%" 'Ditto
 ReDim EncryptionArray(0) As String
End Sub

Public Sub EncryptData()
 Dim L As String * 4 'Creates fixed length string 4 characters long
 Encryption = ""
 EDate = Format(Now, "mm/dd/yy") & " " & Format(Now, "hh:mm:ss AM/PM") 'Sets Edate to current date and time separated by a
space
 EncryptionBuilder.ENumber = ENumber
 EncryptionBuilder.Pass = ProjectName & " " & ProjectOwner 'Creates password for property encryption

 EncryptionBuilder.EncrypteeLen = Len(BackupPassword)
 L = StrReverse(LengthCheck(Len(BackupPassword))) 'Hides length of BackupPassword
 Encryption = L
 EncryptionBuilder.Encryptee = BackupPassword
 Call EncryptionBuilder.Encrypt
 Encryption = Encryption & EncryptionBuilder.Encryptee 'Adds encrypted BackupPassword to ciphertext

 EncryptionBuilder.EncrypteeLen = Len(CreationDate)
 L = StrReverse(LengthCheck(Len(CreationDate))) 'Hides length of CreationDate
 Encryption = Encryption & L
 EncryptionBuilder.Encryptee = CreationDate
 Call EncryptionBuilder.Encrypt
 Encryption = Encryption & EncryptionBuilder.Encryptee 'Adds encrypted CreationDate to ciphertext

 EncryptionBuilder.EncrypteeLen = Len(EDate)

 33

 L = StrReverse(LengthCheck(Len(EDate))) 'Hides length of EDate
 Encryption = Encryption & L
 EncryptionBuilder.Encryptee = EDate
 Call EncryptionBuilder.Encrypt
 Encryption = Encryption & EncryptionBuilder.Encryptee 'Adds encrypted EDate to ciphertext

 EncryptionBuilder.EncrypteeLen = Len(Name)
 L = StrReverse(LengthCheck(Len(Name))) 'Hides length of Name
 Encryption = Encryption & L
 EncryptionBuilder.Encryptee = Name
 Call EncryptionBuilder.Encrypt
 Encryption = Encryption & EncryptionBuilder.Encryptee 'Adds encrypted Name to ciphertext

 EncryptionBuilder.EncrypteeLen = Len(Password)
 L = StrReverse(LengthCheck(Len(Password))) 'Hides length of Password
 Encryption = Encryption & L
 EncryptionBuilder.Encryptee = Password
 Call EncryptionBuilder.Encrypt
 Encryption = Encryption & EncryptionBuilder.Encryptee 'Adds encrypted Password to ciphertext

 EncryptionBuilder.EncrypteeLen = Len(Status)
 L = StrReverse(LengthCheck(Len(Status))) 'Hides length of Status
 Encryption = Encryption & L
 EncryptionBuilder.Encryptee = Status
 Call EncryptionBuilder.Encrypt
 Encryption = Encryption & EncryptionBuilder.Encryptee 'Adds encrypted Status to ciphertext
End Sub

Private Sub PassCreator() 'Creates best-fit array
 Dim i As Long
 i = 1
 Do
 i = i + 1
 Loop Until i ^ 6 >= Len(EScript)
 If i = 1 Then i = 2
 ReDim EncryptionArray(i, i, i, i, i, i) As String 'Creates array
 EncryptionNum = i
End Sub

Private Sub Scramble()
 Dim i As Long, e As Long, f As Long, g As Long, X As Long, Y As Long, z As Long, n As Long
 Dim Pass As String
 Dim Letter As String * 4
 Dim Num1 As Double, Num2 As Double
 Num1 = 50 / (EncryptionNum ^ 2)
 If Password = "" Then 'Decides whether to use Password or BackupPassword
 Pass = BackupPassword
 Else:
 Pass = Password
 End If
 z = 1
 For Y = 0 To EncryptionNum - 1
 X = 0
 For X = 0 To EncryptionNum - 1
 g = 0
 For g = 0 To EncryptionNum - 1
 f = 0
 For f = 0 To EncryptionNum - 1
 i = 0
 For i = 0 To EncryptionNum - 1
 e = 0
 For e = 0 To EncryptionNum - 1
 If n = Len(Password) Then 'Selects next character in password
 n = 1
 Else:
 n = n + 1
 End If
 Letter = (Asc(Mid(EScript, z, 1)) * ENumber) + Asc(Mid(Password, n, 1)) 'Encrypts data via the NMR
 EncryptionArray(Y, X, g, f, i, e) = LengthCheck(Letter) 'Assigns encrypted data to current array element

 34

 z = z + 1
 If z > Len(EScript) Then Exit Sub
 Next e
 Next i
 Next f
 Next g
 Num2 = Num2 + Num1 'Updates progress displays
 If Encrypter.Visible = True Then
 Encrypter.PB1.Value = Num2
 Encrypter.Percent.Caption = Round(Num2, 2) & "%"
 End If
 If Decrypter.Visible = True Then
 Decrypter.PB1.Value = Num2
 Decrypter.Percent.Caption = Round(Num2, 2) & "%"
 End If
 Next X
 Next Y
End Sub

Private Sub Writer()
 Dim i As Long, e As Long, f As Long, g As Long, X As Long, Y As Long
 Dim Num1 As Double, Num2 As Double
 Num1 = 50 / (EncryptionNum ^ 2)
 Num2 = 50
 Randomize
 For e = 0 To EncryptionNum - 1
 i = 0
 For i = 0 To EncryptionNum - 1
 f = 0
 For f = 0 To EncryptionNum - 1
 g = 0
 For g = 0 To EncryptionNum - 1
 X = 0
 For X = 0 To EncryptionNum - 1
 Y = 0
 For Y = 0 To EncryptionNum - 1
 If EncryptionArray(Y, X, g, f, i, e) = "" Then EncryptionArray(Y, X, g, f, i, e) = (Int(Rnd * (9999 - ((ENumber + 1) * 255))) + 1)
+ ((ENumber + 1) * 255) 'If element is empty, assigns random data to it
 EncryptionArray(Y, X, g, f, i, e) = StrReverse(EncryptionArray(Y, X, g, f, i, e)) 'Reverses current element
 Encryption = Encryption & EncryptionArray(Y, X, g, f, i, e)
 Next Y
 Next X
 Next g
 Next f
 Num2 = Num2 + Num1 'Updates progress displays
 If Encrypter.Visible = True Then
 Encrypter.PB1.Value = Num2
 Encrypter.Percent.Caption = Round(Num2, 2) & "%"
 End If
 If Decrypter.Visible = True Then
 Decrypter.PB1.Value = Num2
 Decrypter.Percent.Caption = Round(Num2, 2) & "%"
 End If
 Next i
 Next e

 Encryption = Encryption & LengthCheck(ENumber) 'Adds ENumber to ciphertext
End Sub

Private Sub Recorder()
 Dim Good As Boolean
 Dim Temp As String
 Open (Insat & "Projects\" & ProjectOwner & "\" & ProjectName & "\Encryption Names") For Input As #1
 Good = True
 Do While Not EOF(1) 'Checks to see if Encryption already exists
 Input #1, Temp
 If Temp = Name Then Good = False
 Loop
 Close #1

 35

 If Good = True Then 'If Encryption is new, registers name
 Open (Insat & "Projects\" & ProjectOwner & "\" & ProjectName & "\Encryption Names") For Append As #2
 Write #2, Name
 Close #2
 End If
 Open (Insat & "Projects\" & ProjectOwner & "\" & ProjectName & "\Encryptions\" & Name) For Output As #1
 Write #1, Encryption 'Writes ciphertext to file
 Close #1
End Sub

Public Sub SmallRecorder()
 Encryption = Encryption & EScript 'adds encrypted message to encrypted properties to create ciphertext
 Encryption = Encryption & LengthCheck(ENumber) 'Adds ENumber to cphertext
 Call Recorder
End Sub

Public Sub DecryptScript()
 Decrypter.Progress.Caption = "Reading Data" 'Updates progress displays
 Call EncryptionUnlock
 Decrypter.Progress.Caption = "Loading Data" 'Ditto
 Call Placer
 Decrypter.Progress.Caption = "Complete!" 'Ditto
 Decrypter.Percent.Caption = "100%" 'Ditto
 Decrypter.PB1.Value = 100 'Ditto
End Sub

Public Sub DecryptData()
 Dim Temp As String
 ENumber = Val(Right(Encryption, 4)) 'Extracts ENumber from ciphertext
 Encryption = Left(Encryption, Len(Encryption) - 4) 'Removes ENumber info. from ciphertext
 EncryptionBuilder.ENumber = ENumber
 EncryptionBuilder.Pass = ProjectName & " " & ProjectOwner 'Creates password for property decryption

 EncryptionBuilder.EncrypteeLen = Val(StrReverse(Left(Encryption, 4))) 'Extracts length of BackupPassword
 EncryptionBuilder.Encryptee = Right(Encryption, Len(Encryption) - 4)
 Encryption = Right(Encryption, Len(Encryption) - (4 * (EncryptionBuilder.EncrypteeLen + 1))) 'Removes used property info. from
ciphertext
 Call EncryptionBuilder.Decrypt
 BackupPassword = EncryptionBuilder.Encryptee

 EncryptionBuilder.EncrypteeLen = Val(StrReverse(Left(Encryption, 4))) 'Extracts length of CreationDate
 EncryptionBuilder.Encryptee = Right(Encryption, Len(Encryption) - 4)
 Encryption = Right(Encryption, Len(Encryption) - (4 * (EncryptionBuilder.EncrypteeLen + 1))) 'Removes used property info. from
ciphertext
 Call EncryptionBuilder.Decrypt
 CreationDate = EncryptionBuilder.Encryptee

 EncryptionBuilder.EncrypteeLen = Val(StrReverse(Left(Encryption, 4))) 'Extracts length of EDate
 EncryptionBuilder.Encryptee = Right(Encryption, Len(Encryption) - 4)
 Encryption = Right(Encryption, Len(Encryption) - (4 * (EncryptionBuilder.EncrypteeLen + 1))) 'Removes used property info. from
ciphertext
 Call EncryptionBuilder.Decrypt
 EDate = EncryptionBuilder.Encryptee

 EncryptionBuilder.EncrypteeLen = Val(StrReverse(Left(Encryption, 4))) 'Extracts length of Name
 EncryptionBuilder.Encryptee = Right(Encryption, Len(Encryption) - 4)
 Encryption = Right(Encryption, Len(Encryption) - (4 * (EncryptionBuilder.EncrypteeLen + 1))) 'Removes used property info. from
ciphertext
 Call EncryptionBuilder.Decrypt
 Name = EncryptionBuilder.Encryptee

 EncryptionBuilder.EncrypteeLen = Val(StrReverse(Left(Encryption, 4))) 'Extracts length of Password
 EncryptionBuilder.Encryptee = Right(Encryption, Len(Encryption) - 4)

 36

 Encryption = Right(Encryption, Len(Encryption) - (4 * (EncryptionBuilder.EncrypteeLen + 1))) 'Removes used property info. from
ciphertext
 Call EncryptionBuilder.Decrypt
 Password = EncryptionBuilder.Encryptee

 EncryptionBuilder.EncrypteeLen = Val(StrReverse(Left(Encryption, 4))) 'Extracts length of Status
 EncryptionBuilder.Encryptee = Right(Encryption, Len(Encryption) - 4)
 Encryption = Right(Encryption, Len(Encryption) - (4 * (EncryptionBuilder.EncrypteeLen + 1))) 'Removes used property info. from
ciphertext
 Call EncryptionBuilder.Decrypt
 Status = EncryptionBuilder.Encryptee

