

Optimization of Trajectories

Kristin Cordwell
Erika Debenedictis

Brian Lott

April 04, 2007

Team 38
New Mexico Supercomputing Challenge

Table of Contents

Executive Summary………………………………………………………………….….01
Problem Statement……………………………………………………………..………..02
Gravitational Physics……………………………………………………………….…...03
 Single Central Mass……………………………………………………………..03
 Two Body Systems…………………………………………………...…………04
 N Body Systems……………………………………………………………..….04
Elastic Collisions………………………………………………………………………..05
 Introduction………………………………………………………………….….05
 One Dimensional Collisions…………………………………………………….05
 One Mass Much Larger than the Other……………………………..…..07
 Two Dimensional Collisions……………………………………………………08
 Slingshot Maneuvers………………………………………………………...….10
Lagrange Points……………………………………………………………………..…..12
 Introduction………………………………………………………………….…..12
 Rotational Physics………………………………………………………….……12
 Potential Energy in the Rotating Frame…………………………………………13
 Finding the Positions of L1, L2, and L3……………………………………...…15
 Physical Description of L1, L2, and L3………………………………..………..18
 Finding the Positions of L4 and L5………………………………………...……19
 Physical Description of L4 and L5………………………………………………20
 Stability of the Lagrange Points…………………………………………………20
 Use of the Lagrange Points…………………………………………………..…..21
Numerical Analysis………………………………………………………………………22
 Introduction and Basic Requirements……………………………………………22
 A Simple System…………………………………………………………...……23
 A Second Order Method…………………………………………………………23
 A Fourth Order Method………………………………………………………….25
 General RK4 Algorithms…………………………………………………..…….27
Reference Orbits…………………………………………………………………………28
 Reference Ellipse………………………………………………………………..28
 Reference Hyperbola…………………………………………………………….29
Functions and Structure of Delta………………………………………………….……..31
Delta on the Cluster……………………………………………………………….……..34
Results……………………………………………………………………………...….…37
 Comparison of Approximation Methods…………………………………….…..37
 Path to Mars………………………………………………………………….…..48
 Path to Pluto………………………………………………………………....…..53
Low-Energy Path to Moon……………………………………………………………....55
Next Steps………………………………………………………………………..………59
Conclusion………………………………………………………………………...……..60
Acknowledgements…………………………………………………………………..….61
Bibliography and References……………………………………………………………62
Appendix A – Flowcharts………………………………………………………………..63
Appendix B – Code……………………………………………………………………...65
Appendix C – Email from Prof. Hut……………………………………………….…...100

Executive Summary
We have developed a process to find gravity assisted routes for spacecraft launched from

Earth to distant objects in our solar system. These routes use the gravitational effects of

planets and Lagrange points to affect the trajectories and are both fuel and time effecient.

By analyzing characteristics common to the identified routes it is possible to predict new

routes that may be more efficient.

In developing this program, we experimented with different approximation methods,

including Simple Newtonian and Runge-Kutta Approximations, for calculating the

movement of a spacecraft. Using a computer cluster, we were able to partition the

calculations over multiple computers and document the effect on the program’s

performance.

We also investigated two conceptual models for finding routes for a spacecraft. The first

involves setting up an array of spacecraft, observing their trajectories, and then refining

the initial conditions, thus moving the spacecraft trajectories closer to the target. This

method was effective in finding gravity assisted paths to get to both Mars and Pluto. In

another model, we investigated the fuel-saving effects of utilizing the Lagrange points

when planning the spacecraft’s route. This method excelled in identifing longer duration

paths where the spacecraft reaches its target with significantly lower fuel requirements.

1

Problem Statement
In order to find efficient and fast routes to other planets, it is necessary to use the gravity

of planetary bodies to boost the spacecraft’s speed and change the spacecraft’s position

and velocity vector. Simulating the spacecraft’s path can reveal the optimal way to launch

a spacecraft so that it uses little fuel and reaches its destination in a short amount of time.

These simulations are especially important because of the expense of the probes and the

scientific value of the data they collect.

By analyzing characteristics common to routes that use little fuel and take a reasonable

amount of time, it should be possible to narrow down which routes will be most efficient.

These characteristics include gravity slingshot effects of an interaction with a planet, the

speed and direction of the spacecraft as it leaves earth, relative position to multiple

planetary bodies, and relative position to Lagrange points.

The n-body problem of many gravitational fields affecting an object can be expressed, at

a given time, geometrically by a three dimensional graph of the gravitional potential, and

this can help one investigate the properties of various Lagrange points. Dynamic

gravitational effects involving the movement of multiple planets can greatly change the

path of an object, and we can use the theory of elastic collisions to predict how best to

use a gravitational slingshot. By using three ways to change position and speed, namely

Lagrange points, the slingshot effect, and burning fuel, spacecraft can be accurately and

efficiently moved around the Solar System.

2

Gravitational Physics

Gravity! Gravity!
All matter has a force

That pulls things toward its core.
Gravity! Gravity!
Is what we call that force.

-Space Songs

Single Central Mass

An object of mass M produces a gravitational force on another mass m

equal to −GM~r

r3
, where ~r is the vector from mass M to object m, and r

is the distance, or the magnitude of ~r. In terms of the unit vector r̂ from

M to m, the force equals −GMr̂

r2
, which is proportional to the masses M

and m, and inversely proportional to the distance between the two objects.
G is the gravitational constant, approximately equal to 6.67·10−11 Nm2/kg2.

If m is much less than M (m << M), we can ignore the effect of m on
M and solve for the motion of m in the gravitational field created by M .

We apply Newton’s second law to obtain the equation m~a = −GM~r

r3
, or,

equivalently,
d2~r

dt2
= −GM~r

r3
.

This is normally solved in the reference frame where M is not moving. The
solution is then automatically in only two dimensions. One usually uses polar
coordinates and obtains the equations

d2r

dt2
− r(

dθ

dt
)2 = −GM

r2
and

1

r
· d

dt
(r2dθ

dt
) = 0.

The second equation says that r2dθ

dt
is a constant, which we recognize as

the specific angular momentum of m. Calling this value l, we obtain

3

d2r

dt2
− l2

r3
= −GM

r2
.

This is usually solved by a substitution trick, letting r =
1

u
, obtaining a sim-

pler differential equation in u, solving it, and then substituting back. The

general solution is then r(θ) =
l2/GM

1 + e cos(θ − θ0)
, where e is the eccentricity

of the orbit. This solution describes curves that are conic sections; that is,
parabolas, hyperbolas, or ellipses. If the eccentricity e is less than 1, the

curve is an ellipse and we have the relation
l2

GM
= a(1− e2), where a is the

semi-major axis of the ellipse.

Two Body Systems

When there are two attracting bodies we are still able to solve the system
exactly. The bodies attract each other, but in a way that causes them to
orbit about the center of mass of the two bodies. By a trick of switching the
coordinate to be the vector between the two bodies, the two body problem
reduces, mathematically, to the one (attracting) body problem. After this

is solved, one just multiplies by
M1

M1 + M2

and − M2

M1 + M2

, respectively, to

recover the orbital position vectors of the two bodies.

N Body Systems

There is no general, closed-form solution for more than two attracting bodies.
One must use approximations and solve simultaneous equations numerically.

4

Elastic Collisions

Introduction

Elastic collisions between two objects occur when the total kinetic energy is
conserved. For example, if a ball of modeling clay hits a hard floor, it is likely
not to bounce much, if at all – this is an inelastic collision, as the energy of
the ball is converted into internal friction and heat. If a superball (think
“elastic”) hits the floor, though, it will bounce back to almost the same ini-
tial height from which is was dropped – this collision is (almost) elastic. We
can set up the equations for Conservation of Momentum and Conservation
of Energy to find out how two objects behave during an elastic collision.

The reason that we spend time looking at elastic collisions is that most sit-
uations where a spacecraft approaches a planet or a large body are, in fact,
elastic collisions. The mechanism for the collision does not need to be an
impact and a bounce, it only needs to provide some means of interaction so
that the bodies trajectories are altered, without loss of kinetic energy. Grav-
itational interactions provide just such a means; a spacecraft that flies near
the sun or a planet does, indeed, have its trajectory altered, and, because
of the nature of the gravitational fields, almost no energy is lost to internal
energy (unless the spacecraft hits the planet!).

As we will see from the equations below, in an elastic collision it is pos-
sible for a small body to gain a boost in speed. This is the basis for what is
called a slingshot maneuver.

One Dimensional Collisions

Collisions in one dimension occur on a line; the objects are assumed to be
moving on this line before and after the collision.

Conservation of Momentum implies that

mv1 + Mv2 = mv̂1 + Mv̂2 (1)

Conservation of Energy implies that

5

1

2
mv1

2 +
1

2
Mv2

2 =
1

2
mv̂1

2 +
1

2
Mv̂2

2 (2)

From equation (2), we get

m(v1 + v̂1)(v1 − v̂1) = M(v̂2 + v2)(v̂2 − v2) (3)

From equation (1), we get

m(v1 − v̂1) = M(v̂2 − v2) (4)

Substituting equation (4) into equation (3) gives us

(v1 + v̂1) = (v̂2 + v2) (5)

Equations (5) and (4) then become

mv1 + mv̂1 = mv2 + mv̂2

mv1 −mv̂1 = Mv̂2 −Mv2

Solving this system, we obtain

2mv1 = (m−M)v2 + (M + m)v̂2

Or, solving for v̂2,

v̂2 =
2mv1 + (M −m)v2

(M + m)

Similarly, we can use equations (5) and (4) to solve for v̂1 as follows

Mv1 + Mv̂1 = Mv2 + Mv̂2

−mv1 + mv̂1 = −Mv̂2 + Mv2

(M −m)v1 + (M + m)v̂1 = 2Mv2

6

which gives us

v̂1 =
2Mv2 − (M −m)v1

(M + m)
.

One Mass Much Larger than the Other

Assuming that M >> m,

v̂1 ≈ 2v2 − v1.

If v1 and v2 are in opposite directions, object m collides head-on with M
and bounces backwards. In this case, it gains speed in the amount

|v̂1| ≈ v1 + 2v2.

Figure 1: One Dimensional Collision - Gain in Speed

7

If v1 and v2 are in the same direction and object m is moving fast enough,
it hits M from behind and bounces backwards, but with a reduced speed.

|v̂1| ≈ v1 − 2v2 (if v1 > 2v2)

Figure 2: One Dimensional Collision - Loss of Speed

If m is not moving as fast, it hits M from behind and continues in the same
direction, also with a reduced speed.

|v̂1| ≈ 2v2 − v1 (if v1 > v2 > 1
2
v1)

If we now consider only the case where M >> m, then there is an easier
way to derive the final speed v1. We first change to the reference frame
where M is not moving, i.e., v2 = 0, as shown.

Conservation of Energy in this frame requires that the final speed of m be
the same as the initial speed (we are using M >> m here).

As seen in the figure, we add back in v2 to get our final result.

Two Dimensional Collisions

Elastic collisions in two dimensions again require conservation of momentum
and conservation of energy. Since momentum is a vector quantity, this gives

8

M
m v1 + v2

M
v2m v1

M
v1 + v2 m

M

v2v1
’

= v1 + 2v2 m

us two equations, one for the x-component and one for the y-component.
Together with the equation for energy, we get
mv1 = mv̂1cos(θ1) + Mv̂2cos(θ2)

0 = −mv̂1sin(θ1) + Mv̂2sin(θ2)

1
2
mv1

2 − 1
2
mv̂1

2 + 1
2
Mv̂2

2

The general solution for v̂1 and v̂2 is straightforward but fairly complex.
Since almost all of our calculations involve the condition that M >> m,
we can simplify these equations to obtain a final approximation that will be
extremely accurate.

Again, we change to the reference frame where M is stationary. The condi-

9

tion M >> m allows us to say that M remains stationary, and conservation
of energy then requires that the final speed of m in this frame equals the
initial speed in this frame. As is the case in real life, m may bounce off at
any possible angle. As seen in the picture below, we obtain the final velocity
of m by adding back in ~v2.

Figure 3: Two Dimensional Collision, M >> m

Slingshot Maneuvers

The reason that we spend time on two dimensional elastic collisions is that
it forms the basis for slingshot maneuvers. First, we note that gravitational
interactions are almost always elastic collions - a collision does not require
that the two bodies physically crash together, just that they interact in a
way to change the trajectories. Moreover, by the nature of a gravitational
interaction, there is essentially no energy lost during the interaction, so the

10

total (kinetic) energy is conserved automatically. (The only inelastic colli-
sions would be if a spacecraft actually crashed into a planet).

Now, by using the theory developed above, we can plot the ingoing angle
of a spacecraft that is heading towards a planet, and we can decide what
outgoing speed we might wish to obtain (up to the possible maximum). This
will determine the desired outgoing angle. We can then tweak the ingoing
trajectory at a large distance from the planet, using only a small amount
of energy, to cause it to go either nearer or farther from the planet, so as
to adjust the “collision” until it produces the desired outgoing angle (and
speed).

This method allows us to patch together trajectories from, say, Earth to
Pluto by way of a slingshot about Jupiter in a fairly efficient manner.

11

Lagrange Points

Introduction

Newton’s Laws can be solved exactly for a system of two masses (often un-
equal in size), where each mass attracts the other. One solution is when each
of the two masses orbits the common center of mass in a circle. Essentially,
Newton’s third law says that the forces on the two bodies are equal in magni-
tude (and opposite in direction), but, because of the difference in masses, the
acceleration is different for each. Thus, the larger mass will have a smaller
orbit about the center of mass, and the larger will have a bigger orbit. We
treat the center of mass as the origin, and it turns out that each of the two
masses M1 and M2 orbits with the same angular frequency, which we will
call Ω.
Lagrange Points are special positions in such a system, where a test body
would rotate about the common center at the same angular speed as the
two attracting masses, at a constant distance. Thus, in a reference frame
that is rotating with the attracting masses, the test body would also appear
stationary.

Rotational Physics

Kepler’s Law still holds in the form
Ω2R3 = G(M1 + M2),
where R is the distance between M1 and M2 and the angular frequency is
2π

T
, T being the orbital period. If R is constant, and we choose a reference

frame that rotates with the same angular velocity about the origin, it will
appear that M1 and M2 are stationary in that reference frame. This makes
it fairly straightforward to test for the existence of equilibrium points.
In a rotating frame, we must include “artificial forces” as the price of the
convenience of rotating along with a system. These include the centrifugal
force and the coriolis force. The coriolis force depends on an object moving
(in the rotating frame), so we can ignore it in our search for equilibrium
points, which will be stationary. In the rotating frame, the force on a test
body m at position ~r from the origin will be
~FΩ = ~F −m~Ω× (~Ω×~r). Vector Ω is the angular velocity, and ~F is the force
measured in the non-rotating frame, viz., the attractive force due to M1 and
M2. If we restrict ourselves to the plane defined by the orbits of M1 and M2,

12

we see that the centrifugal force has magnitude mrΩ2 =
mv2

r
, which is just

the amount of centripetal force required to keep an object in a circular orbit.

Potential Energy in the Rotating Frame

We also have that the gravitational force field has an associated specific po-
tential energy,

UΩ = U − 1

2
r2Ω2,

the latter term just being, in magnitude,
v2

2
, the specific kinetic energy in

the non-rotating frame, and where U is the potential energy due to the two
bodies M1 and M2.

If we plot the potential energy (in the rotating frame), we see some interest-
ing features. In the first graph, we are plotting the negative of the potential
energy, and we can see the large peaks where the masses M1 and M2 are
located. We plotted this in Mathematica, using the value k= 80 and the
command
Plot3D[10*k/Sqrt[(x + 1)ˆ 2 + yˆ 2 + 0.0001] + 1*k/Sqrt[(x - 10)ˆ 2 + yˆ
2 + 0.0001] + 1*(xˆ 2 + yˆ 2)/2, {x, -15, 15}, {y, -15, 15}, ColorFunction
→ Hue, PlotPoints → 80, ImageSize → 500].

Figure 4: Masses M1 and M2

-10

0

10

-10

0

10

150

200

250

-10

0

10

13

M1 was chosen to be 10 times as large as M2, which means that the posi-
tion of M1 was one unit to the left of the origin, and that of M2 is ten units
to the right. Ω was chosen to equal 1, and one can see that we are adding
potential and kinetic (centrifugal) energies.

