
Genetic Relationship of Endangered Species

New Mexico

Supercomputing Challenge

Final Report

April 4, 2007

Team #82

Oñate High School

Team Members:

Kevin Christeson

Natalie Salvat

Justin Atteberry

Reese Davies

Teacher/Mentor

Donald Downs

Josefina Dominguez

 2

Table of Contents

 Executive Summary--P. 3

 Introduction---P. 4

 Description--P. 6

 Results---P. 10

 Conclusion--P. 15

 Program--P. 16

 Most Significant Original Achievement---P. 24

 Acknowledgements---P. 25

 Appendix---P. 26

 Bibliography---P. 27

 3

Executive Summary

Does a genetic similarity exist in endangered New Mexican animals? To solve

this problem, we created a program to globally align twenty-eight different protein

sequences, fourteen endangered and fourteen control species, also native to New Mexico.

Bioinformatics, a new field of computational biology, enables us to perform a global

alignment on a large amount of sequences efficiently. To perform this alignment quickly

and accurately, we used a proven method known as the Needleman-Wunsch algorithm.

This scoring method enables us to perform the 784 necessary alignments with relative

ease. To easily read our results, the final scores were placed in individual charts;

endangered vs. endangered, endangered vs. non-endangered, and non-endangered vs.

non-endangered. The result is difficult to determine from these matrices, so we took the

average score from each region, and from these results it was determined that endangered

animals do have a higher average genetic similarity than the non-endangered control set.

The results obtained in our experiment were significant, but a more detailed statistical test

is necessary to verify our findings. This test will be performed before the final

presentations in Los Alamos, and will make our findings more meaningful.

 4

Introduction

For years, more and more animals around the world have become extinct for

reasons such as changes in weather, loss of habitat, human intervention, etc. However, is

there a possibility that there is more to extinction than environmental changes or acts of

man? Is it possible that all endangered animals share genetic similarities? Our problem

involves creating a program that will compare the genetic code of endangered and non-

endangered animals to determine if any genetic similarity exists. We have restricted the

animals we are testing to those found in New Mexico. Furthermore, a control set of non-

endangered animals will be used to verify our results.

 In order to solve our problem one must understand the science of genetic

similarities. We are looking for similarities in the protein sequences of each of our

species. These sequences are formed by the process of polymerization. Polymerization

is the chemical process that bonds the amino acids into a protein sequence that is unique

to each organism. Addition polymerization, or chain growth, is the primary method

amino acids undergo to form protein chains. We will compare each species' genetic

sequence to all other species using a new branch of biology known as bioinformatics.

 Bioinformatics is the computational branch of molecular biology. Bioinformatics

has been the center of some of the most recent breakthroughs in biology, such as the

completion of the human genome project, new biotechnologies, new legal and forensic

techniques, and new medicine for the future. Amino acids, which are complex organic

molecules, are the basic building blocks of protein sequences. Biochemists realized that

these protein sequences were huge molecules (macromolecules) made up of large

 5

numbers of amino acids. They came up with names and three letter codes for twenty of

the amino acids such as Alanine or Ala, Arginine or Arg, and so forth. A scientist then

discovered that any given protein sequence always contains precisely the same number of

total amino acids in the same proportion. Finally, scientists discovered that amino acids

are linked together as a chain, and that the identity of a protein chain not only comes from

the amino acids it is made up of, but also from the order of the amino acids. Since the

discovery of protein chains, analyzing them has been a central topic of bioinformatics.

 In our project, we plan to compare twenty-eight different New Mexico native

animals to each other, on the molecular scale. Fourteen of the animals will be non-

endangered and the other fourteen will be endangered. We are not only comparing

endangered to endangered to see if we can't find a genetic similarity, but also compare

them to the non-endangered species for a control. Utilizing the BLOSUM 50 Matrix,

which compares each amino acid from two species and gives a result, we were able to

build a program that compares all twenty-eight animals to each other. With the results

from the program, we hoped to establish a connection between the endangered animals,

which might point out that there is a genetic similarity between endangered animals.