 EScript = Encryption 'assigns remaining ciphertext to EScript property
End Sub

Private Sub EncryptionUnlock()
 Dim i As Long, e As Long, f As Long, g As Long, X As Long, Y As Long, z As Long, n As Long
 Dim Num1 As Double, Num2 As Double
 Dim Letter As String * 4
 z = 1
 Do 'Creates array dimensioning variable
 n = n + 1
 Loop Until (n ^ 6) >= Len(EScript) / 4
 EncryptionNum = n
 ReDim EncryptionArray(n, n, n, n, n, n) As String 'Creates best fit array
 Num1 = 50 / (n ^ 2)
 For e = 0 To n - 1
 i = 0
 For i = 0 To n - 1
 f = 0
 For f = 0 To n - 1
 g = 0
 For g = 0 To n - 1
 X = 0
 For X = 0 To n - 1
 Y = 0
 For Y = 0 To n - 1
 EncryptionArray(Y, X, g, f, i, e) = StrReverse(Mid(EScript, z, 4)) 'Assigns next piece of ciphertext to current array element
 If Val(EncryptionArray(Y, X, g, f, i, e)) > (ENumber + 1) * 255 Then EncryptionArray(Y, X, g, f, i, e) = "" 'If element is
random data, empties it
 z = z + 4
 Next Y
 Next X
 Next g
 Next f
 Num2 = Num2 + Num1 'Updates progress displays
 Decrypter.PB1.Value = Num2
 Decrypter.Percent.Caption = Round(Num2, 2) & "%"
 Next i
 Next e
End Sub

Private Sub Placer()
 Dim i As Long, e As Long, f As Long, g As Long, X As Long, Y As Long
 Dim t As Integer
 Dim Num1 As Double, Num2 As Double
 Dim Pass As String
 If Password <> "" Then 'Decides whether to use Password or BackupPassword
 Pass = Password
 Else:
 Pass = BackupPassword
 End If
 Num1 = 50 / (EncryptionNum ^ 2)
 Num2 = 50
 For Y = 0 To EncryptionNum - 1
 X = 0
 For X = 0 To EncryptionNum - 1
 g = 0
 For g = 0 To EncryptionNum - 1

 37

 f = 0
 For f = 0 To EncryptionNum - 1
 i = 0
 For i = 0 To EncryptionNum - 1
 e = 0
 For e = 0 To EncryptionNum - 1
 If EncryptionArray(Y, X, g, f, i, e) <> "" Then
 If t = Len(Pass) Then 'Selects next character in password
 t = 1
 Else:
 t = t + 1
 End If
 EncryptionArray(Y, X, g, f, i, e) = Chr((Val(EncryptionArray(Y, X, g, f, i, e)) - Asc(Mid(Pass, t, 1))) / ENumber) 'Decrypts
data via the NMR
 Decrypter.TextDisplay.Text = Decrypter.TextDisplay.Text & EncryptionArray(Y, X, g, f, i, e) 'Adds element's contents to
plaintext
 End If
 Next e
 Next i
 Next f
 Next g
 Num2 = Num2 + Num1 'Updates progress displays
 Decrypter.PB1.Value = Num2
 Decrypter.Percent.Caption = Round(Num2, 2) & "%"
 Next X
 Next Y
End Sub

 38

Appendix C: CProject Code

'Property and Global variable dimensioning

Public Name As String 'Project's name
Public Password1 As String '1st password
Public Password2 As String '2nd optional password
Public EType As String 'Project's mode (Public, Limited, or Private)
Public CreationDate As String 'Date the Project was created
Public EDate As String 'Date that the Project was last changed or edited
Public ENumber As Integer 'Random number used in encryption and decryption
Public Owner As String 'Name of the user that created the project
Public Status As String 'States whether the project is "Open" or "Closed"
Public Encryption As String 'Stores the ciphertext while the Project is not being used

Public Sub Encrypt()
 On Error Resume Next 'Error handler
 Dim fso As New FileSystemObject
 Dim i As Integer
 EDate = Format(Now, "mm/dd/yy") & " " & Format(Now, "hh:mm:ss AM/PM") 'Sets EDate to current date and time separated by a
space
 fso.CreateFolder (Insat & "Projects\" & Owner & "\" & Name) 'Creates necessary folders and file
 fso.CreateFolder (Insat & "Projects\" & Owner & "\" & Name & "\Encryptions")
 Open (Insat & "Projects\" & Owner & "\" & Name & "\Encryption Names") For Append As #1
 Close #1
 Call SmallEncrypter
End Sub

Private Sub SmallEncrypter()
 Dim L As String * 4
 Randomize
 Encryption = ""
 ENumber = Int(Rnd * 38) + 1 'Creates random encryption number
 EncryptionBuilder.ENumber = ENumber
 EncryptionBuilder.Pass = Owner

 EncryptionBuilder.EncrypteeLen = Len(CreationDate)
 L = StrReverse(LengthCheck(Len(CreationDate))) 'Hides length of CreationDate
 Encryption = Encryption & L
 EncryptionBuilder.Encryptee = CreationDate
 Call EncryptionBuilder.Encrypt
 Encryption = Encryption & EncryptionBuilder.Encryptee 'Adds encrypted CreationDate to ciphertext

 EncryptionBuilder.EncrypteeLen = Len(EDate)
 L = StrReverse(LengthCheck(Len(EDate))) 'Hides length of EDate
 Encryption = Encryption & L
 EncryptionBuilder.Encryptee = EDate
 Call EncryptionBuilder.Encrypt
 Encryption = Encryption & EncryptionBuilder.Encryptee 'Adds encrypted EDate to ciphertext

 EncryptionBuilder.EncrypteeLen = Len(EType)
 L = StrReverse(LengthCheck(Len(EType))) 'Hides length of EType
 Encryption = Encryption & L
 EncryptionBuilder.Encryptee = EType
 Call EncryptionBuilder.Encrypt
 Encryption = Encryption & EncryptionBuilder.Encryptee 'Adds encrypted EType to ciphertext

 EncryptionBuilder.EncrypteeLen = Len(Password1)
 L = StrReverse(LengthCheck(Len(Password1))) 'Hides length of Password1
 Encryption = Encryption & L
 EncryptionBuilder.Encryptee = Password1
 Call EncryptionBuilder.Encrypt
 Encryption = Encryption & EncryptionBuilder.Encryptee 'Adds encrypted Password1 to ciphertext

 EncryptionBuilder.EncrypteeLen = Len(Password2)
 L = StrReverse(LengthCheck(Len(Password2))) 'Hides length of Password2

 39

 Encryption = Encryption & L
 EncryptionBuilder.Encryptee = Password2
 Call EncryptionBuilder.Encrypt
 Encryption = Encryption & EncryptionBuilder.Encryptee 'Adds encrypted Password2 to ciphertext

 EncryptionBuilder.EncrypteeLen = Len(Status)
 L = StrReverse(LengthCheck(Len(Status))) 'Hides length of Status
 Encryption = Encryption & L
 EncryptionBuilder.Encryptee = Status
 Call EncryptionBuilder.Encrypt
 Encryption = Encryption & EncryptionBuilder.Encryptee 'Adds encrypted Status to ciphertext

 Open (Insat & "Projects\" & Owner & "\" & Name & "\" & Name) For Output As #1
 Write #1, Encryption & LengthCheck(ENumber)
 Close #1
End Sub

Public Sub Decrypt()
 ENumber = Val(Right(Encryption, 4)) 'Extracts ENumber from ciphertext
 Encryption = Left(Encryption, Len(Encryption) - 4) 'Removes ENumber info. from ciphertext
 EncryptionBuilder.ENumber = ENumber
 EncryptionBuilder.Pass = Owner 'Creates password for property decryption

 EncryptionBuilder.EncrypteeLen = Val(StrReverse(Left(Encryption, 4))) 'Extracts length of CreationDate
 EncryptionBuilder.Encryptee = Right(Encryption, Len(Encryption) - 4)
 Encryption = Right(Encryption, Len(Encryption) - (4 * (EncryptionBuilder.EncrypteeLen + 1))) 'Removes used property info. from
ciphertext
 Call EncryptionBuilder.Decrypt
 CreationDate = EncryptionBuilder.Encryptee

 EncryptionBuilder.EncrypteeLen = Val(StrReverse(Left(Encryption, 4))) 'Extracts length of EDate
 EncryptionBuilder.Encryptee = Right(Encryption, Len(Encryption) - 4)
 Encryption = Right(Encryption, Len(Encryption) - (4 * (EncryptionBuilder.EncrypteeLen + 1))) 'Removes used property info. from
ciphertext
 Call EncryptionBuilder.Decrypt
 EDate = EncryptionBuilder.Encryptee

 EncryptionBuilder.EncrypteeLen = Val(StrReverse(Left(Encryption, 4))) 'Extracts length of EType
 EncryptionBuilder.Encryptee = Right(Encryption, Len(Encryption) - 4)
 Encryption = Right(Encryption, Len(Encryption) - (4 * (EncryptionBuilder.EncrypteeLen + 1))) 'Removes used property info. from
ciphertext
 Call EncryptionBuilder.Decrypt
 EType = EncryptionBuilder.Encryptee

 EncryptionBuilder.EncrypteeLen = Val(StrReverse(Left(Encryption, 4))) 'Extracts length of Password1
 EncryptionBuilder.Encryptee = Right(Encryption, Len(Encryption) - 4)
 Encryption = Right(Encryption, Len(Encryption) - (4 * (EncryptionBuilder.EncrypteeLen + 1))) 'Removes used property info. from
ciphertext
 Call EncryptionBuilder.Decrypt
 Password1 = EncryptionBuilder.Encryptee

 EncryptionBuilder.EncrypteeLen = Val(StrReverse(Left(Encryption, 4))) 'Extracts length of Password2
 EncryptionBuilder.Encryptee = Right(Encryption, Len(Encryption) - 4)
 Encryption = Right(Encryption, Len(Encryption) - (4 * (EncryptionBuilder.EncrypteeLen + 1))) 'Removes used property info. from
ciphertext
 Call EncryptionBuilder.Decrypt
 Password2 = EncryptionBuilder.Encryptee

 EncryptionBuilder.EncrypteeLen = Val(StrReverse(Left(Encryption, 4))) 'Extracts length of Status
 EncryptionBuilder.Encryptee = Right(Encryption, Len(Encryption) - 4)
 Encryption = Right(Encryption, Len(Encryption) - (4 * (EncryptionBuilder.EncrypteeLen + 1))) 'Removes used property info. from
ciphertext
 Call EncryptionBuilder.Decrypt
 Status = EncryptionBuilder.Encryptee
End Sub

 40

Appendix D: CUser Code

'Property and public variable dimensioning

Public Name As String 'User's name
Public Password As String 'User's password
Public Encryption As String 'Stores the ciphertext when user is being encrypted/decrypted
Public ENumber As Integer 'Random number involved in encryption and decryption
Public EntryAttempts As Integer 'Number of times user has entered the wrong password
Public LockedDown As Boolean 'Determines whether the user can sign in or not
Dim EncryptionNum As Long 'Used in the FER
Dim EncryptionArray() As String ' The multi-dimensional array

Public Sub Encrypt()
 Randomize
 ENumber = Int(Rnd * 38) + 1 'Creates random encryption number
 Call PassCreator
 Call Scramble
 Call Writer
 Call Recorder
 ReDim EncryptionArray(0) As String
End Sub

Private Sub PassCreator() 'Creates best-fit array
 Dim i As Long
 i = 1
 Do
 i = i + 1
 Loop Until i ^ 6 >= Len(Password)
 If i = 1 Then i = 2
 ReDim EncryptionArray(i, i, i, i, i, i) As String 'Creates array
 EncryptionNum = i
End Sub

Private Sub Scramble()
 Dim i As Long, e As Long, f As Long, g As Long, X As Long, Y As Long, z As Long, n As Long
 Dim Letter As String * 4
 z = 1
 For Y = 0 To EncryptionNum - 1
 X = 0
 For X = 0 To EncryptionNum - 1
 g = 0
 For g = 0 To EncryptionNum - 1
 f = 0
 For f = 0 To EncryptionNum - 1
 i = 0
 For i = 0 To EncryptionNum - 1
 e = 0
 For e = 0 To EncryptionNum - 1
 If n = Len(Name) Then 'Selects next character in password
 n = 1
 Else:
 n = n + 1
 End If
 EncryptionArray(Y, X, g, f, i, e) = LengthCheck((Asc(Mid(Password, z, 1)) * ENumber) + Asc(Mid(Name, n, 1))) 'Encrypts
data via the NMR and assigns to current array element
 z = z + 1
 If z > Len(Password) Then Exit Sub
 Next e
 Next i
 Next f
 Next g
 Next X
 Next Y
End Sub

