
The Mind Project

Team: 48

School: LAS CRUCES HIGH

Area of Science: Artificial intelligence

Team Members: Jeremy Wilson

Sponsoring Teacher: Marez

E-Mail: jwilson18node@yahoo.com

mailto:jwilson18node@yahoo.com

Table of Contents

1. Introduction.

2. Fig. 1, 2, 3.

3. Fig 4.

4. FFT.

9. Further development.

13. Source code.

Executive Summary

In the field of artificial intelligence the goal has always been if not preoccupied with,

trying to simulate the way in which the human brain operates. In doing so computer

scientists as well as ordinary people would benefit immensely from the knowledge and

help gained by such A.I.s. What people have imagined in the movies and in books has

not, in fact, been for the most part realistic because most are not aware that true artificial

intelligence will be like a newborn baby that must learn as we do if not faster. Its brain

can not be pure logic and we can not program it with all the knowledge it would need. If

the dream of artificial intelligence is to come true there must be a new approach to

creating it. In the brain there are things in biological terms called neural networks. In the

80s neural networks were what most computer scientists believed would propel the field

of artificial intelligence forward but nothing much happened and in the 90s they had all

but been forgotten. What was wrong with the neural networks was not the neural

networks themselves but the one thing that they left out. Time! Yes it was time that

computer scientists had failed to include in their models. Most computer scientists only

cared about how efficient they learned static patterns and not a dynamic flow of data the

way the brain does. Some neural networks tried to model time but to do this they

recorded all the data and then tried to find the patterns within them. This was O.K. for

data of sound recordings and voice recognition but when it came to vision it was

pointless. The amount of data involved would be enormous even for a supercomputer.

Even then what algorithms would they use and what about operating in real time. This is

the problem that I have tried to solve. To create a neural network that incorporates time

but this was not what I had in mind when I first thought of how to solve the problem of

artificial intelligence. The concept of time as a basic principal for my hypothesis did not

occur until late into the competition of the Supercomputing Challenge in 2006. Before

then I had to come up with the principles behind it. The principal that I learned came

from a book called On Intelligence by Jeff Hawkins. It was that neural networks can only

learn static data but by using hierarchy it could be more efficient. Six months later when I

reread it I saw that only half the book was about hierarchy and the other half was about

time. That was when I combined the concept of time with hierarchy. A Time Hierarchy!

The Time Hierarchy as its name implies can take a sequence of data in time and reduce

its information as in a hierarchy to where one element at the top of the hierarchy would

represent the entire pattern. In this way it would know the information without recording

it.

Introduction

Proposal

Problem:

Many Artificial intelligence programs today work on the principle that all the knowledge

in them is preprogrammed. Information is not learned but imposed upon them. Even in

neural networks the right answers must be known before training can take place and

unsupervised neural networks do not always produce the right results that can be used in

a meaningful way. Then there is the fact that real world problems such as vocal

communication between man and machine can not be fully implemented by neural

networks alone. They must have an expert system behind them doing all the logic.

Purpose:

The purpose of this project is to create a type of neural network capable of performing all

the tasks of traditional A.I. program without the burden of a cumbersome expert system.

This new Area of A.I. will be called Pure Neural Network A.I.

Procedure:

To create our neural network we will use the programming language Java. The data we

will use to test our program will come from a WAVE sound file. Then we will transform

it with an FFT. The frequency data will be input into the neural network. The output of

the neural network will be turned back into sound with a reverse FFT.

My program implements two of these Time Hierarchy Neural Networks. One is used to

learn patterns the other is used to reproduce the patterns by revising the direction of

which the weights activate the nodes. Each neural network consists of 32 layers with 256

nodes per layer. The number of layers in the neural network is equal to the length of a

sequence that can be learned.

The patterns that my program uses come from a WAVE file with

44000 samples a second.

512 of the 44000 samples are transformed though an FFT into amplitude values of 256

frequencies every 86th of a second.

In the first layer of there neural network one node is selected to be on if its weights best

mach the amplitude values of the FFT frequency data. Then the nodes weights are

adjusted to better mach that FFT frequency data.

The reason that I have used sound instead of visual data is due to my limited abilities. I

feel that that the true potential of this type of neural network can only be accomplished

by combining a sound neural network with a vision neural network were as it can give an

audio response to visual input.

Another application is robotics.

The retina of a robot would only be limited by memory.