Description

 6

In order to align 28 different protein sequences of New Mexican wildlife with

each other, one must use an efficient, proven algorithm. Bioinformatics contains a

method known as global alignment, where the sequences are quickly and accurately

scored. Global alignment involves constructing a two-dimensional matrix, and is built to

allow “gaps”, or different sequence lengths to be acceptable. We construct a matrix F

indexed by i and j, where the value F(i , j) is the score for the two respective amino

acids being compared. We find F(i , j) using the Needleman-Wunsch Algorithm:

where s(i , j) is the score referenced in the BLOSUM50 scoring matrix, a commonly

accepted tool used in computational biology:

 7

The scoring matrix used also determines the gap penalty, and the BLOSUM50 requires a

penalty of –8. This method builds recursively, starting with F(0 , 0)=0. We also insert a

gap in front of each sequence to allow the constant zero. Building from the top left to the

bottom right of the matrix is difficult to perform manually, but entirely possible. One

example might look like this:

In reality, our sequences are much longer. Included below is the amino acid

sequence of the Northern Spotted Owl:

KVRSFEKTPSDDSQHINKDQAEEVTSSNKEIILHKDEAVXRGEKTDLMGBRQALE

KDANDMKTQDSKAHQNNLKQLCRICGVSFKTDHYKRTHPVHGPVDDETLWLL

RKKEKKATSWPDLIAKVFKIDVRGDVDTIHPTQFCHNCWSIIHRKFSNTPCEVYF

PRNSTMEWQPHSPNCDVCRTTSRGVKRKRQPPSVQHGKRVKTMAERARINRGV

KNQAQINNKNLMKELVNCKNIHLSTKLLAVDYPEDFIKSISCQICEHILADPVETT

CRHLFCRTCILKCIKVMGSYCPSCWYPCFPTDLVTPVKSFLNVLDSLGIRCPVKEC

DEEILHGKYGQHLSSHKEMKDRELYCHINKGGRPRQHLLSLTRRAQKHRLRELK

RQVKAFAEKEEGGDIKAVCMTLFLLALRAKNEHRQADELEAIMQGRGSGLHPA

VCLAIRVNTFLSCSQYHKMYRTVKAVTGRQIFQPLHALRTAEKALLPGYHPFEW

KPPLKNVSTNTEVGIIDGLSGLPLSIDDYPVDTIAKRFRYDAALVCALKDMEEEIL

EGMKAKNLDDYLNGPFTVVVKESCDGMGDVSEKHGSGPAVPEKAVRFSFTVM

NIAIALGKESKRIFEEVKPNSELCCKPLCLMLADESDHETLTAILSPLIAEREAMKN

SELLLEMGGILRTFKFIFRGTGYDEKLVREVEGLEASGSTYICTLCDATRLEASQN

LVFHSITRSHAENLERYEIWRSNPYHESADELRDRVKGVSAKPFIETVPSIDALHC

 8

DIGNATEFYRIFQMEIGEVYKNPDVSKEERKRWQLTLDKHLRKKMNLKPMMRM

SGNFARKLMSKETVEAVCELIKCEERHEALKELMDLYLKMKPVWRSSCPAKECP

ELLCQYSYNSQRFAELLSTKFKYRYEGKITNYFHKTLAHVPEIIERDGSIGAWASE

GNESGNKLFRRFRKMNARQSKCYEMEDVL.

Using the chart on the previous page, the top and left rows are just gap penalties

being sequentially added. The final alignment score is located in the bottom right corner

of the matrix. A perfect score for two identical sequences cannot be defined, because a

longer perfect alignment will have a much higher score than a shorter perfect alignment.

The scoring method used in the program is included below:

public static int ScoringMethod(int[] geneSeq1, int[] geneSeq2)

 {

 int i;

 int j;

 int a,b,c;

 int max;

 final int penalty=-8;

 int[][]scores=new int[geneSeq1.length+1][geneSeq2.length+1];

 scores[0][0]=0;

 for(i=1; i<=geneSeq1.length; ++i)

 {

 scores[i][0]=penalty+scores[i-1][0];

 }

 for(j=1; j<=geneSeq2.length; ++j)

 {

 scores[0][j]=penalty+scores[0][j-1];

 }

 for(i=1; i<= geneSeq1.length; ++i)

 {

 for(j=1; j<=geneSeq2.length; ++j)

 {

 a=scores[i-1][j]+penalty;

 b=scores[i][j-1]+penalty;

 c=scores[i-1][j-1]+BLOSUM50[geneSeq1[i-1]][geneSeq2[j-1]];

 max=a;

 if(b>max)

 {

 max=b;

 9

 }

 if(c>max)

 {

 max=c;

 }

 scores[i][j]=max;

 }

 }

The algorithm can be found in nested for loops, allowing it to run through the 784 (228)

necessary alignments. This number comes from the twenty-eight species being compared

with each other. The method then returns “max”, which is the highest score out of the

three potential scores possible in the algorithm.

 10

Results

 11

 12

 13

Results cont.

 The previous three graphs are the final scores of each individual alignment. Keep

in mind that these numbers are the final scores, and not the scoring matrices themselves.