 41

Private Sub Writer()
 Dim i As Long, e As Long, f As Long, g As Long, X As Long, Y As Long
 Randomize
 For e = 0 To EncryptionNum - 1
 i = 0
 For i = 0 To EncryptionNum - 1
 f = 0
 For f = 0 To EncryptionNum - 1
 g = 0
 For g = 0 To EncryptionNum - 1
 X = 0
 For X = 0 To EncryptionNum - 1
 Y = 0
 For Y = 0 To EncryptionNum - 1
 If EncryptionArray(Y, X, g, f, i, e) = "" Then EncryptionArray(Y, X, g, f, i, e) = (Int(Rnd * (9999 - ((ENumber + 1) * 255))) + 1)
+ ((ENumber + 1) * 255) 'If element is empty, assigns random data to it
 Encryption = Encryption & StrReverse(EncryptionArray(Y, X, g, f, i, e)) 'Reverses current element and adds it to ciphertext
 Next Y
 Next X
 Next g
 Next f
 Next i
 Next e
 Encryption = Encryption & LengthCheck(ENumber) 'Adds ENumber to ciphertext
End Sub

Private Sub Recorder()
 Open (Insat & "Users\" & Name & "\" & Name) For Output As #1
 Write #1, Encryption 'Writes ciphertext to file
 Close #1
End Sub

Public Sub Decrypt()
 Call EncryptionUnlock
 Call Placer
End Sub

Private Sub EncryptionUnlock()
 Dim i As Long, e As Long, f As Long, g As Long, X As Long, Y As Long, z As Long, n As Long
 Dim Letter As String * 4
 z = 1
 ENumber = Val(Right(Encryption, 4))
 Encryption = Left(Encryption, Len(Encryption) - 4)
 Do 'Creates array dimensioning variable
 n = n + 1
 Loop Until (n ^ 6) >= Len(Encryption) / 4
 EncryptionNum = n
 ReDim EncryptionArray(n, n, n, n, n, n) As String 'Creates best fit array
 For e = 0 To n - 1
 i = 0
 For i = 0 To n - 1
 f = 0
 For f = 0 To n - 1
 g = 0
 For g = 0 To n - 1
 X = 0
 For X = 0 To n - 1
 Y = 0
 For Y = 0 To n - 1
 EncryptionArray(Y, X, g, f, i, e) = StrReverse(Mid(Encryption, z, 4)) 'Assigns next piece of ciphertext to current array
element
 If Val(EncryptionArray(Y, X, g, f, i, e)) > (ENumber + 1) * 255 Then EncryptionArray(Y, X, g, f, i, e) = "" 'If element is
random data, empties it
 z = z + 4
 Next Y
 Next X
 Next g
 Next f

 42

 Next i
 Next e
End Sub

Private Sub Placer()
 Dim i As Long, e As Long, f As Long, g As Long, X As Long, Y As Long
 Dim t As Integer
 For Y = 0 To EncryptionNum - 1
 X = 0
 For X = 0 To EncryptionNum - 1
 g = 0
 For g = 0 To EncryptionNum - 1
 f = 0
 For f = 0 To EncryptionNum - 1
 i = 0
 For i = 0 To EncryptionNum - 1
 e = 0
 For e = 0 To EncryptionNum - 1
 If EncryptionArray(Y, X, g, f, i, e) <> "" Then
 If t = Len(Name) Then 'Selects next character in password
 t = 1
 Else:
 t = t + 1
 End If
 Password = Password & Chr((Val(EncryptionArray(Y, X, g, f, i, e)) - Asc(Mid(Name, t, 1))) / ENumber) 'Decrypts data via
the NMR and adds to plaintext
 End If
 Next e
 Next i
 Next f
 Next g
 Next X
 Next Y
End Sub

 43

Appendix E: EncryptionBuilder Code

'Public variable dimensioning

Public Encryptee As String 'Used to store the plaintext and ciphertext during encryption and decryption
Public Pass As String 'Password used in encryption and decryption
Public EncrypteeLen As Long 'Length of Encryptee, used in encryption and decryption
Public ENumber As Long 'Random number involved in the NMR

Public Sub Encrypt()
 Dim i As Integer, e As Integer 'Counter variables
 Dim Temp As String 'Used to temporarily hold Encryptee's value
 Dim L As String * 4
 If Encryptee = "" Then Exit Sub
 Temp = Encryptee
 Encryptee = ""
 For e = 1 To EncrypteeLen 'Forms ciphertext (Encryptee) via the CSM and the NMR
 If i = Len(Pass) Then
 i = 1
 Else:
 i = i + 1
 End If
 L = LengthCheck((Asc(Mid(Temp, e, 1)) * ENumber) + Asc(Mid(Pass, i, 1)))
 Encryptee = Encryptee & StrReverse(L)
 Next e
End Sub

Public Sub Decrypt()
 Dim i As Integer, e As Integer 'Counter variables
 Dim Temp As String 'Used to temporarily hold Encryptee's value
 If Encryptee = "" Then Exit Sub
 Temp = Encryptee
 Encryptee = ""
 For e = 1 To EncrypteeLen 'Forms plaintext (Encryptee) via the CSM and the NMR
 If i = Len(Pass) Then
 i = 1
 Else:
 i = i + 1
 End If
 Encryptee = Encryptee & Chr((Val(StrReverse(Left(Temp, 4))) - Asc(Mid(Pass, i, 1))) / ENumber) 'Adds decrypted character of
ciphertext to plaintext
 Temp = Right(Temp, Len(Temp) - 4) 'removes used info. from ciphertext
 Next e
End Sub

Public Function LengthCheck(ByVal L As String) As String
 L = Trim(L) 'Removes leading and trailing spaces from L
 Do While Len(L) < 4 'Adds zeros to the beginning of L until L's total length is 4
 L = "0" & L
 Loop
 LengthCheck = L
End Function

 44

Appendix F: ProjectLoader Code

'Public variable dimensioning

Public Insat As String 'Stores program's installation directory

Public Sub LoadUsers()
 Dim Temp As String
 Dim User1 As CUser 'Creates new User
 ProjectBrowser.NameList.Clear 'Updates user interface
 Open (Insat & "Users\Registered Users") For Input As #1
 Do While Not EOF(1)
 Set User1 = New CUser
 Input #1, Temp
 User1.Name = Temp
 Open (Insat & "Users\" & User1.Name & "\" & User1.Name) For Input As #2 'Opens user's encrypted file
 Input #2, Temp
 User1.Encryption = Temp
 User1.EntryAttempts = 0 'Assigns various automatic properties
 User1.LockedDown = False
 Call User1.Decrypt
 ProjectBrowser.Users.Add User1 'Adds user to collection of users
 Close #2
 ProjectBrowser.NameList.AddItem User1.Name 'Updates user interface
 Loop
 Close #1
End Sub

Public Sub Load_Project(SelectedProject As CProject)
 Dim Temp As String
 ProjectBrowser.EncryptionList.Clear
 Open (Insat & "Projects\" & SelectedProject.Owner & "\" & SelectedProject.Name & "\Encryption Names") For Input As #1 'Opens file
containing a list of the Project's Encryptions
 Do While Not EOF(1)
 Input #1, Temp
 ProjectBrowser.EncryptionList.AddItem (Temp) 'Updates user interface
 Loop
 Close #1
 ProjectBrowser.Label4.Caption = "Project's current status: " & SelectedProject.Status 'Updates user interface
End Sub

Public Sub LoadProjects()
 ProjectBrowser.ProjectList.Clear 'Updates user interface
 Open (Insat & "Projects\Projects") For Input As #1
 Do While Not EOF(1)
 Call PC
 Loop
 Close #1
End Sub

Private Sub PC() 'Stands fo Project Creation
 Dim NewProject As New CProject
 Dim Temp As String
 Input #1, Temp
 NewProject.Name = Temp
 ProjectBrowser.ProjectList.AddItem Temp 'Updates user interface
 Input #1, Temp
 NewProject.Owner = Temp
 Open (Insat & "Projects\" & NewProject.Owner & "\" & NewProject.Name & "\" & NewProject.Name) For Input As #2 'Opens Project's
encrypted file
 Input #2, Temp
 Close #2
 NewProject.Encryption = Temp
 Call NewProject.Decrypt
 ProjectBrowser.Projects.Add NewProject 'Adds project to collection of projects
End Sub

 45

Public Sub Load_Encryptions(SelectedProject As CProject)
 Dim i As Integer
 Do While ProjectBrowser.Encryptions.Count > 0
 ProjectBrowser.Encryptions.Remove (1)
 Loop
 If ProjectBrowser.EncryptionList.ListCount > 0 Then
 For i = 1 To ProjectBrowser.EncryptionList.ListCount '1 to number of Project's Encryptions
 Open (Insat & "Projects\" & SelectedProject.Owner & "\" & SelectedProject.Name & "\Encryptions\" &
ProjectBrowser.EncryptionList.List(i - 1)) For Input As #1 'Opens Encryption's encrypted file
 Call EC(SelectedProject)
 Close #1
 Next i
 End If
End Sub

Private Sub EC(SelectedProject As CProject)
 Dim NewEncryption As New CEncryption
 Dim Temp As String
 Input #1, Temp
 NewEncryption.Encryption = Temp
 NewEncryption.ProjectOwner = SelectedProject.Owner 'Assigns automatic properties
 NewEncryption.ProjectName = SelectedProject.Name
 Call NewEncryption.DecryptData
 ProjectBrowser.Encryptions.Add NewEncryption 'Adds Encryption to collection of Encryptions
End Sub

 46

Appendix G: MainMenu Pictures and Code

'Startup screen, Purpose: Menu

Private Sub About_Click() 'Menu bar button
 AboutForm.Show
End Sub

Private Sub BrowseCurrentProjects_Click()
 ProjectBrowser.SelectedUser.Name = "" 'Prepares ProjectBrowser for use
 ProjectBrowser.SelectedUser.Password = ""
 ProjectBrowser.Show
 Call ProjectLoader.LoadUsers
 Call ProjectLoader.LoadProjects
 ProjectBrowser.NameList.SetFocus
 ProjectBrowser.RemoveUser.Enabled = False
End Sub

Private Sub BrowseCurrentProjects_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If InStr(Explanation.Caption, "new") > 0 Or InStr(Explanation.Caption, "Welcome") > 0 Then Explanation.Caption = "Click on this option
to browse through previously created Projects." 'Displays text explaining about BrowseCurrentProjects
End Sub

Private Sub CreateNewProject_Click()
 NewProjectCreation.Show
 NewProjectCreation.Frame1.Visible = True
 NewProjectCreation.NUName.SetFocus
End Sub

Private Sub CreateNewProject_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If InStr(Explanation.Caption, "browse") > 0 Or InStr(Explanation.Caption, "Welcome") > 0 Then
 Explanation.Caption = "Click on this option to create a new Project that can contain related encrypted items. Password Protected, a
project is a completely safe workstation from which you can manage all of your important encrypted files." 'Displays text explaining
about CreateNewProject
 Explanation.Font.Size = 14
 End If

 47

End Sub

Private Sub Exit_Click() 'Menu bar button
 If MsgBox("Are you sure that you want to exit?", vbYesNo, "[>_<]") = vbNo Then End
End Sub

Private Sub Form_Load()
 Open "C:\Program Files\Saati Encryption Center\Insat" For Input As #1
 Input #1, Insat 'Retrieves installation directory
 Close #1
 Open (Insat & "Users\Registered Users") For Input As #1 'Checks to see if there are any registered users
 If EOF(1) Then 'If there are none, makes it so new user can only register
 BrowseCurrentProjects.Enabled = False
 CreateNewProject.Enabled = False
 End If
 Close #1
 Call ProjectLoader.LoadUsers
 Open (Insat & "Projects\Projects") For Input As #1 'If there are no registered Projects, makes it so user can only create new projects
 If EOF(1) = True Then BrowseCurrentProjects.Enabled = False
 Close #1
 HelpForm.Timer1.Enabled = True
 Exit Sub
ERROR:
 MsgBox "Saati Encryption Center must be installed before you can use it!", , "[>_<] ERROR" 'In case the program has not been
installed or the directory file on the C drive has been damaged or deleted
 End
End Sub

Private Sub GreetingScreen_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If InStr(Explanation.Caption, "browse") > 0 Or InStr(Explanation.Caption, "new") > 0 Then 'Displays Greeting
 Explanation.Caption = "Welcome to the Saati Encryption Center Main Menu!"
 Explanation.Font.Bold = False
 Explanation.Font.Size = 16
 End If
End Sub

Private Sub Help_Click() 'Menu bar button
 HelpForm.Show
End Sub

Private Sub MSplashScreen_Click() 'Menu bar button
 SplashScreen.Show
End Sub

Private Sub RNU_Click() 'Stands for Register New User
 NewUserRegistry.Show
 NewUserRegistry.Text1.SetFocus
End Sub

