
Analytical Fire Modeling: Expanding

upon the Elliptical Fire Theory
New Mexico Supercomputing Challenge

Final Report

April 1, 2007

Team 84

Rio Rancho High School

Team 84

Catherine Fessler

Christopher Morrison

Teacher Sponsors

Janet Penevolpe

Debra Loftin

Advisors

Mark Finney

Nadyne Shimada

Table of Contents Page

 2

Executive Summary 3

Introduction 4

Literary Review 5

Previous Phases 6
 2004-2005 Fire in the Bosque……………………………………..6

 2005-2006 Analytical Fire Modeling: Fire in its Environment…. ..7

Problem Definition 8

Fire Theory 9
 Elliptical Fire Theory………………………………………………9

 Accounting for Variables…………………………………………..10

 Assumptions……………………………………………………….11

 One Dimensional Fire Flow………………………………………..11

 Two Dimensional Fire Flow……………………………………….12

 Further Breakdown of Mathematics…………………………….....13

Program 14
 Basic Environment…………………………………………………14

 Fire Flow Process……………………………………………...…..15

Satellite Terrain Mapping 18

 Field Testing……………………………………………………….19
Empirical Validation 20

Conclusion 22

Limitations 23
 Real World Data…………………………………………………..23

 Heat Model……………………………………………………..…24

 Three Dimensional Fire Flow……………………………………..24

 Satellite Mapping Limitations…………………………………….25

Discussion 26
 Empirical or Analytical?...26

 X Y Relationship…………………………………………………..26

 The Future…………………………………………………………27

Bibliography 28

Acknowledgements 30

Appendices
 A: Glossary……………………………………………………..…31

 B: Table of Validation Comparison…………………………….....33

 C: Satellite Field Testing………………………………………..…35

 D: Program Code…………………………………………………..37

Supercomputing Challenge Final Report

 3

Executive Summary

The purpose of this project was to expand upon the Elliptical Fire Theory to further

develop a computer application to better model the flow of fire across a virtual representation of

a forest. The Elliptical Fire Theory essentially states that two-dimensional fire flow, under

perfect conditions, forms a perfect circle, imperfect fire flow can be found by lengthening and

shortening the radii on the circle, in accordance to the factors bearing upon fire flow, to form a

multidimensional ellipse. This project aims to expand upon and validate to a further degree the

Elliptical Fire Theory. Small scale empirical fire experimentation was conducted and the results

were compared against the computer application. The results reflected definite similarity

between the two and support the creditability of the modeling program.

The Elliptical Fire Theory is a template that can be added to. Once a variable‟s effect

upon the fire flow process is known then it can easily be implemented upon the simulation.

Small scale empirical testing was performed to determine the effect of basic kinds fuels upon fire

spread rate. This data has been incorporated into the program and used to qualify the Elliptical

Fire Theory. Color scanning of satellite photography was used to design real world forest inputs

into the program. As more fuel type data is gained the greater degree the fore modeling process

can be used effectively.

The java modeling program, also known as Phoenix, encapsulates the Elliptical Fire Theory

and was created with the idea that it could someday be used as a tool to combat forest fires. The

empirical evidence in support of the Elliptical Fire Theory gives Phoenix creditability. Now that the

satellite photograph forest scanning has been developed, larger scale validation of the program can

be made. Still, due to the sheer number of confounding variables, more time and research is needed

to make Phoenix an accurate fire modeling program.

 4

Introduction

The fire phenomenon has troubled humankind since its beginnings. In ancient times

forest fires raged wildly across the environment. However, humans inherently attempted to

protect their lifestyles and began to stop the blazes. In the United States in the early to mid-

twentieth century humans were very successful in effectively dousing every forest fire. This led

to the build up of perilous underbrush that eventually served as fuel for such devastating fires as

the Yellowstone Fire which burned 793,000 acres or about 36 percent of the entire park

(www.nps.gov). Soon people began to recognize that forest fires could not be prevented

indefinitely, and that an accumulation of underbrush would fuel vast, sweeping fires that would

leave no form of life in its wake. Eventually a method, known as controlled burns, was

implemented. This plan proposed burning vast swaths of underbrush before it became abundant

enough to propagate uncontrollable fires. However, even with such practices in place, many

times fires would rage out of control. The

Cerro Grande fire of 2000 burned 47,650

acres of pristine New Mexican forest and

destroyed portions of Los Alamos, NM

(Masse, 2003). This fire began as a

prescribed burn that unexpectedly got out

of hand due to weather conditions. Every

year in the United States about 4.3 million

acres burn, and they cost over $1 billion to

contain (en.wikipedia.com) despite all efforts to control them.

 The far reaching purpose of this project is to develop a fire modeling program that

could be used to help prescribe controlled burns, help firefighters manage wildfires, by

predicting fire direction and spread as well as predict the need for evacuation. These potential

real world applications would save money and lives as well as preserve natural habitats for

recreation and wildlife.

http://www.nps.gov/

 5

Literature Review

There are several modeling programs related to fire modeling dating as far back as 1971

(Kourtz & O‟Regan). There has been a range of types of modeling including grid models that

attempt to measure fire flow as flow across a square, triangular, or other geometric-shaped grids

tracking fire progression (French 1992; Kourtz 1977; O‟Regan 1976; Green 1983; Feunekes

1991). The percolation model, implemented by an agent based modeling system, follows more of

a logic code rather than actual fire laws (Beer & Enting 1990; Borlawsky 2000). Fractal

algorithms have been used to reflect uncertainty in fire flow (Clark 1994). All of the above

modeling procedures are considered inaccurate in viable prediction of fire flow through a forest

environment and have been abandoned.

 There are some fire modeling programs (FDS, CFAST) that strive to model the precise

happenings within a fire. These simulations have been validated; however, they are not good

estimates for forest fires because of the innumerable degrees of precision that would bog a

computer down. They are better for modeling very small-scale fires and are often used in urban

arson litigation.

However, Huygen‟s Principle, a system of equations that originally described light

wavelength, has been successfully applied to the forest fire modeling process. The greatest

example of the success of Huygen‟s viability is FARSITE, the United States Forestry Service‟s

greatest asset in wild fire control (Finney 1998), but there have been a few others (Coleman &

Sullivan 1996; Richards & Bruce 1995). Huygen‟s Principle, along with the treatment of fire

procreation as vectors, gave birth to the first pragmatic forest fire modeling approximation.

FARSITE calculates one-dimensional fire flow using Rutherford‟s model and contains a fire line

intensity and flame length models.

What This Project Learned and Borrowed

This project has been most influenced by FARSITE. Specifically, the treatment of fire as

a vector came from FARSITE. However, Huygens‟s equation and the Elliptical Fire Theory

differ significantly in their approaches to derive vector lengths and directions. On a related note,

much of the inner workings of FARSITE are protected. Therefore, only general information was

available for review.

 6

Previous Years’ Progress

2004-2005 Fire in the Bosque

Christopher Morrison was the only team

member after his original teammate dropped out of

the Challenge. A basic two-dimensional pseudo fire

model was developed that used heat flow as an

approximation for fire flow. Essentially, it classified

fire as a patch whose temperature was over the

flashpoint of the patch. It used a square grid

geometric system to track fire flow. The program was

written in C++ using the SDL graphics library.

The program was limited in the fact it was a

pseudo logical fire flow model. Its use of heat flow to

approximate fire flow was not valid. The heat flow,

the basis of entire model, was also flawed. Its

methods of thermodynamics were based upon logic

and perpetually ignored certain fundamental characteristics such as radiation and could only

vaguely approximate heat generated by a fire. The square geometric method of tracking fire flow

was also a basis for error due to fire‟s inability to be modeled geometrically (French 1992;

Kourtz 1977; O‟Regan 1976; Green 1983; Feunekes 1991).

The significant finding of this project was that a better system of fire flow needed to be

developed---something that had a scientific basis rather than a pseudo logic system. This led to

the development of the Elliptical Fire Theory.

For more information, please view the final report at:

http://www.challenge.nm.org/archive/04-05/finalreports/50.pdf

http://www.challenge.nm.org/archive/04-05/finalreports/50.pdf

 7

2005-2006 Analytical Fire Modeling: Fire in Its Environment

Nicholas Kutac and Christopher Morrison worked diligently to develop the first viable

forest fire modeling program. The fire flow process

was differentiated from the heat flow and

encapsulated into the Elliptical Fire Theory. The

development of the Elliptical Fire Theory and the

fire flow process highlighted the accomplishments

of this phase. The treatment of fire as a vector

eliminates the geometric grid problem from the year

before. The program was written in C++ using the

OpenGL library for graphics.

The there were a range of limitations. The

most prominent is the large array of unknowns. A

basic framework was developed that had a solid

analytical basis for theoretical fire flow. However, no

empirical data was derived to polish the program into

an accurate model. On a more minor note, the C++

program was not adequate in its ability to interact

with the user.

Essentially, last year a framework was

developed with the Elliptical Fire Theory. The Elliptical Fire Theory is dynamic in its ability to

model a fire and take into account all of the factors bearing upon vector fire flow. This current

year‟s work concentrates on expanding upon the concepts developed last year.

For more information, please view the team website and final report:

www.analyticalfiremodeling77.com

http://www.challenge.nm.org/archive/05-06/finalreports/77.pdf

http://www.analyticalfiremodeling77.com/
http://www.challenge.nm.org/archive/05-06/finalreports/77.pdf

 8

Problem/Definition

Statement of Goals

The fundamental theme of this project is to create a computer application that can

accurately model fire flow through virtual forest. Last year a fire framework, centering on the

Elliptical Fire Theory, was theorized and developed to track fire progression through a virtual

forest. This year‟s ambition is to expound upon that theory. This project has four main goals that

stem from expanding upon the Elliptical Fire Theory and other concepts developed in previous

years.

 Expansion of the Elliptical Fire Theory concepts

The Elliptical Fire Theory, developed last year, is the basis of this year‟s fire flow process.

The goal was to expand upon the theoretical concepts of the Elliptical Fire Theory

specifically in the interest of vector propagation and differential calculus.

 Empirical testing and validation of the theoretical principles through small scale

empirical processes

This goal basically stands to validate the project‟s goals. It involves creating small scale fire

experiments for comparison against the program. First, tests would be conducted to gain real

world data. Then an experimental setup would be created in the real world and in the

program with previously derived data. Then the experimental fire and the program fire could

be compared and a judgment of the program and the Elliptical Fire Theory could be given.

 Use of satellite photography to model accurate terrain for a forest fire

The rationale of this goal was simple. To create a practical, realistic fire modeling program a

realistic forest must also be created. So, using satellite photographs as a basis, RGB colors

(red green blue) can be simplified into different fuel types to create a virtual representation of

a real forest (virtual forest).

 Development of an advanced graphical user interface

A further goal of this project was to develop the program to be highly interactive. An

advanced graphical user interface, named Phoenix, was created, using the Java swing library,

to allow the user optimum control over the virtual forest environment.

 9

Fire Theory

The Elliptical Fire Theory

The Elliptical Fire Theory is the underlying

principle within this project. It is essentially the

hypothesis. The Elliptical Fire Theory consists of two

parts. The first is that fire flow, under perfect

conditions in a two-dimensional plane, will form a

perfect circle. On a three-dimensional plane, under

perfect conditions, fire will form a perfect sphere. This

spherical pattern of fire growth is seen in space

where gravity does not affect fire flow. However, only

two-dimensional fire flow is accounted for within this

program because gravity would destroy the simplicity of

this theory. Last year it was established that this basic

principle holds true after conducting several small

scale fire tests.

The second part of the Elliptical Fire Theory is

often known as the corollary to the Elliptical Fire

Theory. It states that two-dimensional imperfect fire

flow can be accounted for by adjusting the radii (fire

radii or fire vectors) on the perfect circle to form

some sort of irregular ellipse (irregular circular).

Independent/Dependent Relationship

The length of the radii is essentially the dependent variable. The independent variables

are the factors affecting the length of the radii (wind, fuel type, temperature, elevation). The

Elliptical Fire Theory is the fundamental building block of this project. It breaks down fire flow

into quantifiable variables that can be accounted for in a scientific approach. The Elliptical Fire

Theory is dynamic in its ability to account for confounding variables, variables that typically

 10

throw off the results because they are uncontrolled. It can account for independent variables once

their affect upon one-dimensional fire flow is known.

Accounting for Variables

There is no possible way to account for all factors bearing upon a fire. Because of the

potentially unlimited number of variables that affect fire. Rather, you must attempt to model the

most significant variables. Some of the most significant variables identified include the

following:

 Fuel Type: Fuel Type affects fire flow because the chemical composition‟s inclination to fire

and the surface area (or typical formation the fuel is found in) can have a profound impact

upon the speed of the spreading fire.

 Temperature: Hotter temperatures are more inductive to fires. There is a property of every

fuel called a flash point. It is the temperature the fuel must reach before it can become

flammable. A secondary flash point is the temperature at which the fuel will spontaneously

combust. Every mass has these two flash points. The hotter the temperature, the faster the fire

will spread because the flash points of the fuels will be reached sooner.

 Wind: Wind propels fire flow in the direction of the wind. It is typically associated with

wildfires and can often propel flames faster than a human can run.

 Humidity: Water will evaporate off burning fuel, straining off heat. The more moisture there

is in the air or the fuel, the slower the fire spreads.

 Elevation: Fire flows faster uphill because on a three-dimensional plane heat travels upward

pushing fire on its currents.

 Air Pressure: The higher the air pressure, the greater the oxygen content. Fire at sea level

typically burns faster than fire at higher altitudes.

 Gravity: Gravity tends to push hotter, excited particles into the atmosphere and keep cooler

particles at the ground level. This creates an upward air current as well as making the fire

burn in an upward direction. This is why fire burns in a flame shape on earth under the

influence of gravity and in a spherical shape in space.

 11

 Oxygen Content: Oxygen is a limiting factor of the combustion chemical reaction that creates

fire. Therefore, fire will burn at much higher speeds in places where there is more oxygen.

The Elliptical Fire Theory is set up in such a way that these variables can be treated as

constants until their effects upon fire can be known. A working model must be able to describe

the effects of these variables as well as what affects the variables themselves. This is especially

complicated in the case of the heat model.

Assumptions

 There were several underlying assumptions that serve as the foundation for the basis of

the fire theory. They form the core basis upon which the program is built.

 The vital Elliptical Fire Theory is the first and most important. It assumes irregular elliptical

growth as the basis for fire propagation.

 The Vector Assumption assumes fire flow can be approximated by a vector. The fire vectors

are propagated out from ignition points located upon the perimeter of the fire.

 The Wind Assumption assumes wind‟s effect upon fire can be accounted for by vector

multiplication of the fire growth vector by a vector proportional to the wind speed and

direction.

 The Elevation Assumption assumes that elevation does not affect fire flow, yet gravity is

influenced. Gravity is a vector whose magnitude is dependent upon the heat generated by fire

which affects fire in the third dimension. Because of gravity, heated, lighter particles rise,

creating an upward wind. On level ground the dot product of fire growth and elevation has no

affect upon two-dimensional fire growth. However, when the elevation slopes uphill, fire will

speed up to account for the effect of elevation change. This assumption has not been

implemented as of yet.

One-Dimensional Fire Flow

 One-dimensional fire flow is the basis for two-dimensional fire flow. In essence, it

expresses a one-dimensional length based upon the independent variables. Each one of

the fire radii on the Elliptical Fire Theory circle is derived from the integral below.

 12

The picture to the right depicts the one-dimensional fire radius

extending out from a central ignition point. The one-dimensional

length is then imposed upon a two-dimensional plane.

Two-Dimensional Fire Flow

 Two-dimensional fire flow can be derived by integrating the one-dimensional fire flow

for 360 degrees. This gives a polar equation to describe the fire‟s growth out from the central

ignition point. This essentially gives a fire perimeter that is, as the corollary describes, an

irregular ellipse.

The

integral of the one-dimensional integral from 0 to 2π with respect to feta equals the irregular ellipse.

The picture to the right illustrates the multiple one-

dimensional radii extended out from the central ignition point

on a two-dimensional plane (fire arc). To save computer

processing power on a computer, the integral above is

approximated with the sum limit below. The fire arc

pictured above is basically an 18-sided polygon

approximation of the irregular ellipse. As the number of

vertices (fire radii) increases, the greater the processing power required to compute the fire arc.

This is

an

approximation of the two-dimensional irregular ellipse dθ can never reach 0.

Further Breakdown of Mathematics

 13

The one-dimensional fire spread is broken down into two vectors. The reason for the

breakdown is due to the different directions of the forces‟ action upon fire flow.

 Spread Rate Vector

This vector operates in a direction outward from the central ignition point. It is the composed of all

environmental independent variables except wind (elevation, fuel type, temperature). This vector

represents the fire propelling itself outward. The function to describe the spread rate vector is not

continuous because a forest environment cannot be described an equation. Rather, it is described

by the environmental traits (pine tree here, bush over there). The spread rate vector is measured in

centimeters per second and was determined empirically for each fuel or arbitrarily assigned.

 Wind Vector

This vector operates in the direction of the wind and is

proportional to the wind speed. The proportionality

constant is known as the wind coefficient. It is separated

from the spread rate vector because it operates in the

direction of the wind, whereas the spread rate vector

operates in a direction outward from the central ignition point. The picture the right depicts, the

vector dot multiplication of the wind speed to the spread rate.

 14

Program- Phoenix

Java Programming Specifics

 Phoenix is a Java application built on the NetBeans 5.5 IDE with the Java JDK 5.0.