As well as a couple of saddle points in the first figure, there are two other
equilibrium points off to the sides. To see these, we enhanced the negative
values and cut off the large values around the two masses. This was done
with the Mathematica command
Plot3D[Min[10*k/Sqrt[(x + 1)ˆ 2 + yˆ 2 + 0.0001] + 1*k/Sqrt[(x - 10)ˆ
2 + yˆ 2 + 0.0001] + 1*(xˆ 2 + yˆ 2)/2, 140], {x, -15, 15}, {y, -15, 15},
ColorFunction → Hue, PlotPoints → 80, ImageSize → 500]

Figure 5: Off-Axis Lagrange Points

-10

0

10

-10

0

10

134

136

138

140

-10

0

10

Again, we are plotting the negative of the potential energy, so the two
dips are really hills. These would, in a non-rotating frame, be unstable equi-
librium points.

Finally, we made a contour plot, looking down from above. Here we can
clearly see two saddle points, two of them near M2, one of which is between
M1 and M2, and the other to the right of M2. Then there are the two points
on top of the hills, off to the sides of the M1-M2 axis. Finally, there is actu-
ally a fifth saddle point to the left of M1, in the middle of the broad, light

14

green region that extends from the two hills.

Figure 6: Potential Energy Contours

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

This graph was produced using the Mathematica command
ContourPlot[Min[m1/Sqrt[(x + a*r)ˆ 2 + yˆ 2 + 0.0001] + m2/Sqrt[(x -
b*r)ˆ 2 + yˆ 2 + 0.0001] + (m1 + m2)/(rˆ 3)*(xˆ 2 + yˆ 2)/ 2, .22], {x,
-15, 15}, {y, -15, 15}, Contours → 18, ColorFunction → (If[# > .95, RGB-
Color[1, 1, 1], Hue[(# + .14)*.80]] &), PlotPoints → 200, ImageSize → 500]
with the values r = 10, m1 = 1, m2 = 1/10, a = m2

m1+m2
, b = m1

m1+m2
.

Finding the Positions of L1, L2, and L3

To solve for the positions of the Lagrange points, we find the force on a test
body in the potential field. First, we define the fractional masses of the two
attractive bodies:

15

α =
M2

M1 + M2

, β =
M1

M1 + M2

Note that α + β = 1. In the rotating frame, M1 has coordinates (−αR, 0)
and M2 has coordinates (βR, 0).

Then, taking ~FΩ as above, with m, the test mass, equal to 1, and noting that
this is simply ~F + Ω2~r, we obtain

~FΩ = (x · Ω2 − GM1(x + αR)

((x + αR)2 + y2)
3
2

− GM2(x− βR)

((x− βR)2 + y2)
3
2

)̂i

+ (y · Ω2 − GM1y

((x + αR)2 + y2)
3
2

− GM2y

((x− βR)2 + y2)
3
2

)ĵ

= Ω2(x− β(x + αR)R3

((x + αR)2 + y2)
3
2

− α(x− βR)R3

((x− βR)2 + y2)
3
2

) î

+ Ω2(y − βyR3

((x + αR)2 + y2)
3
2

− αyR3

((x− βR)2 + y2)
3
2

) ĵ

where we also used
1

Ω2
=

R3

GM1 + GM2

.

Setting this equal to 0, which is the condition for an equilibrium point, we
can then find the solutions. First, we specialize to the case along the x-axis,
where y = 0. This automatically forces the y component of the force to be
zero, leaving the equation for the x component. Then we need to solve

x− β(x + αR)R3

|x + αR|3
− α(x− βR)R3

|x− βR|3
= 0

Substituting w =
x

R
, and dividing the equation by R and rearranging terms,

we obtain

w − β(w + α)

|w + α|3
− α(w − β)

|w − β|3
= 0

where w is in units of the distance between M1 and M2, R.
Finally, substituting s = w− β, so that s is the coordinate distance, in units
of R of the Lagrange Point(s) from M2, we obtain

16

s + β − β(s + 1)

|s + 1|3
− αs

|s|3
= 0

where, again, we have used α + β = 1.

Because of the absolute value signs, there are three cases to consider, s > 0,
which is the Lagrange Point to the right of M2, 0 > s > −1, which is the
Lagrange Point just to the left of M2, and −1 > s, which is the Lagrange
Point to the far left of M1. We will solve the case for s > 0, as the solutions
in the other two cases are very similar.

With s > 0, we have

s + β − β

(s + 1)2
− α

s2
= 0

We now substitute in β = 1− α, clear the denominators, and obtain
s3(3 + 3s + s2) = α(1 + 2s + s2 + 2s3 + s4)

This is an equation for s of degree five, so we know that it has at least
one real root (it is of odd degree, and complex roots occur in conjugate
pairs), which we could solve for numerically, given the value of α.
It is often the case, though, that M1 >> M2, or, equivalently, that α << 1.
For example, for the sun-earth system, α ≈ 3 · 10−6. In this situation, we
assume that the solution s is also small and solve to first order in α. After
this, of course, we need to check that our assumption was consistent, i.e.,
that s really is small. With the assumptions that s << 1 and α << 1, we
have
3s3 ≈ α, or that s ≈ (

α

3
)

1
3 .

We now need to check that s is, indeed, much less than 1. This is a bit
“fuzzy”, or not clearly defined, but, if we consider the earth-moon system as
representative, α ≈ .012, giving a value of s of about .16, which is probably
good enough. For the sun-earth system, s is much less than 1. Thus, our
assumption is justified, and our solution is close to the true solution.

In terms of our original coordinate x, we then have

x = R(β + (
α

3
)

1
3) = R(1− α + (

α

3
)

1
3).

17

Since a (positive) number that is less than one has a cube root that is big-
ger than the original number (but still less than one), we could drop the α
term, if α is small enough. The Lagrange Point for which we have solved is
usually called L2. The one between the two masses is called L1, and the one
to the left of the larger mass is called L3. The solutions for L1 and L3 are
found in a similar way to that of L2. For cases where M2 << M1, we have,
approximately, the coordinate positions

L1 : (R[1− (
α

3
)

1
3], 0)

L2 : (R[1 + (
α

3
)

1
3], 0)

L3 : (−R[1 +
5

12
α], 0)

Physical Description of L1, L2, and L3

Physically, a satellite that is orbiting, say, the earth will go around much
faster if it is in a low earth orbit, both in real speed and in angular speed,
than if it is in a higher orbit, because the centripetal force is higher, which
pulls it around faster. The Lagrange Points find where the orbital speed
exactly matches that of the moon. Normally, the L1 point, being closer to
the earth, would be going around faster than the moon, but the pull of the
moon partially counteracts the pull from the earth, which reduces the ac-
celeration to exactly the point where the the corresponding reduced angular
speed matches that of the moon. Similarly, the L2 point, being farther out
from the earth than is the moon, would normally be orbiting more slowly
than the moon. However, the pull of the moon adds to the pull of the earth
in this case, increasing the acceleration to the point where its angular speed
also matches that of the moon. Finally, the L3 point, which is slightly farther
away from the earth than is the moon, also feels a slight extra pull from the
moon (on the far side of the earth), so its angular speed also aligns with that
of the moon.

18

Finding the Positions of L4 and L5

We noted that there are two other Lagrange Points, on the tops of the two
“hills”, offset from the x-axis. To solve for these, we also use the force equa-
tion from above,

~FΩ = Ω2(x− β(x + αR)R3

((x + αR)2 + y2)
3
2

− α(x− βR)R3

((x− βR)2 + y2)
3
2

) î

+ Ω2(y − βyR3

((x + αR)2 + y2)
3
2

− αyR3

((x− βR)2 + y2)
3
2

) ĵ

and set it equal to zero. It makes it a bit more clear, though, if we decompose
the force vector into a component that is parallel to ~r and one perpendic-

ular to that. The two relevant vectors to project onto are
1

r
(xî + yĵ) and

1

r
(yî− xĵ), where r =

√
x2 + y2.

Taking the dot product of these two vectors with ~FΩ gives

F⊥
Ω = k1[xy− β(x + αR)R3y

((x + αR)2 + y2)
3
2

− α(x− βR)R3y

((x− βR)2 + y2)
3
2

−xy+
βxyR3

((x + αR)2 + y2)
3
2

+

αxyR3

((x− βR)2 + y2)
3
2

].

where k1 is the appropriate value, which will not be important as we will
be setting the force components to zero. Simplifying, we obtain

F⊥
Ω = k̂1[−

1

((x + αR)2 + y2)
3
2

+
1

((x− βR)2 + y2)
3
2

].

where k̂1 is another unimportant nonzero value. Setting the piece inside
the brackets to zero implies that (x − βR)2 = (x + αR)2. Since −αR and
βR are the x-coordinates of the two bodies M1 and M2, we see that the
x-coordinate of both of these Lagrange Points must lie halfway between the
positions of the two bodies, namely x = 1

2
(β − α)R. Thus, these Lagrange

Points must be at the apexes of isosceles triangles with bases equaling the

19

segment between the two bodies.

By the similar project , we obtain the component of the force that is parallel
to the radius vector. This reduces to

F
‖
Ω = k̂2[

1

R3
− 1

((x + αR)2 + y2)
3
2

].

Setting the part inside the brackets to zero and simplifying gives

(x + αR)2 + y2 −R2 = 0.

Now substituting the value of x determined from the perpendicular com-
ponent, we have

(x+αR)2 +y2−R2 = (1
2
(β−α)R+αR)2 +y2−R2 = (1

2
(α+β)R)2 +y2−R2

= (1
2
R)2 + y2 −R2 = 0,

which solves to y = ±
√

3

2
R. We recognize these y values as the apexes

of the equilateral triangle whose bases are the segment between the two bod-
ies. Thus, the Lagrange Points L4 and L5 are located at the opposite points
of the two equilateral triangles that share the base segment joining M1 and
M2.

Physical Description of L4 and L5

Physically, the earth pulls more strongly on a test body at these Lagrange
Points, with the contribution of the moon’s pull adding as a vector to yield
a net pull, of just the right size, towards the center of mass to cause these
Lagrange Points to rotate at the same angular speed as the system.

Stability of the Lagrange Points

Although the contour plot seems to show that L1, L2, and L3 are equilibrium
saddle points, and L4 and L5 are unstable equilibrium points, because we are
in a rotating frame, we need to be a bit cautious. It turns out that L1, L2,

20

and L3 are indeed saddle points that are dynamically unstable, with L3 being
the “least unstable”. On the other hand, although L4 and L5 are hilltops in
the contour plot, because of the coriolis force, a small perturbation off of the
hilltop will cause a test body to orbit around L4 or L5, as long as the larger
mass, M1 is at least approximately 25 times as large as M2 (this is true for
the earth-moon or sun-earth systems).

Use of the Lagrange Points

In recent decades, there has been much discussion and some actual physical
use of the Lagrange Points. As might be inferred from the contour potential,
the L1 and L2 points allow access into M2’s potential well with smaller energy
than might otherwise be required. Moreover, if a spacecraft has just enough
speed to get through the “gate” at, say, L2, and then it performs a low-
energy burn to reduce its speed, it will be trapped inside the well. Thus,
it is possible to utilize the Lagrange Points in accessing regions that might
otherwise seem to be forbidden, and also possible to utilize them to transfer
to an orbit about M2 in a low-energy manner.

21

Numerical Analysis

Introduction and Basic Requirements

We are trying to solve spacecraft trajectories, which are solutions of equa-

tions of the form
d2~x

dt2
= ~f(~x), where ~f is the force term. For example, for a

single attractive body,

~f(~x) = −GM~x

x3
.

Note that the force is not explicitly dependent on time or the velocity of any
of the bodies, only on the position vector.
Although we are dealing with (in general) 3-dimensional vector quantities,
these all separate out into their respective coordinate parts, so we will sup-
press the vector notation in the following derivation.

We have the second order equation
d2x

dt2
= f(x), but we change to a sys-

tem of first order equations as
dx

dt
= v

dv

dt
= f(x)

We want to find the position and velocity at time t = 1, given their val-
ues at t = 0. First we express x1 and v1 as a Taylor series about the values
at t = 0. This gives us

x1 = x0 + v0(∆t)+
1

2
a0(∆t)2 +

1

3!
j0(∆t)3 +

1

4!
s0(∆t)4 +

1

5!
c0(∆t)5 +O((∆t)6)

and

v1 = v0 + a0(∆t) +
1

2
j0(∆t)2 +

1

3!
s0(∆t)3 +

1

4!
c0(∆t)4 + p0(∆t)5 + O((∆t)6)

where j0 is commonly called the “jerk” (after a sudden change in acceler-
ation), and s0, c0, and p0 are called the “snap”, “crackle”, and “pop”. 1

1Piet Hut and Jun Makino, The Art of Computational Science

22

If we use the system of differential equations and equate terms, we have
the requirements that

a0 = f(x(0)) = f(x0) = f0 (6)

j0 =
d

dt
a(t)|t=0 =

df(x)

dx
|x0 ·

dx

dt
|t=0 = f ′0v0 (7)

s0 =
d2

dt2
a(t)|t=0 = f ′′0 v2

0 + f ′0f0 (8)

c0 = f ′′′0 v3
0 + 3f ′′0 f0v0 + (f ′0)

2v0 (9)

p0 = f
[4]
0 v4

0 + 6f ′′′0 f0v
2
0 + 3f ′′0 f 2

0 + 5f ′′0 f ′0v
2
0 + (f ′0)

2f0 (10)

We will make use of these requirements extensively, below.

A Simple System

First, we note that, if we just try integrating f(x0) = f0, we obtain

x1 =
1

2
f0(∆t)2 + b(∆t) + c

v1 =
1

2
f0(∆t) + b

With the initial conditions, we get

x1 = x0 + v0(∆t) +
1

2
f0(∆t)2

v1 = v0 + f0(∆t).

This matches the first few terms of the Taylor series, and we see that it
is first order in v and, ostensively as least, second order in x.

A Second Order Method

To get higher-order accuracy, we need different terms in the definition of x1

and v1. Runge-Kutta (RK) methods approximate the Taylor series by ap-
propriate choices of when and where to evaluate the function f(x(t)). (see

23

more detail, below, in the General RK4 section)

For example, if we choose

x1 = x0 + v0(∆t) +
1

2
f(x0)(∆t)2

v1 = v0 + f(x0 +
1

2
v0(∆t))(∆t)

we can see this is accurate through second order (in (∆t)) by matching the
Taylor series. We do this as follows:

First notice that x1 exactly matches the first three terms of the Taylor series
for x1, with the identification of a0 with f0 = f(x0). For v1, we need to

expand f about x0. Thus, f(x0 +
1

2
v0(∆t)) = f0 + f ′0(

1

2
v0(∆t)) + O((∆t)2).

Substituting this in gives

v1 = v0 + f0(∆t) +
1

2
f ′0v0(∆t)2 + O((∆t)3).

Since j0 = f ′0v0, we see that v1 also matches exactly the first three terms
of the Taylor series. Thus, both r1 and v1 are second-order accurate. This
is called an RK2 (second order Runge-Kutta) approximation. To implement
this in code, one would do something like the following:

x 1
2

= x0 +
1

2
v0(∆t)

v 1
2

= v0 +
1

2
a0(∆t)

x1 = r0 + v0(∆t) +
1

2
a0(∆t)2

v1 = v0 + a 1
2
(∆t),

where a 1
2

is the function f evaluated at x 1
2
.

24

A Fourth Order Method

For an approximation that is accurate through fourth order in (∆t), we need
to estimate the acceleration at three values. Let

k0 = f0 = f(x0)

k1 = f(x0 +
1

2
v0(∆t) +

1

8
k0(∆t)2)

k2 = f(x0 + v0(∆t) +
1

2
k1(∆t)2)

Then let

x1 = x0 + v0(∆t) +
1

6
(k0 + 2k1)(∆t)2 and

v1 = v0 +
1

6
(k0 + 4k1 + k2)(∆t).

To show that this has the desired accuracy, we expand k1 and k2 as

k1 = f0+f ′0(
1

2
v0(∆t)+

1

8
f0(∆t)2)+

f ′′0
2

(
1

2
v0(∆t)+

1

8
f0(∆t)2)2+

f ′′′0

6
(
1

2
v0(∆t)+

1

8
f0(∆t)2)3 + O((∆t)4)

k2 = f0 + f ′0(v0(∆t) +
1

2
k1(∆t)2) +

f ′′0
2

(v0(∆t) +
1

2
k1(∆t)2)2 +

f ′′′0

6
(v0(∆t) +

1

2
k1(∆t)2)3 + O((∆t)4), or

k2 = f0+f ′0v0(∆t)+
1

2
(f ′0k1+f ′′0 v2

0)(∆t)2+(
1

2
f ′′0 v0k1+

1

6
f ′′′0 v3

0)(∆t)3+O((∆t)4)

Collecting terms for k1, we obtain

k1 = f0 +
1

2
f ′0v0(∆t) + (

1

8
f0f

′
0 +

1

8
f ′′0 v2

0)(∆t)2 + (
1

16
f ′′0 f0v0 +

f ′′′0

48
v3

0)(∆t)3 +

O((∆t)4).