Private Sub RNU_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Explanation.Caption = "Click on this button to register yourself as a new user who can use Saati Encryption Center." 'Displays text
explaining about RNU
End Sub

 48

Appendix H: NewProjectCreation Pictures and Code

Figure 1:

Figure 2:

 49

Figure 3:

'Public Object dimensioning

Public NewProject As New CProject

Private Sub ANE_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Call Enter_Name_Click 'Enables "Tab" function when enter is pressed
End Sub

Private Sub Back1_Click()
 Frame2.Visible = False
 Frame1.Visible = True
End Sub

Private Sub Back2_Click()
 Frame5.Visible = False
 Frame2.Visible = True
End Sub

Private Sub Cancel_Click() 'Closes form
 NUName.Text = ""
 NPName.Text = ""
 NewProjectCreation.Hide
End Sub

Private Sub CFPW_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then 'Enables "Tab" function when enter is pressed
 If Frame4.Enabled = True Then 'Decides wat to "Tab" to depending on if the user is using the optional second password
 SPW.SetFocus
 Else:
 Call Next2_Click
 End If
 End If
End Sub

Private Sub Create_Project_Click()
 Dim i As Integer
 If NewProject.EType = "Limited" And List1.ListCount = 0 Then
 MsgBox "You have chosen to make a Limited Project. There must be at least one allowable person.", , "[>_<] Missing People!"
 ANE.SetFocus
 Exit Sub
 End If
 NewProject.CreationDate = Format(Now, "mm/dd/yy") & " " & Format(Now, "hh:mm:ss AM/PM") 'Assigns properties
 NewProject.Name = NPName.Text

 50

 NewProject.Owner = NUName.Text
 NewProject.Password1 = FPW.Text
 If Option4.Value = True Then NewProject.Password2 = SPW.Text 'Assigns second password if user has a second password
 NewProject.Status = "Closed"
 Open (Insat & "Projects\Projects") For Append As #1 'Registers Project in file
 Write #1, NewProject.Name
 Write #1, NewProject.Owner
 Close #1
 Call NewProject.Encrypt
 Open (Insat & "Projects\" & NewProject.Owner & "\" & NewProject.Name & "\Users") For Output As #1 'Records Project's mode
 Write #1, NewProject.EType
 If NewProject.EType = "Limited" Then 'if mode is limited, records all allowable users' names
 For i = 0 To List1.ListCount - 1
 Write #1, List1.List(i)
 Next i
 End If
 Close #1
 Call Reset 'Resets and hides form
 Frame5.Visible = False
 Frame1.Visible = True
 MainMenu.BrowseCurrentProjects.Enabled = True
 NewProjectCreation.Hide
End Sub

Private Sub Reset() 'Resets form's controls for next use
 NUName.Text = ""
 NPName.Text = ""
 Option1.Value = True
 FPW.Text = ""
 CFPW.Text = ""
 SPW.Text = ""
 CSPW.Text = ""
 Option3.Value = True
 Option5.Value = True
 ANE.Text = ""
 List1.Clear
End Sub

Private Sub CSPW_Change()
 If KeyAscii = 13 Then Call Next2_Click 'Enables "Tab" function when enter is pressed
End Sub

Private Sub Enter_Name_Click()
 List1.AddItem (ANE.Text) 'Adds "Allowable" User's name to list
 ANE.Text = ""
 ANE.SetFocus
End Sub

Private Sub FPW_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then CFPW.SetFocus 'Enables "Tab" function when enter is pressed
End Sub

Private Sub Next1_Click()
 Dim i As Integer
 Dim Temp As String
 Dim Good As Boolean
 NUName.Text = Trim(NUName.Text)
 NPName.Text = Trim(NPName.Text)
 If NUName.Text = "" Then 'Checks whether or not the user has entered their user-name
 MsgBox "Please enter a valid User Name", , "[>_<] Missing Information"
 NUName.Text = ""
 NUName.SetFocus
 Exit Sub
 ElseIf NPName.Text = "" Or NPName.Text = "Encryption Names" Or NPName.Text = "Users" Then 'Checks whether or not the user has
entered a valid name for the Project
 MsgBox "Please enter a valid Project Name", , "[>_<] Missing Information"
 NPName.Text = ""
 NPName.SetFocus
 Exit Sub
 End If
 Open (Insat & "Users\Registered Users") For Input As #1 'Checks to make sure the User is registered

 51

 Do While Not EOF(1)
 Input #1, Temp
 If Temp = NUName.Text Then
 Good = True
 Exit Do
 End If
 Loop
 Close #1
 If Good = False Then
 For i = 1 To ProjectBrowser.Users.Count
 If ProjectBrowser.Users.Item(i).Name = NUName.Text Then
 If ProjectBrowser.Users.Item(i).LockedDown = True Then 'If User has been locked out of the program, then it resets and hides
the form
 MsgBox "Sorry " & NUName.Text & ", but you have been locked out and are not able to make any new projects as of now.", ,
"[>_<] Access Error"
 Call Reset
 NewProjectCreation.Hide
 Exit Sub
 End If
 Exit For
 End If
 Next i
 MsgBox "That User-Name is not recognized. Please enter a valid name, or return to the menu and register as a new user.", , "[>_<]
Unfamiliar Name"
 NUName.Text = ""
 NUName.SetFocus
 Exit Sub
 End If
 Good = True
 Open (Insat & "Projects\Projects") For Input As #1
 Do While Not EOF(1) 'Checks to see if the Project's name has been taken
 Input #1, Temp 'Reads Project's name from file.
 If Temp = NPName.Text Then
 Good = False
 Exit Do
 End If
 Input #1, Temp 'Reads Project's owner's name from file
 Loop
 Close #1
 If Good = False Then
 MsgBox "That Project-Name has been taken. Please enter another name.", , "[>_<] Name already taken"
 NPName.Text = ""
 NPName.SetFocus
 Exit Sub
 End If
 Frame1.Visible = False
 If Option1.Value = True Then
 Frame2.Visible = True
 FPW.SetFocus
 Else:
 Frame5.Visible = True
 End If
End Sub

Private Sub Next2_Click()
 FPW.Text = Trim(FPW.Text)
 CFPW.Text = Trim(CFPW.Text)
 SPW.Text = Trim(SPW.Text)
 CSPW.Text = Trim(CSPW.Text)
 If FPW.Text <> CFPW.Text Then 'Makes sure that the User confirmed their first password correctly
 MsgBox "Please re-enter your first password.", , "[>_<] Missing/Invalid Password Information"
 FPW.SetFocus
 Exit Sub
 End If
 If Option4.Value = True Then
 If SPW.Text = "" Or CSPW.Text = "" Or SPW.Text <> CSPW.Text Then 'Makes sure that the User confirmed their second password
correctly
 MsgBox "Please re-enter your Second password.", , "[>_<] Missing/Invalid Password Information"
 SPW.SetFocus
 Exit Sub
 End If

 52

 End If
 NewProject.EType = "Private"
 Frame2.Visible = False
 Frame5.Visible = True
 Frame7.Enabled = False
End Sub

Private Sub NPName_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Call Next1_Click 'Enables "Tab" function when enter is pressed
End Sub

Private Sub NUName_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then NPName.SetFocus 'Enables "Tab" function when enter is pressed
End Sub

Private Sub Option3_Click() 'Allows user to enter only first password
 Frame4.Enabled = False
End Sub

Private Sub Option4_Click() 'Allows user to enter optional second password
 Frame4.Enabled = True
End Sub

Private Sub Option5_Click() 'Sets NewProject's mode to "Private"
 Frame7.Enabled = False
 NewProject.EType = "Private"
End Sub

Private Sub Option6_Click() 'Sets NewProject's mode to "Limited"
 Frame7.Enabled = True
 NewProject.EType = "Limited"
End Sub

Private Sub Option7_Click() 'Sets NewProject's mode to "Public"
 Frame7.Enabled = False
 NewProject.EType = "Public"
End Sub

Private Sub SPW_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then CSPW.SetFocus 'Enables "Tab" function when enter is pressed
End Sub

 53

Appendix I: ProjectBrowser Pictures and Code

 54

'Public Object and Collection dimensioning

Public Users As New Collection
Public Projects As New Collection
Public Encryptions As New Collection
Public SelectedUser As New CUser
Public SelectedProject As New CProject
Public SelectedEncryption As New CEncryption

Private Sub Cancel_Click()
 PE1.Text = ""
 PE2.Text = ""
 Shape1.BackColor = vbRed
 Shape2.BackColor = vbRed
 Frame2.Visible = False
 Frame1.Visible = True
End Sub

Private Sub EncryptionList_DblClick()
 Dim i As Integer
 MF8.Enabled = True
 If Encryptions.Count > 0 Then
 For i = 1 To Encryptions.Count 'Searches encryptions for name match
 If Encryptions.Item(i).Name = EncryptionList.List(EncryptionList.ListIndex) Then
 SelectedEncryption.CreationDate = Encryptions.Item(i).CreationDate 'Selects matching Encryption
 SelectedEncryption.EDate = Encryptions.Item(i).EDate
 SelectedEncryption.Encryption = Encryptions.Item(i).Encryption
 SelectedEncryption.ENumber = Encryptions.Item(i).ENumber
 SelectedEncryption.EScript = Encryptions.Item(i).EScript
 SelectedEncryption.Name = Encryptions.Item(i).Name
 SelectedEncryption.Password = Encryptions.Item(i).Password
 SelectedEncryption.ProjectName = Encryptions.Item(i).ProjectName
 SelectedEncryption.ProjectOwner = Encryptions.Item(i).ProjectOwner
 SelectedEncryption.BackupPassword = Encryptions.Item(i).BackupPassword
 SelectedEncryption.Status = Encryptions.Item(i).Status
 Label9.Caption = "Status: " & SelectedEncryption.Status 'Updates user interface
 If SelectedEncryption.Status = "Locked" Then
 Shape3.BackColor = vbRed
 MF9.Enabled = False

 55

 Else:
 Shape3.BackColor = vbGreen
 MF9.Enabled = True
 Call OpenEncryption_Click
 End If
 If SelectedEncryption.Password = "" Then 'If Encryption has no user-defined password, opens the Encryption
 MF8.Enabled = False
 SelectedEncryption.Status = "Unlocked"
 Encryptions.Item(i).Status = "Unlocked"
 Label9.Caption = "Status: Unlocked"
 Shape3.BackColor = vbGreen
 Call OpenEncryption_Click
 End If
 Exit For
 End If
 Next i
 End If
End Sub

Private Sub RemoveProject_Click()
 Dim i As Integer, e As Integer
 Set fso = CreateObject("Scripting.FileSystemObject")
 i = MsgBox("Are you sure that you want to delete this Project?", vbYesNo, "[-_-]")
 If i = vbNo Then Exit Sub
 i = MsgBox("FINAL WARNING! Are you absolutely sure that you want to delete this Project?", vbYesNo, "[-_-] FINAL WARNING!")
 If i = vbNo Then Exit Sub
 i = 1
 If Projects.Count > 0 Then
 For i = 1 To Projects.Count
 If Projects.Item(i).Name = ProjectList.List(ProjectList.ListIndex) Then 'Searches for Project name match
 Open (Insat & "Projects\projects") For Output As #1
 For e = 1 To Projects.Count
 If Projects.Item(e).Name <> ProjectList.List(ProjectList.ListIndex) Then Write #1, ProjectList.List(ProjectList.ListIndex)
 Next e
 Close #1 'Removes all data concerning the Project
 fso.DeleteFolder (Insat & "Projects\" & Projects.Item(i).Owner & "\" & ProjectList.List(ProjectList.ListIndex))
 Projects.Remove (i)
 ProjectList.Clear
 If Projects.Count > 0 Then
 e = 1
 For e = 1 To Projects.Count
 ProjectList.AddItem (Projects.Item(e).Name)
 Next e
 End If
 MsgBox "Project removed successfully.", , "[^_^]"
 Exit For
 End If
 Next i
 End If
End Sub