Phoenix encompasses 16 .Java files. The graphical user interface is implemented by the Java

swing library. There are approximately 4,000 lines of code throughout the .Java files all of which

are original. The fire flow process is encapsulated within the .Java file FireFlow.java. The

processing requirements for this program are directly proportional to the area of the burning

fuels. In other words, the bigger the fire, the greater the processing requirements to compute.

The Basic Environment

The environment in which the fire persists is a system of patches. Within those patches,

there are more mini-patches. The patches encapsulate their own specific set of variables which

include the fuel type,

temperature, wind, and other

environmental variables. The

collection of patches, as a whole,

is known as the virtual forest.

Each patch type is unique and

causes a fire to either accelerate

or slow down as it passes over

the patch. The patches then have

individual sections within them

called mini-patches. These mini-

patches are then used to further track the exact movement of the fire as it crosses the virtual

forest.

 15

Fire Flow Process

 The different patches in the virtual forest contain

different values of what is called spread rate, which is the rate

at which fire can spread through the patch. The spread rate is

be manipulated by factors such as heat and humidity. This is the

same spread rate that is used in the one-dimensional integral. For

each time step, the fire spreads across the patches until the

accumulated value of the time steps reaches a point called the

maximum spread rate (top picture). This process is repeated until a

fire arc is formed, making the perimeter of the fire for the

certain time step. The fire arc shown here (second from

top) is the same process as shown before, just taken out

many more iterations. The approximate ellipse summation

basically represents the fire arc with a 2π/dθ sided polygon. The

endpoints of the fire arc are then stored, and during the next step,

are transformed into fire arcs themselves. This process is computed

once per time step, producing fire perimeter results such as in the

bottom picture. This picture depicts the result of several time steps

in a non-uniform virtual forest and shows the created fire perimeter.

Fire Perimeter Reduction

As the fire grows larger, only the perimeter is

needed to map the fire flow. If the computer took every

fire endpoint and arced it, its efficiency would be x
N
,

whereas „x‟ is the number of endpoints the fire arc contains

and „N‟ is the number of time steps. Therefore, a system

was developed to record previously burned spots and reject new fire arcs in those burned spots.

This would increase the efficiency of the program by preventing “burned” patches from being

burned a second time.

 16

Program Accountancy

 The Elliptical Fire Theory allows for all unaccounted variables to be held constant. This

allows for unknown confounding variables to be held constant. This project accounts for two

specific variables- wind and fuel type. These were the only variables the team felt were able to

be reasonably approximated. The temperature model from last year still exists; however, it has

been deemed unrealistic. A central ethic in the programming has been to allow for the

incorporation of various variables and their models, but not yet implement them until a reliable

model can be developed.

 Fuel Type Model: The fuel type model is simply the different rates fire spreads over a

material. This model essentially assigns a spread type to each kind of fuel. Real world values

can be determined empirically. For example, the speed at which fire spreads over similar

brush can be determined and assigned to all brush fuel types.

 Wind Model: The wind model essentially states that wind and fire flow can be expressed as a

vector and the vector dot product of the fire path vector and the wind vector expresses wind‟s

direct impact upon the fire flow. This is discussed in more detail on pg. 13.

Miscellaneous Interactive Features

 One specific goal was to make Phoenix as interactive as possible. This would give the

user greater control over the fire and allow for greater scope of modeling. Some of the notable

features include the following:

 A multilayer Java swing library interface and display system maximizes the visual

capabilities of the program.

 Four separate views of the fire, physical, environmental, burned, and fire, allow for a better

view of exactly what is going on inside the fire.

 The Environment Editor allows for real time input of variables such as wind speed and

direction.

 Satellite Photograph Scanning can be used to make user defined realistic virtual forests.

 The Zoom in and out feature allows for a micro and macro view of fire progression.

 17

 The patch trait information can display the state of any individual patch.

 A statistics system keeps track of several key points of information.

 The user can start a fire anywhere within the virtual forest.

Expect many more features to be added in the near future.

 18

Satellite Terrain Mapping

Creating a Realistic Forest

 The basic idea behind using a satellite

photograph to create a realistic forest was that

different fuel types exhibit different colors. By

breaking down a satellite photograph into its basic

Red-Green-Blue components, you can group similar

RGB values as the same fuel type. The top picture

shows a picture of the Bosque South of the Montaño

Bridge in full 256 color (256³ colors available). The

second picture is the same picture only in 3 colors (3³

or 27 available colors total). The program essentially

rounds every pixel in the original photograph into the

closest of one of 27 available colors (spectrum

classification).

int Red= Round(red);

int Green= Round(green);

int Blue= Round(blue);

public int Round(int color)

{

return (int)Math.floor((color/(255/colorNum))*255/colorNum);

}

//ColorNum is the color (ex: 256 color)

This basic color model serves as a fuel

type approximation map. The bottom

picture shows the process by which the

user initializes the data. A table is

generated containing the intrinsic colors

and the user specifies the type of fuel

associated with the color. Fuel types can

 19

be generated, added, and changed on another table.

Field Testing

 Once a particular area is picked, several traits must be known about the area before the

program will model it. Several of these traits (spread rates of native flora) have to be obtained or

approximated from the ecosystem. The purpose of field testing was to gain information about the

fuel types of an area. Once the

fuel types could be determined,

then either from empirically-

derived data or from existing

research, a realistic forest

environment could be mapped.

The data above is existing research (Keane, Robert 2000) that could be used to render a basic

approximation of a native environment once a field test is conducted to determine the fuel types

associated with the spectrum classification different colors. Appendix C details a minor field

study conducted upon an area of the Albuquerque Bosque.

Implications

 The addition of satellite terrain mapping to Phoenix increases the scope of Phoenix to real

world fire situations. Now, empirical validation on a grand scale could occur. If data could be

collected, both from a thorough field study and from a real fire, then this program could have a

real world assessment of its modeling capabilities.

 20

Empirical Validation

This project has reached a point to where it can viably go no further without being

validated. The Elliptical Fire Theory is essentially the hypothesis. Last year the first clause of

the Elliptical Fire Theory was Validated. Fire under perfect conditions will grow in a perfect

circle. However, the corollary has not been validated. For this project to progress, the underlying

assumptions that compose it must be validated. Therefore, a series of empirical experiments were

devised to test small scale real-world fire experiments against the Phoenix.

Experimentation

The empirical experimentation consists of two

parts. The purpose of the first portion was to attain

the real world inputs for Phoenix, the computer

application. The second part consisted of comparing

results from a real world experiment against the

program. Spread rates could be determined by

recording the fire with a camcorder and freeze

framing the video at half second intervals. Based

upon the angle of the lens, the length of the diameter, and the number of pixels burned an

approximate spread rate can be determined. The spread was measured at the point where the

charred black line intersected the colored fuel.

 Real World Inputs: The spread rate is the ultimate

ambition of the first phase of testing. Several fuels

were tested including: Brawny paper towel, tissue

paper, notebook paper, computer paper, and

construction paper. The experiments were limited

because larger fuels such as cardboard and wood

and conglomerations of fuels such as would be

 21

found on a forest floor were either too large for the safe small-scale experimentation or

required a much higher flash point then could be delivered without a laboratory condition.

 Comparison: Once real world inputs (spread rates) are derived, they can be placed within the

program. A real world and virtual experiment can be set up that uses the previously derived

data. The experiment can be any variation of studied fuels. The experiments can be

conducted and compared. Similar results will support the program and the Elliptical Fire

Theory.

Comparison

 A basic visual comparison can be used to generate a qualitative assessment of the

program‟s effectiveness (Appendix B). A more quantitative approach in progress is known as

interpolation comparison. Interpolation comparison essentially is a ratio inter-lapping area

between the real world scenario and the computer program. This requires the writing of a

computer program that can determine area burned from a picture. The interpolation program is

still in development stages. Also a linear regression can correlate the size of the real and

experimental fire. Pearson‟s r correlation statistic can be used to assess the degree of likeness

between the fires. Once the burned area program is finished, a finite quantitative evaluation of

Phoenix can be produced.

Implications

 The results of the validation are essentially the judge of the program and all the work that

has been done. If they are not alike, then there is a problem with Phoenix. If the results are

similar, then Phoenix must have some ability to model fire flow, at least on a small scale.

 22

Conclusion

The validation experimentation supports the Elliptical Fire Theory hypothesis as a valid

basis for a fire flow model. The empirical experimentation results confirmed Phoenix‟s ability to

model simplistic fire on a small scale. The successful incorporation of the Elliptical Fire Theory

into Phoenix is a strong and viable start on the road to creating a feasible forest fire modeling

program.

This project was named Analytical Fire for a reason. After all, forests are far too precious

to be burned at a whim. However, now that a basis has been laid, it needs real world values to be

placed in variable areas. Efforts to determine spread rates of different fuel types have only

begun. Heat‟s effect upon fire is known, but not precisely defined. Therefore, this project needs

an empirical basis as well as an analytical basis to become a more accurate fire flow forecaster.

Another inaccuracy of this project involves the sheer number of factors involved in

determining fire flow. Fire flow cannot be accurately modeled without knowing these factors and

their affect upon fire. However, the nature of the Elliptical Fire Theory allows for these variables

to be accounted for easily once their affects are known. As more and more variables are

accounted for, more accurate fire flow approximation can be included in the program.

 Satellite terrain mapping helped to diminish the number of unaccounted variables.

By using colors, a forest can effectively be mapped for its fuel type distribution. In addition, it

yielded the interesting prospect of large scale empirical experimentation. Once in depth field

testing is done, a more rigorous test of the Elliptical Fire theory could be arranged.

The conclusion is that this project is a success. The amount of progress accomplished in

such a short amount of time is remarkable. The flow of fire across the virtual environment is

rational. The results of this project are viable. The program only needs more work, time,

research, and an empirical basis to become an asset which could be used in real world

applications.

 23

Limitations

Real World Data

The largest limitation to this project was the large amount of field data needed to make it

into a viable forest fire modeling program. The theoretical basis of the program is sound; yet, for

it to be practical, many real world values must be empirically derived. There is some research

done by the United States Forestry Service in these areas; however, this research is only semi-

compatible with this program because of the difference in mathematical models between Phoenix

and other forest fire modeling programs. The data that is compatible, mainly the spread rate, has

been implemented somewhat in the satellite photographs. However, this program has only just

reached the level to where it can use this existing data.

 Also, the data is often as hindering as it is helpful. Much data available is dependent upon

even more specific data that could only be provided by empirically testing the native area where

the fire is being simulated.

 The spread rates for the differing fuels needs to be empirically derived. Many typical forest

fuels would need to be derived on a larger scale for composite fuels (leaves, sticks, rocks, grass

combined) that would be seen in a forest.

 A large amount of empirical data would need to be collected to determine the effect that

temperature has upon fire flow, to determine the wind coefficient, to determine the effect

humidity wind has upon fire flow, the effect of gravity upon fire flow, et cetera.

 An even larger amount of empirical data is needed to determine the effectiveness of the

program in modeling fire flow.

There are many fire experts who have worked their whole lives gathering similar, or perhaps,

identical data. It would be advantageous much avail to this project to use their data. Yet, much of

the data is copyrighted and withheld from easy access.

Laboratory Conditions & Equipment

A limiting factor in this project was the availability of a laboratory setting and equipment

needed to increase efficiency. For example, the spread rate for medium and heavy fuels could not

be determined because their flash points were too high to ignite under outside non-laboratory

conditions. Also, the empirical tests were not done under perfectly controlled circumstances

 24

because outside conditions fluctuate. A laboratory condition would have fixed this problem.

Equipment was missing as well. A thermometer that can read temperatures within a fire

(infrared) for the empirical testing and a hand held GPS for satellite field testing would have

been helpful.

Heat Model & Other Important Variables

The missing heat model is perhaps the greatest hindrance to Phoenix’s continued

progress. In real life the spread rate is highly dependent upon the heat model. Without a heat

model, the flash point aspect of a real forest fire cannot be successfully implemented. Because of

this flash point limitation, Phoenix has one definite flaw; it burns everything to ashes. The only

force to stop is if the spread rate of the material is so low that Fire Perimeter Reduction

eliminates the ignition points. Everything combustible in the forest would be burned down. This

is not realistic. The heat model from last year still exists. It was deemed unrealistic because it

had a flawed basis. Now that the Elliptical Fire Theory has been validated, more research should

be put into working on the heat model. Two more models that deserve attention are the humidity

precipitation models.

Three-Dimensional Fire Flow

The fact is the world is not flat. Two-dimensional fire flow is a good approximation. A

majority of professional forest fire modeling programs are two dimensional. Phoenix has the

capability to model land slope with the elevation assumption (although it requires a working heat

model). When the third dimension is added, a lot more factors become issues. For example, in a

realistic fire, fire flows both across the ground and in the trees. Many forest fires spread to a

greater degree in the trees and to a lesser degree on the ground. FARSITE and a few other models

like it are 2.5 dimensional models. They contain equations that calculate flame height and

assume trees have a canopy height. If the flames are long enough to reach the canopy, then a fire

begins at the top of the tree and is known as a crown fire. A crown fire model for Phoenix is in

development. Certain programs are fully three dimensional, but they would not be applicable to

forest fires. The amount of processing time is extraneous and would be of no avail in a real time

fast-paced forest fire.

 25

Satellite Mapping Limitations

 There are three errors that are associated with using a single satellite photograph to

determine fuel type.

 Color aliasing: Some fuel types have similar colorings. This would cause an RGB

approximation to have aliased similar colored fuel types, causing errors.

 Underbrush: Underbrush cannot be determined from an aerial view. This could only be

approximated for a large area by a field study.

 Elevation Corrections and Shadows: Elevation will cause errors in a straight up view. Shadows

are often increased in areas with a high density of trees. These shadows throw off the spectrum

classification.

Something that could solve these errors would be to analyze multiple satellite photographs and

analyze them during different seasons. This would maximize the contrasts of color, increasing the

accuracy of the spectrum classification.

 26

Discussion

Analytical or Empirical

 The title “Analytical” fire modeling is perhaps contradicted by the number of times

“empirical” is mentioned. The basis of this project is analytical. The Elliptical Fire Theory is an

analytical foundation, and along with other assumptions mentioned in the Fire Theory section of

this paper, they form the backbone of the modeling process. Now, this project has grown out of

the analytical stage in which it was founded. Now real world data values must be found; real

world comparisons must be made to qualify the program. This project was formulated with the

idea it could be used to model real world forest fires. So the line must be crossed from the

theoretical to the tangible.

X Y Relationship

 Science is all about taking something complex and simplifying it into something

quantifiable, something methodical. The scientific method basically relates one variable to

another, some amount of x equals y. In this case the Elliptical Fire Theory can express y, the

length of the radii, through a multivariate x. Once the relationship between the variables and

results is found, then it would only be a matter of plugging the variables into an equation and

obtaining y.

Satellite Photography

 The satellite mapping went well, producing many realistic terrains. It is a completely

different realm of experimentation as compared to the fire tests. Once the environmental local

fuel types are tested for their traits and that data placed in the program, it would be interesting to

actually compare large scale fires against the program. There were several limitations such as

underbrush and color aliasing that cannot be accounted for; however, an approximation is much

better than nothing. In the future elevation could be accounted for by layering the satellite photo

with a rasture map (elevation map with lines depicting altitude).

 27

Why Not Use Existing Fire Models?

 FARSITE and a few other forest fire modeling programs are excellent forest fire models.

They are the product of many individuals‟ life work. Why not just leave the experts to find the

answers? The truth is, without a lifetime of work, Phoenix can only hope to compare to the

seasoned, professional models. However, this team is in search of knowledge. The purpose of the

Challenge is to inspire students to take on daunting challenges head on. This is what team 84 is

attempting. Perhaps, Phoenix will grow to become a heavyweight fire modeling program.

Perhaps some of the ideas in this paper have great merit and will evolve to improve. Only time

will tell. One thing is for sure, team 84 has improved their skills and abilities because of their

attempts to defy the odds.

Mentor, Mentor, Anywhere?

 This project has had an extremely difficult time attracting mentors that are

knowledgeable in the area of fire science. Several fire experts were contacted, mainly through e-

mail. Responses ranged from “good job” and “good luck” to no response at all. None felt

obligated enough to brandish the “mentor title.” Mark Finney is listed as a project advisor

because he was one of the only fire experts to respond and give a few positive comments about

the program. However, contact was lost with him for unknown reasons. Several contacts were

made in the forestry service; however, none really had the technical expertise in the area of forest

fire modeling. An effort was made to contact knowledgeable mentors.

The Future

 This project has much potential. Since the Elliptical Fire Theory was proven to have a

high degree of validity, then it can be used as a cornerstone to build upon. It would only be a

matter of empirical testing to determine the effects of each confounding variable upon the length

of the radii in the Elliptical Fire Theory. The next steps would be to compare the program

against actual forest fires and to add a heat model to allow for accommodation of flash points.

 28

Beer, T, Enting, I. (1990). Fire spread and percolation modeling. Mathl. Comput. Modeling

13(11):77-96.

Bonsor, K. (2004). How Wild Fires Work. Retrieved October 3
rd

 2005. from

http://science.howstuffworks.com/wildfire.htm

Borlawsky T. (2000) Forest fire simulation using percolation theory. (Independent Research).

Colemen, J.R. and A.L. Sullivan. 1996. A real-time computer application for the prediction of

fire spread across the Australian landscape. Simulation 67 (4):230-240

EFunda.com (2005). Heat Transfer. EFounda.com. Retrieved December 12
th

 2005 from

 http://www.efunda.com/formulae/heat_transfer/home/overview.cfm

Finey, M. (2002) Australian Mathematical Society Fire Growth Using Minimum Travel Time

Methods.

Finney, M. (1998). FARSITE: Fire area simulator- model development and analysis. USDA

USFS. (Research Paper). RMRS-RP-4 Revised

Finney, M and Patricia L Andrews. (1994). The FARSITE fire area simulator: Fire management

applications and lessons of summer 1994. (Research Paper).