A scoring matrix would be several hundred characters long, and would not fit in our

results. The first eleven rows and columns of species 1 compared with species 2 are show

below:

The last eight rows and columns are show below:

The first partial matrix shows the cumulative penalty running on the first row and

column, with the starting zero in the upper left corner. The second partial matrix contains

the final score, 755, which is then stored into the final score matrix, located on the

previous pages under Sp.1 vs. Sp.2.

 Only three final scores charts exist, since endangered vs. non-endangered and

non-endangered vs. endangered are identical. One can see the “perfect” scores running

 14

diagonally through each of the charts. Interpreting the vast amount of numbers is

difficult, so averages of each of the matrices were taken in order to determine which

matrix was better aligned. The perfect scores were not taken into account, as comparing

animals to themselves plays no significance in our final averages:

Average Non-Endangered vs. Non-Endangered Score = -4202

Average Endangered vs. Endangered Score = -324

Average Non-Endangered vs. Endangered Score = -1877

Taking these rough averages as fact, one can determine that a genetic similarity exists.

The greater the score in global alignment, the higher the similarity in our sequences.

When aligning massive sequences, negative numbers are common in final scores. This

does not mean that the alignment was “bad”, or “un-similar”. This is the very reason we

used a control group. From our results, endangered animals in New Mexico have a higher

genetic similarity than non-endangered species.

 15

Conclusion

From our results as of now we can imply that our experiment was successful in

proving our hypothesis. Our rough averages show we do have a better alignment in our

endangered animals; however, this method of calculation is not statistically accurate. Our

group intends to perform several statistical tests before the final presentations in Los

Alamos. Also, our project results are limited by our choice of animals. A wider range of

endangered animals (not necessarily a higher number, too many sequences makes global

alignment obsolete) and a more precisely selected control group would reduce our chance

of error. Regardless, the results received from the experiment were parallel to our

hypothesis, and prove that a genetic similarity does in fact exist in New Mexican

endangered animals.

 16

Program

 This is the complete program, excluding the twenty-eight text files used to store

the genetic sequences.

package multialign;

import java.io.*;

import java.lang.Integer.*;

public class Main

{

 private static int SIZE=28;

 // Our coded scheme for the amino acids

 private static final int

 A=0,

 R=1,

 N=2,

 D=3,

 C=4,

 Q=5,

 E=6,

 G=7,

 H=8,

 I=9,

 L=10,

 K=11,

 M=12,

 F=13,

 P=14,

 S=15,

 T=16,

 W=17,

 Y=18,

 V=19;