In the brain the average brain cell has 10,000 connections. For a robot with a big retina

but limited memory there would be a sub neural network before the main neural network.

The Time Hierarchy Neural Network could also be used to control a robot.

A robot generates random movements.

A person tells the robot what it is doing.

The robot learns to associate the person’s words with its own movements.

Genetic algorithms could also be used to find a desired set of weights values that would

allow the neural network to respond to stimuli with sequences of patterns. When the

neural network responds to the stimuli it will change its environment creating new stimuli

to respond to creating a feedback loop of sequences instead of static patterns in normal

neural networks.

Source code

import java.awt.*;

import javax.swing.*;

import java.applet.Applet;

import java.text.DecimalFormat;

import java.awt.event.*;

/*

 * AIProgram1.java

 * @author Jeremy Wilson

 * Created on March 1, 2007, 7:00 AM

 *

 */

public class AIProgram1 extends JFrame{

 int WAVEdata[],WAVEdataforFFT[];

 private JButton Start, Stop, Array;

 private TextArea display = new TextArea(10,40);

 long currentTime=0;

 Thread n1 = new Thread();

 Thread n2 = new Thread();

 Thread n3 = new Thread();

 // n1.Time();

 // n2.tick();

 // n3.paint();

 public AIProgram1() {

 super("A.I. Program 1.0");

 Container container = getContentPane();

 container.setLayout(new FlowLayout());

 Start = new JButton("Start");

 container.add(Start);

 Stop = new JButton("Stop");

 container.add(Stop);

 ButtonHandler handler = new ButtonHandler();

 Start.addActionListener(handler);

 Stop.addActionListener(handler);

 setSize(700,700);

 setVisible(true);

 }

 // public void tick() {

 // long tick=0;

 // for (long x=tick; x<tick+22; x++){

 // currentTime = System.currentTimeMillis();

 // if (currentTime == tick + 11)

 // tick = currentTime;

 // }

 // }

 public void paint(Graphics g) {

 super.paint(g);

 currentTime = System.currentTimeMillis();

 g.drawString("A speaker and a microphone is needed

to run this Application", 100, 100);

 g.drawString("Current Time " + currentTime, 100,

125);

 g.drawString("Sum of node wieghts", 100, 190);

 int number = 0;

 for (int x=100; x<612; x++){

 for (int y=200; y<264; y++){

 number = (int)(Math.random()*255);

 g.setColor(new

Color(number,number,number));

 g.fillRect(x,y,2,2);

 }

 }

 g.drawString("Node values One or Zero", 100, 290);

 int number2 = 0;

 for (int x=100; x<612; x++){

 for (int y=300; y<364; y++){

 number2 = (int)(Math.random()*2);

 if (number2 == 1)

 g.setColor(new Color(255,255,255));

 else

 g.setColor(new Color(0,0,0));

 g.fillRect(x,y,2,2);

 }

 }

 }

 //end of paint

 public static void main(String argv[]) {

 AIProgram1 application = new AIProgram1();

 application.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);

 }

 //end of main

 private class ButtonHandler implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 if (event.getActionCommand().equals("Stop"))

 System.exit(0);

 ReadWAVEdata RWD = new ReadWAVEdata();

 FFT fft = new FFT();

 //SoundNeuralNetwork SNN = new

SoundNeuralNetwork();

 // Time time = new Time();

 // n1.time(tick);

 int a=44;

 //if (currentTime%11==0);

 //a=a+512;

 // if (currentTime%11==0);

 RWD.ReadWAVEdata(size);

 int Wavedata[];

 Wavedata = new int[size];

 RWD.read(Wavedata);

 double realbitsamples[];

 double imaginarybitsamples[];

 fft.doFFT(realbitsamples,imaginarybitsamples);

 for(int x=a; x<a+512; x++) {

 realbitsamples [x] = Wavedata [x];

 }

 //if (currentTime%11==0);

 //fft.doFFT();

 //if (currentTime%11==0);

 //SNN.inputFrequencyData();

 //if (currentTime%11==0);

 //SNN.Do_soundneuralnetwork();

 }

 //end of actionPerformed

 }

//end of ButtonHandler

}

//end of AIProgram1

import java.awt.event.*;

import java.io.*;

import javax.swing.*;

public class ReadWAVEdata {

 int WAVEdata[];

 int size=0;

 public ReadWAVEdata(){

 ReadWAVEdata application = new ReadWAVEdata();