Feunekes, U. 1991. Error analysis in fire simulation models. M.S. thesis, University of New

Brunswick, Fredericton.

Fire.org. Public domain software for the wildland fire community.

French, I.A., D.H. Anderson, and E.A. Catchpole. 1990. Graphical simulation of bushfire spread.

Math. Comput. Model. 13(12): 67-71.

Green, D.G. 1983. Shapes of simulated fires in discrete fuels. Ecol. Mod. 20:21-32

Harris, T. (2005). How Wild Fire Works Retrieved December 13
th

 2005 from

 http://science.howstuffworks.com/fire.htm

Heidorn, Keith C. (2000) Weather Almanac for October 2000; The Great Fires of October 1871.

 Retrieved December 8
th

, 2005 http://www.islandnet.com/%7Esee/weather/doctor.htm

Keane, Robert E., Mincemoyer, Scott A., Schmidt, Kirsten M., Long, Donald G., Garner, Janice

L. (2000). Mapping vegetation and fuels for fire management on the Gila National Forest

Complex, New Mexico, [CD-ROM]. Gen. Tech. Rep. RMRS-GTR-46-CD. Ogden, UT: U.S.

Department of Agriculture, Forest Service,Rocky Mountain Research Station, 126 p.

http://science.howstuffworks.com/wildfire.htm
http://www.efunda.com/formulae/heat_transfer/home/overview.cfm
http://science.howstuffworks.com/fire.htm
http://www.islandnet.com/%7Esee/weather/doctor.htm

 29

Kourtz, P. and W.G. O‟Regan. (1971). A model for a small forest fire…to simulate burned and

burning areas for use in a detection model. For. Sci. 17(2):163-169.

Masse, B. & Nisengard, J. (2003). Cerro Grange Fire Assessment Project Cultural Resources

Report No. 211.

Morrison, C,G, Kutac N, J. (2005) Analytical fire modeling: Fire in its environment. AISC

(Research Paper).

O‟Driscoll, P. (2005). Studies at odds over logging after wildfires. USA Today Nov. 2
nd

Rein, G, Amnon B, Carlos Fernandez-Pello, A, Norman, A. (2005). A comparison of three

models for the simulation of accidental fires. Journal of Fire Protection Engineering 16(3)

183-21.

Richards, G, Bryce, R. (1995). A computer algorithm for simulating the spread of wildland fire

perimeters for heterogeneous fuel and meteorological conditions. Int. J. Wildl. Fire. 5(2):73-

80.

Rona, A. (2003). Conduction. Retrieved December 6
th

, 2005

 http://www.le.ac.uk/engineering/ar45/eg1100/eg1100w/node12.html

Taftan Data (1998). Fourier's Law of Conduction. Retrieved December 6
th

, 2005

 http://www.taftan.com/thermodynamics/FOURIER.HTM

The Official Website of Yellowstone National Park, Wildland Fire

http://www.nps.gov/yell/nature/fire/index.htm

Wang, T (2004). Environmental assessment for the Bosque wildlife project, Bernalillo,

Sandoval counties, New Mexico. Army Corp of Engineers (Research Paper).

Wikipedia: The Free Encyclopedia

 http://en.wikipedia.org/wiki/Newton's_law_of_cooling

http://en.wikipedia.org/wiki/Thermal_conductance

http://en.wikipedia.org/wiki/Heat_conduction

www.nifc.gov (last updated, 2002). Historical Wildfire Statistics. Retrieved December 6
th

 2005

http://www.nifc.gov/stats/historicalstats.html

http://www.le.ac.uk/engineering/ar45/eg1100/eg1100w/node12.html
http://www.taftan.com/thermodynamics/FOURIER.HTM
http://www.nps.gov/yell/nature/fire/index.htm
http://en.wikipedia.org/wiki/Newton's_law_of_cooling
http://en.wikipedia.org/wiki/Thermal_conductance
http://en.wikipedia.org/wiki/Heat_conduction
http://www.nifc.gov/
http://www.nifc.gov/stats/historicalstats.html

 30

Acknowledgements

Nick Bennet: Thank you for all you programming help over the past four years.

Consult@challenge.nm.org : Thank you for being so flexible and accommodating for

busy teenagers schedules at the February Evaluations.

Mark Finney: Thank you for being the only fire expert to reply back and for your

suggestions.

Debbie Loftin: Thank you for your inspiration and never ending support.

David Morrison: Thank you for helping us build a “professional board.”

Cheryl Morrison: Thank you for editing our paper.

Janet Penevolpe: Thank you for being our teacher sponsor and your criticisms.

Nadyne Shimada: Thank you so much for your uncanny ability to give great advice.

Team’s Parents: Thanks to the moms and dads for their financial, encouragement, and

labor that contributed to making team 84 a success.

Appreciation

On a more personal note, this is Christopher Morrison‟s last Challenge. He has

been participating and enjoying the challenge for four years. He would like to thank

everyone who has worked to make the Challenge what it is. Because of his experience in

the challenge, he participated in an internship at Sandia National Laboratories last

summer and is going to be rehired this summer. The challenge made a major difference in

his life. So thank you David, Celia, Betsy, Nick and everyone who has made the

Challenge what it is.

mailto:Consult@challenge.nm.org

 31

Appendix A: Glossary

Ambient Heat – Starting from the forest‟s ambient temperature and raising as a fire

moves, approaches, and decreases as the fire passes by or dies our for lack of fuel or

oxygen.

Ambient Temperature- Temperature to which environment will cool based upon

Newton’s Law of Cooling

Corollary to the Elliptical Fire Theory- This is the second part of the Elliptical Fire

Theory which basically states irregular fire flow can be accounted for by lengthening and

shortening radii to form an irregular ellipse

Dry Fuel- Fuel classified as having a lower moisture content requiring a lower flash

point than wet fuel.

Elevation Assumption- Changes in ground level affect fire because of wind generated

by gravity.

Elliptical Fire Theory- Theory that fire will form a perfect ellipse under perfect burn

conditions. This implies that to properly account for fire flow, the polar radii can be

shortened and lengthened accounting to different variables‟ effects on fire.

FARSITE- Forestry Service‟s fire approximation program based on Huygen’s Principle.

Field Test- An environmental study to decipher what type of fuels are present in a forest.

Fire – The chemical reaction of fuel, ignition heat, and oxygen which generates

additional heat burning fuel and oxygen. Fire is self-perpetuating as long as sufficient

fuel and oxygen remain.

Fire Acceleration- As fire grows larger, it accelerates faster. The heat assumption may

account for this phenomenon.

Fire Arcs- The collection extensions of the fire radii from a single point.

Fire Flow – The most commonly understood definition of a fire, defined as the actual,

observable movement of a fire through a forest.

Fire Flow Process- The process of starting with initial ignition points fire arcing them

and creating a new fire perimeter.

Fire Perimeter- Collection of fire arcs that, with fire perimeter reduction, form a

perimeter around the fire.

Fire Perimeter Reduction- For better efficiency, unneeded fire arcs are deleted in the

middle of the fire.

Fire Radii- Polar extensions from a central ignition point. For example, 3 units at 30

degrees. Fire radii are susceptible to changes in lengths based upon factors involved in

fire flow.

Fire Vector- See Fire Radii.

Flash Point- The temperature a fuel must reach before it can be burned. A Secondary

Flash Point is the temperature at which a fuel spontaneously combusts.

Flash Point Limitation- Because Phoenix is lacking an accurate heat flow model, flash

points cannot be instantiated. This causes the current program to burn everything to

ashes.

Fuel- Every patch has fuel with different moisture contents. These moisture contents are

simplified into two types of fuels requiring different prerequisites to burn then.

 32

Fuel Type – Different types of fuels where each contain its own heat generation factors,

ignition point values, dry and wet fuel ratings, etcetera. Some examples include trees and

shrubs.

Fuel Type Assumption- As fire flows over different types of ground coverage, it will

spread faster or slower depending upon the fuel type‟s atomic structure and typical

surface area.

Heat Flow – The transfer of heat in a forest as a fire moves, as well as, during everyday

circumstances. Generally connected to fire flow because of the natural properties of fire

which gives off heat as a byproduct, but can also be associated with ambient warming

and cooling with the time of day.

Heat Assumption- Different amounts of heat cause fire to spread differentially. The

hotter it is, the faster the fire flow.

Huygen’s Principle- FARSITE equation that uses wind and elevation to determine an

ellipse that the fire will follow.

Ignition Point – Minimum temperature at which a fuel will ignite and become self

sustaining based on fuel type and environmental factors.

Interpolation Comparison- A process of comparing fire progress between two a model

and real life visually by overlaying pixels (model fire pixels/ real fire pixels).

Moisture Assumption- More moisture will slow fire spread.

Mini-Patches- Patches divided into 100 equal parts to better keep track of certain aspects

in the program.

Patches- Division of fuel type exactness and area. One patch is approximately 1 sq

meter.

Phoenix- The name of the java computer application that encapsulates the fire flow

process.

Piloted Flash Point/ Instantaneous – Point at which patch will combust whether or not

fire is present.

Rapid Oxidization- The scientific term for the chemical reaction of fire. Rapidly taking

of the oxygen in the fuel.

Spectrum Classification- The process of simplifying a typical 256-color picture into a

lesser grade. This is used to group colors on a satellite photograph and create a virtual

forest once a field test has been conducted.

Spot Fires- A term for sparks that fly into the air and create fires in new places down

wind.

Spread Rate- The rate at which fire can spread across the ground. Influenced by many

environmental factors, heat, wind, and other factors.

Unpiloted Flash Point/ Basic – Temperature which is required to burn a certain fuel.

Virtual Forest- Collection of patches that make up the forest environment.

Wet Fuel- Fuel classified as having a higher moisture content requiring a higher flash

point than dry fuel .

Wind Assumption- Wind‟s effect upon fire can be described as a vector of wind speed

and fire spread.

Wind Coefficient- The wind proportionality constant.

Wind Vectoring- The process of correcting fire flow for wind.

 33

Appendix B: Tables of Validation Comparison

Analysis of Input Data

 (cm/s)
Variable N Mean StDev Median

Brawny Paper Towels 54 0.7350 0.2096 0.7805

NS Computer Paper 42 0.4320 0.1749 0.4320

Notebook Paper 28 0.8192 0.2921 0.7965

Tissue Paper 20 0.797 0.473 0.7380

(Temperature about 20 degrees C, humidity at about 18 percent no wind)

The data summary above shows the found spread rate distribution of the four

tested materials under the given conditions. Two trials were conducted for each material.

The following picture set illustrates the experiment fire test. The pictures were taken at

half second intervals.

The experiment was conducted using the four tested in a quadrant configuration

 34

Assessment

 These visual comparison is without a doubt remarkably similar. This empirical

test supports Phoenix to a high degree. Perhaps the best comparison is the visual

comparison. The interpolation comparison tool will complement this qualitative

assessment in the near future.

 35

Appendix C: Satellite Field Testing

Bosque Field Testing

A field test was conducted on an area

south of the Montaño Bridge in

Albuquerque, New Mexico. The area tested

was 500 by 300 meters and covered a span

over the river. There were five specific fuel

types found and documented in the Bosque.

The picture to the right depicts pictures

taken from the indicated spots in the

Bosque.

 Cottonwood: Cottonwoods are large

typically less flammable trees. They

appear in many of the darker regions of

the photograph.

 The River: The River is obvious in its path

straight through the middle of the

photograph.

 Sandy Open Areas and Trails: Sandy open

areas are characterized by lighter colored

areas and contain sand and light

concentrations of weeds.

 Brush and Grassy Areas: Bush grassy areas are depicted by the moderate grayish

color. They contain large concentrations of weeds ground duff and brush. Some of the

material is alive and some is dead.

 Russian Olive: Russian Olive concentrations are hard to distinguish from

Cottonwoods and they often overlap.

 36

Rationale

 Once the fuel types are known from a field test they can be given an already

researched spread rate or perhaps the spread rate could later be derived. The spread rates

are essentially the same for all fuels of the same type and consistency. Eventually a fully

developed fire map could be easily created and realistic fire flow could presumable be

modeled quickly and easily.

 37

Appendix D: Program Code

The Code

Analytical Fire modeling Phase II

Expanding upon the Elliptical Fire Theory

Patent in Progress

 38

 Table of Code Contents
File Lines Page

Background.java 20 39

ColorNum.java 33 40

Custom Environment 226 41

CustomEnvironmentLoader 224 46

Data.java 123 50

Degree.java 80 53

Desktop.java 210 55

Draw.java 46 58

DrawList.java 27 59

DrawPanel.java 158 60

EnvironmentEditor.java 492 65

FTAdd.java 212 74

FireFlow.java 194 78

FireList.java 17 81

FirePackage.java 35 82

FuelType.java 56 83

ImageFileViewer.java 99 84

Input.java 44 85

Location.java 19 86

Main.java 46 87

OptionPanel.java 35 88

PatchClass.java 221 89

PerimeterList.java 13 94

StatsScan.java 274 96

SideBar.java 34 101

Statistics.java 19 102

Table.java 247 103

Views.java 203 107

WindSlider.java 123 112

 39

// Background.java

// Created on November 7, 2007, 7:49 PM

// @author Christopher Morrison

//Draws the pane behind the internal frame window

package phoenix;

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

import java.awt.image.*;

public class BackGround extends JDesktopPane //Area behind the Viewer

{

 Image PhoenixImg=Toolkit.getDefaultToolkit().getImage("Phoenix.jpg");

 public BackGround()

 {

 this.setBackground(Color.BLUE);

 }

 public void paintComponent(Graphics G) //draws the image behind the Internal Frame

 {

 super.paintComponent(G);

 G.drawImage(PhoenixImg,25,25,this.getWidth()-50,this.getHeight()-50,this);

 }

}

(20)

 40

// ColorNum.java

// Created on March 7, 2007, 7:49 PM

// @author Christopher Morrison

package phoenix;

import javax.swing.*;

import java.util.*;

import java.awt.*;

import java.awt.Event.*;

public class ColorNum //Records the number of instances of a certain RGB

{ //in the photograph and the color of them

 int Number;

 Color C;

 public ColorNum(Color c)

 {

 Number=1;

 C=c;

 }

 public int getNumber()

 {

 return Number;

 }

 public Color getColor()

 {

 return C;

 }

 public void another()

 {

 Number++;

 }

}

(33)

 41

// CustomEnvironment.java

// Created on February 17, 2007, 5:49 PM

// @author Christopher Morrison

// Designed to coordinate satellite pictures with creating

// a new Environment

package phoenix;

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

import java.awt.image.*;

import java.util.*;

import javax.swing.border.*;

import javax.swing.table.*;

public class CustomEnvironment extends JFrame implements WindowListener, ActionListener,Runnable

{

 Dimension D=new Dimension(600,650);

 JPanel JPA=new JPanel(new GridLayout(2,1));

 JPanel JP1=new JPanel(new GridLayout(1,2));

 JPanel JP2=new JPanel();

 ScanStats SS;

 ImageArea IA=new ImageArea(); //shows intrepreted data image

 SecondaryPane SP;//=new SecondaryPane();

 Table ProcessingTable; //table to select fuel type of color

 Image IM;

 FTAdd FTA=new FTAdd(); //Add fueltypes for the table

 JComboBox JCB;

 ArrayList FuelTypes=new ArrayList();

 Thread thread;

 public CustomEnvironment(Image I,ScanStats S) //Pass Image and its scan data

 {

 super("Environment Analysis");

 this.setSize(D);

 SS=S;

 IM=I;

 this.initFuelTypes();

 JCB=Box();

 ProcessingTable=new Table(SS.GetColorInfo(),JCB,FuelTypes);

 SP=new SecondaryPane();

 this.add(JPA);

 JPA.add(JP1);

 JP1.add(IA);

 JP1.add(SP);

 JPA.add(ProcessingTable);

 FTA.setVisible(false);

 SP.AddFuelType.addActionListener(this);

 FTA.Pane.OK.addActionListener(this);

 ProcessingTable.Publish.addActionListener(this);

 }

 public JComboBox Box()

 42

 {

 JComboBox Box=new JComboBox();

 for(int x=0;x<FuelTypes.size();x++)

 {

 Box.addItem((FuelType)FuelTypes.get(x));

 }

 return Box;

 }

 public void initFuelTypes() //initialize the basic fuel types

 {

 FuelTypes.add(FuelType.BasicConiferous);

 FuelTypes.add(FuelType.BasicDecidious);

 FuelTypes.add(FuelType.BasicGrass);

 FuelTypes.add(FuelType.BasicGround);

 FuelTypes.add(FuelType.BasicShrub);

 }

 public void addFuelType(FuelType FT) //Add fuel type to use in

 { // processing table

 SP.addRow(FT,true);

 JCB.addItem(FT.getName());

 ProcessingTable.addFuelType(JCB);

 }

 public void Publish()

 {

 }

 public class ImageArea extends JPanel

 {

 public ImageArea()

 {

 this.setBackground(Color.BLUE);

 this.setBorder(new LineBorder(Color.CYAN));

 this.setSize(250,250);

 }

 public void paintComponent(Graphics G)

 {

 super.paintComponent(G);

 SS.redrawPic(G,this.getWidth(),this.getHeight());

 }

 }

 public class SecondaryPane extends JPanel

 {

 Vector Rows=new Vector();

 Vector Columns=new Vector();

 JButton AddFuelType=new JButton("Add Fuel Type");

 TableEditor TEdit;

 JComboBox jcb;

 JTable JT;