Substituting this into the expression for k2 and collecting terms, we have

25

k2 = f0+f ′0v0(∆t)+
1

2
(f ′0f0+f ′′0 v2

0)(∆t)2+(
1

4
(f ′0)

2v0+
1

2
f ′′0 f0v0+

1

6
f ′′′0 v3

0)(∆t)3+

O((∆t)4)

Substituting the expression for k1 into the definition of x1 and collecting
terms gives

x1 = x0 + v0(∆t) +
1

6
(f0 + 2f0)(∆t)2 +

1

6
f ′0v0(∆t)3 +

1

24
(f0f

′
0 + f ′′0 v2

0)(∆t)4 +

O((∆t)5),

which simplifies to

x1 = x0 +v0(∆t)+
1

2
f0(∆t)2 +

1

3!
f ′0v0(∆t)3 +

1

4!
(f0f

′
0 +f ′′0 v2

0)(∆t)4 +O((∆t)5)

Comparing with the Taylor series for x1 shows us that they match exactly
to the O((∆t)5) term, demonstrating that the expression for x1 is accurate
through order 4.

Now we must check v1. Substituting the expressions for k1 and k2 into the
definition of v1 gives

v1 = v0 +
1

6
(∆t) · f0 +

2

3
(∆t)(f0 +

1

2
f ′0v0(∆t) +

1

8
f0f

′
0(∆t)2 +

1

8
f ′′0 v2

0(∆t)2 +

1

16
f ′′0 f0v0(∆t)3+

1

48
f ′′′0 v3

0(∆t)3)+
(∆t)

6
(f0+f ′0v0(∆t)+

1

2
f ′0f0(∆t)2+

1

2
f ′′0 v2

0(∆t)2+

1

4
(f ′0)

2v0(∆t)3 +
1

2
f ′′0 f0v0(∆t)3 +

1

24
f ′′′0 v3

0(∆t)3) + O((∆t)5), or

v1 = v0 + (∆t)(
1

6
f0 +

2

3
f0 +

1

6
f0) + (∆t)2(

1

3
f ′0v0 +

1

6
f ′0v0) + (∆t)3(

1

12
f0f

′
0 +

1

12
f ′′0 v2

0+
1

12
f ′0f0+

1

12
f ′′0 v2

0)+(∆t)4(
1

24
f ′′0 f0v0+

1

72
f ′′′0 v3

0+
1

24
(f ′0)

2v0+
1

12
f0f

′′
0 v0+

1

144
f ′′′0 v3

0) + O((∆t)5).

Simplifying, we have

v1 = v0 +f0(∆t)+
1

2
f ′0v0(∆t)2 +

1

3!
(f0f

′
0 +f ′′0 v2

0)(∆t)3 +
1

4!
[(f ′0)

2v0 +3f ′′0 f0v0 +

26

f ′′′0 v3
0](∆t)4 + O((∆t)5).

Again, comparing with the Taylor series for v1, and using the conditions
on the terms in the series, we see that we have an exact match up to terms
of order 5, showing that the expression for v1 is also accurate through order
4. This is an RK4 code.

General RK4 Algorithms

There is, in fact, a family of RK4 codes. One starts with the idea that one
should estimate the acceleration (f(x)) at three positions, iterating to pro-
duce the values of k below. Aside from the initial choice of x0, though, we
express the other two positions in terms of linear combinations of previous
ks and powers of (∆t). Let

k0 = f0 = f(x0)

k1 = f(x0 + σv0(∆t) + ξk0(∆t)2)

k2 = f(x0 + v0(∆t) + (ηk0 + κk1)(∆t)2)

Then let

x1 = x0 + v0(∆t) + (α1k0 + α2k1 + α3k2)(∆t)2 and

v1 = v0 + (β1k0 + β2k1 + β3k2)(∆t).

One proceeds as we did in the specific RK4 example above, expanding k1

and k2 as Taylor series in (∆t), then expanding the expressions for x1 and
v1 in (∆t). Finally, one collects all like powers of (∆t) and matches each
power with the general Taylor series expression for x1 and v1 above (the
v0, a0, j0, s0, c0, p0 terms, and more if higher order algorithms are being de-
rived). This matching yields a set of equations in the constants used in the
definitions of k0, k1, k2 as well as the constants α1, α2, α3, β1, β2, β3 used in
the combinations to define x1 and v1. Typically, there is at least one free pa-
rameter when this system of linear equations is solved, which yields different
particular versions of RK4.

27

Reference Orbits

Reference Ellipse

In order to test our numerical approximation schemes, we chose a reference
orbit, an ellipse with the semi-major axis twice as long as the semi-major axis.
This was picked to have a region where the gravitational attraction was much
stronger, as well as the region at the other end of the ellipse, where gravity
was much weaker, to ensure that the approximations were tested fairly.

We picked an orbital period of 107s, which is about 1
3

of a year (the nearest
even power of 10) and a semi-major axis equal to a = 150 · 109m, 1 AU
(Astronomical Unit, equal to the average distance of the earth to the sun).

Using these values (and a = 2b) and the eccentricity e =
√

3
2

, we obtain the
equation of the ellipse in polar coordinates to be

r(θ) =
a

4
· 1

1− e · cos(θ)
.

We call this ellipse the reference orbit.

The reference orbit obeys Kepler’s Laws, which (among other things) says
that

T 2

4π2
=

a3

GM
,

where T is the period of the orbit and a is the semi-major axis. Plugging in
the specified values gives us a value of GM = 1.35π2 · 1020 (mks units). This
gives a mass of about 1.9976 · 1031kg, which is about 10 solar masses.

Since the central mass M is at one focus of the ellipse, we can determine
other parameters of the orbit. (We will use the terms aphelion and peri-
helion rather than the less familiar apastron and periastron.) The aphelion
distance is r0 = a · (1 + e) and the perihelion distance r1 = a · (1 − e).
We will normally choose a test trajectory to start at aphelion, where the

speed is vap =

√
2GM ·

√
r1

r0√
r0 + r1

≈ 25253.6 m/s. Finally, the specific energy

(or energy for a unit mass) of a spacecraft in this orbit is
1

2
v2 − GM

r
≈

28

−4.4413219804902 · 109 J/kg. This is a constant of the orbit.

The figure shows the reference orbit, scaled so that a = 2 and b = 1. Note
that the attractive mass M is at the left-hand focus, which is chosen to be
the coordinate origin.

Figure 7: Reference Ellipse

0.5 1 1.5

-0.4

-0.2

0.2

0.4

Reference Hyperbola

In order to better check our code, we also created a reference hyperbola, to
test slingshot predictions. We chose eccentricity e =

√
2 (greater than 1, as

required for a hyperbola) closest approach distance, perihelion r1 = 1010 m,
M = 2 ·1030 kg (about the mass of the sun), which gave us a hyperbola with
asymptotes at 45o. The equation is

r(θ) =
r(1 + e)

1− e · cos θ

Notice, in the graph, that the sun is at the focus of the hyperbola, and
the closest approach distance is, indeed, 10 million kilometers.
We have the relation

l2

GM
= r1 · (1 + e)

where l2 = (r1v1)
2, and v1 is the speed at perihelion. This gives us

29

v2
1 =

(1 + e)GM

r1

which is about 179459 m/s.
We also know that the constant, total (specific) energy is

E =
1

2
v2 − GM

r
,

which we can compute at perihelion to be about 2.7628 · 109 J .

Figure 8: Reference Hyperbola

-1·1010 1·1010 2·1010 3·1010 4·1010 5·1010

-7.5·1010

-5·1010

-2.5·1010

2.5·1010

5·1010

7.5·1010

The nice thing about a reference hyperbola is that we can use it to test
our slingshot theory against our numerical methods. We know the exact
values to use to produce (in theory) the reference hyperbola where the sun
is fixed. Now we can add any velocity vector to both the Sun and the space-
craft starting conditions, and the spacecraft should still “collide” with the
sun. By varying this velocity vector, we can test to see if the spacecraft
indeed gains speed (velocity vector going towards the right) or loses speed
(velocity towards the left) and everything in between.

30

Functions and Structure of Delta

Our program, Delta, combines various calculations to optimize the trajectories of the

spacecraft. First, we calculate the positions of the planets on an ellipse. The positions

are accurate to the specified day. We initialize an array of spacecraft 200 km above Earth

with a set initial velocity and launch angle. The main program loop then cycles through

each spacecraft and planet and calculates how the planets’ gravitational attractions affect

the spacecraft. To decide how long the next timestep should be, we measure the distance

between the planet we are trying to reach and the spacecraft that is closest to any planet.

Delta scales the system and writes the color and identification information into an image

file array. These images are then displayed in the browser. By using ISMAP, we can

click on a path and Delta will return which spacecraft or planet was at that position.

Finally, using a recenter function, the spacecraft array is re-defined so that the initial

conditions are closer to those of the optimal spacecraft, and the entire program runs

again.

The picture below is an example of how the program calculates the initial position of

each planet. The equation is for Earth at 00:00 in the morning of January 1st, 2004. Note

that this example only gives us the answer for one planet at one specific time. In the

program, we actually solve this equation numerous times, using a for loop to find the

planet’ positions at each time. This creates the illusion that the planets are moving. Each

time we find an X and a Y, we put them together to create the result below.

 31

The array of spacecraft is launched from 200 km above the Earth’s surface. Each

spacecraft is placed INITIALLAUNCHEDGE meters apart and launched at

LEAVEORBITMS meters/second at angle launchangle1 away from Earth in the

earth/moon rotating frame. Since the velocity vector of each spacecraft depends on the

velocity of Earth, the ellipse function is called twice in order to deduce the Earth’s

velocity vector. We add the vector to the velocity of each spacecraft and it results in an

array of spacecraft with the same velocity but slightly different positions.

The main calculations of the program take place in a loop that cycles through each

spacecraft and planet. The gravitational effects of each planet are calculated and used to

modify the velocity vectors of the spacecraft. Delta updates spacecraft[i].closestpos, the

smallest distance between the spacecraft and the target planet. As Delta goes through all

the spacecraft, it keeps track of the smallest distance between a spacecraft and any planet,

mindist, which will be used later. Delta also checks each spacecraft to make sure it has

not crashed into a planet. If it has, Delta no longer calculates its path. On the first

calculation after the start of every other new day, Delta prints information. This

information includes mindist, the day, and the distance between the target and the closest

spacecraft. Finally, the spacecraft are moved dt seconds in the direction of the velocity

vector.

Delta uses mindist to determine how many seconds the program will calculate next.

When mindist is small, Delta calcualtes a small dt so as to preserve accuracy. When all

spacecraft are far away from planets, dt is larger. It generally rises to 500 second

intervals. For this reason, we limit the size of dt to a pre-set amount.

For each timestep, Delta also creates pictures. For a system that has only one or two

principal bodies, we view the orbits in a frame where the principal bodies appear

stationary. Each picture is described in terms of vectors (which stabilize the picture to

make the different planets stationary) and a scale factor. Delta writes onto imagedata1 (or

imagedata2, 3, 4, 5, 6, or 7) files with the RGB color and also fills the last bit with either

the number of the spacecraft (+10) or the number of the planet. Thus, each object had a

unique ID number.

 32

The pictures are displayed as ISMAPs in the browser. ISMAP allows an image to be

clicked on as a link, and it returns the coordinates of the spot on which the user clicked.

The program goes back into the corresponding imagedata array and returns the

identification of the object that was last written on that pixel.

Using closestpos data, the ISMAP identification system, or other, similar methods, the

user can go back and slightly change initial conditions to refine where the spacecraft go.

(We use a large number of spacecraft so that we can test any number of variations at

once.) Recenter is one way of refining the simulation. It centers the spacecraft array on

the initial position of the chosen spacecraft and also decreases the distance between the

spacecraft. This is very effective in allowing Delta to move all the spacecraft closer to the

goal.

 33

Delta on the Cluster

Given the large amounts of computation involved to execute and plan low energy orbital

paths, Delta was separated into pieces that can be run in parallel. It was executed on the

cluster Dax, a three-node system which uses Windows 2000 network commands and a

control program.

The orbits function, which calculates spacecraft ID numbers, takes as parameters the

upper and lower ranges of the ID numbers. On a single computer, this range goes from 0

to the total number of spacecraft. When executed in parallel, the cluster program

calculates how many spacecraft each node should process, given each node's relative

speed. Each node calls the orbits function for the given range of spacecraft. Although

there are calculations common to each node (for example, each node calculates the

positions of the planets at each timestep and depicts the position of objects in multiple

pictures), the total calculation time for the cluster was about three times less than the total

calculation time on a single computer. The dramatic decrease in calculation time allowed

us to calculate the paths of spacecraft to distant solar bodies, such as Pluto. Starting from

Earth, using Jupiter for a slingshot, and ending at Pluto took 12 to 20 minutes on the

cluster, depending on the maximum timestep allowed. The same calculation on a single

computer took 30 to 60 minutes. As this calculation requires manual optimization, the

time decrease is crucial.

However, allocating the spacecraft among different nodes creates some instability in the

computation. After the entire array of spacecraft is divided among the nodes, each node

executes the calculations individually and disregards the spacecraft it has not been

assigned. Delta cycles through each spacecraft and planet to find the spacecraft closest to

a planet, and then it uses this distance to decide an appropriate timestep. When the closest

spacecraft is very near a planet, Delta uses a smaller timestep in order ensure accuracy.

As the spacecraft move away from the planets, the timestep will increase until it reaches

the maximum pre-defined limit. However, when the spacecraft are divided between

nodes, some nodes will calculate spacecraft passing farther away from planets and,

therefore, will calculate fewer times. These spacecraft would have been calculated with a

higher degree of accuracy had they all been on one computer. Although the spacecraft's

 34

positions in the array are distributed fairly evenly among the nodes, the change in

accuracy had a huge effect on a simulation of a spacecraft reaching to Pluto.

Unfortunately, because of this, the recenter function resulted in further instabilities, and it

could not be used.

Running the simulation on the cluster was significantly faster than running it on a single

computer. We continued to use standard Newtonian physics to calculate both the

positions of the planets and the spacecraft.

This is a page freeze of task manager during a three-year simulation.

Sending
messages to
th d

Receiving
messages
from three

Printing to

The graph below compares the run times of the program on the cluster and on a laptop.

The laptop takes more than three times the time to run. In part, this may be because the

laptop is 800 MHz and the cluster’s three nodes are 800 MHz, 1 GHz, and 1 GHz. Also,

the laptop had other processes running at the same time as the program, such as a

browser. Even so, the program runs much faster on the cluster.

 35

Laptop and Cluster Time

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8

Number of Years Simulated

To
ta

l T
im

e
In

 S
ec

on
ds

Laptop Time Cluster Time Linear (Laptop Time) Linear (Cluster Time)

This graph shows the relative speeds of each node in the cluster as compared to the total

time. When there are fewer calculations, the nodes run for the same amount of time. With

more calculations, however, small imperfections in the weighting of the nodes make the

run times different. Interestingly, the difference in the finish times of the nodes makes

the total run time closer to the slowest node’s run time, since the master computer has

more time to process the results of the individual nodes.

Nodes in Cluster Time

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10

Years Simulated

Ti
m

e
in

 S
ec

on
ds

12

Node 1 Node 2 Node 3 Tota Cluster
Linear (Tota Cluster) Linear (Node 3) Linear (Node 1) Linear (Node 2)

When we divided the code so it could run on the cluster, some imperfections in the

efficiency of Delta were made more obvious, since inefficient calculations are repeated

on a cluster and therefore have a greater effect on the run time. For example, the

calculations of the movements of the objects, the calculations for tracking close objects,

and the writing to picture files are all significant calculations cannot be removed without

loss of functionality, but they are often performed on multiple nodes and could be

simplified. Writing to picture files was the most inefficient of the three calculations,

since it had a circle function for drawing round planets. This function was called at every

timestep on every node for every planet in every picture. Fixing this inefficiency

decreased the run time by more than a factor of eight. Running Delta on the cluster thus

helped us to increase the efficiency of our code.

 36

Results
Comparison of Approximation Methods
In order to test the effectiveness of each method, Delta was set to calculate six spacecraft.