 File name = new File("L:\\New A.I\\bug.wav");

 if (name.exists())

 try{

 BufferedReader input = new BufferedReader(new

FileReader(name));

 }

 // process file processing problems

 catch(IOException ioException) {

 JOptionPane.showMessageDialog(null, "FILE ERROR",

 "FILE ERROR", JOptionPane.ERROR_MESSAGE);

 } else {

 JOptionPane.showMessageDialog(null,"file Does Not Exist",

 "ERROR", JOptionPane.ERROR_MESSAGE);

 }

 WAVEdata = new int[input.length];

 // size = input.length;

 }

//end of constuctor

 public void read(int[] WAVEdata) {

 for (int i=0; i<input.length; i++) {

 WAVEdata [i] = input [i];

 }

 // return WAVEdata[];

 }

}

// This code is repackaged after the code from Craig A.

Lindley, from Digital Audio with Java

// Site

ftp://ftp.prenhall.com/pub/ptr/professional_computer_scienc

e.w-022/digital_audio/

// Email

//package org.jscience.media.audio.dsp.monitors;

/**

 * This is a Java implementation of the fast Fourier

transform written by Jef

 * Poskanzer. The copyright appears above.

 */

/* libfft.c - fast Fourier transform library

 **

 ** Copyright (C) 1989 by Jef Poskanzer.

 **

 ** Permission to use, copy, modify, and distribute this

software and its

 ** documentation for any purpose and without fee is hereby

granted, provided

 ** that the above copyright notice appear in all copies

and that both that

 ** copyright notice and this permission notice appear in

supporting

 ** documentation. This software is provided "as is"

without express or

 ** implied warranty.

 */

public class FFT {

 int bitspersample=8;

 int bitreverse[];

 double realbitsamples[], imaginarybitsamples[];

 private static final double TWOPI = 2.0 * Math.PI;

 public FFT() {

 bitreverse = new int[512];

 realbitsamples = new double [512];

 imaginarybitsamples = new double [512];

 for (int i = (1 << bitspersample) - 1; i >= 0; --i)

{

 int k = 0;

 for (int j = 0; j < bitspersample; ++j) {

 k *= 2;

 if ((i & (1 << j)) != 0) {

 k++;

 }

 }

 bitreverse[i] = k;

 }

 }

//end of constuctor

 public void doFFT(double[] realbitsamples, double[]

imaginarybitsamples) {

 int n;

 int n2;

 int i;

 int k;

 int kn2;

 int l;

 int p;

 double ang;

 double s;

 double c;

 double tr;

 double ti;

 n2 = (n = (1 << bitspersample)) / 2;

 for (l = 0; l < bitspersample; ++l) {

 for (k = 0; k < n; k += n2) {

 for (i = 0; i < n2; ++i, ++k) {

 p = bitreverse[k / n2];

 ang = (TWOPI * p) / n;

 c = Math.cos(ang);

 s = Math.sin(ang);

 kn2 = k + n2;

 tr = (realbitsamples[kn2] * c) +

(imaginarybitsamples[kn2] * s);

 ti = (imaginarybitsamples[kn2] * c) -

(realbitsamples[kn2] * s);

 realbitsamples[kn2] = realbitsamples[k]

- tr;

 imaginarybitsamples[kn2] =

imaginarybitsamples[k] - ti;

 realbitsamples[k] += tr;

 imaginarybitsamples[k] += ti;

 }

 }

 n2 /= 2;

 }

 for (k = 0; k < n; k++) {

 if ((i = bitreverse[k]) <= k) {

 continue;

 }

 tr = realbitsamples[k];

 ti = imaginarybitsamples[k];

 realbitsamples[k] = realbitsamples[i];

 imaginarybitsamples[k] =

imaginarybitsamples[i];

 realbitsamples[i] = tr;

 imaginarybitsamples[i] = ti;

 }

 }

//end of doFFT

}

import java.util.Arrays;

import javax.swing.JOptionPane;

import java.text.DecimalFormat;

public class SoundNeuralNetwork{

 double n[];

 int timestep[][];

 int inhibitnow;

 int inhibiter1[][];

 int suminhibiter1=0;

 int switchStrengths[][];

 int frequency[],sumfrequencies[];

 int nodeValue1[][],nodeValue2[][];

 int strengths1[][][],strengths2[][][];

 int sumStrengths1[][],sumStrengths2[][];

 int sumStrengths3[][],sumStrengths4[][];