 JScrollPane Pane;

 public SecondaryPane() //holds data of fueltypes in a Table form

 {

 this.setSize(250,250);

 this.setBackground(Color.BLUE);

 this.setBorder(new LineBorder(Color.CYAN));

 43

 TEdit=new TableEditor(Rows,Columns);

 JT=new JTable(TEdit);

 JT.setPreferredScrollableViewportSize(new Dimension(250, 200));

 Pane=new JScrollPane(JT);

 for(int x=0;x<FuelTypes.size();x++)

 {

 this.addRow((FuelType)FuelTypes.get(x),false);

 }

 this.add(Pane);

 this.add(AddFuelType);

 }

 public void addRow(FuelType FT,boolean firstTime)

 {

 if(firstTime)

 {

 FuelTypes.add(FT);

 }

 Vector V=new Vector();

 V.add(Rows.size()+1);

 V.add(FT.getName());

 V.add(FT.getSpreadRate());

 V.add(FT.getFlashPoint());

 Rows.add(V);

 JT.addNotify();

 }

 public class TableEditor extends DefaultTableModel

 {

 public final String[] Titles={"Num","FuelType","SpreadRate","FlashPoint"};

 public Vector Rows;

 public Vector Columns;

 public TableEditor(Vector rows,Vector column)

 {

 super(rows,column);

 Rows=rows;

 Columns=column;

 this.setColumnIdentifiers(Titles);

 }

 }

 }

 public void windowActivated(WindowEvent E)

 {

 }

 public void windowDeactivated(WindowEvent E)

 {

 }

 public void windowOpened(WindowEvent E)

 {

 }

 public void windowClosed(WindowEvent E)

 {

 44

 this.dispose();

 }

 public void windowClosing(WindowEvent E)

 {

 }

 public void windowIconified(WindowEvent E)

 {

 }

 public void windowDeiconified(WindowEvent E)

 {

 }

 public void actionPerformed(ActionEvent E)

 {

 if(E.getSource()==SP.AddFuelType)

 {

 FTA.setVisible(true);

 }

 if(E.getSource()==FTA.Pane.OK)

 {

 if(FTA.check())

 {

 this.addFuelType(FTA.getFuelType());

 ProcessingTable.FuelTypes.add(FTA.getFuelType());

 FTA.setVisible(false);

 }

 }

 if(E.getSource()==ProcessingTable.Publish)

 {

 thread=new Thread(this);

 thread.start();

 }

 }

 public void run() //run this thread when publishing the new environment

 {

 if(JOptionPane.showConfirmDialog(null,"Are you sure you want to change

enviroments?")==JOptionPane.OK_OPTION)

 {

 try

 {

 FuelType[] FT=ProcessingTable.Publish();

 FuelType[][] Env=SS.Publish(FT);

 PatchClass NewEnv=Data.universalPC;//new PatchClass(Env);//Memory Leak

 Data.universalPC=NewEnv;

 Data.V=new Views(NewEnv);

 Data.EnvChanged=true;

 this.dispose();

 }

 catch(Exception E)

 {

 JOptionPane.showMessageDialog(null,E.toString());

 }

 }

 45

 }

}

 46

// CustomEnvironmentLoader.java

// Created on February 25, 2007, 3:57 PM

// @author Christopher Morrison

//Goals- sliders more interactive

// Allows for data and satellite scanning before user Environment Makes

package phoenix;

import javax.swing.*;

import java.util.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.border.*;

public class CustomEnvironmentLoader extends JFrame

{

 int prec=1;

 int areaPrec=1;

 double envh=1;

 double envw=1;

 Dimension D=new Dimension(330,270);

 CELPane CELP=new CELPane();

 public CustomEnvironmentLoader() //essentially a big data Field

 {

 super("Env Specifications");

 this.setSize(D);

 this.setPreferredSize(D);

 this.setBackground(Color.BLUE);

 this.add(CELP);

 }

 public class CELPane extends JPanel

 {

 JButton Cancel=new JButton("Cancel");

 JButton OK=new JButton("OK");

 CELPCenter CELPC=new CELPCenter();

 JPanel Bottom=new JPanel();

 JProgressBar JPG=new JProgressBar(0,100);

 public CELPane()

 {

 super(new BorderLayout());

 this.add(CELPC,BorderLayout.CENTER);

 this.add(Bottom,BorderLayout.SOUTH);

 Bottom.setBackground(Color.BLUE);

 Bottom.add(JPG);

 Bottom.add(Cancel);

 Bottom.add(OK);

 }

 public class CELPCenter extends JPanel implements ActionListener

 {

 JLabel Precision=new JLabel("Color Precision ");

 JLabel ENVH=new JLabel ("Environment Height (m)");

 JLabel ENVW=new JLabel ("Environment Width (m) ");

 47

 JLabel Swath=new JLabel ("Area Precision ");

 JLabel SwathN=new JLabel(Integer.toString(areaPrec));

 JLabel PrecisionN=new JLabel(Integer.toString(prec));

 JLabel ENVHN=new JLabel(Double.toString(envh));

 JLabel ENVWN=new JLabel(Double.toString(envw));

 JSlider JS=new JSlider(1,255);

 JTextField HeightField=new JTextField(Double.toString(envh),5);

 JTextField WidthField=new JTextField(Double.toString(envw),5);

 JTextField SwathPrec=new JTextField(Integer.toString(areaPrec),5);

 JTextField ColorPrec=new JTextField(Integer.toString(prec),5);

 JButton JB1=new JButton("Set");

 JButton JB2=new JButton("Set");

 JButton JB3=new JButton("Set");

 JButton JB4=new JButton("Set");

 JPanel Prec=new JPanel(new GridLayout(2,1));

 JPanel HWPanel=new JPanel(new GridLayout(2,1));

 JPanel JP1=new JPanel(new FlowLayout(FlowLayout.LEFT));

 JPanel JP2=new JPanel(new FlowLayout(FlowLayout.LEFT));

 JPanel JP3=new JPanel(new FlowLayout(FlowLayout.LEFT));

 JPanel JP4=new JPanel(new FlowLayout(FlowLayout.LEFT));

 public CELPCenter()

 {

 super(new GridLayout(2,1,5,5));

 this.setBackground(Color.BLUE);

 JP1.setBackground(Color.CYAN);

 JP2.setBackground(Color.CYAN);

 JP3.setBackground(Color.CYAN);

 JP4.setBackground(Color.CYAN);

 Prec.setBorder(new TitledBorder(null,"Precision"));

 HWPanel.setBorder(new TitledBorder(null,"Height Width Specs"));

 JB1.addActionListener(this);

 JB2.addActionListener(this);

 JB3.addActionListener(this);

 JB4.addActionListener(this);

 ColorPrec.addActionListener(this);

 SwathPrec.addActionListener(this);

 HeightField.addActionListener(this);

 WidthField.addActionListener(this);

 Cancel.addActionListener(this);

 this.add(Prec);

 this.add(HWPanel);

 Prec.add(JP1);

 Prec.add(JP2);

 HWPanel.add(JP3);

 HWPanel.add(JP4);

 48

 JP1.add(Precision);

 JP1.add(ColorPrec);

 JP1.add(JB1);

 JP1.add(PrecisionN);

 JP2.add(Swath);

 JP2.add(SwathPrec);

 JP2.add(JB2);

 JP2.add(SwathN);

 JP3.add(ENVH);

 JP3.add(HeightField);

 JP3.add(JB3);

 JP3.add(ENVHN);

 JP4.add(ENVW);

 JP4.add(WidthField);

 JP4.add(JB4);

 JP4.add(ENVWN);

 }

 public void actionPerformed(ActionEvent E)

 {

 if(E.getSource()==JB1||E.getSource()==ColorPrec)

 {

 try

 {

 prec=Integer.parseInt(ColorPrec.getText());

 PrecisionN.setText(Integer.toString(prec));

 }

 catch(Exception EE)

 {

 PrecisionN.setText(Integer.toString(prec));

 }

 }

 if(E.getSource()==JB2||E.getSource()==SwathPrec)

 {

 try

 {

 areaPrec=Integer.parseInt(SwathPrec.getText());

 SwathN.setText(Integer.toString(areaPrec));

 }

 catch(Exception EE)

 {

 SwathN.setText(Integer.toString(areaPrec));

 }

 }

 if(E.getSource()==JB3||E.getSource()==HeightField)

 {

 try

 {

 envh=Double.parseDouble(HeightField.getText());

 ENVHN.setText(Double.toString(envh));

 }

 catch(Exception EE)

 {

 ENVHN.setText(Double.toString(envh));

 }

 }

 49

 if(E.getSource()==JB4||E.getSource()==WidthField)

 {

 try

 {

 envw=Double.parseDouble(WidthField.getText());

 ENVWN.setText(Double.toString(envw));

 }

 catch(Exception EE)

 {

 ENVWN.setText(Double.toString(envw));

 }

 }

 if(E.getSource()==OK)

 {

 //action handled in Environment Editor Class

 }

 if(E.getSource()==Cancel)

 {

 this.setVisible(false);

 }

 }

 }

 }

 public boolean check()

 {

 try

 {

 prec=Integer.parseInt(CELP.CELPC.ColorPrec.getText());

 CELP.CELPC.PrecisionN.setText(Integer.toString(prec));

 envw=Double.parseDouble(CELP.CELPC.WidthField.getText());

 CELP.CELPC.ENVWN.setText(Double.toString(envw));

 envh=Double.parseDouble(CELP.CELPC.HeightField.getText());

 CELP.CELPC.ENVHN.setText(Double.toString(envh));

 areaPrec=Integer.parseInt(CELP.CELPC.SwathPrec.getText());

 CELP.CELPC.SwathN.setText(Integer.toString(areaPrec));

 if(envw<=0||envh<=0)

 {

 throw new Exception("Environment Bounds Incorrect");

 }

 if(prec<1||prec>255)

 {

 throw new Exception("Precision Must be between 1 and 255- reccomended 3");

 }

 if(areaPrec<1)

 {

 throw new Exception("Swath Must be greater than or equal to 1");

 }

 return true;

 }

 catch(Exception EE)

 {

 JOptionPane.showMessageDialog(this,"Insufficient data: "+EE.toString());

 return false;

 }

 }

}

 50

//Data.java

//@ Christopher Morrison

// Holds static Environment Data easy to get to

package phoenix;

import java.awt.*;

public class Data

{

 public static double increment=.5;//=D.getIncrement(); //fire step length

 public static double MSR=6;//Math.sqrt(2);//=D.getMSR(); //interval*fuela length per step

 public static double s=0;//=D.getSeperation(); //current interval*fuela

 public static int degrees=18;//=D.getDegrees(); //number of extensions on fire arc

 public static double WindToSpread=1;

 public static Degrees WindAngle=new Degrees(0,Degrees.degrees);

 public static double WindSpeed=0;

 public static PatchClass universalPC=new PatchClass(/*100,100,*/0.0d,0.0d,0.0d);

 public static double FireArcPrecision=360/18;

 public static boolean Wind=false;

 public static Views V=new Views(universalPC);

 public static boolean EnvChanged=false;

 public static FuelType FuelKind(int ft) //For patch class Constructors

 {

 return (new FuelType(FuelName(ft),SpreadRate(ft),FlashPoint(ft),color(ft)));

 }

 public static Color color(int ft)

 {

 if(ft==0)

 {return Color.cyan;}

 if(ft==1)

 {return Color.green;}

 if(ft==2)

 {return Color.yellow;} //

 if(ft==3)

 {return Color.gray;} //comp paper

 if(ft==4)

 {return Color.blue;}

 if(ft==5)

 {return Color.red;}

 if(ft==6)

 {return Color.orange;}

 if(ft==7)

 {return Color.white;}

 if(ft==8)

 {return Color.magenta;}

 if(ft==9)

 {return Color.black;}

 return Color.RED;

 }

 public static double SpreadRate(int ft)

 {

 if(ft==0) //notebook paper

 {return 1/.6392;} //.8192

 if(ft==1) //Tissue Paper

 {return 1/.797;}

 if(ft==2) //Paper Towl

 51

 {return 1/.7350;}

 if(ft==3) //Computer Paper

 {return 1/.4320;}

 if(ft==4)

 {return 3.5;}

 if(ft==5)

 {return 2.5;}

 if(ft==6)

 {return 2;}

 if(ft==7)

 {return 4;}

 if(ft==8)

 {return .75;}

 if(ft==9)

 {return 6;}

 return 1;

 }

 public static String FuelName(int ft)

 {

 if(ft==0)

 {return "fuel type 0";}

 if(ft==1)

 {return "fuel type 1";}

 if(ft==2)

 {return "fuel type 2";}

 if(ft==3)

 {return "fuel type 3";}

 if(ft==4)

 {return "fuel type 4";}

 if(ft==5)

 {return "fuel type 5";}

 if(ft==6)

 {return "fuel type 6";}

 if(ft==7)

 {return "fuel type 7";}

 if(ft==8)

 {return "fuel type 8";}

 if(ft==9)

 {return "fuel type 9";}

 return "unknown fuel type";

 }

 public static double FlashPoint(int ft)

 {

 if(ft==0)

 {return 100;}

 if(ft==1)

 {return 100;}

 if(ft==2)

 {return 100;}

 if(ft==3)

 {return 100;}

 if(ft==4)

 {return 100;}

 if(ft==5)

 {return 100;}

 52

 if(ft==6)

 {return 100;}

 if(ft==7)

 {return 100;}

 if(ft==8)

 {return 100;}

 if(ft==9)

 {return 100;}

 return 100;

 }

}

 53

// Degrees.java

// Created on February 7, 2007, 9:04 PM

// @author Christopher Morrison

//This class encapsulates angle measurements mostly for

// wind and fire propagation

package phoenix;

import javax.swing.*;

import java.util.*;

import java.awt.*;

import java.awt.Event.*;

public class Degrees

{

 public static int radians=1; //specifies degrees or radians

 public static int degrees=2; // in the constructor

 private double RADIAN;

 private double DEGREE;

 public Degrees(double size,int form)

 {

 if(form==1)

 {

 DEGREE=180*size/Math.PI;

 RADIAN=size;

 }

 if(form==2)

 {

 DEGREE=size;

 RADIAN=Math.PI*size/180;

 }

 }

 public double getDegree()

 { return DEGREE; }

 public double getRadian()

 { return RADIAN; }

 public void addDegrees(double deg)

 {

 DEGREE+=deg;

 RADIAN+=Math.PI*deg/180;

 }

 public void addRadians(double rad)

 {

 RADIAN+=rad;

 DEGREE+=rad*180/Math.PI;

 }

 public static Degrees CalculateAngle(double X,double Y)

 {

 double Z =(Math.sqrt(Y*Y+X*X));

 54

 if(Z==0)

 {

 return new Degrees(0,radians);

 }

 if(X>=0&&Y>=0)

 {

 return new Degrees(Math.asin(Y/Z),radians);

 }

 else if(X<=0&&Y>=0)

 {

 return new Degrees(Math.asin(Math.abs(X)/Z)+Math.PI/2,radians);

 }

 else if(X<=0&&Y<=0)

 {

 return new Degrees(Math.asin(Math.abs(Y)/Math.abs(Z))+Math.PI,radians);

 }

 else if(X>=0&&Y<=0)

 {

 return new Degrees(Math.asin(X/Z)+3*Math.PI/2,radians);

 }

 return new Degrees(0,radians);

 }

}

 55

//Desktop.java

//@ Christopher Morrison

//This class is the origional JFrame where all the GUI is stacked

package phoenix;

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

import java.awt.image.*;

public class Desktop extends JFrame implements ActionListener, WindowListener, MouseListener,

MouseMotionListener

{

 JSplitPane TopBottom=new JSplitPane();

 JSplitPane LeftRight=new JSplitPane();

 PatchClass Env=Data.universalPC; //main Environment

 JInternalFrame JIF=new Internal("View");

 JMenuBar menu=new JMenuBar();

 JMenu File=new JMenu("File");

 JMenu Tools=new JMenu("Tools");

 JMenu Zoom=new JMenu("Zoom");

 JLabel ZoomLabel=new JLabel("1");

 JMenu Help=new JMenu("Help");

 JMenuItem Exit=new JMenuItem("Exit");

 JMenuItem EnvEdit=new JMenuItem("Environment Editor");

 JMenuItem ZoomIn=new JMenuItem("Zoom In");

 JMenuItem ZoomOut=new JMenuItem("Zoom Out");

 JComboBox ZoomBox=new JComboBox();

 OptionPanel OP=new OptionPanel();

 BackGround BG=new BackGround();

 SideBar SB=new SideBar();

 FireFlow FF=new FireFlow(Env); //Fire Flow Processes

 Views V=Data.V; //fire view panel

 EnvironmentEditor EE=new EnvironmentEditor(Env);

 Thread thread;

 public Desktop()

 {

 super("Phoenix");

 this.setJMenuBar(getMenu());

 this.setIconImage(Toolkit.getDefaultToolkit().getImage("Phoenix.jpg"));

 this.add(TopBottom);

 this.setSize(Toolkit.getDefaultToolkit().getScreenSize().width-

200,Toolkit.getDefaultToolkit().getScreenSize().height);

 TopBottom.setTopComponent(OP);

 TopBottom.setOrientation(JSplitPane.VERTICAL_SPLIT);

 TopBottom.setBottomComponent(LeftRight);

 TopBottom.setDividerLocation(175);

 LeftRight.setRightComponent(BG);

 LeftRight.setLeftComponent(SB);

 LeftRight.setDividerLocation(150);

 BG.add(JIF);

 JIF.add(V);

 56

 this.Exit.addActionListener(this);

 this.ZoomIn.addActionListener(this);

 this.ZoomOut.addActionListener(this);

 this.addWindowListener(this);

 this.OP.Step.addActionListener(this);

 this.OP.EE.addActionListener(this);