Private Sub RemoveUser_Click()
 Dim i As Integer, e As Integer
 Set fso = CreateObject("Scripting.FileSystemObject")
 i = MsgBox("Are you sure that you want to delete this User Profile?", vbYesNo, "[-_-]")
 If i = vbNo Then Exit Sub
 i = MsgBox("FINAL WARNING! Are you absolutely sure that you want to delete this User Profile?", vbYesNo, "[-_-] FINAL WARNING!")
 If i = vbNo Then Exit Sub
 i = 1
 If Users.Count > 0 Then
 For i = 1 To Users.Count 'Searches for User name match
 If Users.Item(i).Name = NameList.List(NameList.ListIndex) Then
 Open (Insat & "Users\Registered Users") For Output As #1 'Removes User-name from User registry file
 For e = 1 To Users.Count
 If Users.Item(e).Name <> NameList.List(NameList.ListIndex) Then Write #1, Users.Item(e).Name
 Next e
 Close #1
 If Projects.Count > 0 Then
 e = 0
 For e = 1 To Projects.Count
 If e > Projects.Count Then Exit For

 56

 If Projects.Item(e).Owner = NameList.List(NameList.ListIndex) Then 'Removes all of User's Projects
 Projects.Remove (e)
 e = e - 1
 End If
 Next e
 ProjectList.Clear
 If Projects.Count > 0 Then
 e = 1
 Open (Insat & "Projects\Projects") For Output As #1
 For e = 1 To Projects.Count
 Write #1, Projects.Item(e).Name
 Write #1, Projects.Item(e).Owner
 Next e
 Close #1
 e = 1
 For e = 1 To Projects.Count
 ProjectList.AddItem (Projects.Item(e).Name)
 Next e
 End If
 End If
 e = 1
 For e = 1 To Users.Count
 If Users.Item(e).Name = NameList.List(NameList.ListIndex) Then 'Removes User from Users collection
 Users.Remove (e)
 Exit For
 End If
 Next e
 fso.DeleteFolder (Insat & "Users\" & NameList.List(NameList.ListIndex)) 'Deletes User's folders
 fso.DeleteFolder (Insat & "Projects\" & NameList.List(NameList.ListIndex))
 NameList.Clear
 If Users.Count > 0 Then
 e = 1
 For e = 1 To Users.Count 'Replenishes User listing on form
 NameList.AddItem (Users.Item(e).Name)
 Next e
 End If
 MsgBox "User profile removed successfully.", , "[^_^]"
 Exit Sub
 End If
 Next i
 End If
End Sub

Private Sub RTSIS_Click() 'Returns user to Sign-in screen
 Frame3.Visible = False
 Frame1.Visible = True
End Sub

Private Sub CEP_Click()
 Dim i As Integer
 If EPE.Text = SelectedEncryption.Password Then 'Checks to see if password is correct
 Shape3.BackColor = vbGreen
 SelectedEncryption.Status = "Unlocked"
 If Encryptions.Count > 0 Then
 For i = 1 To Encryptions.Count 'Unlocks Encryption
 If Encryptions.Item(i).Name = SelectedEncryption.Name Then
 Encryptions.Item(i).Status = "Unlocked"
 End If
 Next i
 End If
 MF9.Enabled = True
 Label9.Caption = "Status: Unlocked"
 Call RecordEncryptionChange
 Else:
 MsgBox "Sorry, that was the wrong Password. Please remember that Passwords are Case Sensitive.", , "[>_<] Access Error"
 If SelectedEncryption.Status = "Locked" Then Shape3.BackColor = vbRed
 End If
 EPE.Text = ""
End Sub

Private Sub CheckPassword_Click()

 57

 Dim i As Integer
 If Users.Count > 0 Then
 For i = 1 To Users.Count 'Searches for correct User
 If Users.Item(i).Name = NameList.List(NameList.ListIndex) Then
 Users.Item(i).EntryAttempts = Users.Item(i).EntryAttempts + 1
 If Users.Item(i).LockedDown = True Or Users.Item(i).EntryAttempts > 3 Then
 MsgBox "Sorry " & Users.Item(i).Name & ", but you have been locked out and are now unable to log in.", , "[>_<] Access Error"
 Exit Sub
 End If
 If PasswordEntry.Text = Users.Item(i).Password Then 'Checks to see if the password is correct
 MF3.Enabled = True
 RemoveUser.Enabled = True
 Users.Item(i).EntryAttempts = 0
 SelectedUser.Name = Users.Item(i).Name
 SelectedUser.Password = Users.Item(i).Password
 SelectedUser.EntryAttempts = 0
 Else:
 If Users.Item(i).EntryAttempts >= 3 Then
 Users.Item(i).LockedDown = True
 MsgBox "PLEASE NOTE! You have entered three wrong passwords and " & Users.Item(i).Name & " will now be locked out!",
, "[>_<] Access Error"
 PasswordEntry.Text = ""
 Else:
 MsgBox "Sorry, that's not the right password.", , "[>_<] Invalid Password"
 End If
 End If
 Exit For
 End If
 Next i
 End If
 PasswordEntry.Text = ""
End Sub

Private Sub CloseEncryption_Click()
 Dim i As Integer
 If Encryptions.Count > 0 Then
 For i = 1 To Encryptions.Count 'Finds correct Encryption and Locks it
 If Encryptions.Item(i).Name = SelectedEncryption.Name Then Encryptions.Item(i).Status = "Locked"
 Next i
 End If
 If SelectedEncryption.Password = "" Then 'Updates User interface
 MF8.Enabled = False
 Label9.Caption = "Status: Unlocked"
 Shape3.BackColor = vbGreen
 Else:
 SelectedEncryption.Status = "Locked"
 Label9.Caption = "Status: Locked"
 Shape3.BackColor = vbRed
 End If
 MF9.Enabled = False
 Call RecordEncryptionChange
End Sub

Private Sub CloseProject_Click()
 Dim i As Integer
 SelectedProject.Status = "Closed"
 If Projects.Count > 0 Then
 For i = 1 To Projects.Count 'Searches for correct project
 If Projects.Item(i).Name = SelectedProject.Name Then
 Projects.Item(i).Status = "Closed" 'closes project
 Exit For
 End If
 Next i
 End If
 Call RecordProjectChange
 Call ProjectLoader.Load_Project(SelectedProject)
End Sub

Private Sub CP1_Click() 'Checks password against Project's first password
 If PE1.Text = SelectedProject.Password1 Then
 Shape1.BackColor = vbGreen

 58

 If MF5.Enabled = True Then
 PE2.SetFocus
 Else:
 Shape2.BackColor = vbGreen
 Call OpenProject_Click
 End If
 Else:
 MsgBox "The Password entered is invalid. Please remember that passwords are Case Sensitive.", , "[>_<] Wrong Password"
 PE1.Text = ""
 PE1.SetFocus
 End If
End Sub

Private Sub CP2_Click() 'Checks password against Project's second password
 If PE2.Text = SelectedProject.Password2 Then
 Shape2.BackColor = vbGreen
 Else:
 MsgBox "The Password entered is invalid. Please remember that passwords are Case Sensitive.", , "[>_<] Wrong Password"
 PE2.Text = ""
 PE2.SetFocus
 End If
End Sub

Private Sub DeleteEncryption_Click()
 Dim i As Integer
 i = MsgBox("Are you sure that you want to delete this Encryption?", vbYesNo, "[-_-]")
 If i = vbNo Then Exit Sub
 i = MsgBox("FINAL WARNING! Are you absolutely sure that you want to delete this Encryption?", vbYesNo, "[-_-] FINAL WARNING!")
 If i = vbNo Then Exit Sub
 i = 0
 Open (Insat & "Projects\" & SelectedProject.Owner & "\" & SelectedProject.Name & "\Encryption Names") For Output As #1 'Removes
Encryption
 For i = 0 To EncryptionList.ListCount - 1
 If EncryptionList.List(i) <> SelectedEncryption.Name Then Write #1, EncryptionList.List(i)
 Next i
 Close #1
 Kill (Insat & "Projects\" & SelectedProject.Owner & "\" & SelectedProject.Name & "\Encryptions\" & SelectedEncryption.Name)
'Deletes Encryptions encrypted file
 Call ProjectLoader.Load_Project(SelectedProject)
 SelectedEncryption.BackupPassword = "" 'Clears out all of Selected Encryption's properties
 SelectedEncryption.CreationDate = ""
 SelectedEncryption.EDate = ""
 SelectedEncryption.EScript = ""
 SelectedEncryption.Encryption = ""
 SelectedEncryption.ENumber = 0
 SelectedEncryption.Name = ""
 SelectedEncryption.Password = ""
 SelectedEncryption.ProjectName = ""
 SelectedEncryption.ProjectOwner = ""
 SelectedEncryption.Status = ""
 MsgBox "Encryption deleted successfully!", , "[^_^]"
 Shape3.BackColor = vbRed
End Sub

Private Sub EncryptionList_Click()
 Dim i As Integer
 MF8.Enabled = True
 If Encryptions.Count > 0 Then
 For i = 1 To Encryptions.Count 'Searches for correct Encryption
 If Encryptions.Item(i).Name = EncryptionList.List(EncryptionList.ListIndex) Then
 SelectedEncryption.CreationDate = Encryptions.Item(i).CreationDate 'Loads correct Encryption's properties
 SelectedEncryption.EDate = Encryptions.Item(i).EDate
 SelectedEncryption.Encryption = Encryptions.Item(i).Encryption
 SelectedEncryption.ENumber = Encryptions.Item(i).ENumber
 SelectedEncryption.EScript = Encryptions.Item(i).EScript
 SelectedEncryption.Name = Encryptions.Item(i).Name
 SelectedEncryption.ProjectName = Encryptions.Item(i).ProjectName
 SelectedEncryption.ProjectOwner = Encryptions.Item(i).ProjectOwner
 SelectedEncryption.Password = Encryptions.Item(i).Password
 SelectedEncryption.BackupPassword = Encryptions.Item(i).BackupPassword
 SelectedEncryption.Status = Encryptions.Item(i).Status

 59

 Label9.Caption = "Status: " & SelectedEncryption.Status
 If SelectedEncryption.Status = "Locked" Then 'Updates User interface
 Shape3.BackColor = vbRed
 MF9.Enabled = False
 Else:
 Shape3.BackColor = vbGreen
 MF9.Enabled = True
 End If
 If SelectedEncryption.Password = "" Then
 MF8.Enabled = False
 MF9.Enabled = True
 SelectedEncryption.Status = "Unlocked"
 Encryptions.Item(i).Status = "Unlocked"
 Label9.Caption = "Status: Unlocked"
 Shape3.BackColor = vbGreen
 End If
 Exit For
 End If
 Next i
 End If
End Sub

Private Sub EPE_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Call CEP_Click 'Enables "Tab" function when enter is pressed
End Sub

Private Sub Form_Load()
 Call ProjectLoader.LoadUsers
 Call ProjectLoader.LoadProjects
End Sub

Private Sub Maintain_Click()
 If SelectedProject.Status = "Open" Then
 MsgBox "The project must be closed in order for you to maintain it!", , "[>_<] Invalid Project Status"
 Exit Sub
 End If
 ProjectMaintenance.Show 'Loads Project into ProjectMaintenance
 ProjectMaintenance.PNE.Text = SelectedProject.Name
 ProjectMaintenance.PPWE1.Text = SelectedProject.Password1
 ProjectMaintenance.PPWE2.Text = SelectedProject.Password2
 ProjectMaintenance.SelectedProject.CreationDate = SelectedProject.CreationDate
 ProjectMaintenance.SelectedProject.EDate = SelectedProject.EDate
 ProjectMaintenance.SelectedProject.Encryption = SelectedProject.Encryption
 ProjectMaintenance.SelectedProject.ENumber = SelectedProject.ENumber
 ProjectMaintenance.SelectedProject.EType = SelectedProject.EType
 ProjectMaintenance.SelectedProject.Name = SelectedProject.Name
 ProjectMaintenance.SelectedProject.Owner = SelectedProject.Owner
 ProjectMaintenance.SelectedProject.Password1 = SelectedProject.Password1
 ProjectMaintenance.SelectedProject.Password2 = SelectedProject.Password2
 ProjectMaintenance.SelectedProject.Status = SelectedProject.Status
 Select Case SelectedProject.EType
 Case "Private"
 ProjectMaintenance.Option1.Value = True
 Case "Limited"
 ProjectMaintenance.Option2.Value = True
 Case "Public"
 ProjectMaintenance.Option3.Value = True
 End Select
 Call ProjectMaintenance.LoadEncryptions
End Sub