 /** Creates a new instance of SoundNeuralNetwork */

 public SoundNeuralNetwork(){

 n = new double[32];

 timestep = new int[32][256];

 frequency = new int[256];

 sumfrequencies = new int[256];

 switchStrengths = new int[32][256];

 nodeValue1 = new int[32][256];

 nodeValue2 = new int[32][256];

 strengths1 = new int[32][256][256];

 strengths2 = new int[32][256][256];

 sumStrengths1 = new int[32][256];

 sumStrengths2 = new int[32][256];

 sumStrengths3 = new int[32][256];

 sumStrengths4 = new int[32][256];

 inhibiter1 = new int[32][256];

 for(int x=0; x<32; x++) {

 for(int y=0; y<256; y++) {

 for(int z=0; z<256; z++) {

 n [x] = Math.pow(2, x);

 inhibiter1 [x][y] = 0;

 switchStrengths [x][y] = 0;

 strengths1 [x][y][z] = (int)

(Math.random() *2);

 strengths2 [x][y][z] = (int)

(Math.random() *2);

 if (strengths1 [x][y][z] == 0)

 strengths1 [x][y][z] = -1;

 if (strengths2 [x][y][z] == 0)

 strengths2 [x][y][z] = -1;

 }

 }

 }

 }

//end of constuctor

 public void inputFrequencyData(){

 int FFTfrequency[];

 FFTfrequency = new int[256];

 for(int x=0; x<256; x++) {

 frequency [x] = FFTfrequency [x];

 sumfrequencies [x] = 0;

 }

 }

//end of inputFrequencyData

 public void Do_soundneuralnetwork(){

//------sum of frequencies

 for(int y=0; y<256; y++) {

 for(int z=0; z<256; z++) {

 if (frequency [z] > strengths1 [0][y][z])

 sumfrequencies [y] = frequency [z] -

strengths1 [0][y][z];

 if (frequency [z] < strengths1 [0][y][z])

 sumfrequencies [y] = strengths1

[0][y][z] - frequency [z];

 }

 }

//------use frequency data

 int on, on2;

 on = sumfrequencies [0];

 on2 = 0;

 for(int y=0; y<256; y++) {

 nodeValue1 [0][y] = 0;

 sumStrengths2 [0][y] = 0;

 }

 for(int x=0; x<256; x++) {

 if (sumfrequencies [x] < on)

 on2 = x;

 if (sumfrequencies [x] < on)

 on = sumfrequencies [x];

 }

 on2 = (int) (Math.random() *256);

 nodeValue1 [0][on2] = 1;

 sumStrengths2 [0][on2] = 1;

 for(int x=0; x<256; x++) {

 for(int y=0; y<256; y++) {

 if ((nodeValue1 [0][x] == 1)&&(frequency

[y] > strengths1 [0][x][y]))

 strengths1 [0][x][y] = strengths1

[0][x][y] + 1;

 if ((nodeValue1 [0][x] == 1)&&(frequency

[y] < strengths1 [0][x][y]))

 strengths1 [0][x][y] = strengths1

[0][x][y] - 1;

 }

 }

//------activate nodevalues2

 for(int x=30; x<31; x++) {

 for(int y=0; y<256; y++) {

 nodeValue2 [x][y] = nodeValue1 [x][y];

 }

 }

//------sum of strengths

 for(int x=1; x<31; x++) {

 for(int y=0; y<256; y++) {

 sumStrengths1 [x][y] = 0;

 sumStrengths2 [x][y] = 0;

 sumStrengths3 [x][y] = 0;

 sumStrengths4 [x][y] = 0;

 for(int z=0; z<256; z++) {

 if (nodeValue1 [x-1][z] == 1)

 sumStrengths1 [x][y] =

sumStrengths1 [x][y] + strengths1 [x][y][z];

 if (nodeValue1 [x-1][z] == 1)

 sumStrengths2 [x][y] =

sumStrengths2 [x][y] + strengths2 [x][y][z];

 if ((nodeValue2 [x+1][z] ==

1)&&(switchStrengths [x+1][z] == 0))

 sumStrengths3 [x][y] =

sumStrengths3 [x][y] + strengths1 [x+1][y][z];

 if ((nodeValue2 [x+1][z] ==

1)&&(switchStrengths [x+1][z] == 1))

 sumStrengths4 [x][y] =

sumStrengths4 [x][y] + strengths2 [x+1][y][z];