 V.BV.addMouseListener(this);

 V.EV.addMouseListener(this);

 V.FV.addMouseListener(this);

 V.PV.addMouseListener(this);

 V.BV.addMouseMotionListener(this);

 V.EV.addMouseMotionListener(this);

 V.FV.addMouseMotionListener(this);

 V.PV.addMouseMotionListener(this);

 SetUp();

 }

 public void SetUp() //stats a basic fire

 {

 FF.addFire(new Location(40,40,0));

 }

 public void actionPerformed(ActionEvent E)

 {

 if(E.getSource()==Exit)

 {

 System.exit(0);

 }

 if(E.getSource()==ZoomIn)

 {

 V.zoomOut();

 double d=8/V.zoom; //sets zoom number

 ZoomLabel.setText(Double.toString(d));

 }

 if(E.getSource()==ZoomOut)

 {

 V.zoomIn();

 }

 if(E.getSource()==OP.Step)

 {

 thread=new Thread(FF);

 thread.start();

 }

 if(E.getSource()==OP.EE)

 {

 EE.Activate(Env);

 }

 }

 public class Internal extends JInternalFrame

 {

 public Internal(String Name)//,ImageIcon ii)

 {

 super(Name);

 57

 setResizable(true);

 setSize(800,750);

 setClosable(false);

 setMaximizable(true);

 setIconifiable(true);

 setVisible(true);

 }

 }

 public JMenuBar getMenu()

 {

 menu.add(File);

 File.add(Exit);

 menu.add(Tools);

 Tools.add(EnvEdit);

 menu.add(Zoom);

 ZoomBox.addItem("Zoom In");

 ZoomBox.addItem("Zoom Out");

 ZoomBox.addItem("Zoom Normal");

 ZoomBox.setEditable(true);

 Zoom.add(ZoomIn);

 Zoom.add(ZoomOut);

 menu.add(ZoomLabel);

 menu.add(Help);

 return menu;

 }

 public void windowActivated(WindowEvent E)

 {

 }

 public void windowDeactivated(WindowEvent E)

 {

 }

 public void windowClosed(WindowEvent E)

 {

 }

 public void windowClosing(WindowEvent E)

 {

 System.exit(0);

 }

 public void windowIconified(WindowEvent E)

 {

 }

 public void windowDeiconified(WindowEvent E)

 {

 }

 public void windowOpened(WindowEvent E)

 {

 }

 public void mouseExited(MouseEvent E)

 58

 {

 V.inside=false;

 V.repaint();

 }

 public void mouseEntered(MouseEvent E)

 {

 V.inside=true;

 V.updateLocation(E);

 }

 public void mouseReleased(MouseEvent E)

 {

 }

 public void mousePressed(MouseEvent E)

 {

 }

 public void mouseClicked(MouseEvent E)

 {

 if(E.getButton()==MouseEvent.BUTTON1) //add fire

 {

 Point P=E.getPoint();

 P.x=(P.x-V.zoom)/V.zoom;

 P.y=(P.y-V.zoom)/V.zoom;

 if(JOptionPane.showConfirmDialog(this,"Add Fire on point

("+P.x+","+P.y+")")==JOptionPane.OK_OPTION)

 {

 FF.addFire(new Location(P.x,P.y,0));

 }

 }

 if(E.getButton()==MouseEvent.BUTTON2) //check patch stats

 {

 }

 }

 public void mouseMoved(MouseEvent E)

 {

 V.updateLocation(E);

 }

 public void mouseDragged(MouseEvent E)

 {

 }

}

 59

//Draw.java

//@ Christopher Morrison

// This class draws all of the fire arcs from a starting point

package phoenix;

import java.util.*;

import java.awt.*;

import javax.swing.*;

public class Draw extends ArrayList

{

 double xstart;

 double ystart;

 public Draw(double xs,double ys,ArrayList coordinates)

 {

 xstart=xs;

 ystart=ys;

 if(coordinates.size()!=0)

 {

 for(int x=0;x<coordinates.size();x++)

 {

 this.add(coordinates.get(x));

 }

 }

 }

 public Draw(double xs,double ys)

 {

 xstart=xs;

 ystart=ys;

 }

 public void DrawArray(Graphics G,int zoom)

 {

 G.setColor(Color.red);

 if(this.size()!=0)

 {

 for(int x=0;x<this.size();x++)

 {

 G.drawLine((int)((xstart)*zoom+zoom),(int)((ystart)*zoom+zoom),(int)((((Location)this.get(x)).xl

oc)*zoom+zoom),(int)((((Location)this.get(x)).yloc*zoom+zoom)));

 //JOptionPane.showMessageDialog(null,(xstart)*zoom+zoom+" "+(ystart)*zoom+zoom+"

"+(((Location)this.get(x)).xloc)*zoom+zoom+" "+(((Location)this.get(x)).yloc*zoom+zoom));

 }

 }

 }

}

 60

//DrawList.java

//@ Christopher Morrison

// This class encspsulates all the Draw classes and draws the

// Fire Perimeter

package phoenix;

import java.util.*;

import java.awt.*;

import javax.swing.*;

public class DrawList extends ArrayList

{

 public DrawList()

 {

 }

 public void DrawIt(Graphics G,int zoom)

 {

 if(this.size()!=0)

 {

 for(int x=0;x<this.size();x++)

 {

 ((Draw)this.get(x)).DrawArray(G,zoom);

 }

 }

 }

}

 61

// DrawPanel.java

// Created on January 31, 2007, 3:40 PM

// @author Christopher Morrison

// Class designed to graph data

package phoenix;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.awt.print.*;

import java.awt.image.*;

import java.io.*;

import java.util.*;

public class DrawPanel extends JPanel implements Printable

{

 Vector Xinfo; //Varible info

 Vector Yinfo;

 double XL,XH,YL,YH; //keep track of data min max

 public int Xdividingfactor=10; // divisions of the x and y axis

 public int Ydividingfactor=10;

 public boolean rounding=false;

 int gottenX,gottenY;

 int xbase=35,ybase=400;

 int ticksize=4;

 double extraSpacing=1.1f; //percent distance between last peice of data and graph maximum

 boolean initHL=true;

 public DrawPanel(Vector X,Vector Y,int x,int y)

 {

 gottenX=x;

 gottenY=y;

 Xinfo=X;

 Yinfo=Y;

 initHighLow(); //dynamic allocation based on min and maxes of data

 }

 public void paintComponent(Graphics G)

 {

 super.paintComponent(G);

 drawAxisLabels(G);

 drawInformation(G);

 }

 public void drawAxisLabels(Graphics G) //draws the asis labels and such

 {

 G.drawLine(0,ybase,435,ybase); //X axis

 G.drawLine(xbase,0,xbase,435); //Y axis

 for(int x=0;x<=Xdividingfactor-1;x++)

 {

 G.setColor(new Color(200,200,255));

 if(x!=0)

 {

 G.drawLine(Math.round(x*400/(Xdividingfactor))+xbase,ybase-

ticksize,Math.round(x*400/(Xdividingfactor))+xbase,0);}

 62

 G.setColor(Color.BLUE);

 G.drawLine(Math.round(x*400/(Xdividingfactor))+xbase,ybase-

ticksize,Math.round(x*400/(Xdividingfactor))+xbase,ybase+ticksize);

 if(XH-XL>400||rounding)

 {

 G.drawString(Long.toString((Math.round((x*(XH-

XL))/(Xdividingfactor)))+Math.round(XL)),Math.round(x*400/(Xdividingfactor))+xbase-27,ybase+30);

 }

 else

 {

 G.drawString(Float.toString(Float.parseFloat(Double.toString(((x*(XH-

XL))/(Xdividingfactor))+XL))),Math.round(x*400/(Xdividingfactor))+xbase-27,ybase+30);

 }

 }

 for(int y=0;y<=Ydividingfactor;y++)

 {

 G.setColor(new Color(125,255,255));

 if(y!=0)

 {

 G.drawLine(400+xbase,ybase-(Math.round(y*400/(Ydividingfactor))),xbase+ticksize,400-

(Math.round(y*400/(Ydividingfactor))));

 }

 G.setColor(new Color(0,150,255));

 G.drawLine(xbase-ticksize,ybase-(Math.round(y*400/(Ydividingfactor))),xbase+ticksize,400-

(Math.round(y*400/(Ydividingfactor))));

 if(YH-YL>400||rounding)

 {

 G.drawString(Long.toString((Math.round((y*(YH-

YL))/(Ydividingfactor)))+Math.round(YL)),8,ybase-(Math.round(y*400/(Ydividingfactor)-15)));

 }

 else

 {

 G.drawString(Float.toString(Float.parseFloat(Double.toString(((y*(YH-

YL))/(Ydividingfactor))+YL))),8,ybase-(Math.round(y*400/(Ydividingfactor)-15)));

 }

 }

 }

 public void drawInformation(Graphics G) //draws the points on the scatter plot

 {

 G.setColor(Color.GREEN);

 if(Yinfo.size()!=Xinfo.size())

 {

 JOptionPane.showMessageDialog(null,"Input Error");

 return;

 }

 for(int x=0;x<Xinfo.size();x++)

 {

 G.drawRect((int)Math.round(((Double.parseDouble(Xinfo.get(x).toString())-XL)*400/((XH-

XL)))-2+35),

 400-(int)Math.round(((Double.parseDouble(Yinfo.get(x).toString())-YL)*400/((YH-

YL))))-2, 4,4);

 }

 }

 63

 private void initHighLow() //finds min and max of x and y data

 {

 XL=Double.MAX_VALUE;XH=Double.MIN_VALUE;

 YL=Double.MAX_VALUE;YH=Double.MIN_VALUE;

 for(int x=0;x<Xinfo.size();x++)

 {

 if(Double.parseDouble(Xinfo.get(x).toString())>XH)

 {

 XH=extraSpacing*Double.parseDouble(Xinfo.get(x).toString());

 }

 if(Double.parseDouble(Xinfo.get(x).toString())<XL)

 {

 XL=(double)Math.floor(Double.parseDouble(Xinfo.get(x).toString()));

 }

 }

 for(int x=0;x<Yinfo.size();x++)

 {

 if(Double.parseDouble(Yinfo.get(x).toString())>YH)

 {

 YH=extraSpacing*Double.parseDouble(Yinfo.get(x).toString());

 }

 if(Double.parseDouble(Yinfo.get(x).toString())<YL)

 {

 YL=(double)Math.floor(Double.parseDouble(Yinfo.get(x).toString()));

 }

 }

 if(XL>=XH)

 {

 XL=0;

 }

 if(YL>=YH)

 {

 YL=0;

 }

 }

 public void setVectors(Vector X,Vector Y)//reset x and y data values

 {

 Xinfo=X;

 Yinfo=Y;

 initHighLow();

 this.repaint();

 }

 public int print(Graphics g, PageFormat pf, int pgIndex)//printable implementation to print the

graph

 {

 if(pgIndex>0)

 {

 return Printable.NO_SUCH_PAGE;

 }

 g.translate((int)(pf.getImageableX()),(int)(pf.getImageableY()));

 paint(g);

 return Printable.PAGE_EXISTS;

 }

 64

 }

 65

//EnvironmentEditor.java

//Created on January 8, 2007, 6:03 PM

//Christopher Morrison

//Goals - add in progress bar multithreading add fore controls

//Allows user input for wind and other environmental variables

package phoenix;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.awt.print.*;

import java.awt.image.*;

import java.io.*;

import java.util.*;

import javax.swing.border.*;

import java.math.*;

import javax.swing.event.*;

import java.beans.*;

public class EnvironmentEditor extends JFrame implements ActionListener, WindowListener, Runnable

{

 Dimension D=new Dimension(500,550);

 Color ThemeColor=Color.CYAN;

 Image IC=Toolkit.getDefaultToolkit().getImage("Phoenix.jpg");

 Image IM=null;

 EETab Tab=new EETab();

 int height;

 int width;

 PatchClass Environment;

 CustomEnvironmentLoader CE=null;//=new CustomEnvironmentLoader();

 CustomEnvironment CEE;//=new CustomEnvironment();

 ScanStats SS=null;//=new ScanStats();

 Thread thread;

 Thread ProgressThread;

 public EnvironmentEditor(PatchClass PC)

 {

 super("Environment Editor");

 Environment=PC;

 this.setPreferredSize(D);

 this.setSize(D);

 this.setIconImage(IC);

 this.setVisible(false);

 int height=this.getHeight();

 int width=this.getWidth();

 this.add(Tab);

 Tab.EL.Browse.addActionListener(this);

 Tab.EL.Cancel.addActionListener(this);

 Tab.EL.OK.addActionListener(this);

 Tab.E.Exit.addActionListener(this);

 }

 public void Activate(PatchClass PC)

 {

 Environment=PC;

 66

 this.setVisible(true);

 }

 public class EETab extends JTabbedPane

 {

 Editor E=new Editor();

 EnvLoader EL=new EnvLoader();

 DrawPanel DP=new DrawPanel(new Vector(0),new Vector(0),10,10);

 public EETab()

 {

 this.addTab("Environment Center",E);

 this.addTab("Environment Creater",EL);

 this.addTab("Analysis",DP);

 }

 public class Editor extends JPanel

 {

 JButton Exit=new JButton("Exit");

 JButton Save=new JButton("Save Changes");

 Top T=new Top();

 Bottom B=new Bottom();

 Center C=new Center();

 public Editor()

 {

 super(new BorderLayout(2,2));

 this.add(T,BorderLayout.NORTH);

 this.add(C,BorderLayout.CENTER);

 this.add(B,BorderLayout.SOUTH);

 }

 public void ResetValues()

 {

 }

 public class Center extends JPanel

 {

 JPanel A=new JPanel(new BorderLayout(2,2));

 JPanel B=new JPanel(new BorderLayout(2,2));

 JPanel AA=new JPanel(new GridLayout(2,2));

 JPanel BB=new JPanel(new BorderLayout(20,20));

 JPanel R=new JPanel();

 JPanel R1=new JPanel();

 JPanel W=new JPanel(new BorderLayout());

 JPanel C=new JPanel();

 JPanel WindSpeedSlider=new JPanel();

 JPanel WindSpeedText=new JPanel();

 JPanel Blah=new JPanel();

 JPanel Blah1=new JPanel(new GridLayout(2,1));

 JLabel WindSpeed=new JLabel("Wind Speed: "+Data.WindSpeed+" m/s");

 JLabel WindAngle=new JLabel("Wind Angle: "+Data.WindAngle.getDegree());

 WindSlider WS=new WindSlider(120);

 JTextField JTF=new JTextField(Double.toString(Data.WindSpeed),6);

 JButton SetWindSpeed=new JButton("Set Speed");

 Font Large=new Font("LucidaBrightDemiBold",Font.BOLD,16);

 67

 TitledBorder TBF=new TitledBorder(null,"Fire

Factors",TitledBorder.LEFT,TitledBorder.TOP,Large);

 TitledBorder TBW=new TitledBorder(null,"Wind

Factors",TitledBorder.LEFT,TitledBorder.TOP,Large);

 TitledBorder Wspeed=new TitledBorder(new LineBorder(Color.BLUE),"Wind Speed");

 TitledBorder Wangle=new TitledBorder(new LineBorder(Color.BLUE),"Wind Angle");

 JSlider JS=new JSlider(0,50,0);

 JCheckBox SliderBox=new JCheckBox("Slider");

 JCheckBox TextBox=new JCheckBox("Manual");

 JCheckBox Wind=new JCheckBox("Wind");

 public Center()

 {

 super(new GridLayout(2,1,4,4));

 WS.addMouseListener(new ML());

 JS.addChangeListener(new CL());

 JTF.addActionListener(new AL());

 SetWindSpeed.addActionListener(new AL());

 TextBox.addActionListener(new AL());

 SliderBox.addActionListener(new AL());

 Wind.addActionListener(new AL());

 JS.setMinorTickSpacing(5);

 JS.setMajorTickSpacing(10);

 JS.setPaintLabels(true);

 TBF.setTitleColor(Color.CYAN);

 TBW.setTitleColor(Color.CYAN);

 Wangle.setTitleColor(new Color(45,45,45));

 Wspeed.setTitleColor(new Color(45,45,45));

 A.setBorder(TBF);

 B.setBorder(TBW);

 C.setBorder(Wspeed);

 W.setBorder(Wangle);

 WindSpeedSlider.setBorder(new LineBorder(new Color(45,45,45)));

 WindSpeedText.setBorder(new LineBorder(new Color(45,45,45)));

 W.setBackground(Color.CYAN);

 R.setBackground(Color.CYAN);

 R1.setBackground(Color.CYAN);

 A.setBackground(Color.BLUE);

 B.setBackground(Color.BLUE);

 AA.setBackground(Color.CYAN);

 BB.setBackground(Color.CYAN);

 C.setBackground(Color.CYAN);

 WindSpeedSlider.setBackground(Color.CYAN);

 WindSpeedText.setBackground(Color.CYAN);

 SliderBox.setBackground(Color.CYAN);

 TextBox.setBackground(Color.CYAN);

 Blah.setBackground(Color.CYAN);

 Wind.setBackground(Color.CYAN);

 this.add(A);

 68

 this.add(B);

 A.add(AA,BorderLayout.CENTER);

 B.add(BB,BorderLayout.CENTER);

 BB.add(W,BorderLayout.WEST);

 W.add(WS,BorderLayout.CENTER);

 W.add(R,BorderLayout.WEST);

 W.add(R1,BorderLayout.NORTH);

 W.add(R,BorderLayout.EAST);

 W.add(WindAngle,BorderLayout.SOUTH);

 BB.add(C,BorderLayout.CENTER);

 Blah.add(Wind);

 Blah.add(WindSpeed);