All the spacecraft started at the aphelion, ((1.+sqrt(3.)/2.)* 150e9, 0), and had initial

velocity (0, sqrt(2.7) *PI*1e10* sqrt((2.-sqrt(3.))/(2.+sqrt(3.)))/ sqrt(2.* 150e9)) around

the Sun. No other planets were involved. If the method used was accurate, all of the

spacecraft would travel in an ellipse and return to exactly their starting position at the

aphelion. Therefore, we were able to measure the ending distance from the aphelion to

determine the accuracy of each method.

We used four different numerical methods and one standard:

Method 1: Newton

Method 2: Runge-Kutta 2 (RK2)

Method 3: Runge Kutta 4 (RK4A)

Method 4: Runge Kutta 4 (RK4B)

Method 5: Standard Ellipse

The graphs of the distances from the aphelion are organized into two categories: the

accuracy of each method at different timesteps and the effect of the timestep on specific

methods’ performances.

This picture shows the setup of the accuracy test in the rotating Sun-Aphelion frame (the

Sun is in the middle). The green/blue orbits are the RK2 and RK4A methods, the red

orbit is an inaccurate method that we

decided to not use, and the yellow

orbit is RK4B (it is difficult to see

because it diverges very little). All of

the spacecraft start at the right edge

of the ellipse. Over the course of the

20-orbital-period simulation, RK2

and RK4A gain a small amount of

energy. RK4B does not gain or lose a

significant amount of energy.

 37

Timestep 5000

Comparison Of Methods, dt=5000

0

10000000000

20000000000

30000000000

40000000000

50000000000

60000000000

0 2 4 6 8 10 12 14 16

Orbital Periods Simulated

D
is

ta
nc

e
Fr

om
 A

ph
el

io
n

18

Newton RK2 RK4A RK4B Ellipse

This shows the divergence of each method as a function of the number of orbital periods.

RK4B is the most accurate numerical method. Also, the other methods diverge linearly

with the number of orbits.

 38

Timestep 4000

Comparison of Methods, dt= 4000

0

2000000000

4000000000

6000000000

8000000000

10000000000

12000000000

14000000000

16000000000

18000000000

20000000000

0 1 2 3 4 5 6 7 8 9

Orbital Periods Simulated

D
is

ta
nc

e
fr

om
 A

ph
el

io
n

10

Newton RK2 RK4A RK4B Ellipse

Notice that the Newton, RK2, and RK4A methods exhibit some oscillation at this

timestep. This may be because the timestep is fairly long.

 39

Timestep 2000

Comparison of Methods, dt=2000

0

500000000

1000000000

1500000000

2000000000

2500000000

3000000000

3500000000

4000000000

4500000000

5000000000

0 1 2 3 4 5 6 7 8 9

Orbital Periods Calculated

D
is

ta
nc

e
fr

om
 A

ph
el

io
n

10

Newton RK2 RK4A RK4B Ellipse

 40

Timestep 1000

Comparison of Methods, dt=1000

0

500000000

1000000000

1500000000

2000000000

2500000000

0 2 4 6 8 10 12 14 16 1

Orbital Periods Simulated

D
is

ta
nc

e
fr

om
 A

ph
el

io
n

8

Newton RK2 RK4A RK4B Ellipse

 41

Timestep 500

Comparison of Methods, dt= 500

0

100000000

200000000

300000000

400000000

500000000

600000000

0 2 4 6 8 10 12 14 16

Orbital Periods Simulated

D
is

ta
nc

e
Fr

om
 A

ph
el

io
n

18

Newton RK2 RK4A RK4B Ellipse

 42

Timestep 250

Comparison of Methods, dt=250

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

0 1 2 3 4 5 6

Orbital Periods Simulated

D
is

ta
nc

e
Fr

om
 A

ph
el

io
n

Newton RK2 RK4A RK4B Ellipse

The interesting feature of this graph lies in the fact that the Newton, RK2, and RK4A

methods start out as being more accurate than RK4B, and then they diverge and become

less accurate.

.

 43

Timestep 50

Comparison of Methods, dt=50

0

200000

400000

600000

800000

1000000

1200000

1400000

0 0.5 1 1.5 2 2.5 3 3.5 4 4

Orbital Periods Simulated

D
is

ta
nc

e
Fr

om
 A

ph
el

io
n

.5

Newton RK2 RK4A RK4B Ellipse

The small timestep has an interesting effect on the accuracy of the methods, making the

Newton, RK2, and RK4A methods increasingly accurate.

 44

RK2

RK2 Accuracy

0

2000000000

4000000000

6000000000

8000000000

10000000000

12000000000

14000000000

0 0.5 1 1.5 2 2.5 3 3.5 4 4

Orbital Periods Simulated

D
is

ta
nc

e
Fr

om
 R

ea
l V

al
ue

.5

5000 4000 2000 1000 500 250 50

RK2, a second order equation, has increased accuracy for linear timestep decreases.

 45

 RK4B (Lower Timesteps)

Runge Kutta 4 B Accuracy

0

10000000

20000000

30000000

40000000

50000000

60000000

0 1 2 3 4 5

Orbital Periods Simulated

D
is

ta
nc

e
Fr

om
 R

ea
l V

al
ue

 (m
et

er
s)

6

2000 1000 50 250

 46

 RK4B (Higher Timesteps)

Runge Kutta 4 B Accuracy

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

900000000

1000000000

0 1 2 3 4 5

Orbital Periods Calculated

D
is

ta
nc

e
Fr

om
 A

ph
el

io
n

6

5000 4000 2000 1000

The 5000 and 4000 timesteps both show similar oscillatory behavior for RK4B as is

exhibited by Newton, RK2, and RK4A methods in the dt=4000 graph.

 47

Path to Mars
By using a gravity assist off of the moon and recentering the array of spacecraft on the

optimal initial conditions, Delta was able to send multiple spacecraft to Mars.

There are three ways to optimize the way the spacecraft are launched in order to get them

to Mars. Below is the first.

This series of pictures shows how changing the time of launch affects the spacecraft array’s position,
relative to Mars.
These pictures are stabalized to Mars’ “point of view”, with Mars in the center.
The spacecraft first pass behind Mars, then in front of Mars, and then, in the final picture, they finally
reach the orbit of Mars.

 48

The second optimization:

This series of pictures shows the effect of changing the initial launch angle so as to get the biggest possible
gravity boost from the moon.
The angle is optimal in the last picture because the spacecraft gains the more speed from the moon than it
did at any other angle. This allows it to reach Mars more quickly.
This picture is in the sun-earth rotating frame.

 49

The third optimization:

 50

(continued)

This series of pictures is taken over the
course of a number of runs with the
recenter function. This function repo
which spacecraft went the closest to Mars
and then re-centers the array of
spacecrafts so that they launch with the
same trajectory as the optim
Recenter works well for this applic
because there is little instability.

rts

al spacecraft.
ation

This picture is an enlargement of a previous step.

 51

(continued)

These pictures also use the recenter function, but the function is called more.
Also, the pictures are zoomed in on Mars.

 52

Path to Pluto

In order to reach Pluto, the spacecraft performed multiple gravity boosts. First, the

spacecraft performed a slingshot off of the Moon. Then, upon reaching Jupiter, the

spacecraft excecuted another slingshot. This gave them enough momentum to reach

Pluto.

These two pictures show how the spacecraft diverge when they reach Jupiter.
The first is picture is non-stabalized. The second picture has Jupiter as its center.
The greatest acceleration boost comes from passing close Jupiter on the outside edge. This can be seen in
the first picture.

 53

The Effect of Recenter

These pictures are in the Sun-centered frame of reference. The inserts in the upper right corner are
from Pluto’s “point of view”.
In the left picture, a spacecraft passes very close to Pluto (center of insert).
In the right picture, after using the recenter function, more of the rockets pass by the moon. However,
the spacecraft that comes closest to Pluto passes far in front of the moon because of its extra speed.
The instability in the recenter function was caused by running the program on the cluster for such a
long simulation.

 54

Low-Energy Path to Moon
As described in Martin Lo’s Paper, Low Energy Transfer to the Moon1, it is possible to

use the gravity of Lagrange Points to get to the moon using 20% less energy than the

traditional method. We use information from both the earth-sun frame of reference and

the earth-moon frame of reference. With a three-part path and only one fuel burn, it is

possible to send the spacecrafts into a loose orbit around the moon.

Once the spacecraft reaches the Earth-Sun Lagrange point, it has many possibilities for its

end position, since there are essentially zero-energy paths to different points both inside

and outside the orbital radius. In other words, the spacecraft has access to the most points

for the least fuel. This versatility allows the spacecraft to carefully place itself to fall into

the moon-earth system’s lunar capture portion. The extra velocity required to reach the

L1 point (about an additional 50 meters/second) is small in comparison to the fuel the

spacecraft will save in its burn from L1 to the moon. It is thus beneficial to use L1 to get

to the moon.

A

A

B

B

These two pictures show the first step in executing this maneuver. The first picture is

centered on Earth with the earth-sun L1 point on the right. The second picture is also

1 Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001]

 55

centered on the earth. The pictures demonstrate how slightly different initial positions

can cause the spacecraft to either fall into orbit around the earth or to leave the system.

The optimal path for the spacecraft lies between points A and B. In terms of the left

picture, it runs perpendicular to the Earth-L1 line after the turn. After the spacecraft circle

once, they will approach the moon’s orbit from behind. This means that their initial

angle must be similar to the needed trajectory.

Next, the spacecraft must perform a burn. This will change its trajectory slightly so that

it better fits the moon’s orbit. The green point shows where the burn occurred. This

particular setup crashed into the moon, but a slight change in the burn fixed this.

Once the moon is reached, there are two possibilities. The spacecraft will either fall into

a loose or a tight orbit around the moon. A loose orbit is more natural for the spacecraft,

and a tighter orbit requires another burn. However, it still uses less energy than the

traditional method.

 56

Here we show the spacecraft orbiting the moon (left) as well as two angles, controlled by

the amount of burn, which change the amount of fuel needed to get into a tight orbit

(right). The first angle requires more energy in both burns because the angle is steeper.

The second angle requires less energy both times.

The spacecraft starts out from Earth with a velocity of 10,948.12 m/s. The second burn

(at the green dot) takes off 33.5 m/s. At the very end the spacecraft gets near the moon

and changes velocity by 498 m/s.

 57

The other option involves the looser, more natural orbit around the moon. This orbit

becomes unstable quickly, but it does not require a third burn.

This is an example of a loose orbit. The spacecraft orbits the moon two full times before

becoming unstable.

Overall, the energy required to get to the moon using a traditional method requires11,499

m/s of thrust. With the tight orbit, the low-energy can actually take longer – it uses

11,580 m/s of thrust. However, using the loose orbit only takes 11,010 m/s of thrust.

This is a 23% improvement over the traditional method.

 58

Next Steps

During the next three weeks, we hope to accomplish several things.

(1) Characterize the accuracy of the different approximations – it is possible that the

aphelion difference is not the best measure, since it requires each numerical method to

progress through an entire orbit. As an alternative, we might look at the total energy as a

measure of accuracy. Since energy is conserved on a real trajectory, it is not necessary to

complete an orbit. Also, the energy includes the effect of the velocity, which the

aphelion difference doesn not (except implicitly, to a degree). Additionally, we hope to

numerically verify the order of the numerical methods and compare the efficiencies of the

different algorithms. That is, compare the computational efficiency with the

computational accuracy.

(2) Verify that L4 is a (weakly) stable equilibrium point, using an RK4 algorithm.

(3) Run numerical experiments with the slingshot using the standard hyperbola.

(4) Further develop the use of L1 and L2 in creating energy-efficient trajectories. The

plan for further extension in this area is to send two arrays of rockets into two planets’

halo orbits and then splice the final intersection. We believe that this will create a low-

energy path between most pairs of planets.

 59

Conclusion
Over the course of the project, several solutions were found which differed in their

trajectory times, fuel required, and complexity. Launching an array of spacecraft and re-

centering it on a selected spacecraft was suitable for gravity assisted routes. Using

Lagrange points to plan low-energy paths resulted in trajectories that were about 20%

more fuel-efficient, but this required increased complexity. Using the cluster improved

the run time significantly, but caused some instability. The approximation methods varied

in accuracy, and higher order approximations performed better. The most accurate, fast,

fuel-efficient spacecraft paths came from running Delta on the cluster, creating a low-

energy path with the RK4 approximation method.

 60

Acknowledgements
We would like to thank Dr. Erik DeBenedictis and Dr. William Cordwell for mentoring

our team, Mrs. Kerrie Sena for her encouragement and sponsorship of our project, and

Sandia and Los Alamos National Labs for sponsoring the Supercomputing Challenge.

Finally, we would like to thank the Supercomputing Challenge consult team for their

patience.

 61

Bibliography and References

Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, Dover, 1965

Halliday, D., Resnick, R., and Walker, J., Fundamentals of Physics, 6th ed., J. Wiley and
 Sons, New York, 2001

Hut, P. and Makino, J., The Art of Computational Science, 2007, (published on the Web)

Baez, J., “Lagrange Points”, http://math.ucr.edu/home/baez/lagrange.html

Cornish, N., “The Lagrange Points”,
 http://www.physics.montana.edu/faculty/cornish/lagrange.pdf

Koon, W., Lo, M., Marsden, J., and Ross, S., “Low Energy Transfer to the Moon”,
 http://www.gg.caltech.edu/~mwl/publications/papers/lowEnergy.pdf

Lo, Martin, “The InterPlanetary Superhighway and the Origins Program”,

http://www.gg.caltech.edu/~mwl/publications/papers/IPSAndOrigins.pdf

Wikipedia, “Runge-Kutta methods”, http://en.wikipedia.org/wiki/Runge-Kutta

Wikipedia, “n-body problem”, http://en.wikipedia.org/wiki/N-body_problem

 62

http://math.ucr.edu/home/baez/lagrange.html
http://www.physics.montana.edu/faculty/cornish/lagrange.pdf
http://www.gg.caltech.edu/%7Emwl/publications/papers/lowEnergy.pdf
http://www.gg.caltech.edu/%7Emwl/publications/papers/IPSAndOrigins.pdf
http://en.wikipedia.org/wiki/Runge-Kutta
http://www.gg.caltech.edu/%7Emwl/publications/publications2.htm

Appendix A - Flowcharts

Flowchart of Delta

Node receives
qr and wr

DELTA

Spacecraft set in
10x10 array

Planets set

Time <
calctime

Print to
browser

Scale result to print in picture

Rockets qr-wr moved by planets

yes no

Planets Moved

Increment time by closest
position calculation

 63

Flowchart of Cluster

Set Commands

Enter number for
assignment

Browser calls program
127.0.0.1/fractal

Startup- creates sockets, sends ‘greetings’

Master Node Worker Node

Sendmessage
orbitstruct1

Sendmessage
orbitstruct2

readmessage

readmessage

Call function orbits

Print to browser, save

Re-assemble image

If If

displa

Read

Read

 64

Appendix B – Code
Osim.cpp
- file where function orbits is located.

#include "stdafx.h" // must be present for Visual C++. For Unix,
stdafx.h can be empty
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

#include <crtdbg.h>
#include <direct.h>
#include <time.h>
#include <malloc.h>
#include <winsock.h>

#include "osim.h"
#include "orbits.h"
#include "body.h"
#include "data.h"

const int LEVR = 6; // number of levels of red in 256 color palette
const int LEVG = 6; // number of levels of green in 256 color
palette
const int LEVB = 6; // number of levels of blue in 256 color palette

const int HSIZE = 5003;

const int IMGWID = 750; //HELLO IMAGE SIZE
const int IMGHGT = 750;

#define PI 3.141592653589793238462643383
//Functions

/***********************
data::PythagoreanTheorem()
Passed: double a, double b (legnth of X and Y)
Returns: double c (distance between the points)

Note: overloaded. other function takes three input variables.
***********************/
double PythagoreanTheorem(double a, double b)
{
 return sqrt(a*a + b*b);

 65

}

/***********************
data::PythagoreanTheorem()
Passed: double x, double x, double z (legnth of X, Y, and Z)
Returns: double c (distance between the points)

Note: overloaded. other function takes two input variables.

