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Executive Summary: 
 
 In Earth’s history, stretching over billions of years, asteroids have collided with 

Earth, leaving deep impact craters and destruction as evidence. Hundreds of thousands 

more asteroids orbit in the Main Belt, dangerously close to Earth. Today, scientists know 

that the question is not if, but when an asteroid will impact, and are still trying to 

accurately predict the event. This n-Body1 task is complex, involving thousands of 

objects with many factors, such as gravitation and energy, often requiring 

supercomputing. I present a unique approach that will better this prediction process, for 

the sake of catastrophe prevention and scientific interest. This project attempts to 

calculate the trajectory of any given asteroid deviated from standard orbit and the 

likelihood of this event. 

 To accurately create this visual program, I needed a language with graphical and 

powerful numerical and object-oriented properties. Therefore, I chose Microsoft Visual 

Studio C++ Express. It provided all of the projects requirements and allowed for more 

structural organization and graphical expansion using OpenGL. 

 The program uses a unique conservative integration scheme in which it integrates 

over a transformed time step polynomial. This mathematical transformation allows for 

exact conservation of energy and momentum. For every asteroid, the program defines and 

sets variables in the Hamiltonian equations, integrates over a time step and calculates the 

properties of that asteroid. It then projects the asteroids onto a dynamic graphics interface. 

 The program accurately modeled real life and gave some interesting solutions. It 

indeed matched real world statistics and predicted asteroid close calls. As expected, 

perturbed asteroids were rare but not implausible, and certainly plausible to cross Earth’s 

orbit. Since the results closely matched real world statistics, the program can certainly be 

used as an accurate probability predictor for asteroid collisions, a major achievement. 
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Introduction: 

 
The n-Body problem has many applications, ranging from kinetic theory 

problems in chemistry to modeling hundreds of thousands asteroids in the Main Belt. The 

groundwork for the n-Body problem is pure mathematics, yet mathematics so complex in 

calculation that, for centuries, the problem was not applied to any real world situations. 

Recent developments in supercomputing, however, have allowed for the application of n-

Body mathematics. In choosing a specific application, I considered the complexity of 

each scenario and how well it could be suited to the new, conservative algorithm. 

Deciding on the case of asteroids in the Main Belt for its complexity, ideal1 space 

environment, and most importantly, its modern appeal and danger, I set out to predict and 

model the thousands of asteroids orbiting in the Main Belt. The goal is to calculate the 

likelihood of any asteroid deviating from standard orbit, impacting Earth, and its 

trajectory. 

The Main Belt, home of hundreds of thousands of asteroids, is situated between 

Mars and Jupiter. On a regular basis, through gravitational interactions, asteroids are 

driven from their standard orbits and travel a different trajectory, sometimes nearing 

Earth. Asteroids vary greatly in size, from Ceres the largest, comprising almost 50% of 

all the mass in the belt, to most asteroids the size of specks of dust. For realistic purposes, 

the program utilizes 1000 asteroids. Most asteroids in the Main Belt are the size of dust 

particles. Also, the threshold size for an asteroid not burning up in the atmosphere is 100 

m wide, minimum. Finally, with 1000 asteroids, the program can be easily checked for 

accuracy and quickly run. 

 The n-Body problem for this situation has traditionally been solved through 

numerical integration schemes, polynomials involving time-steps. The key point is that 

the system of asteroids must conserve energy and momentum, or the system will cease to 

be one and fall apart. It is known that numerical integration algorithms lead to drifts in 

accuracy. Even symplectic2 integration, a popular Hamiltonian method, loses energy over 

time. It is with this new conservative integration that I conserve the true Hamiltonian and 

momentum of these asteroids. With this algorithm, I exactly solve this system and give 
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the trajectory and probability of any deviation from orbit. This contributes to determining 

the likelihood of asteroid impacts in a certain time frame in the future. 

 
Method:  

 

This program strives to provide a wholly accurate model and calculations of the 

asteroids in the Main Belt. It utilizes a unique conservative integration scheme which has 

not been applied to a real life n-Body problem until now. Therefore, this program is 

structured around the algorithm’s specific mathematics. To explain fully the math would 

be a lengthy interruption, so only the goal and point of the complicated math is explained. 