 }

//--------------change strengths

 for(int z=0; z<256; z++) {

 if ((sumStrengths1 [x][y] > 0)&&

 (sumStrengths2 [x-1][z] > 0))

 strengths1 [x][y][z] = strengths1

[x][y][z] + 1;

 if ((sumStrengths1 [x][y] > 0)&&

 (sumStrengths2 [x-1][z] <= 0))

 strengths1 [x][y][z] = strengths1

[x][y][z] - 1;

 if ((sumStrengths2 [x][y] > 0)&&

 (sumStrengths2 [x-1][z] > 0))

 strengths2 [x][y][z] = strengths2

[x][y][z] + 1;

 if ((sumStrengths2 [x][y] > 0)&&

 (sumStrengths2 [x-1][z] <= 0))

 strengths2 [x][y][z] = strengths2

[x][y][z] - 1;

 }

//--------------find nodevalues

 if (sumStrengths1 [x][y] > 0)

 nodeValue1 [x][y] = 1;

 if ((sumStrengths1 [x][y] <=

0)&&(sumStrengths2 [x][y] <= 0))

 nodeValue1 [x][y] = 0;

 if ((sumStrengths3 [x][y] + sumStrengths4

[x][y]) > 0)

 nodeValue2 [x][y] = 1;

 if ((sumStrengths3 [x][y] + sumStrengths4

[x][y]) <= 0)

 nodeValue2 [x][y] = 0;

 }

 }

//------switch strengths

 for(int x=0; x<32; x++) {

 for(int y=0; y<256; y++) {

 if (nodeValue2 [x][y] == 1)

 timestep [x][y] = timestep [x][y] + 1;

 if (nodeValue2 [x][y] == 0)

 timestep [x][y] = 0;

 }

 }

 for(int x=0; x<32; x++) {

 for(int y=0; y<256; y++) {

 for(int z=0; z<256; z++) {

 switchStrengths [x][y] = 0;

 if ((timestep [x][y] % n [x] ==

0)&&(switchStrengths [x][y] == 0))

 switchStrengths [x][y] = 1;

 if ((timestep [x][y] % n [x] ==

0)&&(switchStrengths [x][y] == 0))

 timestep [x][y] = 0;

 }

 }

 }

//------inhibit output

 int output[];

 output = new int[256];

 for(int x=0; x<10; x++) {

 for (int y=0; y<256; y++) {

 if (nodeValue2 [0][x] == 1)

 output [y] = strengths1 [0][x][y];

 }

 for(int y=0; y<256; y++) {

 if (nodeValue1 [x][y] == 1)

 suminhibiter1 = suminhibiter1 +

inhibiter1 [x][y];

 }

 for(int y=0; y<256; y++) {

 if ((inhibitnow == 1)&&(nodeValue1 [x][y]

== 1))

 inhibiter1 [x][y] = inhibiter1 [x][y] -

1;

 if ((inhibitnow == 0)&&(nodeValue1 [x][y]

== 1))

 inhibiter1 [x][y] = inhibiter1 [x][y] +

1;

 }

 }

 for(int x=0; x<256; x++) {

 if (suminhibiter1 < 0)

 output [x] = 0;

 }

 }

//end of Do_soundneuralnetwork

//

// -------------------------- Display test data -----------

//

 public void display_test_data(){

 String output = "\n";

 DecimalFormat twoDigits = new DecimalFormat("0");

 for(int x=0; x<10; x++) {

 for(int y=0; y<40; y++) {

 output += " " +

twoDigits.format(switchStrengths [x][y]);

 // nodeValue1 [x][y]

 // strengths1 [x][y][z]

 // sumStrengths1 [x][y]

 // switchStrengths [x][y]

 // timestep [x][y]

 // n [x]

 if (y == 39)

 output +="\n";

 }

 }

 JOptionPane.showMessageDialog(null,output,

 "The product",

JOptionPane.INFORMATION_MESSAGE);

 }

}

public class Time {

 long currentTime=0;

 public Time() {

 }

 public void tick() {

 long tick=0;

 for (long x=tick; x<tick+22; x++){

 currentTime = System.currentTimeMillis();

 if (currentTime == tick + 11)

 tick = currentTime;

 }

 }

}