Update: no longer in 3D, change back? My poor little laptop
can't handle the extra # crunching. (hint hint dad)
***********************/
double PythagoreanTheoremv2(double x, double y)
{
 return sqrt(x*x + y*y);
}

/***********************
data::CalcLnPoint()
Passed: X, Y, and Z for the bigger body and the smaller body, the masses of these two (for L1,
L2, and L3)
Returns: nothing, sets the current X, Y, and Z for the L1 and L2 points

Calculates the X, Y, and Z of the L* Lagrangian point.
Note: x1 is the smaller body, x2 is the bigger body, x3 is the Lagrange point, x4 is the
alternate Lagrange point

Update: again, no longer in 3D
***********************/
#define cbrt(x) pow(x, 1./3.) //for some reason this didn't show up in my library

void CalcL12Point(double x_heavy, double y_heavy, double x2, double y2, double* x3, double* y3,
double* x4, double* y4, double mass_heavy, double mass2)
{ //Equations in this function came from WikiPedia (en.wikipedia.org).
 double ChangeX = x_heavy - x2;
 double ChangeY = y_heavy - y2;
 double R = PythagoreanTheorem(ChangeX, ChangeY);
 double Hypotenuse1 = R*(cbrt(mass2 / (3 * mass_heavy)));
 double angle = atan2(ChangeY, ChangeX);
 double Hypotenuse2 = R - Hypotenuse1; //L1 specific
 *x3 = x_heavy - cos(angle) * Hypotenuse2;
 *y3 = y_heavy - sin(angle) * Hypotenuse2;
 Hypotenuse2 = R + Hypotenuse1; //L2 specific
 *x4 = x_heavy - cos(angle) * Hypotenuse2;
 *y4 = y_heavy - sin(angle) * Hypotenuse2;

 66

// *z3 = *z4 = x_heavy; //not exact, but close. Need to find this exactly!!!
}

void CalcL45Point(double x1, double y1, double z1, double x2, double y2, double z2, double* x3,
double* y3, double* z3, double* x4, double* y4, double* z4)
{ //Equations in this function came from WikiPedia (en.wikipedia.org).
 double ChangeX = (x1 - x2) / 2;
 double ChangeY = (y1 - y2) / 2;
 double ChangeZ = (z1 - z2) / 2; //These are actualy half the real value. I divide by two here, to avoid
doing it over and over again, later. (preformance)
 *z3 = z2 + ChangeZ;
 *z4 = z2 + ChangeZ; //final values
 double E = PythagoreanTheorem(ChangeY , ChangeZ);
 double F = PythagoreanTheorem(ChangeX , ChangeY /*,ChangeZ */);
 double Theta2 = asin(E / F); //I need to do all of the trig in radians...
 double Theta1 = 0.5 - Theta2;
 double G = F / tan(1 / 6);
 double I = G * sin(Theta1);
 double J = G * cos(Theta1);
 *x3 = x2 + ChangeX + J;
 *y3 = y2 + ChangeY + I;
 *x4 = x2 + ChangeX - J;
 *y4 = y2 + ChangeY - I;
}

/***********************
classes
Vector has +,-,*,/, and rotate (rotates by a radian), and norm (absolute value)
Planet's positions and velocities are vectors
***********************/
class vector{
public:

 double x,y;
 vector(double i, double j=0){
 x= i;
 y= j;
 }

 vector () { x = y = 0.0; }

 vector rotate (double theta){
 vector draw3;
 draw3.x= (x *(cos(theta)))+(y*sin(theta));
 draw3.y= (x *(-sin(theta)))+(y*cos(theta));
 return draw3;
 }

 vector operator+(double kh){vector rval= vector (x+kh, y+kh); return rval;}

 67

 vector operator-(double kh){vector rval= vector (x-kh, y-kh); return rval;}
 vector operator*(double kh){vector rval= vector (x*kh, y*kh); return rval;}
 vector operator/(double kh){vector rval= vector (x/kh, y/kh); return rval;}

 vector operator+(vector kh){vector rval= vector (x+kh.x, y+kh.y); return rval;}
 vector operator-(vector kh){vector rval= vector (x-kh.x, y-kh.y); return rval;}
 vector operator*(vector kh){vector rval= vector (x*kh.x, y*kh.y); return rval;}
 vector operator/(vector kh){vector rval= vector (x/kh.x, y/kh.y); return rval;}

 void operator+=(vector kh){x+=kh.x, y+=kh.y;}
 void operator-=(vector kh){x-=kh.x, y-=kh.y;}

};
double norm(vector kh){return sqrt (kh.x*kh.x+kh.y*kh.y);}

#define sun 0 //originally, earth, moon, sun
#define moon 1
#define earth 2
#define mercury 3
#define venus 4
#define mars 5
#define jupiter 6
#define saturn 7
#define uranus 8
#define neptune 9
#define planets 1
#define nbody (planets)

#define nspacecrafts 1

#define spacecraftnum (nspacecrafts*nspacecrafts)

#define emlone 0
#define emltwo 1
#define selone 2
#define seltwo 3
#define nlagrange 4

/***********************
startpoint is the postion of the array that I'm launching
you can get the original spacecrafts placement in an array by tellign get which spacecraft it is in terms of
right and down
recenter takes a spacecraft's number printed out at the end of the program and figures out where it was,
also re-places the array
***********************/
class startpoint{
public:

 68

 vector centerpoint;
 double edgesize;

 startpoint(double x, double y, double rot, double es) {
 centerpoint.x = x;
 centerpoint.y = y;
 centerpoint = centerpoint.rotate (rot);
 edgesize = es;
 }

 vector get (int i, int j) {
 double fi = (1.0*i-(nspacecrafts-1.0)/2.); // -nspacecrafts/2 .. nspacecrafts/2
 double fj = (1.0*j-(nspacecrafts-1.0)/2.);
 fi = fi/nspacecrafts; // -1/2 .. 1/2
 fj = fj/nspacecrafts;

 vector rval;
 rval.x=centerpoint.x+fi*edgesize;
 rval.y=centerpoint.y+fj*edgesize;// -edgesize/2 .. edgesize/2
 printf("(%d, %d) -->\tDelta=(%.2f, %.2f)\tpos=(%.0f, %.0f)\n", i, j, fi, fj, rval.x, rval.y);
 return rval;
 }

 vector recenter(int prefspacecraft) { //6
 int aa = prefspacecraft/nspacecrafts;
 int bb = prefspacecraft - aa*nspacecrafts;
 centerpoint = get(aa, bb);
 edgesize *= .75;
 return centerpoint;
 }

} ;

/***********************
objects are all things which have mass, namely, planets
are set with the set function
includes:
 what planet the body orbits
 how long it's year is
 the initial radian position of the planet
 position
 velocity
 mass
 color (in RGB)
 diameter
***********************/

class object { //anything that has mass
public: //position

 69

 int whatiorbit;
 double orbitdays;
 double initialrotation;
 vector pos;
 vector v;
 double m;
 double gm;
 COLORREF c;
 double diam;
 object () { diam = 1; c = RGB(128, 128, 128); }
 void set(double, double am, COLORREF ac, double ad, int orbits, double od, double ia =0.);
} body[nbody];

void object::set(double adist, double am, COLORREF ac, double ad, int orbits, double od, double ia) {
 pos = vector (adist,0);
 m = am;
 c = ac;
 diam= ad;
 whatiorbit=orbits;
 orbitdays=od;
 initialrotation = ia;

 double evel = 2*(norm(pos))*3.1415926535/(orbitdays*24.*60.*60.);
 vector vv(0, -evel);
 vv=vv.rotate(ia);
 v=body[whatiorbit].v+vv;

 pos= pos.rotate(ia);
 pos = body[whatiorbit].pos+pos;
 //printf("%f %f %f\n", evel, norm(av), evel-norm(av));
}

/***********************
robject- big suprise! it's a spacecraft!
set with set... include:
 position
 velocity
 color
 the closest they've gotten to the target planet
 weather they've died or not
***********************/
struct robject { //spacecrafts
 vector lastes1, lastes2, pos, v; //position, velocity
 COLORREF c;
 vector closestpos; //closest position to target
 int deadbit;
 int method;
 double miss;
 void set(double, double, COLORREF ac, int orbits, double od, double ia =0.);

 70

} spacecraft[spacecraftnum];

void robject::set(double x, double y, COLORREF ac, int orbits, double velocity, double ia) {
 lastes1 = vector(0, 0);
 lastes2 = vector(0, 0);
 pos = vector (x, y);
 pos=pos.rotate(ia);
 pos=body[orbits].pos+pos;

 c = ac;

 v= vector(velocity,0);
 v= v.rotate(ia);
 v=v+body[orbits].v;
 //printf("%f %f %f %f\n", pos.x, pos.y, v.x, v.y);
}

/***********************
lobject- lagrange points
only have position
***********************/
struct lobject { //lagrange points
 vector pos; //position
 lobject () {}
} lagrange[nlagrange];

vector dv(vector Pos, double Deltat) {
 double g=6.673e-11; //*2.5;
 vector Deltav;
 if (1) for (int j= 0; j< nbody; j++) {
 double distance = norm(Pos-body[j].pos);
 double force = (body[j].gm)/(distance*distance); //g*(body[j].m)
 vector ijvec= Pos-body[j].pos;
 ijvec=ijvec*(force/norm(ijvec));
 Deltav += ijvec*(Deltat);
 }
 return Deltav;
}

/***********************
now for the function!
orbits is called in Orbits.cpp when you get a http://127.0.0.1/orbits
***********************/

void orbit(SOCKET theClient) {
 send(theClient, "HTTP/1.0 200\r\n", 14, 0);
 send(theClient, "Content-type: ", 14, 0);
 send(theClient, "text/html", 9, 0);

 71

 send(theClient, "\r\n", 2, 0);
 send(theClient, "\r\n", 2, 0);

 FILE *index = ArchiveFile("index", "htm", 0, NULL); //saving all images
produced

 fprintf(index, "<html><head><title>Index Page Orbits</title></head><body><CODE>");
 fprintf(index, "<CENTER>Welcome to Orbits!
");

//introducing and setting the pictures to initial values
 static int *imagedata1[IMGWID], id1[IMGWID][IMGHGT];
 static int *imagedata2[IMGWID], id2[IMGWID][IMGHGT];
 static int *imagedata3[IMGWID], id3[IMGWID][IMGHGT];
 static int *imagedata4[IMGWID], id4[IMGWID][IMGHGT];
 static int *imagedata5[IMGWID], id5[IMGWID][IMGHGT];
 static int *imagedata6[IMGWID], id6[IMGWID][IMGHGT];
 static int *imagedata7[IMGWID], id7[IMGWID][IMGHGT];
 if (1) for (int i = 0; i < IMGWID; i++) {
 imagedata1[i] = id1[i];
 imagedata2[i] = id2[i];
 imagedata3[i] = id3[i];
 imagedata4[i] = id4[i];
 imagedata5[i] = id5[i];
 imagedata6[i] = id6[i];
 imagedata7[i] = id7[i];
 }
 // display
 if (1) for (int i = 0; i < IMGWID; i++)
 for (int j = 0; j < IMGHGT; j++) {
 imagedata1[i][j] = RGB(0, 0, 0);
 imagedata2[i][j] = RGB(0, 0, 0);
 imagedata3[i][j] = RGB(0, 0, 0);
 imagedata4[i][j] = RGB(0, 0, 0);
 }

//these 6 parameters I change a lot, so they're up top.
#define MARSSTART 180+30+5+5+3.5+3+3-.25 //initial angle of mars
#define INITIALLAUNCHEDGE 70000
#define MAXFRACTIONTHREDHOLD .05
#define LAUNCHVELOCITY 18370
 double launchangle1;;
 launchangle1 = (49.7)/57.29577951; //positive is clockwise
 int calctime = 350*60*60; //10e7 is one orbit
 double largescalefactor = 150e9;
 double au= 149597870691.0; //meters
 double sf1= (50000000000); // 5e8 for everything, 1e8 for body[earth] only,
1e11 for sun/ earth
 double sft1= (0.002*au);
 double sft2= (0.0002*au);

 72

 double sf2= 5e8; // 5e8 for everything, 1e8 for body[earth] only, 1e11
for sun/ earth
 double sf3 =(50000000); // Mars
 double sf4 = (5000000); // 3x moon diameter
 vector origin; origin.x=0; origin.y=0;

 fprintf(index, "sf1=%f
\n", (double)sf1);
 fprintf(index, "sft1=%f
\n", (double)sft1);
 fprintf(index, "sft2=%f
\n", (double)sft2);
 fprintf(index, "initiallaunchedge=%f
\n", (double)INITIALLAUNCHEDGE);
 fprintf(index, "launchangle1=%f
\n", launchangle1*57.29577951);
 fprintf(index, "MARSSTART=%f
\n", (double)MARSSTART);
 fprintf(index, "calctime=%f
\n", (double)calctime);

 int LastPrintDay=0;
 double cx = 125., cy = 125.;
 double orbitvel = 2.45;
 double g=6.673e-11; //*2.5;
 double rot = 60;
 int bestMRangle = 40;

 //setting planets
 body[sun].set(0, 1.98892e30, RGB(0, 255, 255), 1380000*1000, sun, 1);
 body[earth].set(au, 5.9742e24, RGB(0, 255, 0), 12756.3*1000, sun, 365.26,
180/57.29577951); //initial positions;
 body[moon].set(768000e3/2, body[earth].m/81, RGB(255, 0, 0), 3764*1000, earth, 27.3,
(200+bestMRangle)/57.29577951);
 body[mercury].set(au*.39, body[earth].m*(0.055), RGB (110, 110, 110), 4878*1000, sun,
88.);
 body[venus].set(au*.72, body[earth].m*(.82), RGB (110, 110, 110), 12103*1000, sun,
225.);
 body[mars].set(au*1.52, body[earth].m*(.11), RGB(0, 0, 255), 6794*1000, sun, 687.,
(MARSSTART)/57.29577951);
 body[jupiter].set(au*5.2, body[earth].m*(318), RGB (110, 110, 110), 142800*1000, sun,
(11.9*365.26));
 body[saturn].set(au*9.54, body[earth].m*(95.2), RGB (110, 110, 110), 120000*1000, sun,
(29.5*365.26));
 body[uranus].set(au*19.2, body[earth].m*(14.5), RGB (110, 110, 110), 51118*1000, sun,
(84.*365.26));
 body[neptune].set(au*30.1, body[earth].m*(17.1), RGB (110, 110, 110), 49532*1000, sun,
(165.*365.26));
 body[sun].gm=1.35*PI*PI*1e20;

 data PlanetData;
 PlanetData.d += .5/60/60/24;
 PlanetData.calcData();
 PlanetData.outputBodies(&body[sun].v.x, &body[sun].v.y,
 &body[mercury].v.x, &body[mercury].v.y,

 73

 &body[venus].v.x, &body[venus].v.y,
 &body[earth].v.x, &body[earth].v.y,
 &body[moon].v.x, &body[moon].v.y,
 &body[mars].v.x, &body[mars].v.y,
 &body[jupiter].v.x, &body[jupiter].v.y,
 &body[saturn].v.x, &body[saturn].v.y,
 &body[uranus].v.x, &body[uranus].v.y,
 &body[neptune].v.x, &body[neptune].v.y);
 printf("Earth (%.15f %.15f) au\n", body[earth].v.x/au, body[earth].v.y/au);
 printf("Mars (%.15f %.15f) au\n", body[mars].v.x/au, body[mars].v.y/au);

 PlanetData.d -= 1./60/60/24;
 PlanetData.calcData();
 PlanetData.outputBodies(&body[sun].pos.x, &body[sun].pos.y,
 &body[mercury].pos.x, &body[mercury].pos.y,
 &body[venus].pos.x, &body[venus].pos.y,
 &body[earth].pos.x, &body[earth].pos.y,
 &body[moon].pos.x, &body[moon].pos.y,
 &body[mars].pos.x, &body[mars].pos.y,
 &body[jupiter].pos.x, &body[jupiter].pos.y,
 &body[saturn].pos.x, &body[saturn].pos.y,
 &body[uranus].pos.x, &body[uranus].pos.y,
 &body[neptune].pos.x, &body[neptune].pos.y);
 printf("Earth (%.15f %.15f) au\n", body[earth].pos.x/au, body[earth].pos.y/au);
 printf("Mars (%.15f %.15f) au\n", body[mars].pos.x/au, body[mars].pos.y/au);

 int wjk=0;
 while (wjk<nbody){
 printf("(%f %f) (%f %f)\n", body[wjk].v.x, body[wjk].v.y, body[wjk].pos.x,
body[wjk].pos.y);
 body[wjk].v = body[wjk].v-body[wjk].pos;
 wjk++;

 }
 printf("Earth (%.15f %.15f)\n", body[earth].v.x, body[earth].v.y);
 printf("Earth (%.15f %.15f)\n", body[mars].v.x, body[mars].v.y);