Private Sub MakeEncryption_Click()
 Encrypter.CurrentEncryption.CreationDate = "" 'Clears all of Encrypter's Encryption properties
 Encrypter.CurrentEncryption.EDate = ""
 Encrypter.CurrentEncryption.Encryption = ""
 Encrypter.CurrentEncryption.ENumber = 0
 Encrypter.CurrentEncryption.EScript = ""
 Encrypter.CurrentEncryption.Name = ""
 Encrypter.CurrentEncryption.Password = ""
 Encrypter.CurrentEncryption.BackupPassword = ""
 Encrypter.CurrentEncryption.Status = ""

 60

 Encrypter.CurrentProject.CreationDate = SelectedProject.CreationDate 'Loads Project data to Encrypter
 Encrypter.CurrentProject.EDate = SelectedProject.EDate
 Encrypter.CurrentProject.EType = SelectedProject.EType
 Encrypter.CurrentProject.Name = SelectedProject.Name
 Encrypter.CurrentProject.Owner = SelectedProject.Owner
 Encrypter.CurrentProject.Password1 = SelectedProject.Password1
 Encrypter.CurrentProject.Password2 = SelectedProject.Password2
 Encrypter.CurrentProject.Status = SelectedProject.Status
 Encrypter.Show
 Encrypter.Text1.SetFocus
End Sub

Private Sub MExit_Click()
 End
End Sub

Private Sub MHelp_Click()
 HelpForm.Show
End Sub

Private Sub MMainScreen_Click()
 Call Reset
End Sub

Private Sub MReturnToMenu_Click()
 Call Reset
 ProjectBrowser.Hide
 MainMenu.Show
End Sub

Private Sub NameList_Click()
 Dim i As Integer
 If SelectedUser.Name <> "" Then i = MsgBox(SelectedUser.Name & ", do you wish to log out?", vbYesNo, "[>_<]")
 If i = vbNo Then Exit Sub
 SelectedUser.Name = "" 'Resets controls to log new User in
 SelectedUser.Password = ""
 MF2.Enabled = False
 MF3.Enabled = False
 RemoveUser.Enabled = False
 Label4.Caption = "Project's current status:"
 Label11.Caption = ""
 Shape4.BackColor = &H8000000F
 Shape5.BackColor = &H8000000F
 PasswordEntry.SetFocus
End Sub

Private Sub OP_Click()
 Dim i As Integer
 If Projects.Count > 0 Then
 For i = 1 To Projects.Count 'Searches for correct project
 If Projects.Item(i).Name = ProjectList.List(ProjectList.ListIndex) Then
 SelectedProject.CreationDate = Projects.Item(i).CreationDate
 SelectedProject.EDate = Projects.Item(i).EDate
 SelectedProject.Encryption = Projects.Item(i).Encryption
 SelectedProject.EType = Projects.Item(i).EType
 SelectedProject.Name = Projects.Item(i).Name
 SelectedProject.Owner = Projects.Item(i).Owner
 SelectedProject.Password1 = Projects.Item(i).Password1
 SelectedProject.Password2 = Projects.Item(i).Password2
 SelectedProject.Status = Projects.Item(i).Status
 Exit For
 End If
 Next i
 End If
 If SelectedProject.Status = "Open" Then 'Updates User interface
 Shape1.BackColor = vbGreen
 Shape2.BackColor = vbGreen
 If SelectedProject.Password1 <> "" Then MF4.Enabled = True
 If SelectedProject.Password2 <> "" Then MF5.Enabled = True
 Call OpenProject_Click
 Else:

 61

 Frame1.Visible = False
 If SelectedProject.Password1 <> "" Or SelectedProject.Password2 <> "" Then
 Frame2.Visible = True
 If SelectedProject.Password1 <> "" Then MF4.Enabled = True
 If SelectedProject.Password2 <> "" Then MF5.Enabled = True
 PE1.SetFocus
 Else:
 Call ProjectLoader.Load_Project(SelectedProject)
 Call ProjectLoader.Load_Encryptions(SelectedProject)
 Call RecordProjectChange
 Frame3.Visible = True
 End If
 End If
End Sub

Private Sub OpenEncryption_Click()
 If SelectedEncryption.Status = "Unlocked" Then
 Decrypter.SelectedEncryption.BackupPassword = SelectedEncryption.BackupPassword 'Loads Encryption into Decrypter
 Decrypter.SelectedEncryption.CreationDate = SelectedEncryption.CreationDate
 Decrypter.SelectedEncryption.EDate = SelectedEncryption.EDate
 Decrypter.SelectedEncryption.Encryption = SelectedEncryption.Encryption
 Decrypter.SelectedEncryption.ENumber = SelectedEncryption.ENumber
 Decrypter.SelectedEncryption.EScript = SelectedEncryption.EScript
 Decrypter.SelectedEncryption.Name = SelectedEncryption.Name
 Decrypter.SelectedEncryption.Password = SelectedEncryption.Password
 Decrypter.SelectedEncryption.ProjectName = SelectedEncryption.ProjectName
 Decrypter.SelectedEncryption.ProjectOwner = SelectedEncryption.ProjectOwner
 Decrypter.SelectedEncryption.Status = SelectedEncryption.Status
 Decrypter.Show
 Call SelectedEncryption.DecryptScript 'Decrypts Encryption
 End If
End Sub

Private Sub OpenProject_Click()
 Dim i As Integer
 If MF4.Enabled = True And MF5.Enabled = True Then 'Chooses what to do by how many passwords the Project uses
 If Shape1.BackColor = vbGreen And Shape2.BackColor = vbGreen Then 'Checks to see if both passwords have been entered
 Frame1.Visible = False
 Frame2.Visible = False
 Frame3.Visible = True
 SelectedProject.Status = "Open"
 If Projects.Count > 0 Then
 For i = 1 To Projects.Count 'Searches for correct Project
 If Projects.Item(i).Name = SelectedProject.Name Then
 Projects.Item(i).Status = "Open"
 Exit For
 End If
 Next i
 End If
 Label4.Caption = "Project's Current Status: Open"
 Call ProjectLoader.Load_Project(SelectedProject)
 Call ProjectLoader.Load_Encryptions(SelectedProject)
 Call RecordProjectChange
 PE1.Text = "" 'Resets controls
 PE2.Text = ""
 Shape1.BackColor = vbRed
 Shape2.BackColor = vbRed
 Else:
 MsgBox "A password is not correct. Please remember that passwords are Case Sensitive.", , "[>_<] Wrong Password(s)"
 PE1.Text = "" 'Resets control
 PE2.Text = ""
 PE1.SetFocus
 End If
 ElseIf MF4.Enabled = True Then
 If Shape1.BackColor = vbGreen Then 'Checks to see if the password has been entered
 Frame1.Visible = False
 Frame2.Visible = False
 Frame3.Visible = True
 SelectedProject.Status = "Open"
 If Projects.Count > 0 Then
 For i = 1 To Projects.Count 'Searches for correct project

 62

 If Projects.Item(i).Name = SelectedProject.Name Then
 Projects.Item(i).Status = "Open"
 Exit For
 End If
 Next i
 End If
 Label4.Caption = "Project's Current Status: Open"
 Call ProjectLoader.Load_Project(SelectedProject)
 Call ProjectLoader.Load_Encryptions(SelectedProject)
 Call RecordProjectChange
 PE1.Text = "" 'Resets control
 Shape1.BackColor = vbRed
 Else:
 MsgBox "A password is not correct. Please remember that passwords are Case Sensitive.", , "[>_<] Wrong Password(s)"
 PE1.Text = ""
 PE1.SetFocus
 End If
 Else:
 Frame1.Visible = False
 Frame2.Visible = False
 Frame3.Visible = True
 Call ProjectLoader.Load_Project(SelectedProject)
 Call ProjectLoader.Load_Encryptions(SelectedProject)
 Call RecordProjectChange
 End If
End Sub

Private Sub PasswordEntry_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Call CheckPassword_Click 'Enables "Tab" function when enter is pressed
End Sub

Private Sub PE1_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then 'Enables "Tab" function when enter is pressed
 If MF5.Enabled = True Then
 PE2.SetFocus
 Exit Sub
 End If
 Call CP1_Click
 End If
End Sub

Private Sub PE2_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Call CP2_Click 'Enables "Tab" function when enter is pressed
End Sub

Private Sub ProjectList_Click()
 Dim i As Integer
 If Projects.Count > 0 Then
 For i = 1 To Projects.Count 'Searches for correct Project
 If Projects.Item(i).Name = ProjectList.List(ProjectList.ListIndex) Then
 SelectedProject.CreationDate = Projects.Item(i).CreationDate 'Loads Project
 SelectedProject.EDate = Projects.Item(i).EDate
 SelectedProject.ENumber = Projects.Item(i).ENumber
 SelectedProject.EType = Projects.Item(i).EType
 SelectedProject.Name = Projects.Item(i).Name
 SelectedProject.Owner = Projects.Item(i).Owner
 SelectedProject.Password1 = Projects.Item(i).Password1
 SelectedProject.Password2 = Projects.Item(i).Password2
 SelectedProject.Status = Projects.Item(i).Status
 Label4.Caption = "Project's current status: " & SelectedProject.Status
 If SelectedProject.Status = "Open" Then 'Updates User interface
 Shape5.BackColor = vbGreen
 Else:
 Shape5.BackColor = vbRed
 End If
 Maintain.Enabled = False
 Call UserCheck
 Exit For
 End If
 Next i
 End If

 63

End Sub

Private Sub UserCheck() 'Checks to see if the User can access the Project
 Dim i As Integer
 Dim Good As Boolean
 Dim Temp As String
 If Users.Count > 0 Then
 Open (Insat & "Projects\" & SelectedProject.Owner & "\" & SelectedProject.Name & "\Users") For Input As #1
 Input #1, Temp 'Extracts Projec's mode
 Select Case Temp
 Case "Private"
 If SelectedUser.Name = SelectedProject.Owner Then 'Updates User interface
 MF2.Enabled = True
 Maintain.Enabled = True
 RemoveProject.Enabled = True
 Label11.Caption = "You can access this project."
 Shape4.BackColor = vbGreen
 Else:
 MF2.Enabled = False
 Label11.Caption = "You can't access this project."
 Shape4.BackColor = vbRed
 End If
 Case "Limited"
 Do While Not EOF(1) 'Checks to see if current user can access the Project
 Input #1, Temp
 If Temp = SelectedUser.Name Then
 Good = True
 Exit Do
 End If
 Loop
 If Good = True Or SelectedUser.Name = SelectedProject.Owner Then
 MF2.Enabled = True 'User is allowed access to the project
 Label11.Caption = "You can access this project."
 Shape4.BackColor = vbGreen
 If SelectedUser.Name = SelectedProject.Owner Then
 Maintain.Enabled = True
 RemoveProject.Enabled = True
 End If
 Else:
 MF2.Enabled = False
 Label11.Caption = "You can't access this project."
 Shape4.BackColor = vbRed
 End If
 Case "Public"
 MF2.Enabled = True 'User is allowed access to the project
 Label11.Caption = "You can access this project."
 Shape4.BackColor = vbGreen
 If SelectedUser.Name = SelectedProject.Owner Then
 Maintain.Enabled = True
 RemoveProject.Enabled = True
 End If
 End Select
 Close #1
 End If
End Sub

Public Sub RecordProjectChange()
 Dim i As Integer
 Call SelectedProject.Encrypt
 If Projects.Count > 0 Then
 For i = 1 To Projects.Count 'Searches for correct Project
 If Projects.Item(i).Name = SelectedProject.Name Then
 Projects.Item(i).EDate = SelectedProject.EDate 'Synchronizes Projects
 Projects.Item(i).ENumber = SelectedProject.ENumber
 Exit For
 End If
 Next i
 End If
 Label4.Caption = "Project's current status: " & SelectedProject.Status 'Updates User interface
 If SelectedProject.Status = "Open" Then
 Shape5.BackColor = vbGreen