 C.add(Blah,BorderLayout.NORTH);

 C.add(Blah1,BorderLayout.CENTER);

 Blah1.add(WindSpeedSlider,BorderLayout.CENTER);

 Blah1.add(WindSpeedText,BorderLayout.SOUTH);

 WindSpeedSlider.add(SliderBox);

 WindSpeedSlider.add(JS);

 WindSpeedText.add(TextBox);

 WindSpeedText.add(SetWindSpeed);

 WindSpeedText.add(JTF);

 Wind.setSelected(false);

 SliderBox.setSelected(true);

 SetWindSpeed.setEnabled(false);

 JTF.setEnabled(false);

 disableSlider();

 disableText();

 SliderBox.setEnabled(false);

 TextBox.setEnabled(false);

 }

 public void disableSlider()

 {

 JS.setEnabled(false);

 SliderBox.setSelected(false);

 }

 public void enableSlider()

 {

 JS.setEnabled(true);

 SliderBox.setSelected(true);

 }

 public void disableText()

 {

 TextBox.setSelected(false);

 JTF.setEnabled(false);

 SetWindSpeed.setEnabled(false);

 }

 public void enableText()

 {

 JTF.setEnabled(true);

 SetWindSpeed.setEnabled(true);

 TextBox.setSelected(true);

 }

 public class ML implements MouseListener

 {

 69

 public void mouseEntered(MouseEvent E) {}

 public void mouseExited(MouseEvent E) {}

 public void mouseReleased(MouseEvent E)

 {

 BigDecimal Bg=new BigDecimal(WS.CurrentAngle.getDegree());

 BigDecimal bG=Bg.setScale(1,BigDecimal.ROUND_HALF_UP);

 if(E.getButton()==MouseEvent.BUTTON1)

 {

 if(JOptionPane.showConfirmDialog(C,"Set Wind Angle:

"+bG.doubleValue()+"?")==JOptionPane.OK_OPTION)

 {

 WS.WindAngle=WS.CurrentAngle;

 Data.WindAngle=WS.WindAngle; //program specific

 }

 }

 WindAngle.setText("Wind Angle: "+Double.toString(bG.doubleValue()));

 }

 public void mousePressed(MouseEvent E) {}

 public void mouseClicked(MouseEvent E) {}

 }

 public class CL implements ChangeListener

 {

 public void stateChanged(ChangeEvent E)

 {

 double ws=((JSlider)E.getSource()).getValue();

 WindSpeed.setText("Wind Speed: "+Double.toString(ws)+" m/s");

 Data.WindSpeed=ws;

 }

 }

 public class AL implements ActionListener

 {

 public void actionPerformed(ActionEvent E)

 {

 if(E.getSource()==JTF||E.getSource()==SetWindSpeed)

 {

 try

 {

 double ws=Double.parseDouble(JTF.getText());

 Data.WindSpeed=ws;

 WindSpeed.setText("Wind Speed: "+Double.toString(ws)+" m/s");

 }

 catch(Exception e)

 {

 JOptionPane.showMessageDialog(C,"Input Error"+e.toString());

 JTF.setText(Double.toString(Data.WindSpeed));

 }

 }

 if(E.getSource()==TextBox)

 {

 if(TextBox.isSelected())

 {

 disableSlider();

 enableText();

 }

 70

 else

 {

 enableSlider();

 disableText();

 }

 }

 if(E.getSource()==SliderBox)

 {

 if(SliderBox.isSelected())

 {

 enableSlider();

 disableText();

 Data.Wind=true;

 }

 else

 {

 disableSlider();

 enableText();

 Data.Wind=false;

 }

 }

 if(E.getSource()==Wind)

 {

 if(!Wind.isSelected())

 {

 disableSlider();

 disableText();

 SliderBox.setEnabled(false);

 TextBox.setEnabled(false);

 }

 else

 {

 enableSlider();

 SliderBox.setEnabled(true);

 TextBox.setEnabled(true);

 }

 }

 }

 }

 }

 public class Top extends JPanel

 {

 public Top()

 {

 }

 }

 public class Bottom extends JPanel

 {

 public Bottom()

 {

 super(new FlowLayout(FlowLayout.RIGHT,5,5));

 this.add(Save);

 this.add(Exit);

 }

 }

 71

 }

 public class EnvLoader extends JPanel

 {

 JButton Browse=new JButton("Browse");

 JButton OK=new JButton("Scan");

 JButton Cancel=new JButton("Cancel");

 Top T=new Top();

 Picture P=new Picture();

 Bottom B=new Bottom();

 JScrollPane JSP=new JScrollPane(P);

 public EnvLoader()

 {

 super(new BorderLayout(2,2));

 this.add(T,BorderLayout.NORTH);

 this.add(JSP,BorderLayout.CENTER);

 this.add(B,BorderLayout.SOUTH);

 }

 public class Top extends JPanel

 {

 public Top()

 {

 this.add(Browse);

 }

 }

 public class Bottom extends JPanel

 {

 public Bottom()

 {

 super(new FlowLayout(FlowLayout.RIGHT,5,5));

 this.add(OK);

 this.add(Cancel);

 }

 }

 public class Picture extends JPanel

 {

 public Picture()

 {

 this.setPreferredSize(new Dimension(this.getHeight(),this.getWidth()));

 this.setBackground(ThemeColor);

 }

 public void paintComponent(Graphics G)

 {

 super.paintComponent(G);

 if(IM!=null)

 {

G.drawImage(IM,(int)(1.0/16.0*this.getWidth()),(int)(1.0/16.0*this.getHeight()),(int)(14.0/16.0*this.getWi

dth()),(int)(14.0/16.0*this.getHeight()),this);

 }

 }

 }

 }

 public class Analysis extends JPanel

 {

 72

 public Analysis()

 {

 super(new GridLayout());

 }

 }

 }

 public void actionPerformed(ActionEvent E)

 {

 if(E.getSource()==Tab.EL.Browse)

 {

 JFileChooser JFC= new JFileChooser(".");

 JFC.setFileFilter(new Input(1));

 JFC.setAccessory(new ImageFileView(JFC));

 JFC.setVisible(true);

 int retval = JFC.showOpenDialog(null);

 if (retval == JFileChooser.APPROVE_OPTION)

 {

 File myFile = JFC.getSelectedFile();

 try

 {

 IM=Toolkit.getDefaultToolkit().getImage(JFC.getSelectedFile().toString());

 Tab.EL.repaint();

 }

 catch(Exception e)

 {

 JOptionPane.showMessageDialog(null,"Open file failed: "+e.toString());

 }

 }

 }

 if(E.getSource()==Tab.EL.Cancel||E.getSource()==Tab.E.Exit)

 {

 this.setVisible(false);

 }

 if(E.getSource()==Tab.EL.OK)

 {

 CE=new CustomEnvironmentLoader();

 CE.setVisible(true);

 CE.CELP.OK.addActionListener(this);

 }

 if(CE!=null)

 {

 if(E.getSource()==CE.CELP.OK)

 {

 if(CE.check())

 {

 SS=new ScanStats(IM,CE);

 //CE.CELP.JPG=new JProgressBar(0,SS.progress()[0]);

 //Thread Th=new Thread(new ProgressMonitorThread());

 //Th.start();

 thread=new Thread(SS);

 thread.start();

 ProgressThread=new Thread(this);

 ProgressThread.start();

 //CE.setVisible(false);

 73

 }

 }

 }

 }

 public void windowActivated(WindowEvent E)

 {

 }

 public void windowDeactivated(WindowEvent E)

 {

 }

 public void windowOpened(WindowEvent E)

 {

 }

 public void windowClosed(WindowEvent E)

 {

 }

 public void windowClosing(WindowEvent E)

 {

 this.setVisible(false);

 CE.dispose();//setVisible(false);

 CEE.dispose();//setVisible(false);

 }

 public void windowIconified(WindowEvent E)

 {

 }

 public void windowDeiconified(WindowEvent E)

 {

 }

 public void run()

 {

 CE.CELP.JPG=new JProgressBar(0,SS.progress()[0]);

 do

 {

 try

 {Thread.sleep(100);}

 catch(Exception e)

 {

 JOptionPane.showMessageDialog(null,e.toString());

 }

 CE.CELP.JPG.setValue(SS.progress()[1]);

 }while(CE.CELP.JPG.getValue()<SS.progress()[0]);

 CEE=new CustomEnvironment(IM,SS);

 CE.setVisible(false);

 CEE.setVisible(true);

 this.setVisible(false);

 }

}

 74

// FTAdd.java

// Created on March 10, 2007, 7:27 PM

// @author Christopher Morrison

//Designed to allow for increased amount fuel types

package phoenix;

import javax.swing.*;

import java.util.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.border.*;

public class FTAdd extends JFrame

{

 Dimension D=new Dimension(320,240);

 String name="";

 double spreadrate=1;

 double flashpoint=0;

 Color colors=null;

 FTAPane Pane=new FTAPane();

 public FTAdd()

 {

 super("Add Fuel Type");

 this.setSize(D);

 this.setPreferredSize(D);

 this.setBackground(Color.BLUE);

 this.add(Pane);

 }

 public class FTAPane extends JPanel

 {

 JButton Cancel=new JButton("Cancel");

 JButton OK=new JButton("OK");

 FTACenter FTAC=new FTACenter();

 JPanel Bottom=new JPanel(new FlowLayout(FlowLayout.RIGHT));

 public FTAPane()

 {

 super(new BorderLayout());

 this.add(FTAC,BorderLayout.CENTER);

 this.add(Bottom,BorderLayout.SOUTH);

 Bottom.setBackground(Color.BLUE);

 Bottom.add(Cancel);

 Bottom.add(OK);

 }

 public class FTACenter extends JPanel implements ActionListener

 {

 JLabel FuelName=new JLabel ("Fuel Name ");

 JLabel SpreadRate=new JLabel ("Spread Rate (cm/s) ");

 JLabel FlashPoint=new JLabel ("Flash Point (dg C) ");

 JLabel Colors=new JLabel ("Color ");

 75

 JLabel FuelNameN=new JLabel(name);

 JLabel SpreadRateN=new JLabel(Double.toString(spreadrate));

 JLabel FlashPointN=new JLabel(Double.toString(flashpoint));

 JTextField NameF=new JTextField(name,5);

 JTextField SpreadF=new JTextField(Double.toString(spreadrate),5);

 JTextField FlashF=new JTextField(Double.toString(flashpoint),5);

 JButton JB1=new JButton("Set");

 JButton JB2=new JButton("Set");

 JButton JB3=new JButton("Set");

 JButton JB4=new JButton("Set Default Color");

 JPanel Top=new JPanel(new GridLayout(4,1));

 JPanel JP1=new JPanel(new FlowLayout(FlowLayout.LEFT));

 JPanel JP2=new JPanel(new FlowLayout(FlowLayout.LEFT));

 JPanel JP3=new JPanel(new FlowLayout(FlowLayout.LEFT));

 JPanel JP4=new JPanel(new FlowLayout(FlowLayout.LEFT));

 public FTACenter()

 {

 super(new GridLayout(1,1,5,5));

 this.setBackground(Color.BLUE);

 JP1.setBackground(Color.CYAN);

 JP2.setBackground(Color.CYAN);

 JP3.setBackground(Color.CYAN);

 JP4.setBackground(Color.CYAN);

 Top.setBorder(new TitledBorder(null,"Fuel Type Specs"));

 JB1.addActionListener(this);

 JB2.addActionListener(this);

 JB3.addActionListener(this);

 JB4.addActionListener(this);

 NameF.addActionListener(this);

 SpreadF.addActionListener(this);

 FlashF.addActionListener(this);

 Cancel.addActionListener(this);

 this.add(Top);

 Top.add(JP1);

 Top.add(JP2);

 Top.add(JP3);

 Top.add(JP4);

 JP1.add(FuelName);

 JP1.add(NameF);

 JP1.add(JB1);

 JP2.add(SpreadRate);

 JP2.add(SpreadF);

 JP2.add(JB2);

 JP2.add(SpreadRateN);

 JP3.add(FlashPoint);

 JP3.add(FlashF);

 76

 JP3.add(JB3);

 JP3.add(FlashPointN);

 JP4.add(Colors);

 JP4.add(JB4);

 }

 public void actionPerformed(ActionEvent E)

 {

 if(E.getSource()==JB1||E.getSource()==NameF)

 {

 try

 {

 name=FuelName.getText();

 FuelNameN.setText(name);

 }

 catch(Exception EE)

 {

 FuelNameN.setText(name);

 }

 }

 if(E.getSource()==JB2||E.getSource()==SpreadF)

 {

 try

 {

 spreadrate=Double.parseDouble(SpreadF.getText());

 SpreadRateN.setText(Double.toString(spreadrate));

 if(spreadrate<=0)

 {

 throw new Exception("Spread Rate out of bounds");

 }

 }

 catch(Exception EE)

 {

 SpreadRateN.setText(Double.toString(spreadrate));

 }

 }

 if(E.getSource()==JB3||E.getSource()==FlashF)

 {

 try

 {

 flashpoint=Double.parseDouble(FlashF.getText());

 FlashPointN.setText(Double.toString(flashpoint));

 }

 catch(Exception EE)

 {

 FlashPointN.setText(Double.toString(flashpoint));

 }

 }

 if(E.getSource()==JB4)

 {

 try

 {

 Color C=JColorChooser.showDialog(this,"DefaultColor",Color.WHITE);

 }

 catch(Exception EE)

 {

 77

 }

 }

 if(E.getSource()==OK)

 {

 //action handled in Environment Editor Class

 }

 if(E.getSource()==Cancel)

 {

 this.setVisible(false);

 }

 }

 }

 }

 public boolean check()

 {

 try

 {

 name=Pane.FTAC.NameF.getText();

 Pane.FTAC.FuelNameN.setText(name);

 spreadrate=Double.parseDouble(Pane.FTAC.SpreadF.getText());

 Pane.FTAC.SpreadRateN.setText(Double.toString(spreadrate));

 flashpoint=Double.parseDouble(Pane.FTAC.FlashF.getText());

 Pane.FTAC.FlashPointN.setText(Double.toString(flashpoint));

 if(spreadrate<=0)

 {

 throw new Exception("Spread Rate out of bounds should be greater than 0");

 }

 if(name.equals(""))

 {

 throw new Exception("Fuel Type must have a name");

 }

 return true;

 }

 catch(Exception EE)

 {

 JOptionPane.showMessageDialog(this,"Insufficient data: "+EE.toString());

 return false;

 }

 }

 public FuelType getFuelType()

 {

 return new FuelType(name,spreadrate,flashpoint,colors);

 }

}

 78

//Fire Flow.java

//Christopher Morrison

//This class encapsulates the whole fire flow process

package phoenix;

import javax.swing.*;

import java.util.*;

public class FireFlow implements Runnable

{

 PatchClass environment;

 FireList FL=new FireList();

 DrawList DL=new DrawList();

 PerimeterList PL=new PerimeterList();

 int width;

 int height;

 public FireFlow(PatchClass PC)

 {

 environment=PC;

 width=environment.getWidth();

 height=environment.getHeight();

 }

 public synchronized void run()

 {

 DL.clear();

 FL.clear();

 if(PL.size()!=0)

 {

 for(int x=0;x<PL.size();x++)

 {

 FireClass tmp=new FireClass(((Location)PL.get(x)).xloc,((Location)PL.get(x)).yloc);

 FL.add(tmp);

 }

 }

 PL.clear();

 if(FL.size()!=0)

 {

 for(int x=0;x<=FL.size()-1;x++)

 {

 FireClass A=(FireClass)FL.get(x);

 A.FireFlow();

 }

 }

 Data.V.Update(FireDataPackage());

 }

 public FirePackage FireDataPackage()

 {

 return new FirePackage(FL,DL,PL);

 }

 class FireClass extends Thread

 79

 {

 public double increment=Data.increment; //fire step length

 public double MSR=Data.MSR; //interval*fuela length per step

 public double s=Data.s; //current interval*fuela

 public int degrees=Data.degrees; //number of extensions on fire arc

 public final double pi=Math.PI;

 public double xstart;

 public double ystart;

 public double zstart;

 public FireClass(double x,double y)

 {

 xstart=x;ystart=y;

 }

 public void run()

 {

 FireFlow();

 }

 public void FireFlow()

 {

 Draw coordinates=new Draw(xstart,ystart);

 Degrees WindDeg=new Degrees(0,Degrees.degrees);

for(/*WindDeg=0*/;WindDeg.getDegree()<=360;WindDeg.addDegrees(Data.FireArcPrecision))

 {

 boolean done=false;

 double spread=0;

 s=0;

 do

 {

 double xa=xstart+s*Math.cos(WindDeg.getRadian());

 double ya=ystart+s*Math.sin(WindDeg.getRadian());

 if(xa<0){xa=0;}

 if(ya<0){ya=0;}

 if(xa>width){xa=width;}

 if(ya>height){ya=height;}

 int a=(int)xa;

 int b=(int)ya;

 spread+=increment*environment.getPatch(a,b).Type.getSpreadRate();

 s+=increment;

 if(spread>=MSR)

 {

 if(Data.Wind)

 {

 xa=WindVectoring("x",xa,ya,Data.WindAngle);

 ya=WindVectoring("y",xa,ya,Data.WindAngle);

 }

 if(FirePerimeterReduction(xa,ya,WindDeg))

 {

 coordinates.add(new Location(xa,ya,0));

 PL.add(new Location(xa,ya,0));

 80

 }

 done=true;

 }

 }while(!done);

 }

 DL.add(coordinates);

 }

 public boolean FirePerimeterReduction(double xa,double ya,Degrees degslope)