 PlanetData.d += .5/60/60/24;
 PlanetData.calcData();
 PlanetData.outputBodies(&body[sun].pos.x, &body[sun].pos.y, &body[mercury].pos.x,
&body[mercury].pos.y, &body[venus].pos.x, &body[venus].pos.y, &body[earth].pos.x,
&body[earth].pos.y, &body[moon].pos.x, &body[moon].pos.y, &body[mars].pos.x, &body[mars].pos.y,
&body[jupiter].pos.x, &body[jupiter].pos.y, &body[saturn].pos.x, &body[saturn].pos.y,
&body[uranus].pos.x, &body[uranus].pos.y, &body[neptune].pos.x, &body[neptune].pos.y);
 printf("Earth (%f %f) au\n", body[earth].pos.x/au, body[earth].pos.y/au);

 if (1) for (int wjk = 0; wjk < nbody; wjk++) {
 printf("%d: pos=(%f %f) au v=(%f %f) km/s\n", wjk, body[wjk].pos.x/au,
body[wjk].pos.y/au, body[wjk].v.x/1000., body[wjk].v.y/1000.);

 74

 }

 body[wjk].pos = body[body[wjk].whatiorbit].pos+body[wjk].pos;

 //setting the spacecrafts

 vector testlaunchpoint; testlaunchpoint.x=((sqrt(3)/2)*largescalefactor); testlaunchpoint.y
=0;

 vector launchpoint; launchpoint.x = (12756300.0+200/0.62);
 launchpoint.y = 0;
 launchpoint= launchpoint.rotate (launchangle1);
 startpoint timeone(testlaunchpoint.x, 12756300.0+200/0.62, 0.0,
INITIALLAUNCHEDGE); //x, y, rot, es

/* timeone.recenter(58);
 timeone.recenter(31);
 timeone.recenter(77);
 timeone.recenter(59);
 timeone.recenter(40);
 timeone.recenter(40);
 timeone.recenter(21);
 timeone.recenter(12);
 timeone.recenter(68);
 timeone.recenter(40);
 timeone.recenter(40);
 timeone.recenter(40);
 timeone.recenter(78);
 timeone.recenter(78);
 timeone.recenter(78);
 timeone.recenter(37); */

 if (1) for (int i = 0; i < nspacecrafts; i++)
 if (1) for (int j = 0; j < nspacecrafts; j++) {
 spacecraft[i*nspacecrafts + j].deadbit= 0;
 int bluecolor = 200-(5*i*i*i+1);
 int redcolor = 255-(j*j*j+1);
 int greencolor = 200-(9*j*i*j*i-50);
 spacecraft[i*nspacecrafts + j].set(timeone.get(i, j).x,
 timeone.get(i, j).y,
 RGB(bluecolor, greencolor, redcolor),
 earth,
 LAUNCHVELOCITY/0.62/60/60*1000,
// (202.8+bestMRangle)/57.29577951
 launchangle1
);
 }

 75

 spacecraft[0].pos.y= -1.73e10;
 spacecraft[0].pos.x= 1.1249e10;
 spacecraft[0].v.y= 20000;
 spacecraft[0].v.x= 0;
 spacecraft[0].method=3;
 spacecraft[0].c= RGB(255,0,0); // blue Newton

 fprintf(index, "spacecraft[0].v.y=%f
\n", (double)spacecraft[0].v.y);

/* spacecraft[1].pos.x= (1.+sqrt(3.)/2.)*largescalefactor;
 spacecraft[1].pos.y=0;
 spacecraft[1].v.y=sqrt(2.7) *PI*1e10* sqrt((2.-sqrt(3.))/(2.+sqrt(3.)))/
sqrt(2.*largescalefactor);
 spacecraft[1].v.x=0;
 spacecraft[1].method=2;
 spacecraft[1].c= RGB(0,255,0); // green 2nd order

 spacecraft[2].pos.x= (1+sqrt(3)/2)*largescalefactor;
 spacecraft[2].pos.y=0;
 spacecraft[2].v.y=sqrt(2.7) *PI*1e10* sqrt((2.-sqrt(3.))/(2.+sqrt(3.)))/
sqrt(2.*largescalefactor);
 spacecraft[2].v.x=0;
 spacecraft[2].method=3;
 spacecraft[2].c= RGB(0,0, 255); // red RK2

 spacecraft[3].pos.x= (1+sqrt(3)/2)*largescalefactor;
 spacecraft[3].pos.y=0;
 spacecraft[3].v.y=sqrt(2.7) *PI*1e10* sqrt((2.-sqrt(3.))/(2.+sqrt(3.)))/
sqrt(2.*largescalefactor);
 spacecraft[3].v.x=0;
 spacecraft[3].method=4;
 spacecraft[3].c= RGB(0,255,255); // yellow RK4

 spacecraft[4].pos.x= (1+sqrt(3)/2)*largescalefactor;
 spacecraft[4].pos.y=0;
 spacecraft[4].v.y=sqrt(2.7) *PI*1e10* sqrt((2.-sqrt(3.))/(2.+sqrt(3.)))/
sqrt(2.*largescalefactor);
 spacecraft[4].v.x=0;
 spacecraft[4].method=5;
 spacecraft[4].c= RGB(255,255,255); // white other method

 spacecraft[5].pos.x= (1+sqrt(3)/2)*largescalefactor;
 spacecraft[5].pos.y=0;
 spacecraft[5].v.y=sqrt(2.7) *PI*1e10* sqrt((2.-sqrt(3.))/(2.+sqrt(3.)))/
sqrt(2.*largescalefactor);
 spacecraft[5].v.x=0;
 spacecraft[5].method=6;
 spacecraft[5].c= RGB(255,255,0); // blue green is real oval */

 76

 body[sun].pos.x= 0;
 body[sun].pos.y= 0;
 body[sun].v.x= 13000;
 body[sun].v.y= 0;
 body[sun].gm= (10000000000000000);

 /***********
 to be consistant, the format for lagrang points names' will be larger body, smaller body,
 l#. We'll deal with problems about the planets having same names later, it'll probably
 only be for a few
 ***********/
 lagrange[emlone].pos= 0; //earth-moon L1 point
 lagrange[emltwo].pos= 0; //earth-moon L2 point
 lagrange[selone].pos= 0; //earth-moon L1 point
 lagrange[seltwo].pos= 0; //earth-moon L2 point

 /**********
 start of main program calculations
 **********/
 double dt = 0.25; //Delta t
 int KeepGoing = 1;
 int LastDayPrinted = -1;
 double minimumdistancetomars = 1e50;
 int minimumdistancetomarsnum = 0;

 for (double t= 0; t<calctime && KeepGoing; t+=dt){ //days*hours*minutes*seconds
 KeepGoing = 0;
 double day= t/(60*60);

/* data PlanetData;

 PlanetData.d = day;
 PlanetData.calcData();
 PlanetData.outputBodies(&body[sun].pos.x, &body[sun].pos.y,
 &body[mercury].pos.x, &body[mercury].pos.y,
 &body[venus].pos.x, &body[venus].pos.y,
 &body[earth].pos.x, &body[earth].pos.y,
 &body[moon].pos.x, &body[moon].pos.y,
 &body[mars].pos.x, &body[mars].pos.y,
 &body[jupiter].pos.x, &body[jupiter].pos.y,
 &body[saturn].pos.x, &body[saturn].pos.y,
 &body[uranus].pos.x, &body[uranus].pos.y,
 &body[neptune].pos.x, &body[neptune].pos.y); */

 body[0].pos += body[0].v*dt;

 77

 double maxfraction = 0;
 if (1) for (int a = 0; a < nspacecrafts; a++) //altering spacecrafts
calculator
 if (1) for (int b = 0; b < nspacecrafts; b++) {
 int i= (a*nspacecrafts + b);
 if (spacecraft[i].deadbit==1){ //don't calculate dead spacecrafts
 continue;
 }

#define rkf(p, tt) \
 if (1) for (int j= 0; j< nbody; j++) { \
 vector pp = p; \
 double distance = norm(pp-body[j].pos); \
 double force = body[j].gm/(distance*distance); \
 vector ijvec= pp-body[j].pos; \
 ijvec=ijvec*(force/norm(ijvec)); \
 Deltav += ijvec*(tt); \
 }
 vector Deltav;

if (spacecraft[i].method==1){
 // update position and velocity
 spacecraft[i].pos += spacecraft[i].v*dt;

 // calculate Deltav at point p for time dt
 vector p = spacecraft[i].pos;
 double tt = dt;
 rkf(p, tt);

 spacecraft[i].v -= Deltav;

}

else if (spacecraft[i].method==2){
 // SECOND ORDER NEWTON
 // calculate Deltav at point p for time dt
 vector p = spacecraft[i].pos;
 vector Deltav1=dv(p, dt);

 // update position and velocity
 spacecraft[i].pos += spacecraft[i].v*dt-Deltav1*0.5*dt;

 spacecraft[i].v -= Deltav1*.5;

 p = spacecraft[i].pos;
 vector Deltav2=dv(p, dt);

 spacecraft[i].v -= Deltav2*.5;

 78

 // SECOND ORDER NEWTON
}

else if (spacecraft[i].method==3){
 // RK2
 // calculate Deltav at point p for time dt
 vector rhalf = spacecraft[i].pos+(spacecraft[i].v*0.5*dt);
 vector Deltav= dv(rhalf, dt)*(-1);
 vector vhalf= spacecraft[i].v+(Deltav*.5);
 vector rr= spacecraft[i].pos+(vhalf*dt);
 vector Deltavhalf= dv(rhalf, dt)*(-1);
 vector vv= spacecraft[i].v+ Deltavhalf;

 spacecraft[i].pos= rr;
 spacecraft[i].v= vv;
 // RK2
}

else if (spacecraft[i].method==4) {
#if 1
 double n11 = 0; // (199) in ch04.html
 double n21 = (2.0/3.0);
 double n22 = 1./3.; //(2.0/9.0);
 double alpha1= (.25);
 double alpha2= (.25);
 double beta1= (.25);
 double beta2=(.75);
#else
 double n11 = (1./3.); // (201) in ch04.html
 double n21 = 1;
 double n22 = (2.0/3.0);
 double alpha1= (.5);
 double alpha2= (0);
 double beta1= (.75);
 double beta2=(.25);
#endif
 vector x0 = spacecraft[i].pos;
 vector v0 = spacecraft[i].v;

 vector k1 = dv(x0 + v0*n11*dt, 1.0)*-1;
 vector k2 = dv(x0 + v0*n21*dt + k1*n22*dt*dt, 1.0)*-1;

 vector x1= x0 + v0*dt + (k1*alpha1+k2*alpha2)*dt*dt;
 vector v1= v0 + (k1*beta1+k2*beta2)*dt;

 spacecraft[i].pos=x1;
 spacecraft[i].v=v1;

 // RK4

 79

}

else if (spacecraft[i].method==5) { //version 5, section 5.2, ch05.html

 double alpha= 0;
 double eta= .5;
 double zeta= 0;

 double n11 = 0;
 double n21 = (eta);
 double n22 = .5*eta*eta; //(2.0/9.0);
 double n32 = .5- zeta;
 double n33= zeta;
 double alpha1= (1./3. + alpha*(eta-1));
 double alpha2= (alpha);
 double alpha3= ((1./6.)-alpha*eta);
 double beta1= ((3*eta-1)/(6*eta));
 double beta2=(1/(6*eta*(1-eta)));
 double beta3= (2-3*eta)/(6*(1-eta));
#if 1 //checking to make sure these are correct
#define ASSERTAEQ(a, b) if ((b) != 0.) { double aa = (a), bb = (b), q = aa/bb; ASSERT(q < 1.001 && q
> .999); } else ASSERT(abs(a) < 1e-6);
 ASSERTAEQ(alpha1 + alpha2 + alpha3, .5);
 ASSERTAEQ(alpha2*n21 + alpha3, 1./6.);
 ASSERTAEQ(beta1 + beta2 + beta3, 1);
 ASSERTAEQ(beta2*n21 + beta3, .5);
 ASSERTAEQ(beta2*n21*n21 + beta3, 1./3.);
 ASSERTAEQ(beta2*n22 + beta3*(n32+n33), 1./6.);
 ASSERTAEQ(n32 + n33, .5);
#endif

 vector x0 = spacecraft[i].pos;
 vector v0 = spacecraft[i].v;

 vector k1 = dv(x0 + v0*n11*dt, 1.0)*-1;
 vector k2 = dv(x0 + v0*n21*dt + k1*n22*dt*dt, 1.0)*-1;
 vector k3 = dv(x0 + v0*dt + k1*n32*dt*dt + k2*n33*dt*dt, 1.0)*-1;

 vector x1= x0 + v0*dt + (k1*alpha1 + k2*alpha2 +
k3*alpha3)*dt*dt;
 vector v1= v0 + (k1*beta1 + k2*beta2 + k3*beta3)*dt;

 spacecraft[i].pos=x1;
 spacecraft[i].v=v1;

 // version 5 */
 }

 80

else if (spacecraft[i].method==6){
 // ellipse
 // calculate Deltav at point p for time dt
 double rr= (largescalefactor/4)/(1-(sqrt(3)/2)*(cos((2*PI*t)/10e7)));
 double rx= rr*cos((2*PI*t)/10e7);
 double ry=rr*sin((2*PI*t)/10e7);
 spacecraft[i].pos.x=rx;
 spacecraft[i].pos.y=ry;
 // ellipse
}

 // various min distance things
 double mindist = 1e50;
 for (int j= 0; j< nbody; j++){ //check to see if
you've reached a new best distance
 double distance = norm(spacecraft[i].pos-body[0].pos);
 if (mindist > distance) mindist = distance;

 if (norm(spacecraft[i].pos-
body[sun].pos)>norm(spacecraft[i].closestpos)) //increments record closeness for each spacecraft
 spacecraft[i].closestpos=norm(spacecraft[i].pos-
body[sun].pos);

 double suntotarget=norm(body[mars].pos-body[sun].pos);
//finds distances for stopping
 double suntoprobe=norm(spacecraft[i].pos-body[sun].pos);
 double marstoprobe=norm(spacecraft[i].pos-body[sun].pos);
 if (minimumdistancetomars > marstoprobe) {
 minimumdistancetomars = marstoprobe;
 minimumdistancetomarsnum = i;
 }
 KeepGoing=1;
 }

 //check if the spacecraft has hit a planet
 if (norm(body[moon].pos-spacecraft[i].pos)<body[moon].diam/2) {
 spacecraft[i].deadbit=1;
 printf ("spacecraft %d has died from moon collision
on day %f (%f %f)\n", i, day, norm(body[moon].pos-spacecraft[i].pos), body[moon].diam/2);
 spacecraft[i].pos= vector (-au*1.2);
 spacecraft[i].v=0;
 spacecraft[i].c = RGB(0, 0, 0); //dead
spacecrafts=white
 }

 if (norm(body[mars].pos-spacecraft[i].pos)<body[mars].diam/2) {
 spacecraft[i].deadbit=1;
 printf ("spacecraft %d has died from mars collision on
day %f (%f %f)\n", i, day, norm(body[mars].pos-spacecraft[i].pos), body[mars].diam/2);

 81

 spacecraft[i].pos= vector (-au*1.2);
 spacecraft[i].v=0;
 spacecraft[i].c = RGB(0, 0, 0); //dead
spacecrafts=white
 }

 if (t>5*24*60*60) { //they're allowed to be at earth for the first 5
days
 if (norm (body[earth].pos-
spacecraft[i].pos)<body[earth].diam/2) {
 spacecraft[i].deadbit=1;
 printf ("spacecraft %d has died from earth collision
on day %f \n", i, day);
 spacecraft[i].pos= vector (-au*1.2);
 spacecraft[i].v=0;
 spacecraft[i].c = RGB(0, 0, 0);
 //dead spacecrafts=white
 }
 }
 double fraction = norm(spacecraft[i].v)*dt/mindist;
 if (maxfraction < fraction) maxfraction = fraction;
 }

 int Today = (int)day; //print just once a day (this was overly complicated)
 if (LastDayPrinted/2 != Today/2) {
 LastDayPrinted = Today;
 double percentdone= (calctime/t);
 printf ("%.5f, (dt=%f), day %f (dist mars %.0fkm %d)\n", maxfraction, dt,
day, minimumdistancetomars/1000, minimumdistancetomarsnum); //max percent dist change, time,
percent done
 printf("probe velo x= %f, probe velo y %f\n", spacecraft[0].v.x,
spacecraft[0].v.y);
 minimumdistancetomars = 1e50;
 }

 if (1) for (int i=0; i<(nspacecrafts*nspacecrafts); i++){
 double a = fmod(t, 10e7);
 double b = fmod(t-dt, 10e7);
 if (a < b) {
// if (t>misstime*10e7 && t-dt< misstime*10e7){
 vector dd; dd.x= spacecraft[i].pos.x-
((1.+sqrt(3.)/2.)*largescalefactor); dd.y= spacecraft[i].pos.y-0;
 spacecraft[i].miss=norm(dd);
// printf ("day %f, spacecraft %d reached aphelion %f\n", day, i, dd);
//printing when it's got to the aphelion
 printf ("%f\n", spacecraft[i].miss);
 if (i == 7)
 double pi = 3.14;
 }