 64

 Else:
 Shape5.BackColor = vbRed
 End If
End Sub

Public Sub RecordEncryptionChange()
 Dim i As Integer
 Dim Temp As String * 4
 Randomize
 SelectedEncryption.EDate = Format(Now, "mm/dd/yy") & " " & Format(Now, "hh:mm:ss AM/PM")
 SelectedEncryption.ProjectName = SelectedProject.Name 'Synchronizes Encryptions
 SelectedEncryption.ProjectOwner = SelectedProject.Owner
 If Encryptions.Count > 0 Then
 For i = 1 To Encryptions.Count 'Searches for correct Encryption
 If Encryptions.Item(i).Name = SelectedEncryption.Name Then
 Encryptions.Item(i).EDate = SelectedEncryption.EDate 'Synchronizes Encryptions
 Exit For
 End If
 Next i
 End If
 Call SelectedEncryption.EncryptData
 Call SelectedEncryption.SmallRecorder
End Sub

Private Sub Reset() 'Resets form's controls for next use
 ProjectList.Clear
 NameList.Clear
 PasswordEntry.Text = ""
 MF2.Enabled = False
 MF3.Enabled = False
 Label4.Caption = "Project's current status:"
 EncryptionList.Clear
 EPE.Text = ""
 Shape3.BackColor = vbRed
 Label9.Caption = "Status:"
 PE1.Text = ""
 PE2.Text = ""
 Shape1.BackColor = vbRed
 Shape2.BackColor = vbRed
 Frame3.Visible = False
 Frame2.Visible = False
 Frame1.Visible = True
 Call ProjectLoader.LoadUsers
 Call ProjectLoader.LoadProjects
End Sub

 65

Appendix J: Encrypter Pictures and Code

 66

'Public Collection dimensioning

Public CurrentProject As New CProject
Public CurrentEncryption As New CEncryption

Private Sub Back_Click()
 Frame2.Visible = False
 Frame1.Visible = True
End Sub

Private Sub Cancel_Click(Index As Integer) 'Hides form
 Call Reset
 Encrypter.Hide
End Sub

Private Sub Reset() 'Resets form's controls for next use
 Frame3.Visible = False
 Frame2.Visible = False
 Frame1.Visible = True
 Percent.Caption = ""
 Progress.Caption = ""
 ENE.Text = ""
 PWE.Text = ""
 CPWE.Text = ""
 Text1.Text = ""
 PB1.Value = 0
End Sub

Private Sub CPWE_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Call Encrypt_Click 'Enables "Tab" function when enter is pressed
End Sub

Private Sub ENE_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then PWE.SetFocus 'Enables "Tab" function when enter is pressed
End Sub

Private Sub Next1_Click()
 If Text1.Text = "" Then 'Makes sure that the FER has something to encrypt
 MsgBox "Please enter something to encrypt.", , "[>_<]"
 Text1.SetFocus
 Exit Sub
 End If
 Frame1.Visible = False

 67

 Frame2.Visible = True
 ENE.SetFocus
End Sub

Private Sub Encrypt_Click()
 Dim Temp As String
 ENE.Text = Trim(ENE.Text) 'Removes leading and treiling spaces from ENE.Text
 If ENE.Text = "" Then 'Makes sure the user has entered a proper name for the Encryption
 MsgBox "Please enter a name for your Encryption.", , "[>_<] Missing Name"
 ENE.SetFocus
 Exit Sub
 End If
 Open (Insat & "Projects\" & CurrentProject.Owner & "\" & CurrentProject.Name & "\Encryption Names") For Input As #1
 Do While Not EOF(1) 'Makes sure that the new name has not been taken
 Input #1, Temp
 If ENE.Text = Temp Then
 MsgBox "That Name has been taken! Please choose another one!", , "[>_<] Name Taken"
 Close #1
 ENE.Text = ""
 ENE.SetFocus
 Exit Sub
 End If
 Loop
 Close #1
 If PWE.Text <> "" Or CPWE.Text <> "" Then 'Makes sure that the User confirmed the password correctly
 PWE.Text = Trim(PWE.Text)
 CPWE.Text = Trim(CPWE.Text)
 If PWE.Text = "" And CPWE.Text <> "" Then PWE.Text = CPWE.Text
 If PWE.Text <> CPWE.Text Then
 MsgBox "Invalid Password", , "[>_<]"
 PWE.Text = ""
 CPWE.Text = ""
 PWE.SetFocus
 Exit Sub
 End If
 End If
 Frame2.Visible = False
 Frame3.Visible = True
 CurrentEncryption.CreationDate = Format(Now, "mm/dd/yy") & " " & Format(Now, "hh:mm:ss AM/PM") 'Loads New Encryption's
properties
 CurrentEncryption.Name = ENE.Text
 CurrentEncryption.ProjectName = CurrentProject.Name
 CurrentEncryption.ProjectOwner = CurrentProject.Owner
 CurrentEncryption.Password = PWE.Text
 CurrentEncryption.Status = "Locked"
 CurrentEncryption.EScript = Text1.Text
 Call CurrentEncryption.EncryptScript
 MsgBox "Your Encryption was created successfully!", , "[^_^] Encryption Complete"
 Call Reset
 Encrypter.Hide
 Call ProjectLoader.Load_Project(ProjectBrowser.SelectedProject)
 Call ProjectLoader.Load_Encryptions(ProjectBrowser.SelectedProject)
End Sub

Private Sub PWE_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then CPWE.SetFocus 'Enables "Tab" function when enter is pressed
End Sub

 68

Appendix K: Decrypter Pictures and Code

Public SelectedEncryption As New CEncryption

Private Sub Done_Click()
 TextDisplay.Text = ""
 Decrypter.Hide
End Sub

Private Sub Save_Click() 'Saves User's changes to the Encryption
 SelectedEncryption.EScript = TextDisplay.Text
 Call SelectedEncryption.EncryptScript
 Encrypter.Hide
 Call ProjectLoader.Load_Project(ProjectBrowser.SelectedProject)
 Call ProjectLoader.Load_Encryptions(ProjectBrowser.SelectedProject)
 MsgBox "Changes Saved Successfully!", , "[^_^] Save Successful"
End Sub

Private Sub Form_Resize() 'Adjusts controls' placement and size properties accordingly
 On Error Resume Next
 Read.Height = Decrypter.ScaleHeight - 120
 Read.Width = Decrypter.ScaleWidth - 240
 TextDisplay.Height = Read.Height - 1800
 TextDisplay.Width = Read.Width - 480
 Progress.Top = TextDisplay.Height + 600
 Percent.Top = TextDisplay.Height + 600
 PB1.Top = TextDisplay.Height + 1080
 PB1.Width = Read.Width - (Done.Width + Save.Width + 1200)
 Done.Top = TextDisplay.Height + 1080
 Done.Left = Read.Width - (Done.Width + 240)
 Save.Top = TextDisplay.Height + 1080
 Save.Left = Done.Left - (Save.Width + 240)
End Sub

 69

Appendix L: ProjectMaintenance Pictures and Code

 70

Public SelectedProject As New CProject
Public SelectedEncryption As New CEncryption
Public Encryptions As New Collection

Public Sub LoadEncryptions()
 Dim i As Integer
 Dim Temp As String
 Do While Encryptions.Count > 0 'Empties Encryptions Collection
 Encryptions.Remove (1)
 Loop
 EncryptionList.Clear
 Open (Insat & "Projects\" & SelectedProject.Owner & "\" & SelectedProject.Name & "\Encryption Names") For Input As #1
 Do While Not EOF(1) 'Adds all of the Project's Encryptions to a list
 Input #1, Temp
 EncryptionList.AddItem (Temp)
 Loop
 Close #1
 If EncryptionList.ListCount > 0 Then
 For i = 1 To EncryptionList.ListCount 'Loads all of the Project's Encryptions
 Open (Insat & "Projects\" & SelectedProject.Owner & "\" & SelectedProject.Name & "\Encryptions\" & EncryptionList.List(i - 1))
For Input As #1
 Call EC
 Close #1
 Next i
 End If
End Sub

Private Sub EC()
 Dim NewEncryption As New CEncryption
 Dim Temp As String
 Input #1, Temp 'Extracts ciphertext from file
 NewEncryption.Encryption = Temp 'Sets automatic properties
 NewEncryption.ProjectOwner = SelectedProject.Owner
 NewEncryption.ProjectName = SelectedProject.Name
 Call NewEncryption.DecryptData
 Encryptions.Add NewEncryption
End Sub

Private Sub APNE_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Call NameEntry_Click 'Enables "Tab" function when enter is pressed
End Sub

Private Sub EncryptionList_Click()
 Dim i As Integer
 If Encryptions.Count > 0 Then
 For i = 1 To Encryptions.Count 'Searches for correct Encryption
 If Encryptions.Item(i).Name = EncryptionList.List(EncryptionList.ListIndex) Then
 SelectedEncryption.BackupPassword = Encryptions.Item(i).BackupPassword 'Loads Encryption
 SelectedEncryption.CreationDate = Encryptions.Item(i).CreationDate
 SelectedEncryption.EDate = Encryptions.Item(i).EDate
 SelectedEncryption.Encryption = Encryptions.Item(i).Encryption
 SelectedEncryption.ENumber = Encryptions.Item(i).ENumber
 SelectedEncryption.Name = Encryptions.Item(i).Name
 SelectedEncryption.EScript = Encryptions.Item(i).EScript
 SelectedEncryption.ProjectName = Encryptions.Item(i).ProjectName
 SelectedEncryption.ProjectOwner = Encryptions.Item(i).ProjectOwner
 SelectedEncryption.Password = Encryptions.Item(i).Password
 SelectedEncryption.Status = Encryptions.Item(i).Status
 ENE.Text = Encryptions.Item(i).Name
 EPWE.Text = Encryptions.Item(i).Password
 Exit For
 End If
 Next i
 End If
End Sub

Private Sub EncryptionList_DblClick()
 Dim i As Integer
 If Encryptions.Count > 0 Then
 For i = 1 To Encryptions.Count

 71

 If Encryptions.Item(i).Name = EncryptionList.List(EncryptionList.ListIndex) Then
 SelectedEncryption.BackupPassword = Encryptions.Item(i).BackupPassword 'Loads Encryption
 SelectedEncryption.CreationDate = Encryptions.Item(i).CreationDate
 SelectedEncryption.EDate = Encryptions.Item(i).EDate
 SelectedEncryption.Encryption = Encryptions.Item(i).Encryption
 SelectedEncryption.ENumber = Encryptions.Item(i).ENumber
 SelectedEncryption.Name = Encryptions.Item(i).Name
 SelectedEncryption.EScript = Encryptions.Item(i).EScript
 SelectedEncryption.ProjectName = Encryptions.Item(i).ProjectName
 SelectedEncryption.ProjectOwner = Encryptions.Item(i).ProjectOwner
 SelectedEncryption.Password = Encryptions.Item(i).Password
 SelectedEncryption.Status = Encryptions.Item(i).Status
 ENE.Text = Encryptions.Item(i).Name
 EPWE.Text = Encryptions.Item(i).Password
 Call ViewEncryption_Click 'Opens Encryption in Encryption viewer
 Exit For
 End If
 Next i
 End If
End Sub

Private Sub ENE_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Call SaveEncryption_Click 'Enables "Tab" function when enter is pressed
End Sub

Private Sub EPWE_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Call SaveEncryption_Click 'Enables "Tab" function when enter is pressed
End Sub

Private Sub NameEntry_Click()
 If APNE.Text = "" Then Exit Sub 'Adds "Allowable" User's name to a list
 APNL.AddItem (APNE.Text)
 APNE.Text = ""
 APNE.SetFocus
End Sub

Private Sub PNE_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Call SaveProject1_Click 'Enables "Tab" function when enter is pressed
End Sub

Private Sub PPWE1_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Call SaveProject1_Click 'Enables "Tab" function when enter is pressed
End Sub

Private Sub PPWE2_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Call SaveProject1_Click 'Enables "Tab" function when enter is pressed
End Sub

Private Sub RemoveEncryption_Click()
 Dim i As Integer
 i = MsgBox("Are you sure that you want to delete this encryption?", vbYesNo, "[-_-]")
 If i = vbNo Then Exit Sub
 i = MsgBox("FINAL WARNING! Are you absolutely sure that you want to delete this Encryption?", vbYesNo, "[-_-] FINAL WARNING!")
 If i = vbNo Then Exit Sub
 i = 0
 Open (Insat & "Projects\" & SelectedProject.Owner & "\" & SelectedProject.Name & "\Encryption Names") For Output As #1 'Removes
Encryption's name from Registry file
 For i = 0 To EncryptionList.ListCount - 1
 If EncryptionList.List(i) <> SelectedEncryption.Name Then Write #1, EncryptionList.List(i)
 Next i
 Close #1
 EncryptionList.Clear
 Kill (Insat & "Projects\" & SelectedProject.Owner & "\" & SelectedProject.Name & "\Encryptions\" & SelectedEncryption.Name)
'Deletes Encryption's encrypted file
 If Encryptions.Count > 0 Then
 i = 1
 For i = 1 To Encryptions.Count 'Searches for correct Encryption
 If Encryptions.Item(i).Name = SelectedEncryption.Name Then
 Encryptions.Remove i 'Removes Encryption from Encryptions Collection
 Exit For
 End If