 {

 double length=Math.sqrt(Math.pow(xa-xstart,2)+Math.pow(ya-ystart,2));

 int aa=0,ba=0,ca=0,da=0;

 for(double x=0; x<=length; x+=.09)

 {

 aa=(int)(xstart+x*Math.cos(degslope.getRadian()));

 ba=(int)(ystart+x*Math.sin(degslope.getRadian()));

 ca=(int)((xstart+x*Math.cos(degslope.getRadian()))*10);

 da=(int)((ystart+x*Math.sin(degslope.getRadian()))*10);

 if(aa<0){aa=0;}

 if(ba<0){ba=0;}

 if(ca<0){ca=0;}

 if(da<0){da=0;}

 if(!environment.getPatch(aa,ba).PreviousFire(ca%10,da%10)&&x<length-2*Math.sqrt(.02))

 {

 environment.getPatch(aa,ba).Ignite(ca%10,da%10);

 }

 }

 if(!environment.getPatch(aa,ba).PreviousFire(ca%10,da%10))

 {return true;}

 return false;

 }

 public double WindVectoring(String component, double xa,double ya,Degrees Angle)

 {

 double length=Math.sqrt(Math.pow(xa-xstart,2)+Math.pow(ya-ystart,2));

 double na;

 Degrees WA=Data.WindAngle;

 if(WA.getDegree()>180)

 {

 if(WA.getDegree()>270)

 {

 na=270+(WA.getDegree()-270);

 }

 else

 {

 na=270+(270-WA.getDegree());

 }

 }

 else

 {

 if(WA.getDegree()>90)

 {

 81

 na=90-(WA.getDegree()-90);

 }

 else

 {

 na=90+(90-WA.getDegree());

 }

 }

 Degrees feta=new Degrees(Math.abs(Angle.getDegree()-na),Degrees.degrees);

 double newLength=length-Data.WindSpeed*Data.WindToSpread*Math.cos(feta.getRadian());

 double nxa=xstart+newLength*Math.cos(Angle.getRadian());

 double nya=ystart+newLength*Math.sin(Angle.getRadian());

 if(nxa<0){nxa=0;}

 if(nya<0){nya=0;}

 if(nxa>width) {nxa=width;}

 if(nya>height) {nya=height;}

 if(component.equals("x")) {return nxa;}

 if(component.equals("y")) {return nya;}

 return 0;

 }

 }

 public void addFire(Location L)

 {

 PL.add(L);

 }

}

 82

//FireList.java

//Christopher Morison

//This class encapsulates a list of all the locations of points

//of interest

package phoenix;

import java.util.*;

public class FireList extends ArrayList

{

 public FireList()

 {

 }

}

 83

//Fire Package.java

//Christopher Morrison

//This class encapsulates all the information about fire points

//arcs and perimeters for the environment

package phoenix;

public class FirePackage

{

 FireList FL;

 DrawList DL;

 PerimeterList PL;

 public FirePackage(FireList fl,DrawList dl, PerimeterList pl)

 {

 FL=fl;

 DL=dl;

 PL=pl;

 }

 public FireList getFireList()

 {

 return FL;

 }

 public DrawList getDrawList()

 {

 return DL;

 }

 public PerimeterList getPerimeter()

 {

 return PL;

 }

}

 84

// FuelType.java

// Created on March 10, 2007, 10:30 AM

// @author Christopher Morrison

//encapsulates constructor for all fuel types and a few static base fueltypes

package phoenix;

import javax.swing.*;

import java.util.*;

import java.awt.*;

import java.awt.Event.*;

public class FuelType

{

 private String Name; //Name Spread Rate and flashpoint are th only implemented

 private double SpreadRate; //Fuel Type traits

 //private double DryFuel;

 //private double WetFuel;

 //private double DryFlash;

 //private double WetFlash;

 private double FlashPoint; //simplified flashpoint for now

 private Color DefaultColor;

 public static FuelType BasicGrass=new FuelType("Grass",.5,100,Color.GREEN);

 public static FuelType BasicGround=new FuelType("Ground",.5,100,Color.ORANGE.darker());

 public static FuelType BasicShrub=new FuelType("Shrub",.5,100,new Color(50,255,25));

 public static FuelType BasicDecidious=new FuelType("Decidious",.5,100,Color.GREEN);

 public static FuelType BasicConiferous=new FuelType("Coniferous",.5,100,Color.GREEN.darker());

 public FuelType(String name,double spreadrate,double flashpoint,Color defaultcolor)

 {

 Name=name;

 SpreadRate=spreadrate;

 FlashPoint=flashpoint;

 DefaultColor=defaultcolor;

 }

 public String toString()

 {

 return Name;

 }

 public String getName()

 {

 return Name;

 }

 public double getSpreadRate()

 {

 return SpreadRate;

 }

 public double getFlashPoint()

 {

 return FlashPoint;

 }

 public Color getDefaultColor()

 {

 return DefaultColor;

 }

}

 85

// ImageFileView.java

// Created on January 30, 2007, 6:30 PM

// @author Christopher Morrison

//some material borrowed from http://java.sun.com/docs/books

//tutorial/uiswing/components/filechooser.html#filters

//This edits a JFile Chooser to show an image of any image files

package phoenix;

import javax.swing.*;

import java.beans.*;

import java.awt.*;

import java.io.File;

public class ImageFileView extends JComponent implements PropertyChangeListener

{

 ImageIcon thumbnail = null;

 File file = null;

 public ImageFileView(JFileChooser fc)

 {

 setPreferredSize(new Dimension(100, 50));

 fc.addPropertyChangeListener(this);

 }

 public void loadImage()

 {

 if (file == null)

 {

 thumbnail = null;

 return;

 }

 //Don't use createImageIcon (which is a wrapper for getResource)

 //because the image we're trying to load is probably not one

 //of this program's own resources.

 ImageIcon tmpIcon = new ImageIcon(file.getPath());

 if (tmpIcon != null)

 {

 if (tmpIcon.getIconWidth() > 90)

 {

 thumbnail = new ImageIcon(tmpIcon.getImage().getScaledInstance(90, -

1,Image.SCALE_DEFAULT));

 }

 else

 { //no need to miniaturize

 thumbnail = tmpIcon;

 }

 }

 }

 public void propertyChange(PropertyChangeEvent E)

 {

 boolean update = false;

 String prop = E.getPropertyName();

 //If the directory changed, don't show an image.

 86

 if (JFileChooser.DIRECTORY_CHANGED_PROPERTY.equals(prop))

 {

 file = null;

 update = true;

 //If a file became selected, find out which one.

 }

 else if (JFileChooser.SELECTED_FILE_CHANGED_PROPERTY.equals(prop))

 {

 file = (File) E.getNewValue();

 update = true;

 }

 //Update the preview accordingly.

 if (update)

 {

 thumbnail = null;

 if (isShowing())

 {

 loadImage();

 repaint();

 }

 }

 }

 protected void paintComponent(Graphics g)

 {

 if (thumbnail == null)

 {

 loadImage();

 }

 if (thumbnail != null)

 {

 int x = getWidth()/2 - thumbnail.getIconWidth()/2;

 int y = getHeight()/2 - thumbnail.getIconHeight()/2;

 if (y < 0)

 {y = 0;}

 if (x < 5)

 {x = 5;}

 thumbnail.paintIcon(this, g, x, y);

 }

 }

}

 87

//Location.java

//Christopher Morrison

//A basic class that holds a location x,y,z

package phoenix;

public class Location

{

 double xloc;

 double yloc;

 double zloc;

 public Location(double x,double y,double z)

 {

 xloc=x;

 yloc=y;

 zloc=z;

 }

}

 88

//Main.java

//ChristopherMorrison

//The driver of the whole Program

//resets itself undercertain conditions

package phoenix;

import javax.swing.*;

public class Main implements Runnable

{

 Thread Reset;

 Desktop D;

 /** Creates a new instance of Main */

 public Main()

 {

 D=new Desktop();

 D.setVisible(true);

 Reset=new Thread(this);

 Reset.start();

 }

 public void run()

 {

 do

 {

 try

 {Thread.sleep(100);}

 catch(Exception e)

 {

 JOptionPane.showMessageDialog(null,e.toString());

 }

 if(Data.EnvChanged)

 {

 D.dispose();

 //D.setVisible(false);

 D=new Desktop();

 D.setVisible(true);

 Data.EnvChanged=false;

 }

 }while(true);

 }

 public static void main(String[] args)

 {

 Main M=new Main();

 }

}

 89

//OptionPanel.java

//Christopher Morrison

//Top Panel Holds ToolBar and other data

package phoenix;

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

import javax.swing.border.*;

public class OptionPanel extends JPanel

{

 ImageIcon EEI=new ImageIcon("EnvironmentEditor.png");

 ImageIcon StepI=new ImageIcon("Step.png");

 JButton EE=new JButton(EEI);

 JButton Step=new JButton(StepI);

 JLabel Zoom=new JLabel("Zoom");

 JTextField ZoomLevel=new JTextField("8",5);

 JToolBar JTB=new JToolBar("Tool Bar");

 public OptionPanel()

 {

 this.setLayout(new FlowLayout(FlowLayout.LEFT));

 this.add(JTB);

 JTB.add(EE);

 JTB.add(Step);

 EE.setToolTipText("Environment Editor");

 this.setBackground(Color.CYAN);

 }

 public void paintComponent(Graphics G)

 {

 super.paintComponent(G);

 }

}

 90

//PatchClass.java

//Christopher Morrison

//Holds all data about the virtual forest/environment

package phoenix;

import java.util.*;

import java.awt.*;

import javax.swing.*;

import java.applet.*;

import javax.swing.*;

import java.awt.event.*;

public class PatchClass

{

 ArrayList Ground=new ArrayList(); //Array List Holding all patch information

 Random rand=new Random();

 Data c=new Data();

 int width;

 int height;

 public double WindSpeed;

 public double AmbientTemp;

 public double WindAngle;

 int size=5;

 public PatchClass(double Ambient,double WindA,double WindS) //4 kind enviroment used in

empirical testing

 {

 for(int x=0; x<80;x++)

 {

 Ground.add(new ArrayList());

 for(int y=0; y<80;y++)

 {

 if(x>=40)

 {

 if(y>=40)

 {

 ((ArrayList)Ground.get(x)).add(new patches(Data.FuelKind(3)));

 }

 else

 {

 ((ArrayList)Ground.get(x)).add(new patches(Data.FuelKind(2)));

 }

 }

 else

 {

 if(y>=40)

 {

 ((ArrayList)Ground.get(x)).add(new patches(Data.FuelKind(1)));

 }

 else

 {

 ((ArrayList)Ground.get(x)).add(new patches(Data.FuelKind(0)));

 }

 }

 }

 }

 91

 AmbientTemp=Ambient;

 WindAngle=WindA;

 WindSpeed=WindS;

 height=Ground.size();

 width=((ArrayList)Ground.get(0)).size();

 }

 public PatchClass(int XSize,int YSize,double Ambient,double WindA,double WindS) //Random

shuffle Environment Constructor

 {

 int max=rand.nextInt(9);

 for(int x=0; x<XSize;x++)

 {

 Ground.add(new ArrayList());

 for(int y=0; y<YSize;y++)

 {

 ((ArrayList)Ground.get(x)).add(new

patches(Data.FuelKind(rand.nextInt(max+1))));

 }

 }

 AmbientTemp=Ambient;

 WindAngle=WindA;

 WindSpeed=WindS;

 height=Ground.size();

 width=((ArrayList)Ground.get(0)).size();

 }

 public PatchClass(double Ambient,double WindA,double WindS,int XSize,int YSize) //random Box

Environment

 {

 int max=rand.nextInt(9);

 for(int x=0; x<XSize;x++)

 {

 Ground.add(new ArrayList());

 for(int y=0; y<YSize;y++)

 {

 ((ArrayList)Ground.get(x)).add(new patches(Data.FuelKind(1)));

 }

 }

 for(int a=14; a>=1;a--)

 {

 int yl=rand.nextInt(height-3*a);

 int xl=rand.nextInt(width-3*a);

 int type=rand.nextInt(max+1);

 for(int x=0;x<=a*3;x++)//(int)Math.floor(Math.pow(3/4,a)*width); x++)

 {

 for(int y=0;y<=a*3;y++)//(int)Math.floor(Math.pow(3/4,a)*height); y++)

 {

 ((ArrayList)Ground.get(x+xl)).set(y+yl,new patches(Data.FuelKind(type)));

 }

 }

 }

 AmbientTemp=Ambient;

 92

 WindAngle=WindA;

 WindSpeed=WindS;

 height=Ground.size();

 width=((ArrayList)Ground.get(0)).size();

 }

 public PatchClass(FuelType[][] CustomEnv) //Satellite Photo Env Constructor

 {

 width=CustomEnv.length;

 height=CustomEnv[0].length;

 JOptionPane.showMessageDialog(null,height+" "+width);

 for(int y=0;y<width;y++)

 {

 ArrayList AL=new ArrayList();

 for(int x=0;x<height;x++)

 {

 AL.add(new patches(FuelType.BasicConiferous));//CustomEnv[y][x]));

 }

 Ground.add(AL);

 }

 }

 public class patches

 {

 double temperatureC; //inividual patch traits

 FuelType Type;

 public boolean[][] active=new boolean[10][10];

 public patches(FuelType FT)

 {

 Type=FT;

 temperatureC=AmbientTemp;

 for(int a=0;a<=9;a++)

 {

 for(int b=0; b<=9;b++)

 { active[a][b]=false;}

 }

 }

 public boolean PreviousFire(int a,int b)

 {

 if(size==5)

 {

 return active[(int)Math.floor(a/2)][(int)Math.floor(b/2)];

 }

 return active[a][b];

 }

 public void Ignite(int a, int b)

 {

 if(size==5)

 {

 active[(int)Math.floor(a/2)][(int)Math.floor(b/2)]=true;

 return;

 }

 active[a][b]=true;

 93

 }

 }

 public patches getPatch(int x,int y)

 {

 return ((patches)((ArrayList)Ground.get(x)).get(y));

 }

 public void DrawEnv(Graphics g,int zoom,boolean spacing) //draws pactches

 {

 int spacer=zoom;

 if(spacing&&zoom>1)

 {spacer=Math.round(7*zoom/8);}

 for(int x=0;x<width;x++)

 {

 for(int y=0;y<height;y++)

 {

 g.setColor(getPatch(x,y).Type.getDefaultColor());

 g.fillRect(x*zoom+zoom,y*zoom+zoom,spacer,spacer);

 }

 }

 }

 public void drawBurnt(Graphics g,int zoom,boolean spacing) //draws burnt patches (black) and unburnt

(green)

 {

 int spacer=zoom;

 if(spacing)

 {

 spacer=Math.round(7*zoom/8);}

 for(int x=0;x<=width-1;x++)

 {

 for(int y=0;y<=height-1;y++)

 {

 g.setColor(Color.green);

 for(int xa=0;xa<=9;xa++)

 {

 for(int ya=0;ya<=9;ya++)

 {

 if(getPatch(x,y).active[xa][ya])

 {g.setColor(Color.black); }

 }

 }g.fillRect(x*zoom+zoom,y*zoom+zoom,spacer,spacer);

 }

 }

 }

 public void EditStats() //soon to be recording device

 {

 }

 public int getHeight()

 {return width;}

 public int getWidth()

 94

 {return height;}

}

 95

//PerimeterList.java

//Christopher Morrison

//Holds all fire points not eliminated from fire perimeter Reduction

package phoenix;

import java.util.*;

public class PerimeterList extends ArrayList

{

 public PerimeterList()

 {

 }

}

 96

// ScanStats.java

// Created on February 24, 2007, 12:07 PM

// @author Christopher Morrison

// Goals -Add env sizing, get full pixel range

//This class takes the satellite Photograph and turns it into statistical data

//for processing

package phoenix;

import javax.swing.*;

import java.util.*;

import java.awt.*;

import java.awt.Event.*;

import java.awt.image.PixelGrabber;

public class ScanStats implements Runnable

{

 int precision=3; //Within 10 color units the guestimation will be save CPU time

 int Precision=30;

 int area; //generalized pixel area

 ArrayList Colors=new ArrayList(); //Array of color Information

 Image Pic;

 ArrayList ColorArray=new ArrayList();

 int height;

 int width;

 CustomEnvironmentLoader CEL;

 double EnvWidth;

 double EnvHeight;

 int total;

 boolean working=false;

 public ScanStats(Image I,CustomEnvironmentLoader CE)

 {

 working=true;

 Pic=I;

 ColorArray.clear();

 Colors.clear();

 EnvHeight=CE.envh;

 EnvWidth=CE.envw;

 height=Pic.getHeight(null);

 width=Pic.getWidth(null);

 total=height*width;

 }

 public void run()

 {

 total=0;

 int[] pixels=new int[height*width];

 PixelGrabber pg = new PixelGrabber(Pic,0,0,width,height,pixels,0,width);

 try

 {

 pg.grabPixels();

 }

 catch (Exception E)

 {

 JOptionPane.showMessageDialog(null,"Error in fitlering pixels"+E.toString());

 return;

 97

 }

 for(int y=0;y<height;y++)

 {

 ArrayList Row=new ArrayList();

 for(int x=0;x<width;x++)

 {

 total++;

 Color C=getColor(x,y,pixels[width*y+x]);

 Row.add(C);

 CompareColor(C);

 }

 ColorArray.add(Row);

 }

 working=false;

 JOptionPane.showMessageDialog(null,""+getSize());

 }

 public Vector GetColorInfo()

 {

 Vector V=new Vector();

 ArrayList AL=Colors;

 while(AL.size()>0)

 {

 int base=0;

 int remove=0;

 for(int x=0;x<AL.size();x++)

 {

 if(((ColorNum)AL.get(x)).getNumber()>base)