 82

 }

 //incriment how many seconds we're calculating at once if the spacecrafts aren't
near anything cool
 dt *= MAXFRACTIONTHREDHOLD/maxfraction;
 maxfraction = 0;
 if (dt>0.15) dt=0.25;
 if (dt<0.05){
 int pi=3.14;
 dt=0.1;
 }

 //and finally we calculate lagrange points!
 // CalcL12Point(body[earth].pos.x, body[earth].pos.y, body[moon].pos.x,
body[moon].pos.y, &lagrange[emlone].pos.x, &lagrange[emlone].pos.y, &lagrange[emltwo].pos.x,
&lagrange[emltwo].pos.y, body[earth].m, body[moon].m);
 //earth-moon L1 and L2 point re-calculation
 // CalcL12Point(body[sun].pos.x, body[sun].pos.y, body[earth].pos.x,
body[earth].pos.y, &lagrange[selone].pos.x, &lagrange[selone].pos.y, &lagrange[seltwo].pos.x,
&lagrange[seltwo].pos.y, body[sun].m, body[earth].m);
 //and the earth-moon L1 + L2 points

 /**********
 end of main program calculations
 **********/

 /***********
 now for the drawing section. First it un-rotates the stuff (first 2 picture) then
 assigns each body/ point a # and the color for the #. Writes to imagedata1, 2, 3, and
4.
 ***********/

/***********
sun in middle but with rotation, takes sf1
***********/

 if (1) for (int i= 0; i< nbody; i++){

 COLORREF t = body[i].c;

 vector es= (body[i].pos-origin) * ((IMGHGT/2)/sf1) + vector ((IMGWID/2),
(IMGHGT/2));
 double diam = body[i].diam * ((IMGHGT/2)/sf1);

 imagedata1[IMGWID/2][IMGHGT/2]=RGB(255,255,255);

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else

 83

 imagedata1[(int)es.x][(int)es.y]= t;
 }

 if (1) for (int i= 0; i< nspacecrafts*nspacecrafts; i++){

 COLORREF t = spacecraft[i].c;

 vector es= (spacecraft[i].pos-origin) * ((IMGHGT/2)/sf1) + vector ((IMGWID/2),
(IMGHGT/2));

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else
 imagedata1[(int)es.x][(int)es.y]= t;
 }

/***********
sun in middle but with rotation, takes sft1
***********/

 vector movevecone; movevecone.x= -((1.+sqrt(3.)/2.)*largescalefactor); movevecone.y=0;

 if (1) for (int i= 0; i< nbody; i++){

 COLORREF t = body[i].c;

 vector es= (body[i].pos-origin+movevecone) * ((IMGHGT/2)/sft1) + vector
((IMGWID/2), (IMGHGT/2));
 double diam = body[i].diam * ((IMGHGT/2)/sft1);

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else
 imagedata2[(int)es.x][(int)es.y]= t;
 }

 if (1) for (int i= 0; i< nspacecrafts*nspacecrafts; i++){

 COLORREF t = spacecraft[i].c;

 vector es= (spacecraft[i].pos-origin+movevecone) * ((IMGHGT/2)/sft1) + vector
((IMGWID/2), (IMGHGT/2));
 vector &les = spacecraft[i].lastes1;

 if (es.x > IMGWID && les.x > IMGWID) ;
 else if (es.x < 0 && les.x < 0) ;
 else if (es.y > IMGHGT && les.y > IMGHGT) ;
 else if (es.y < 0 && les.y < 0) ;
 else if (spacecraft[i].lastes1.x != 0)

 84

 LineWrite(imagedata2, IMGWID, IMGHGT, spacecraft[i].lastes1.x,
spacecraft[i].lastes1.y, es.x, es.y, t, 1, 2);
/* for (int i = 0; i < 10; i++) {
 vector pes = spacecraft[i].lastes*(9.-i)/9. + es*i/9.;
 if (pes.x> IMGWID || pes.x<0 || pes.y> IMGHGT || pes.y<0) ;
 else
 imagedata2[(int)pes.x][(int)pes.y]= t;
 }
*/
 spacecraft[i].lastes1 = es;
/* vector es= (spacecraft[i].pos-body[sun].pos+movevecone) * ((IMGHGT/2)/sft1) +
vector ((IMGWID/2), (IMGHGT/2));

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else
 imagedata2[(int)es.x][(int)es.y]= t;
*/
 }

/***********
sun in middle but with rotation, takes sf1
***********/

 if (1) for (int i= 0; i< nbody; i++){

 COLORREF t = body[i].c;

 vector es= (body[i].pos-origin+movevecone) * ((IMGHGT/2)/sft2) + vector
((IMGWID/2), (IMGHGT/2));
 double diam = body[i].diam * ((IMGHGT/2)/sft2);

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else
 imagedata3[(int)es.x][(int)es.y]= t;
 }

 if (1) for (int i= 0; i< nspacecrafts*nspacecrafts; i++){

 COLORREF t = spacecraft[i].c;

 vector es= (spacecraft[i].pos-origin+movevecone) * ((IMGHGT/2)/sft2) + vector
((IMGWID/2), (IMGHGT/2));
 vector &les = spacecraft[i].lastes2;

 if (es.x > IMGWID && les.x > IMGWID) ;
 else if (es.x < 0 && les.x < 0) ;
 else if (es.y > IMGHGT && les.y > IMGHGT) ;
 else if (es.y < 0 && les.y < 0) ;
 else if (spacecraft[i].lastes2.x != 0)

 85

 LineWrite(imagedata3, IMGWID, IMGHGT, spacecraft[i].lastes2.x,
spacecraft[i].lastes2.y, es.x, es.y, t, 1, 2);

 spacecraft[i].lastes2 = es;

 }

/***********
earth in middle but with rotation, sf2
***********/
 for (int i= 0; i< nbody; i++){

 COLORREF t = body[i].c;

 vector es= (body[i].pos-body[earth].pos) * ((IMGHGT/2)/sf2) + vector
((IMGWID/2), (IMGHGT/2));
 double diam = body[i].diam * ((IMGHGT/2)/sf2);

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else
 imagedata4[(int)es.x][(int)es.y]= t;
 }

 for (int r= 0; r< nspacecrafts*nspacecrafts; r++){

 COLORREF t = spacecraft[r].c;

 vector es= (spacecraft[r].pos-body[earth].pos) * ((IMGHGT/2)/sf2) + vector
((IMGWID/2), (IMGHGT/2));

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else
 imagedata4[(int)es.x][(int)es.y]= t;
 }

 if (1) for (int i= 0; i< nlagrange; i++){ //sf1 center sun, for planets

 COLORREF tc;
 if (i == 0) tc = RGB(204,204,24); //earth-moon lagrange L1
 else if (i==1) tc= RGB(204,204,24); //earth-moon Lagrange L2
 else if (i==2) tc= RGB(204,204,24); //sun-earth Lagrange L1
 else if (i==3) tc= RGB(204,204,24); //sun-earth Lagrange L2
 else if (i==4) tc= RGB(255,0,0); //to incluste the else if for more points later

 vector es= (lagrange[i].pos-body[earth].pos) * ((IMGHGT/2)/sf2) + vector
((IMGWID/2), (IMGHGT/2));

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else

 86

 imagedata4[(int)es.x][(int)es.y]= tc;

 }

/***********
drawing the un-rotated version between the earth/moon. earth in middle, takes sf2
***********/
 if (1) for (int i= 0; i< nbody; i++){ //sf1 center earth
 vector draw = body[earth].pos-body[sun].pos;
 double theta= atan2(draw.y,draw.x);
 vector draw2 = body[i].pos- body[earth].pos;
 vector draw3= draw2.rotate(theta);

 COLORREF t = body[i].c;

 vector es= (draw3) * ((IMGHGT/2)/sf2) + vector ((IMGWID/2), (IMGHGT/2));
 double diam = body[i].diam * ((IMGHGT/2)/sf2);

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else
 imagedata5[(int)es.x][(int)es.y]= t;
 }

 if (1) for (int i= 0; i< nspacecrafts*nspacecrafts; i++){ //sf1 center earth
 vector draw = body[earth].pos-body[moon].pos;
 double theta= atan2(draw.y,draw.x);
 vector draw2 = spacecraft[i].pos- body[earth].pos;
 vector draw3= draw2.rotate(theta);

 COLORREF t = spacecraft[i].c;

 vector es= (draw3) * ((IMGHGT/2)/sf2) + vector ((IMGWID/2), (IMGHGT/2));

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else
 imagedata5[(int)es.x][(int)es.y]= t;
 }

/***********
drawing mars-centric picture, takes sf1
***********/
 if (1) for (int i= 0; i< nbody; i++) { //sf1 center earth
 vector draw2 = body[i].pos- body[sun].pos;

 COLORREF t = body[i].c;

 vector es= (draw2) * ((IMGHGT/2)/sf3) + vector ((IMGWID/2), (IMGHGT/2));
 double diam = body[i].diam * ((IMGHGT/2)/sf3);

 87

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else
 imagedata6[(int)es.x][(int)es.y]= t;
 }

 if (1) for (int i= 0; i< nspacecrafts*nspacecrafts; i++) { //sf1 center earth
 vector draw2 = spacecraft[i].pos- body[sun].pos;

 COLORREF t = spacecraft[i].c;

 vector es= (draw2) * ((IMGHGT/2)/sf3) + vector ((IMGWID/2), (IMGHGT/2));

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else
 imagedata6[(int)es.x][(int)es.y]= t;
 }

/***********
drawing mars-centric picture, takes sf1
***********/
 if (1) for (int i= 0; i< nbody; i++) { //sf1 center earth
 vector draw2 = body[i].pos- body[sun].pos;

 COLORREF t = body[i].c;

 vector es= (draw2) * ((IMGHGT/2)/sf4) + vector ((IMGWID/2), (IMGHGT/2));
 double diam = body[moon].diam * ((IMGHGT/2)/sf4);

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else
 imagedata7[(int)es.x][(int)es.y]= t;
 }

 if (1) for (int i= 0; i< nspacecrafts*nspacecrafts; i++) { //sf1 center earth
 vector draw2 = spacecraft[i].pos- body[sun].pos;

 COLORREF t = spacecraft[i].c;

 vector es= (draw2) * ((IMGHGT/2)/sf4) + vector ((IMGWID/2), (IMGHGT/2));

 if (es.x> IMGWID || es.x<0 || es.y> IMGHGT || es.y<0) ;
 else
 imagedata7[(int)es.x][(int)es.y]= t;
 }
 }

 vector totalclosestpos;
 int winningprobenum=0;

 88

 if (1) for (int i= 0; i< (nspacecrafts*nspacecrafts); i++){
 if (norm(spacecraft[i].closestpos)>norm(totalclosestpos)){
 winningprobenum=i;
 totalclosestpos=spacecraft[i].closestpos;
 }
 }

 printf ("Best probe # %d with %f %f away \n", winningprobenum, totalclosestpos.x,
totalclosestpos.y);
 double jupiterpos= norm(body[sun].pos);
 double probepos= norm(spacecraft[0].pos);
 double probevec= norm(spacecraft[0].v);
 printf("jupiterpos= %f, probepos= %f, probevec= %f\n", jupiterpos, probepos, probevec);
 printf("probe velo x= %f, probe velo y %f\n", spacecraft[0].v.x, spacecraft[0].v.y);
 if (1) for (int i=0; i<(nspacecrafts*nspacecrafts); i++){
 printf ("method # %d with %f miss \n", spacecraft[i].method, spacecraft[i].miss);
 }

#define MAG 1
#if BMP != 0
 fprintf(index, "<p>\n",
ImageStoreAdd(IMGWID, IMGHGT, imagedata1), IMGWID*MAG, IMGHGT*MAG);
 fprintf(index, "<p>\n",
ImageStoreAdd(IMGWID, IMGHGT, imagedata2), IMGWID*MAG, IMGHGT*MAG);
 fprintf(index, "<p>\n",
ImageStoreAdd(IMGWID, IMGHGT, imagedata3), IMGWID*MAG, IMGHGT*MAG);
 fprintf(index, "<p>\n",
ImageStoreAdd(IMGWID, IMGHGT, imagedata4), IMGWID*MAG, IMGHGT*MAG);
 fprintf(index, "<p>\n",
ImageStoreAdd(IMGWID, IMGHGT, imagedata5), IMGWID*MAG, IMGHGT*MAG);
 fprintf(index, "<p>\n",
ImageStoreAdd(IMGWID, IMGHGT, imagedata6), IMGWID*MAG, IMGHGT*MAG);
 fprintf(index, "<p>\n",
ImageStoreAdd(IMGWID, IMGHGT, imagedata7), IMGWID*MAG, IMGHGT*MAG);
#endif
#if GIF != 0
// want to put back in? fprintf(index, "
\n",
GifImageStoreAdd(IMGWID, IMGHGT, imagedata1, imagedata2), IMGWID*2, IMGHGT*2);
// fprintf(index, "
\n",
GifImageStoreAdd(IMGWID, IMGHGT, imagedata1, 0), IMGWID*2, IMGHGT*2);
// fprintf(index, "
\n",
GifImageStoreAdd(IMGWID, IMGHGT, imagedata2, 0), IMGWID*2, IMGHGT*2);
#endif
 // end experimental code
 printf("\n");
// free(img);

 fprintf(index, "</CENTER></CODE></body></html>\n");
 rewind(index);

 89

 char buf[1234];
 int i;
 do {
 i = fread(buf, 1, sizeof buf, index);
 if (i > 0) send(theClient, buf, i, 0);
 } while (i == sizeof buf);

 fclose(index);
 }

Osim.h

void orbit(SOCKET theClient);

data.cpp
- calculation of ellipse

/***
 * Copyright (C) 2007 by Brian Lott *
 * linuxcoder1@gmail.com *
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 * This program is distributed in the hope that it will be useful, *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
 * GNU General Public License for more details. *
 * *
 * You should have received a copy of the GNU General Public License *
 * along with this program; if not, write to the *
 * Free Software Foundation, Inc., *
 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
 ***/

/* Under NO circumstances may the author be held responsable for his lame spelling
 *
 * the equations in
 * FindM, FindNu, Findr, Findx, Findy, Findz, FindL, FindMoonM, FindF, FindLAMBDA,
 * FindBETA, FindDELTA, FindMoonX, FindMoonY, and FindMoonZ came from:
 * http://www.astro.uu.nl/~strous/AA/en/reken/hemelpositie.html
 * and
 * http://www.astro.uu.nl/~strous/AA/en/reken/kepler.html
 * and are owned by their original authors as is applicable
 */

 90

//File: data.cpp
//Date: 1/22/2007
//Author: Brian Lott

#include <iostream>
#include <cstdlib>
#include <cmath>

using namespace std;

#include "data.h"

double PI = 3.141592653; //for some odd reason, I can't use the library definition

/***********************
data::data()
Passed nothing
Returns nothing

Used to define all the values we will need. You want to define a value, do it in here.

note: the mass defined in here is not really any value. It is merely a relational value.
***********************/
data::data()
{
 dSubo = 36526.5; //this is the only time we can change this
 NumberSteps = 0; //Start our counter off

 Sun.x = 0; //shouldn't change
 Sun.y = 0; //touch this, and we all die (but it would be fun, wouldn't it)

 Mercury.a = 0.38710;
 Mercury.e = 0.20563;
 Mercury.i = 7.005;
 Mercury.omega = 29.125;
 Mercury.OMEGA = 48.331;
 Mercury.Mo = 174.795;
 Mercury.n = 4.092317;

 Venus.a = 0.72333;
 Venus.e = 0.00677;
 Venus.i = 3.395;
 Venus.omega = 54.884;
 Venus.OMEGA = 76.680;
 Venus.Mo = 50.416;
 Venus.n = 1.602136;

 Earth.a = 1.00000;

 91

 Earth.e = 0.01671;
 Earth.i = 0.000;
 Earth.omega = 288.064;
 Earth.OMEGA = 174.873;
 Earth.Mo = 357.529;
 Earth.n = 0.985608;