 72

 Next i
 i = 1
 For i = 1 To Encryptions.Count 'Replenishes Encryption List on form
 EncryptionList.AddItem (Encryptions.Item(i).Name)
 Next i
 End If
 SelectedEncryption.BackupPassword = "" 'Clears Encryptions data
 SelectedEncryption.CreationDate = ""
 SelectedEncryption.EDate = ""
 SelectedEncryption.Encryption = ""
 SelectedEncryption.ENumber = 0
 SelectedEncryption.Name = ""
 SelectedEncryption.EScript = ""
 SelectedEncryption.ProjectOwner = ""
 SelectedEncryption.ProjectName = ""
 SelectedEncryption.Password = ""
 SelectedEncryption.Status = ""
 ENE.Text = ""
 EPWE.Text = ""
 MsgBox "Encryption deleted successfully!", , "[^_^]"
End Sub

Private Sub RemoveName_Click()
 Dim i As Integer, e As Integer
 For i = 0 To APNL.ListCount - 1
 If APNL.List(i) = APNE.Text Then APNL.RemoveItem (i)
 Next
End Sub

Private Sub SaveEncryption_Click() 'Saves changes that the User made to the Encryption
 Dim i As Integer, e As Integer
 Dim Temp As String
 If SelectedEncryption.Name <> "" Then
 For i = 1 To Encryptions.Count 'Searches for correct Encryption
 If Encryptions.Item(i).Name = SelectedEncryption.Name Then
 Kill (Insat & "Projects\" & SelectedProject.Owner & "\" & SelectedProject.Name & "\Encryptions\" &
SelectedEncryption.Name) 'Deletes Encryption's encrypted folder
 SelectedEncryption.Name = ENE.Text 'Loads Encryption's new name and password
 SelectedEncryption.Password = EPWE.Text
 ProjectBrowser.SelectedEncryption.BackupPassword = SelectedEncryption.BackupPassword 'Loads all of Encryption's data to
Encrypter
 ProjectBrowser.SelectedEncryption.CreationDate = SelectedEncryption.CreationDate
 ProjectBrowser.SelectedEncryption.Encryption = SelectedEncryption.Encryption
 ProjectBrowser.SelectedEncryption.EDate = SelectedEncryption.EDate
 ProjectBrowser.SelectedEncryption.Name = SelectedEncryption.Name
 ProjectBrowser.SelectedEncryption.EScript = SelectedEncryption.EScript
 ProjectBrowser.SelectedEncryption.ProjectName = SelectedEncryption.ProjectName
 ProjectBrowser.SelectedEncryption.ProjectOwner = SelectedEncryption.ProjectOwner
 ProjectBrowser.SelectedEncryption.ENumber = SelectedEncryption.ENumber
 ProjectBrowser.SelectedEncryption.Password = SelectedEncryption.Password
 ProjectBrowser.SelectedEncryption.Status = SelectedEncryption.Status
 Encryptions.Item(i).BackupPassword = SelectedEncryption.BackupPassword 'Loads all of Encryption's data into Encryptions
collection
 Encryptions.Item(i).CreationDate = SelectedEncryption.CreationDate
 Encryptions.Item(i).Encryption = SelectedEncryption.Encryption
 Encryptions.Item(i).EDate = SelectedEncryption.EDate
 Encryptions.Item(i).Name = SelectedEncryption.Name
 Encryptions.Item(i).EScript = SelectedEncryption.EScript
 Encryptions.Item(i).ProjectName = SelectedEncryption.ProjectName
 Encryptions.Item(i).ProjectOwner = SelectedEncryption.ProjectOwner
 Encryptions.Item(i).ENumber = SelectedEncryption.ENumber
 Encryptions.Item(i).Password = SelectedEncryption.Password
 Encryptions.Item(i).Status = SelectedEncryption.Status
 Call ProjectBrowser.RecordEncryptionChange 'Saves change to Encryption
 Exit For
 End If
 Next i
 EncryptionList.Clear
 i = 1
 Open (Insat & "Projects\" & SelectedProject.Owner & "\" & SelectedProject.Name & "\Encryption Names") For Append As #1
 For i = 1 To Encryptions.Count 'Re-Writes Project's Encryption registry file

 73

 EncryptionList.AddItem (Encryptions.Item(i).Name) 'Refreshes list of Encryptions on form
 Write #1, Encryptions.Item(i).Name
 Next i
 Close #1
 End If
End Sub

Private Sub SaveProject2_Click()
 Dim i As Integer
 NewProjectCreation.NewProject.CreationDate = SelectedProject.CreationDate 'Loads all of the Project's data to NewProjectCreation
 NewProjectCreation.NewProject.EDate = SelectedProject.EDate
 NewProjectCreation.NewProject.Encryption = SelectedProject.Encryption
 NewProjectCreation.NewProject.ENumber = SelectedProject.ENumber
 NewProjectCreation.NewProject.EType = SelectedProject.EType
 NewProjectCreation.NewProject.Name = SelectedProject.Name
 NewProjectCreation.NewProject.Owner = SelectedProject.Owner
 NewProjectCreation.NewProject.Password1 = SelectedProject.Password1
 NewProjectCreation.NewProject.Password2 = SelectedProject.Password2
 NewProjectCreation.NewProject.Status = SelectedProject.Status
 Call SelectedProject.Encrypt
 Open (Insat & "Projects\" & SelectedProject.Owner & "\" & SelectedProject.Name & "\Users") For Output As #1
 Write #1, SelectedProject.EType 'Writes Project's current mode to file
 For i = 0 To APNL.ListCount - 1 'Writes all "Allowable" Users' names to file
 Write #1, APNL.List(i)
 Next i
 Close #1
 MF2.Visible = False
 MF1.Visible = True
End Sub

Private Sub SaveProject1_Click()
 Dim i As Integer
 SelectedProject.Name = PNE.Text 'Loads Project's new properties
 SelectedProject.Password1 = PPWE1.Text
 SelectedProject.Password2 = PPWE2.Text
 If Option1.Value = True Then
 SelectedProject.EType = "Private"
 ElseIf Option2.Value = True Then
 SelectedProject.EType = "Limited"
 MF1.Visible = False
 MF2.Visible = True
 APNE.SetFocus
 Exit Sub
 Else:
 SelectedProject.EType = "Public"
 End If
 Open (Insat & "Projects\" & SelectedProject.Owner & "\" & SelectedProject.Name & "\Users") For Output As #1
 Write #1, SelectedProject.EType
 If SelectedProject.EType = "Limited" Then
 For i = 0 To APNL.ListCount - 1 'Writes Project's current mode to file
 Write #1, APNL.List(i) 'Writes all "Allowable" Users' names to file
 Next i
 End If
 Close #1
 i = 1
 Call SelectedProject.Encrypt
 For i = 1 To ProjectBrowser.Projects.Count 'Searches for correct Project in Projects collection
 If ProjectBrowser.Projects.Item(i).Name = SelectedProject.Name Then
 ProjectBrowser.Projects.Item(i).CreationDate = SelectedProject.CreationDate 'Loads Projects data to ProjectBrowser
 ProjectBrowser.Projects.Item(i).EDate = SelectedProject.EDate
 ProjectBrowser.Projects.Item(i).Encryption = SelectedProject.Encryption
 ProjectBrowser.Projects.Item(i).ENumber = SelectedProject.ENumber
 ProjectBrowser.Projects.Item(i).EType = SelectedProject.EType
 ProjectBrowser.Projects.Item(i).Owner = SelectedProject.Owner
 ProjectBrowser.Projects.Item(i).Password1 = SelectedProject.Password1
 ProjectBrowser.Projects.Item(i).Password2 = SelectedProject.Password2
 ProjectBrowser.Projects.Item(i).Status = SelectedProject.Status
 Exit For
 End If
 Next i
End Sub

 74

Private Sub ViewEncryption_Click()
 Decrypter.Show
 Decrypter.SelectedEncryption.CreationDate = SelectedEncryption.CreationDate 'Loads all Encryption's data to Decrypter
 Decrypter.SelectedEncryption.EDate = SelectedEncryption.EDate
 Decrypter.SelectedEncryption.Encryption = SelectedEncryption.Encryption
 Decrypter.SelectedEncryption.ENumber = SelectedEncryption.ENumber
 Decrypter.SelectedEncryption.Name = SelectedEncryption.Name
 Decrypter.SelectedEncryption.EScript = SelectedEncryption.EScript
 Decrypter.SelectedEncryption.ProjectName = SelectedEncryption.ProjectName
 Decrypter.SelectedEncryption.ProjectOwner = SelectedEncryption.ProjectOwner
 Decrypter.SelectedEncryption.Password = SelectedEncryption.Password
 Decrypter.SelectedEncryption.BackupPassword = SelectedEncryption.BackupPassword
 Decrypter.SelectedEncryption.Status = SelectedEncryption.Status
 Call SelectedEncryption.DecryptScript 'Decrypts Encryption
End Sub

 75

Appendix M: NewUserRegistry Pictures and Code

Private Sub Cancel_Click()
 Text1.Text = ""
 Text2.Text = ""
 Text3.Text = ""
 NewUserRegistry.Hide
End Sub

Private Sub Register_Click()
 On Error Resume Next 'Error handler
 Dim User1 As New CUser
 Dim Temp As String
 Dim Good As Boolean
 If Text1.Text = "" Then
 MsgBox "Please enter another user-name.", , "[>_<] Invalid user-name"
 Text1.SetFocus
 Exit Sub
 End If
 If Len(Text2.Text) < 6 Then
 MsgBox "Please make your Password longer!", , "[>_<] Invalid Password"
 Text2.Text = ""
 Text3.Text = ""
 Text2.SetFocus
 Exit Sub
 End If
 If Text2.Text = "" Or Text3.Text = "" Or Text2.Text <> Text3.Text Then
 Text2.Text = ""
 Text3.Text = ""
 MsgBox "Please re-enter your password.", , "[>_<] Invalid Password"
 Text2.SetFocus
 Exit Sub
 End If
 Open (Insat & "\Users\Registered Users") For Input As #1
 Good = True
 Do While Not EOF(1)
 Input #1, Temp
 If Text1.Text = Temp Then
 Good = False
 Exit Do
 End If
 Loop
 If Good = False Then
 MsgBox "That user-name has already been chosen, please choose a different one.", , "[>_<] Invalid user-name"
 Text1.Text = ""
 Text1.SetFocus

 76

 Close #1
 Exit Sub
 End If
 Close #1
 Open (Insat & "Users\Registered Users") For Append As #1
 Write #1, Text1.Text
 Close #1
 Set fso = CreateObject("Scripting.FileSystemObject")
 fso.CreateFolder (Insat & "Users\" & Text1.Text)
 fso.CreateFolder (Insat & "Projects\" & Text1.Text)
 Temp = Text2.Text
 User1.Name = Text1.Text
 User1.Password = Text2.Text
 Call User1.Encrypt
 Text1.Text = ""
 Text2.Text = ""
 Text3.Text = ""
 MainMenu.CreateNewProject.Enabled = True
 MainMenu.BrowseCurrentProjects.Enabled = True
 NewUserRegistry.Hide
 Open (Insat & "Projects\Projects") For Input As #1
 If EOF(1) = True Then MainMenu.BrowseCurrentProjects.Enabled = False
 Close #1
End Sub

Private Sub Text1_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Text2.SetFocus 'Enables "Tab" function when enter is pressed
End Sub

Private Sub Text2_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Text3.SetFocus 'Enables "Tab" function when enter is pressed
End Sub

Private Sub Text3_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then Call Register_Click 'Enables "Tab" function when enter is pressed
End Sub

 77

Appendix N: Pictures of Forms without Code

Figure 1: The About Screen

Figure2: The Help Screen

 78

Figure 3: The Splash Screen

Figure 4: The project symbol, developed by me, appears on several forms. The shape is
actually a 4-dimensional hypercube.

 79