 private static final int[][] BLOSUM50=

 {

 /*A*/ {5,-2,-1,-2,-1,-1,-1,0,-2,-1,

 17

 -2,-1,-1,-3,-1,1,0,-3,-2,0},

 /*R*/ {-2,7,-1,-2,-4,1,0,-3,0,-4,

 -3,3,-2,-3,-3,-1,-1,-3,-1,-3},

 /*N*/ {-1,-1,7,2,-2,0,0,0,1,-3,

 -4,0,-2,-4,-2,1,0,-4,-2,-3},

 /*D*/ {-2,-2,2,8,-4,0,2,-1,-1,-4,

 -4,-1,-4,-5,-1,0,-1,-5,-3,-4},

 /*C*/ {-1,-4,-2,-4,13,-3,-3,-3,-3,-2,

 -2,-3,-2,-2,-4,-1,-1,-5,-3,-1},

 /*Q*/ {-1,1,0,0,-3,7,2,-2,1,-3,

 -2,2,0,-4,-1,0,-1,-1,-1,-3},

 /*E*/ {-1,0,0,2,-3,2,6,-3,0,-4,

 -3,1,-2,-3,-1,-1,-1,-3,-2,-3},

 /*G*/ {0,-3,0,-1,-3,-2,-3,8,-2,-4,

 -4,-2,-3,-4,-2,0,-2,-3,-3,-4},

 /*H*/ {-2,0,1,-1,-3,1,0,-2,10,-4,

 -3,0,-1,-1,-2,-1,-2,-3,2,-4},

 /*I*/ {-1,-4,-3,-4,-2,-3,-4,-4,-4,5,

 2,-3,2,0,-3,-3,-1,-3,-1,4},

 /*L*/ {-2,-3,-4,-4,-2,-2,-3,-4,-3,2,

 5,-3,3,1,-4,-3,-1,-2,-1,1},

 /*K*/ {-1,3,0,-1,-3,2,1,-2,0,-3,

 -3,6,-2,-4,-1,0,-1,-3,-2,-3},

 /*M*/ {-1,-2,-2,-4,-2,0,-2,-3,-1,2,

 3,-2,7,0,-3,-2,-1,-1,0,1},

 /*F*/ {-3,-3,-4,-5,-2,-4,-3,-4,-1,0,

 1,-4,0,8,-4,-3,-2,1,4,-1},

 /*P*/ {-1,-3,-2,-1,-4,-1,-1,-2,-2,-3,

 -4,-1,-3,-4,10,-1,-1,-4,-3,-3},

 /*S*/ {1,-1,1,0,-1,0,-1,0,-1,-3,

 -3,0,-2,-3,-1,5,2,-4,-2,-2},

 /*T*/ {0,-1,0,-1,-1,-1,-1,-2,-2,-1,

 -1,-1,-1,-2,-1,2,5,-3,-2,0},

 /*W*/ {-3,-3,-4,-5,-5,-1,-3,-3,-3,-3,

 -2,-3,-1,1,-4,-4,-3,15,2,-3},

 /*Y*/ {-2,-1,-2,-3,-3,-1,-2,-3,2,-1,

 -1,-2,0,4,-3,-2,-2,2,8,-1},

 /*V*/ {0,-3,-3,-4,-1,-3,-3,-4,-4,4,

 1,-3,1,-1,-3,-2,0,-3,-1,5}

 };

 /*this method imports the raw data from a text

 document/

 public static String ReadSpecies(String filename)

 {

 18

 String line = "";

 try

 {

 FileReader fileReader = new FileReader(filename);

 BufferedReader reader = new BufferedReader(fileReader);

 line = reader.readLine();

 reader.close();

 }

 catch(Exception ex)

 {

 ex.printStackTrace ();

 }

 return line;

 }

 public static int[] SwitchProtein(String geneSeqStr)

 {

 int i;

 int j;

 int [] geneSeq = new int[geneSeqStr.length ()];

 for(i=0; i < geneSeqStr.length(); ++i)

 {

 switch (geneSeqStr.charAt (i))

 {

 case 'A': geneSeq[i]=A;

 break;

 case 'R': geneSeq[i]=R;

 break;

 case 'N': geneSeq[i]=N;

 break;

 case 'D': geneSeq[i]=D;

 break;

 case 'C': geneSeq[i]=C;

 break;

 case 'Q': geneSeq[i]=Q;

 break;

 case 'E': geneSeq[i]=E;

 break;

 case 'G': geneSeq[i]=G;

 break;

 case 'H': geneSeq[i]=H;

 19

 break;

 case 'I': geneSeq[i]=I;

 break;

 case 'L': geneSeq[i]=L;

 break;

 case 'K': geneSeq[i]=K;

 break;

 case 'M': geneSeq[i]=M;

 break;

 case 'F': geneSeq[i]=F;

 break;

 case 'P': geneSeq[i]=P;

 break;

 case 'S': geneSeq[i]=S;

 break;

 case 'T': geneSeq[i]=T;

 break;

 case 'W': geneSeq[i]=W;

 break;

 case 'Y': geneSeq[i]=Y;

 break;

 case 'V': geneSeq[i]=V;

 break;

 }

 }

 return geneSeq;

 }

 /*

 *this is the scoring portion of the program

 *where the scores are calculated by comparing

 *two sequences, geneSeq1 and geneSeq2, and

 *inputting the results into a value, max

 **/

 public static int ScoringMethod(int[] geneSeq1, int[] geneSeq2)

 {

 int i;

 int j;

 int a,b,c;

 int max;

 final int penalty=-8;

 int[][]scores=new int[geneSeq1.length+1][geneSeq2.length+1];

 scores[0][0]=0;

 20

 for(i=1; i<=geneSeq1.length; ++i)

 {

 scores[i][0]=penalty+scores[i-1][0];

 }

 for(j=1; j<=geneSeq2.length; ++j)

 {

 scores[0][j]=penalty+scores[0][j-1];

 }

 for(i=1; i<= geneSeq1.length; ++i)

 {

 for(j=1; j<=geneSeq2.length; ++j)

 {

 a=scores[i-1][j]+penalty;

 b=scores[i][j-1]+penalty;

 c=scores[i-1][j-1]+BLOSUM50[geneSeq1[i-1]][geneSeq2[j-1]];

 max=a;

 if(b>max)

 {

 max=b;

 }

 if(c>max)

 {

 max=c;

 }

 scores[i][j]=max;

 }

 }

 System.out.println();

 System.out.println();

 for(i=0; i<=geneSeq1.length; ++i)

 {

 for(j=0; j<= geneSeq2.length; ++j)

 {

 System.out.printf("%4d ", scores[i][j]);

 }

 System.out.println();