The Hamiltonian describes a system by stating its total energy, kinetic and 

potential. It is a complex partial derivative that is commonly used to solve n-Body 

problems through symplectic integration. But, this is not exact integration because the 

time step (“integration rectangle”) is not infinitesimal, but finite. The only way to achieve 

an exact integration would be to transform the Hamiltonian into a linear function, so that 

the integration is simply in a form similar to distance equals velocity times time. This is 

achieved through defining two different sets of variables and transforming them. Once 

the integration is done, the variables are transformed back to the original state, fit to be 

displayed. The total energy is now known, and the other properties are calculated from 

this. The equations are simplistic in nature; potential energy, kinetic energy, rotational 

kinetic energy, etc., but the process of transformation and integration is complex. 

This program is organized by classes that call from written functions, and event 

handlers that call from constructors in these classes. It is built upon 7 classes, namely, 

Phase Space, CM Rewrite, Vector Rewrite, Phase Space Transformation, Integration, 

Back Vector Transformation, and Back Phase Space Transformation. These classes 

further draw from source code files that contain the methods. Phase Space defines the 

asteroid properties radius, angle, mass, momentum in the radial direction, and angular 

momentum. It also includes the call to display the dynamic asteroids. The class also 

includes random number generators to randomly pick initial conditions and properties of 

the asteroids. This random choosing of initial conditions is repeated with each simulation, 

ensuring that results are not drastically affected by initial conditions. A noteworthy point 
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is that even though the conditions do not resemble that of the Main Belt, integration over 

the time steps narrow the differences, and provides accurate probabilities of asteroid 

impacts. CM Rewrite and Vector Rewrite are classes that define the center of mass as the 

origin and radius vectors of the ith asteroid. Phase Space Transformation defines a new 

set of variables that turn the Hamiltonian into a linear function by assigning new 

variables to quadratic components. The last two classes transform the variables back by 

inverting the steps taken to transform them and thus converting them to their original, 

displayable form. A loop is constructed so that after a display, the program immediately 

goes back to Hamiltonian linear transformation for a new energy value, a new time step. 

This continues until the user chooses to end the loop. 

To check the conservative algorithm, the program calculates the angular 

momentum of any given asteroid with the basic mechanics equations.  

The program naturally has a GUI that displays a dynamic viewing screen of the 

changes in the moving bodies. It is created so that it is an actual application that accepts 

user input, such as momentum checking. The GUI is very user-friendly and easily 

understood. 

 

 

Results: 

 The program performed well to expectations. For the 1000 asteroids, it conserved 

momentum, matched statistics and gave interesting solutions. The program ran for many 

short, time efficient runs to make sure it conserved momentum before simulating a 60 

year period. The short runs were necessary since I had to make sure the program was 

accurate before embarking upon a long iteration. This 60 year period was the peak of the 

simulation in which it iterated over many small time steps and displayed a dynamic 

screen.  
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Asteroid Impacts
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Graphed in Microsoft Excel. Time Intervals are adjusted on a large scale to provide for possible graphing -- 

time steps are significantly smaller and values are rounded. This is an average graph of all data collected 

during 60 year iteration to summarize results. 

 

This provided satisfying results. I found that 4 explosion-worthy but not globally 

dangerous asteroids hit Earth. These asteroids impacted Earth and as expected, did not 

push it out of orbit, as common sense would dictate. This is one of the many indications 

that the 60 year iteration was correct. I found no global scale impacts, consistent with the 

rarity of such events. Near the end of the run, the program showed slight but not 

continuous deviations in some asteroids. The asteroids shifted slightly out of their normal 

orbits but returned to a stable orbit. These slight perturbations could be remote 

possibilities of asteroid impacts in the future. The program recorded a wealth of data, 

graphs, charts, etc. Please see appendixes for an important note. 
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Conclusions: 

 The results are consistent with recorded statistics. A small explosion-sized 

asteroid hits Earth every 1-2 years, usually in the remote Siberian lands. Also, global 

scale collisions occur about once every 1000 centuries, so it is expected that the program 

will not find one in 60 years. The project also showed possibilities of more deviations 

near the end of 60 years. NASA predicts a slim chance of an asteroid impact in the next 

40-60 years, coinciding with this program’s prediction. There are many checks made on 

the accuracy of this program, including the momentum checker, consistency with known 

statistics, and common sense, such as the fact that the planets and the sun behaved within 

normal parameters. Though this program is generated from initial conditions, integration 

over the time steps evens out discrepancies, making plausible solutions. 