 Moon.L0 = 218.316;
 Moon.L1 = 13.176396;
 Moon.M0 = 134.963;
 Moon.M1 = 13.064993;
 Moon.F0 = 93.272;
 Moon.F1 = 13.229350;

 Mars.a = 1.52368;
 Mars.e = 0.09340;
 Mars.i = 1.850;
 Mars.omega = 286.502;
 Mars.OMEGA = 49.558;
 Mars.Mo = 19.373;
 Mars.n = 0.524039;

 Jupiter.a = 5.20260;
 Jupiter.e = 0.04849;
 Jupiter.i = 1.303;
 Jupiter.omega = 273.867;
 Jupiter.OMEGA = 100.464;
 Jupiter.Mo = 20.020;
 Jupiter.n = 0.083056;

 Saturn.a = 9.55491;
 Saturn.e = 0.05551;
 Saturn.i = 2.489;
 Saturn.omega = 339.391;
 Saturn.OMEGA = 113.666;
 Saturn.Mo = 317.021;
 Saturn.n = 0.033371;

 Uranus.a = 19.21845;
 Uranus.e = 0.04630;
 Uranus.i = 0.773;
 Uranus.omega = 98.999;
 Uranus.OMEGA = 74.006;
 Uranus.Mo = 141.050;
 Uranus.n = 0.011698;

 Neptune.a = 30.11039;
 Neptune.e = 0.00899;
 Neptune.i = 1.770;

 92

 Neptune.omega = 276.340;
 Neptune.OMEGA = 131.784;
 Neptune.Mo = 256.225;
 Neptune.n = 0.005965;
}

/***********************
data::calcData()
Passed nothing
Returns nothing

Used to calculate all the values. If you want to calculate a value, then create a function
to do the math, and call it from here. Neater that way.
***********************/
void data::calcData()
{

 Mercury.M = FindM(Mercury.Mo, Mercury.n);
 Mercury.Nu = FindNu(Mercury.e, Mercury.M);
 Mercury.r = Findr(Mercury.a, Mercury.e, Mercury.Nu);
 Mercury.x = Findx(Mercury.r, Mercury.OMEGA, Mercury.omega, Mercury.Nu, Mercury.i);
 Mercury.y = Findy(Mercury.r, Mercury.OMEGA, Mercury.omega, Mercury.Nu, Mercury.i);

 Venus.M = FindM(Venus.Mo, Venus.n);
 Venus.Nu = FindNu(Venus.e, Venus.M);
 Venus.r = Findr(Venus.a, Venus.e, Venus.Nu);
 Venus.x = Findx(Venus.r, Venus.OMEGA, Venus.omega, Venus.Nu, Venus.i);
 Venus.y = Findy(Venus.r, Venus.OMEGA, Venus.omega, Venus.Nu, Venus.i);

 Earth.M = FindM(Earth.Mo, Earth.n);
 Earth.Nu = FindNu(Earth.e, Earth.M);
 Earth.r = Findr(Earth.a, Earth.e, Earth.Nu);
 Earth.x = Findx(Earth.r, Earth.OMEGA, Earth.omega, Earth.Nu, Earth.i);
 Earth.y = Findy(Earth.r, Earth.OMEGA, Earth.omega, Earth.Nu, Earth.i);

 Moon.L = FindL(Moon.L0, Moon.L1);
 Moon.M = FindMoonM(Moon.M0, Moon.M1);
 Moon.F = FindF(Moon.F0, Moon.F1);
 Moon.LAMBDA = FindLAMBDA(Moon.L, Moon.M);
 Moon.BETA = FindBETA(Moon.F);
 Moon.DELTA = FindDELTA(Moon.M);
 Moon.x = FindMoonX(Moon.DELTA, Moon.LAMBDA, Moon.BETA) + Earth.x;
 Moon.y = FindMoonY(Moon.DELTA, Moon.LAMBDA, Moon.BETA) + Earth.y;

 Mars.M = FindM(Mars.Mo, Mars.n);
 Mars.Nu = FindNu(Mars.e, Mars.M);
 Mars.r = Findr(Mars.a, Mars.e, Mars.Nu);
 Mars.x = Findx(Mars.r, Mars.OMEGA, Mars.omega, Mars.Nu, Mars.i);

 93

 Mars.y = Findy(Mars.r, Mars.OMEGA, Mars.omega, Mars.Nu, Mars.i);

 Jupiter.M = FindM(Jupiter.Mo, Jupiter.n);
 Jupiter.Nu = FindNu(Jupiter.e, Jupiter.M);
 Jupiter.r = Findr(Jupiter.a, Jupiter.e, Jupiter.Nu);
 Jupiter.x = Findx(Jupiter.r, Jupiter.OMEGA, Jupiter.omega, Jupiter.Nu, Jupiter.i);
 Jupiter.y = Findy(Jupiter.r, Jupiter.OMEGA, Jupiter.omega, Jupiter.Nu, Jupiter.i);

 Saturn.M = FindM(Saturn.Mo, Saturn.n);
 Saturn.Nu = FindNu(Saturn.e, Saturn.M);
 Saturn.r = Findr(Saturn.a, Saturn.e, Saturn.Nu);
 Saturn.x = Findx(Saturn.r, Saturn.OMEGA, Saturn.omega, Saturn.Nu, Saturn.i);
 Saturn.y = Findy(Saturn.r, Saturn.OMEGA, Saturn.omega, Saturn.Nu, Saturn.i);

 Uranus.M = FindM(Uranus.Mo, Uranus.n);
 Uranus.Nu = FindNu(Uranus.e, Uranus.M);
 Uranus.r = Findr(Uranus.a, Uranus.e, Uranus.Nu);
 Uranus.x = Findx(Uranus.r, Uranus.OMEGA, Uranus.omega, Uranus.Nu, Uranus.i);
 Uranus.y = Findy(Uranus.r, Uranus.OMEGA, Uranus.omega, Uranus.Nu, Uranus.i);

 Neptune.M = FindM(Neptune.Mo, Neptune.n);
 Neptune.Nu = FindNu(Neptune.e, Neptune.M);
 Neptune.r = Findr(Neptune.a, Neptune.e, Neptune.Nu);
 Neptune.x = Findx(Neptune.r, Neptune.OMEGA, Neptune.omega, Neptune.Nu, Neptune.i);
 Neptune.y = Findy(Neptune.r, Neptune.OMEGA, Neptune.omega, Neptune.Nu, Neptune.i);

 ++NumberSteps;
}

/***********************
data::outputAll()
Passed: nothing
Returns: nothing

Sends everything to the output stream. In this case, that's a bunch of files.
***********************/
void data::outputBodies(double *SunX, double *SunY,
 double *MercuryX, double *MercuryY,
 double *VenusX, double *VenusY,
 double *EarthX, double *EarthY,
 double *MoonX, double *MoonY,
 double *MarsX, double *MarsY,
 double *JupiterX, double *JupiterY,
 double *SaturnX, double *SaturnY,
 double *UranusX, double *UranusY,
 double *NeptuneX, double *NeptuneY)
{
 *SunX = Sun.x*149597870691.0; //au*meters

 94

 *SunY = Sun.y*149597870691.0;
 *MercuryX = Mercury.x*149597870691.0;
 *MercuryY = Mercury.y*149597870691.0;
 *VenusX = Venus.x*149597870691.0;
 *VenusY = Venus.y*149597870691.0;
 *EarthX = Earth.x*149597870691.0;
 *EarthY = Earth.y*149597870691.0;
 *MoonX = Moon.x*149597870691.0;
 *MoonY = Moon.y*149597870691.0;
 *MarsX = Mars.x*149597870691.0;
 *MarsY = Mars.y*149597870691.0;
 *JupiterX = Jupiter.x*149597870691.0;
 *JupiterY = Jupiter.y*149597870691.0;
 *SaturnX = Saturn.x*149597870691.0;
 *SaturnY = Saturn.y*149597870691.0;
 *UranusX = Uranus.x*149597870691.0;
 *UranusY = Uranus.y*149597870691.0;
 *NeptuneX = Neptune.x*149597870691.0;
 *NeptuneY = Neptune.y*149597870691.0;
}

/////
//Begin: Planet equations
/////

double data::FindM(double Mo, double n)
{
 double M = Mo + n * (d - dSubo);
 return M - 360 * (int)(M / 360);
}

double data::FindNu(double e, double M)
{
 double NuRadians;
 int counter = 1;
 double E[21];
 E[0] = M * PI / 180;
 E[1] = M * PI / 180 + e * sin(E[0]);

 while(counter <= 20 && fabs(E[counter] - E[counter - 1]) > 0.000001)
 {
 ++counter;
 E[counter] = E[0] + e * sin(E[counter - 1]);
 }
 //counter starts at 1 to avoid errors when comparing E[n] and E[n-1]
 //limit 20 times through. E should be stable by then.

 95

 NuRadians = 2 * atan(sqrt((1 + e) / (1 - e)) * tan(E[counter] / 2));
 if(NuRadians * 180 / PI < 0)
 NuRadians = NuRadians * 180 / PI + 360;
 else
 NuRadians = NuRadians * 180 / PI;
 //simple It's just finding the true anomaly(Nu). It gets more fun from here. ;)
 return NuRadians;
}

double data::Findr(double a, double e, double Nu)
{
 return a * (1 - e * e) / (1 + e * cos((PI / 180) * Nu));
}

//finds the x for a planet
double data::Findx(double r, double OMEGA, double omega, double Nu, double i)
{
 return r * (cos((PI / 180) * OMEGA) * cos((PI / 180) * (omega + Nu)) - sin((PI / 180) * OMEGA) *
cos((PI / 180) * i) * sin((PI / 180) * (omega + Nu)));
}

//finds the y for a planet
double data::Findy(double r, double OMEGA, double omega, double Nu, double i)
{
 return r * (sin((PI / 180) * OMEGA) * cos((PI / 180) * (omega + Nu)) + cos((PI / 180) * OMEGA) *
cos((PI / 180) * i) * sin((PI / 180) * (omega + Nu)));
}

/////
//End: Planet Equtions
//Start: functions for Moon
/////

double data::FindL(double L0, double L1)
{
 double L = L0 + L1 * (d - dSubo);
 return L - 360 * (int)(L / 360);
}

double data::FindMoonM(double M0, double M1)
{
 double M = M0 + M1 * (d - dSubo);
 return M - 360 * (int)(M / 360);
}

double data::FindF(double F0, double F1)
{
 double F = F0 + F1 * (d - dSubo);

 96

 return F - 360 * (int)(F / 360);
}

double data::FindLAMBDA(double L, double M)
{
 return L + 6.289 * sin((PI / 180) * M);
}

double data::FindBETA(double F)
{
 return 5.128 * sin((PI / 180) * F);
}

double data::FindDELTA(double M)
{
 return 385001 - 20905 * cos((PI / 180) * M);
}

double data::FindMoonX(double DELTA, double LAMBDA, double BETA)
{
 return DELTA * cos((PI / 180) * LAMBDA) * cos((PI / 180) * BETA) / 149598000;
}

double data::FindMoonY(double DELTA, double LAMBDA, double BETA)
{
 return DELTA * sin((PI / 180) * LAMBDA) * cos((PI / 180) * BETA) / 149598000;
}

/////
//End: functions for Moon
/////

data.h

/***
 * Copyright (C) 2007 by Brian Lott *
 * linuxcoder1@gmail.com *
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 * This program is distributed in the hope that it will be useful, *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
 * GNU General Public License for more details. *
 * *

 97

 * You should have received a copy of the GNU General Public License *
 * along with this program; if not, write to the *
 * Free Software Foundation, Inc., *
 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
 ***/

//File: data.h
//Date: 1/22/2007
//Author: Brian Lott

#include <fstream>

#include "body.h"

#ifndef DATA_H
#define DATA_H

class data
{
 public:
 Body Sun;
 planet Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune;
 //yes, pluto is a planet in my book
 moon Moon;

 data();
 /*
 we will want to change d later. d is the time.
 */
 double d;
 double dSubo; //don't even dream of changing this.

 void calcData(); //calculates the X and Y
 void data::outputBodies(double *SunX, double *SunY,
 double *MercuryX, double *MercuryY,
 double *VenusX, double *VenusY,
 double *EarthX, double *EarthY,
 double *MoonX, double *MoonY,
 double *MarsX, double *MarsY,
 double *JupiterX, double *JupiterY,
 double *SaturnX, double *SaturnY,
 double *UranusX, double *UranusY,
 double *NeptuneX, double *NeptuneY); //outputs the Planet's X and Y
 void outputCounter(); //outputs the timestep counter

 private:
 //NOTE: I considered tossing most of the equations in the body class, but my original
 // intention was to keep the body class stictly for storing the data, and the data

 98

 // class to handle all of the data, including the computations and the output.

 int NumberSteps;
 //The number of times that we calculate this stuff.
 //NOTE: we can't just use the counter variable we use for the loop in main().
 // that works, unless we do a fraction of a day as our timestep.
 // this is only used for the R program to display the current position of the planets

 //Start: Funtions for Planets
 double FindM(double Mo, double n);
 double FindNu(double e, double M);
 double Findr(double a, double e, double Nu);
 double Findx(double r, double OMEGA, double omega, double Nu, double i);
 double Findy(double r, double OMEGA, double omega, double Nu, double i);
 //End: Funtions for Planets

 //Start: Functions for Moon
 double FindL(double L0, double L1);
 double FindMoonM(double M0, double M1);
 double FindF(double F0, double F1);
 double FindLAMBDA(double L, double M);
 double FindBETA(double F);
 double FindDELTA(double M);
 double FindMoonX(double DELTA, double LAMBDA, double BETA);
 double FindMoonY(double DELTA, double LAMBDA, double BETA);
 //End: Funtions for Moon
};

#endif

 99

Appendix C – Email From Prof. Hut

From: Piet Hut [piet@ias.edu]
Sent: Saturday, March 31, 2007 7:14 PM
To: hilbert@swcp.com
Cc: makino@yso.mtk.nao.ac.jp; d.c.heggie@ed.ac.uk
Subject: Re: Partitioned Runge-Kutta Algorithms

Dear Kristin,

Thank you for spotting the error in our manuscript.
Yes, you are right. I am glad you found that typo.
I have added an acknowledgment with your name in the preface; it should appear in the
next version of ACS, together with the corrected equation.

Actually, I am glad that we have made some typos, since in this way we can find out who
are carefully reading our manuscripts! Most of the time, we have no idea who are
reading the volues that we have written, and what they think about it.

Do you have any suggestions about improvements in the presentation, of this volume or
others in the series?

I am aware of the fact that we never finished the last part of this volume; I keep intending
to come back to it, but there have been too many other things catching my attention. I
hope to finish it this summer.

By the way, there are two possibilities: either I copied this equation incorrectly from my
notes, in which case the following equations should be correct; or I actually made a
mistake in my calculations, in which case the equations following the one with a typo
may be incorrect as well, based on the incorrect one that you pointed out. If you continue
reading this chapter, can you let me know which one is the case?

Also, can you tell us something about the project that you are involved with?

Thank you again,

Piet

------- Start of forwarded message -------
From: "William Cordwell" <hilbert@swcp.com>
Date: Sat, 31 Mar 2007 13:32:23 -0600
Subject: Partitioned Runge-Kutta Algorithms
To: <piet@ias.edu>, <makino@yso.mtk.nao.ac.jp>, <d.c.heggie@ed.ac.uk>

Dear Professors Hut, Makino, and Heggie,

In The Kali Code, Volume 3, Integration Algorithms: Exploring the Runge-Kutta
Landscape, Chapter 4, Partitioned Runge-Kutta Algorithms, after about 1.5 pages where

 100

you express p_0 in terms of derivatives of f and v_0, I think that there may be a mistake:

The term inside the curly braces, 2f_0'(v_0)^2, I think it should be 5f_0'(v_0)^2, because
you get a 3 from differentiating the middle term of c_0 and another 2 from differentiating
the last term of c_0.

Would you please let me know if this is correct or if I'm misunderstanding something?

I am finding your paper very useful for a project I'm doing.

Thank you.

Sincerely,

Kristin Cordwell
------- End of forwarded message -------

 101

	Title Page
	Table of Contents
	Final ES and PS
	Executive Summary

	Kristin's Latex
	Final Copy Report
	Functions and Structure of Delta
	Comparison of Approximation Methods
	Acknowledgements
	We would like to thank Dr. Erik DeBenedictis and Dr. William Cordwell for mentoring our team, Mrs. Kerrie Sena for her encouragement and sponsorship of our project, and Sandia and Los Alamos National Labs for sponsoring the Supercomputing Challenge.
	Appendix A - Flowcharts
	Appendix B – Code
	Osim.cpp