 }

 return scores[geneSeq1.length][geneSeq2.length];

 }

 21

 public static void main(String[] args)

 throws IOException, FileNotFoundException

 {

 int i;

 int j;

 String[]SpeciesStr = new String[SIZE+1];

 int[][] finalScores = new int[SIZE+1][SIZE+1];

 int[][]Sequence =new int[SIZE+1][];

 PrintWriter out =

 new PrintWriter(new FileOutputStream("Results.txt"), true);

 /*

 *this for loop is the method that reads the raw data

 *from the text files

 */

 for(i=1; i<=SIZE;++i)

 {

 String speciesFile = "species" +

 new Integer(i).toString() + ".txt";

 SpeciesStr[i]=ReadSpecies(speciesFile);

 //System.out.println(SpeciesStr[i]);

 }

 /*this for loop is for the switch statement method

 *and creates the array that contains the integer

 *values

 */

 for(i=1; i<=SIZE; ++i)

 {

 Sequence[i]=SwitchProtein(SpeciesStr[i]);

 for(j=0; j<Sequence[i].length; ++j)

 {

 //System.out.printf("%3d",Sequence[i][j]);

 }

 //System.out.println();

 }

 /*this for loop is for the actual experiment

 and creates an array to hold the results*/

 22

 for(i=1; i<SIZE+1; ++i)

 {

 for(j=1; j<SIZE+1; ++j)

 {

 finalScores[i][j]=ScoringMethod(Sequence[i], Sequence[j]);

 out.printf("%6d",finalScores[i][j]);

 if(j==14)

 {

 out.printf(" ");

 }

 }

 out.println();

 if(i==14)

 {

 out.println();

 out.println();

 }

 }

 out.close();

 int TotalNonNon=0;

 int TotalNonEnd=0;

 int TotalEndEnd=0;

 for(i=15; i<=SIZE; ++i)

 {

 for(j=15; j<=SIZE; ++j)

 {

 TotalNonEnd += finalScores[i][j];

 }

 }

 for(i=1; i<=14; ++i)

 {

 for(j=1; j<=14; ++j)

 {

 TotalEndEnd += finalScores[i][j];

 }

 }

 for(i=15; i<=28; ++i)

 {

 for(j=15; j<=28; ++j)

 {

 TotalNonNon += finalScores[i][j] - finalScores[i][i];

 }

 23

 }

 System.out.println("Average Non vs. Non Score = " +

 TotalNonNon/91);

 System.out.println("Average End vs. End Score = " +

 TotalEndEnd/196);

 System.out.println("Average Non vs. End Score = " +

 TotalNonEnd/91);

 }

}

 24

Most Significant Original Achievement

 Our most significant original achievement is finding that the fourteen endangered

species native to New Mexico have a higher genetic similarity than our control set of

species. Statistical tests are still necessary to state our findings as fact, but the average

scores were convincing enough to say our hypothesis was correct, and our experiment

was a success.

 25

Acknowledgements

 We would like to thank Mr. Downs for his constant devotion to our project.

Without his guidance, there would not have been a program or a report. His contributions

to our idea and the books he provided were the reason our project succeeded. Thank you

Mr. Downs, this project would have never happened without you.

 26

Appendix

 Endangered Species List:

1. Lesser Long Nosed Bat

2. Whooping Crane

3. Bald Eagle

4. Willow Flycatcher

5. Jaguar

6. Northern Spotted Owl

7. Animas Ridge-Nosed Rattlesnake

8. Arkansas River Shiner

9. Beautiful Shiner

10. Spikedace

11. Alamosa Springsnail

12. Razerback Sucker

13. Least Tern

14. Gila Topminnow

Non-Endangered Species List:

15. Pronghorn Antelope

16. Javelina

17. Black-Throated Sparrow

18. Pike

19. White-Tailed Deer

20. Ringtail

21. Brown Towhee

22. Elk

23. Wild Turkey

24. Black Bear

25. Hairy Woodpecker

26. Pine Marten

27. Blue Grouse

28. Bighorn Sheep

 27

Bibliography

--"Bioinformatics." Wikipedia, The Free Encyclopedia. 2 Apr 2007, 20:49 UTC.

Wikimedia Foundation, Inc. 3 Apr 2007

--Durbin, R.; Eddy, S.; Krogh, A.;Mitchison, G.; 1998. Biological Sequence Analysis.

Cambridge, United Kingdom. Published by the Press Syndicate of the University of

Cambridge.

--Jean-Michel Claverie, PhD; Cedric Notredame, PhD. 2003. Bioinformatics For

Dummies. New York: Wiley Publishing, Inc.