 

Recommendations: 

 To ever more perfect this program, more asteroids need to be added. Eventually, 

the perfect model would include the hundreds of thousands of asteroids in the Main Belt, 

ranging from the size of small planets to specks of dust. With more asteroids, realistic 

results could improve, but the program may break down with lack of conservation of 

momentum. Also, integration over a larger time would be interesting as it may give a 

solution for the destruction of Earth when a very large asteroid hits. It can also provide 

further checks for conservation of momentum. Expanding it to 3-D will of course be 

more accurate and appealing, but such expansions and the above said will take 

significantly more processing time. 

  

 

Achievements: 

 This project demonstrated an accurate conservative integration algorithm with the 

Hamiltonian. It applied a purely mathematical method to a real-life situation, 

demonstrating how the power of computing can be used for scientific interest and public 

concern. Exact conservative integration can now be implemented widely, replacing time-

consuming and inaccurate symplectic schemes. This program adds to and confirms the 

probabilities of asteroid impacts predicted by NASA. Also, the program records useful 

     7
 



data and has a user-friendly GUI, appealing to the general public. As this is an active area 

of observation and research, this project contributes to the scientific community and 

provides interesting predictions of when asteroids will collide with Earth. 
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Appendixes: 

 

*Note: All data spanning over all iterations too large to include.  

*Note: Entire code not possible to include. File too large, including all cpps, headers, 

forms, and dlls. 

 

These missing components will be presented along with the executable program in the 

Exposition. 

 

Form: 
pragma once 
 
#include "asteroid.h" 
 
namespace MyProject { 
 
 using namespace System; 
 using namespace System::ComponentModel; 
 using namespace System::Collections; 
 using namespace System::Windows::Forms; 
 using namespace System::Data; 
 using namespace System::Drawing; 
 
 /// <summary> 
 /// Summary for Form1 
 /// 
 /// WARNING: If you change the name of this class, you will need 
to change the 
 ///          'Resource File Name' property for the managed 
resource compiler tool 
 ///          associated with all .resx files this class depends 
on.  Otherwise, 
 ///          the designers will not be able to interact properly 
with localized 
 ///          resources associated with this form. 
 /// </summary> 
 public ref class Form1 : public System::Windows::Forms::Form 
 { 
 public: 
  Form1(void) 
  { 
   InitializeComponent(); 
   // 
   //TODO: Add the constructor code here 
   // 
  } 
 

     10
 



 protected: 
  /// <summary> 
  /// Clean up any resources being used. 
  /// </summary> 
  ~Form1() 
  { 
   if (components) 
   { 
    delete components; 
   } 
  } 
 private: System::Windows::Forms::Button^  GoButton; 
 protected:  
 
 private: 
  /// <summary> 
  /// Required designer variable. 
  /// </summary> 
  System::ComponentModel::Container ^components; 
 
#pragma region Windows Form Designer generated code 
  /// <summary> 
  /// Required method for Designer support - do not modify 
  /// the contents of this method with the code editor. 
  /// </summary> 
  void InitializeComponent(void) 
  { 
   this->GoButton = (gcnew 
System::Windows::Forms::Button()); 
   this->SuspendLayout(); 
   //  
   // GoButton 
   //  
   this->GoButton->Location = System::Drawing::Point(98, 
231); 
   this->GoButton->Name = L"GoButton"; 
   this->GoButton->Size = System::Drawing::Size(75, 23); 
   this->GoButton->TabIndex = 0; 
   this->GoButton->Text = L"Go"; 
   this->GoButton->UseVisualStyleBackColor = true; 
   this->GoButton->Click += gcnew 
System::EventHandler(this, &Form1::GoButton_Click); 
   //  
   // Form1 
   //  
   this->AutoScaleDimensions = System::Drawing::SizeF(6, 
13); 
   this->AutoScaleMode = 
System::Windows::Forms::AutoScaleMode::Font; 
   this->ClientSize = System::Drawing::Size(292, 266); 
   this->Controls->Add(this->GoButton); 
   this->Name = L"Form1"; 
   this->Text = L"Form1"; 
   this->ResumeLayout(false); 
 
  } 
#pragma endregion 
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 private: System::Void GoButton_Click(System::Object^  sender, 
System::EventArgs^  e)  
    { 
     //For Earth, r = 1 AU 
     double r4 = 23;  //radius in pixels 
     double theta4 = Math::PI/6;  
 
     double x4 = r4*Math::Cos(theta4);   
     double y4 = r4*Math::Sin(theta4)*(-1); 
 
     //For Mars, r = 1.5 AU 
     double r2 = 34.5;  //radius in 
pixels 
     double theta2 = Math::PI/6;  
 
     double x2 = r2*Math::Cos(theta2);   
     double y2 = r2*Math::Sin(theta2)*(-1); 
 
     //For Jupiter, r = 5.2 AU 
     double r3 = 120; 
     double theta3 = Math::PI/6; 
 
     double x3 = r3*Math::Cos(theta3); 
     double y3 = r3*Math::Sin(theta3)*(-1); 
 
     Pen ^myPen = gcnew 
Pen(System::Drawing::Color::Black);  
     Graphics ^myGraphics = this->CreateGraphics();  
 
     //translate origin to (40,40) 
     myGraphics->TranslateTransform(140,120);  
  
      
     //sun 
     myGraphics->DrawEllipse(myPen,0,0,20,20); 
 
     //earth 
     myGraphics->DrawEllipse(myPen,x4,y4,8,8); 
 
     //mars 
     myGraphics->DrawEllipse(myPen,x2,y2,8,8); 
 
     //Jupiter 
     myGraphics->DrawEllipse(myPen,x3,y3,10,10); 
 
     for (int i = 1; i<1000; i++) 
     { 
     new asteroid(); 
     void display(); 
     new CMtransform(); 
     new VectorTransform(); 
 
     if (i = 2, i<1000, i++) 
     { 
      new LinearTransform(); 
      new Integration(); 
      new BT(); 
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      new BTDisplay(); 
 
     } 
     } 
      
 
      
      
      
    } 
 }; 
} 
 
 

Header: 
 public class asteroid 
{ 
public: 
 asteroid(); 
 void display();  //draws 
 
private: 
 double r, 
     theta, 
     pr, 
     ptheta, 
     mass; 
    class ^asteroid next; 
}; 
 
public class CMtransform 
{ 
public: 
 CMtransform(); 
 
}; 
 
 
public class VectorTransform 
{ 
public: 
 VectorTransform(); 
 
}; 
 
public class LinearTransform 
{ 
public: 
 LinearTransform(); 
 
}; 
 
public class Integration 
{ 
public: 
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 Integration(); 
 
}; 
 
public class BTransform 
{ 
public: 
 BTransform(); 
 
}; 
 
public class BTdisplay 
{ 
public: 
 BTdisplay(); 
 
}; 
 

Source: 
asteroid::asteroid() 
{ 
 Random ^randomObject = gcnew Random(); 
 
 r = randomObject->Next(53,76); 
 theta = randomObject->Next(0,2*Math::PI); 
 double randomMass = randomObject->Next(950*Math::Pow(10,18)); 
 
} 
 
void asteroid::display() 
{ 
 Pen ^myPen = gcnew Pen(System::Drawing::Color::Black);  
 Graphics ^myGraphics; 
 myGraphics->TranslateTransform(140,120); //translate origin 
  
 double x = r*Math::Cos(theta); 
 double y = r*Math::Sin(theta); 
 myGraphics->DrawEllipse(myPen,x,y,20,20); 
} 
+ user protected code 
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