 {

 base=((ColorNum)AL.get(x)).getNumber();

 remove=x;

 }

 }

 //JOptionPane.showMessageDialog(null,(((ColorNum)AL.get(remove)).getNumber())+" ");

 V.addElement((ColorNum)AL.get(remove));

 AL.remove(remove);

 }

 return V;

 }

 public ArrayList SwathArea()

 {

 ArrayList AL=new ArrayList();

 int NumX=(int)((ArrayList)ColorArray.get(0)).size()/Precision;

 int NumY=(int)ColorArray.size()/Precision;

 int RemainX=(int)((ArrayList)ColorArray.get(0)).size()%Precision;

 int RemainY=(int)ColorArray.size()%Precision;

 int Prec2=Precision*Precision;

 for(int y=0;y<NumY;y++)

 {

 98

 ArrayList al=new ArrayList();

 for(int x=0;x<NumX;x++)

 {

 int red=0;

 int green=0;

 int blue=0;

 for(int yy=0;yy<Precision;yy++)

 {

 for(int xx=0;xx<Precision;xx++)

 {

 Color C=(Color)((ArrayList)ColorArray.get(y*Precision+yy)).get(x*Precision+xx);

 red+=C.getRed();

 green+=C.getGreen();

 blue+=C.getBlue();

 }

 }

 Color color=new

Color(Math.round(red/(Prec2)),Math.round(red/(Prec2)),Math.round(red/(Prec2)));

 al.add(color);

 }

 AL.add(al);

 }

 return AL;

 }

 public Color getColor(int x, int y, int pixel)

 {

 int alpha = (pixel >> 24) & 0xff;

 int red = (pixel >> 16) & 0xff;

 int green = (pixel >> 8) & 0xff;

 int blue = (pixel) & 0xff;

 try

 {

 red=Precision(red);

 green=Precision(green);

 blue=Precision(blue);

 if(red>255){red=255;}

 if(green>255){green=255;}

 if(blue>255){blue=255;}

 return new Color(red,green,blue);

 }

 catch(Exception E)

 {

 JOptionPane.showMessageDialog(null,red+" "+green+" "+blue+" "+E.toString());

 return new Color(255,212,222);

 }

 }

 public int[] progress()

 {

 int[] i=new int[2];

 i[0]=height*width;

 i[1]=total;

 return i;

 99

 }

 public int Precision(int prec)

 {

 return (int)Math.floor(Math.floor((prec/(255/precision)))*255/precision);

 }

 public void redrawPic(Graphics G,int width,int height)

 {

 if(!working)

 {

 int xSize=(int)width/((ArrayList)ColorArray.get(1)).size();

 int ySize=(int)height/ColorArray.size();

 int realsize;

 if(xSize>0&&ySize>0)

 {

 if(xSize<=ySize)

 {

 realsize=xSize;

 }

 else

 {

 realsize=ySize;

 }

 for(int y=0;y<ColorArray.size();y++)

 {

 for(int x=0;x<((ArrayList)ColorArray.get(y)).size();x++)

 {

 G.setColor((Color)((ArrayList)ColorArray.get(y)).get(x));

 G.fillRect(x*realsize,y*realsize,realsize,realsize);

 }

 }

 }

 else

 {

 double xa=((ArrayList)ColorArray.get(0)).size();

 double ya=ColorArray.size();

 double Inx=1.0d/(width/xa);

 double Iny=1.0d/(height/ya);

 int InxSize=(int)Math.ceil(Inx);

 int InySize=(int)Math.ceil(Iny);

 int Inrealsize;

 if(InxSize<=InySize)

 {

 Inrealsize=InxSize;

 }

 else

 {

 Inrealsize=InySize;

 }

 for(int y=0;y<ColorArray.size();y+=Inrealsize)

 {

 for(int x=0;x<((ArrayList)ColorArray.get(y)).size();x+=Inrealsize)

 100

 {

 G.setColor((Color)((ArrayList)ColorArray.get(y)).get(x));

 G.fillRect((int)x/Inrealsize,(int)y/Inrealsize,1,1);

 }

 }

 }

 }

 }

 public void CompareColor(Color C)

 {

 if(Colors.size()!=0)

 {

 for(int x=0;x<Colors.size();x++)

 {

 if(C.equals(((ColorNum)Colors.get(x)).getColor()))

 {

 ((ColorNum)Colors.get(x)).another();

 return;

 }

 }

 }

 Colors.add(new ColorNum(C));

 }

 public int getSize()

 {

 return Colors.size();

 }

 public FuelType[][] Publish(FuelType[] Breakdown)

 {

 FuelType[][] Env=new FuelType[width][height];

 for(int y=0;y<height;y++)

 {

 for(int x=0;x<width;x++)

 {

 Env[x][y]=sort(Breakdown,(Color)((ArrayList)ColorArray.get(y)).get(x));

 }

 }

 return Env;

 }

 private FuelType sort(FuelType[] Breakdown,Color C)

 {

 for(int x=0;x<Breakdown.length;x++)

 {

 if(Breakdown[x].getDefaultColor().equals(C))

 {

 return Breakdown[x];

 }

 }

 return null;

 }

}

 101

//SideBar.java

//Christopher morrison

//This class holds the side panel and statistical information

package phoenix;

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

public class SideBar extends JTabbedPane

{

 RunControls RC=new RunControls();

 JSplitPane JSP=new JSplitPane();

 public SideBar()

 {

 this.addTab("Controls",RC);

 }

 public class RunControls extends JPanel

 {

 int PointsOfInterest;

 //int

 public RunControls()

 {

 }

 public void paintComponent(Graphics G)

 {

 super.paintComponent(G);

 }

 }

}

 102

// Statistics.java

// Created on January 30, 2007, 8:39 PM

// @author Christopher Morrison

//This class will soon hold a statistical record of fire and its path

package phoenix;

import javax.swing.*;

import java.util.*;

import java.awt.*;

import java.awt.Event.*;

public class Statistics

{

 public Statistics()

 {

 }

}

 103

//Table.java

//Christopher Morrison

//This class holds the JTable that is used to determine user input

//for the satellite scanning rgb

package phoenix;

import javax.swing.*;

import java.awt.*;

import java.util.*;

import java.awt.image.*;

import java.awt.event.*;

import java.awt.print.*;

import javax.swing.table.*;

import java.awt.event.*;

import javax.swing.event.*;

public class Table extends JPanel implements TableModelListener

{

 Vector Rows=new Vector();

 Vector Columns=new Vector();

 JButton Publish=new JButton("Publish Environment");

 TableEditor TEdit;

 JComboBox jcb;

 JTable JT;

 JScrollPane Pane;

 Vector colors;

 ArrayList FuelTypes;

 public Table(Vector V, JComboBox JCB,ArrayList FT) //creates JPanel and sets correct alignment and

numerical format

 {

 FuelTypes=FT;

 TEdit=new TableEditor(Rows,Columns);

 JT=new JTable(TEdit);

 jcb=JCB;

 JCB.setSelectedIndex(0);

 JT.setPreferredScrollableViewportSize(new Dimension(500, 250));

 JT.setSize(500,150);

 Pane = new JScrollPane(JT);

 this.setBackground(Color.CYAN);

 colors=V;

 for(int x=0;x<V.size();x++)

 {

 this.addRow((ColorNum)V.get(x));

 }

 TableColumn colorColumn = JT.getColumn("Color");

 colorColumn.setCellRenderer(new DTCR());

 TableColumn comboColumn = JT.getColumn("FuelType");

 comboColumn.setCellEditor(new DCE(JCB));

 init();

 this.add(Pane);

 this.add(Publish);

 }

 public void addFuelType(JComboBox JCB)

 {

 104

 TableColumn comboColumn = JT.getColumn("FuelType");

 comboColumn.setCellEditor(new DCE(JCB));

 }

 public void addRow(ColorNum CN)

 {

 Vector C=new Vector();

 C.add(TEdit.getRowCount()+1);

 C.add(CN.getColor());

 C.add(CN.getNumber());

 C.add("");

 Rows.add(/*index*/C);

 JT.addNotify();

 }

 public FuelType[] Publish()

 {

 int length=TEdit.getRowCount();

 FuelType[] FT=new FuelType[length];

 for(int x=0;x<length;x++)

 {

 FuelType X=Search(TEdit.getValueAt(x,3).toString());

 FT[x]=new

FuelType(X.getName(),X.getSpreadRate(),X.getFlashPoint(),(Color)TEdit.getValueAt(x,1));

 }

 return FT;

 }

 public FuelType Search(Object FTS)

 {

 for(int x=0;x<FuelTypes.size();x++)

 {

 if(((FuelType)FuelTypes.get(x)).toString().equals(FTS))

 {

 return (FuelType)FuelTypes.get(x);

 }

 }

 JOptionPane.showMessageDialog(null,FTS+" Bad Bad Bad");

 return null;

 }

 public void init()

 {

 for(int x=0;x<TEdit.getRowCount();x++)

 {

 TEdit.setValueAt("Ground",x,3);

 }

 }

 public void tableChanged(TableModelEvent source) //checks user input on table

 {

 TableModel tabMod = (TableModel)source.getSource();

 switch(source.getType())

 {

 case TableModelEvent.UPDATE:

 try

 {

 //double

d=Double.parseDouble(DataTable.getValueAt(DataTable.getSelectedRow(),DataTable.getSelectedColumn

()).toString());

 105

 }

 catch(Exception E)

 {

 //DataTable.addNotify();

 }

 break;

 }

 }

 public class TableEditor extends DefaultTableModel

 {

 public final String[] Titles={"Number","Color","Total","FuelType"};

 public Vector Rows;

 public Vector Columns;

 public TableEditor(Vector rows,Vector column)

 {

 super(rows,column);

 Rows=rows;

 Columns=column;

 this.setColumnIdentifiers(Titles);

 }

 /*public int getColumnCount()

 {

 return Titles.length;

 }

 public int getRowCount()

 {

 return super.getRowCount();

 }

 public String getColumnName(int col)

 {

 return super.getColumnName(col);

 }

 //public Object getValueAt(int row, int col)

 //{

 // return data[row][col];

 //}*/

 /*

 * JTable uses this method to determine the default renderer/

 * editor for each cell. If we didn't implement this method,

 * then the last column would contain text ("true"/"false"),

 * rather than a check box.

 */

 public Class getColumnClass(int c)

 {

 return getValueAt(0, c).getClass();

 }

 /*

 106

 * Don't need to implement this method unless your table's

 * editable.

 */

 public boolean isCellEditable(int row, int col)

 {

 //Note that the data/cell address is constant,

 //no matter where the cell appears onscreen.

 if (col==3)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 /*

 * Don't need to implement this method unless your table's

 * data can change.

 */

 /*public void setValueAt(Object value, int row, int col)

 {

 if (data[0][col] instanceof Integer)

 {

 //If we don't do something like this, the column

 //switches to contain Strings.

 try

 {

 data[row][col] = new Integer((String)value);

 fireTableCellUpdated(row, col);

 }

 catch (NumberFormatException e)

 {

 }

 }

 else

 {

 data[row][col] = value;

 fireTableCellUpdated(row, col);

 }

 }*/

 }

 public class DTCR extends DefaultTableCellRenderer

 {

 public void setValue(Object value)

 {

 if (value instanceof Color)

 {

 Color c = (Color) value;

 this.setBackground(c);

 //setForeground(c.getTextColor());

 107

 //setText(c.toString());

 }

 else if(value instanceof JComboBox)

 {

 this.setText(((JComboBox)value).getSelectedItem().toString());

 }

 else

 {

 super.setValue(value);

 }

 }

 }

 public class DCE extends DefaultCellEditor

 {

 JComboBox JCB;

 public DCE(JComboBox C)

 {

 super(C);

 JCB=C;

 }

 }

}

 108

//Views.java

//Christopher morrison

//This displays the different views of the environment on JTabbedPane

package phoenix;

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

public class Views extends JTabbedPane //implements MouseListener

{

 int zoom=8;

 Welcome WV;

 PhysicalView PV;

 FireView FV;

 BurnView BV;

 EnvView EV;

 PatchClass Env;

 JSP WS;

 JSP PS;

 JSP FS;

 JSP BS;

 JSP ES;

 DrawList DL=new DrawList();

 int xlocation=0;

 int ylocation=0;

 boolean inside=false;

 public Views(PatchClass PC)

 {

 Env=PC;

 FV=new FireView();

 BV=new BurnView();

 EV=new EnvView();

 PV=new PhysicalView();

 WV=new Welcome();

 FS=new JSP(FV);

 BS=new JSP(BV);

 ES=new JSP(EV);

 PS=new JSP(PV);

 WS=new JSP(WV);

 this.add("Welcome",WS);

 this.addTab("Physical",PS);

 this.addTab("Fire",FS);

 this.addTab("Burn",BS);

 this.addTab("Environment",ES);

 this.setPreferredSize(new Dimension(800,600));

 }

 public class PhysicalView extends JPanel

 {

 public PhysicalView()

 {

 this.setPreferredSize(new

Dimension(Env.getWidth()*zoom+2*zoom,Env.getHeight()*zoom+2*zoom));

 109

 }

 public void paintComponent(Graphics G)

 {

 super.paintComponent(G);

 Env.DrawEnv(G,zoom,true);

 }

 }

 public class FireView extends JPanel

 {

 public FireView()

 {

 this.setPreferredSize(new

Dimension(Env.getWidth()*zoom+2*zoom,Env.getHeight()*zoom+2*zoom));

 }

 public void paintComponent(Graphics G)

 {

 super.paintComponent(G);

 DL.DrawIt(G,zoom);

 if(inside)

 {

 drawLocation(G);

 }

 }

 }

 public class BurnView extends JPanel

 {

 public BurnView()

 {

 this.setPreferredSize(new

Dimension(Env.getWidth()*zoom+2*zoom,Env.getHeight()*zoom+2*zoom));

 this.setBackground(Color.CYAN);

 }

 public void paintComponent(Graphics G)

 {

 super.paintComponent(G);

 Env.drawBurnt(G,zoom,true);

 if(inside)

 {

 drawLocation(G);

 }

 }

 }

 public class EnvView extends JPanel

 {

 public EnvView()

 {

 110

 this.setPreferredSize(new

Dimension(Env.getWidth()*zoom+2*zoom,Env.getHeight()*zoom+2*zoom));

 }

 public void paintComponent(Graphics G)

 {

 super.paintComponent(G);

 Env.DrawEnv(G,zoom,true);

 DL.DrawIt(G,zoom);

 if(inside)

 {

 drawLocation(G);

 }

 }

 }

 public class Welcome extends JPanel

 {

 public Welcome()

 {

 }

 public void paintComponent(Graphics G)

 {

 super.paintComponent(G);

 G.drawString("Welcome. Press the step button to progress the fire Phoenix Release version

0.0", 10,10);

 }

 }

 public JPanel makeScroll(JPanel V,JScrollPane JSP)

 {

 JPanel JP=new JPanel(new BorderLayout());

 JP.add(V,BorderLayout.CENTER);

 //JP.add(JSB,BorderLayout.WEST);

 //JP.add(JSB,BorderLayout.NORTH);

 return JP;

 }

 public void Update(FirePackage FP)

 {

 DL=FP.getDrawList();

 this.repaint();

 }

 public void drawLocation(Graphics G)

 {

 G.setColor(Color.LIGHT_GRAY);

 G.fillRect(xlocation+15,ylocation-20,53,15);

 G.setColor(Color.BLACK);

 G.drawString("("+(xlocation-zoom)/zoom+","+(ylocation-zoom)/zoom+")",xlocation+16,ylocation-

8);

 }

 public void updateLocation(MouseEvent E)

 {

 JScrollPane tmp=((JScrollPane)this.getSelectedComponent());

 inside=false;

 this.repaint(xlocation+15-tmp.getHorizontalScrollBar().getValue(),ylocation+5-

tmp.getVerticalScrollBar().getValue(),56,16);

 111

 inside=true;

 xlocation=E.getX();

 ylocation=E.getY();

 this.repaint(xlocation+15-tmp.getHorizontalScrollBar().getValue(),ylocation+5-

tmp.getVerticalScrollBar().getValue(),56,16);

 }

 public void zoomOut()

 {

 if(zoom>1)

 {

 zoom=Math.round(zoom*2);

 this.repaint();

 this.BV.setPreferredSize(new

Dimension(Env.getWidth()*zoom+2*zoom,Env.getHeight()*zoom+2*zoom));

 this.EV.setPreferredSize(new

Dimension(Env.getWidth()*zoom+2*zoom,Env.getHeight()*zoom+2*zoom));

 this.FV.setPreferredSize(new

Dimension(Env.getWidth()*zoom+2*zoom,Env.getHeight()*zoom+2*zoom));

 this.PV.setPreferredSize(new

Dimension(Env.getWidth()*zoom+2*zoom,Env.getHeight()*zoom+2*zoom));

 }

 }

 public void zoomIn()

 {

 zoom=Math.round(zoom/2);

 this.BV.setPreferredSize(new

Dimension(Env.getWidth()*zoom+2*zoom,Env.getHeight()*zoom+2*zoom));

 this.EV.setPreferredSize(new

Dimension(Env.getWidth()*zoom+2*zoom,Env.getHeight()*zoom+2*zoom));

 this.FV.setPreferredSize(new

Dimension(Env.getWidth()*zoom+2*zoom,Env.getHeight()*zoom+2*zoom));

 this.PV.setPreferredSize(new

Dimension(Env.getWidth()*zoom+2*zoom,Env.getHeight()*zoom+2*zoom));

 this.repaint();

 }

 public static class Border extends JPanel

 {

 }

 public static class JSP extends JScrollPane

 {

 public JSP(Component C)

 {

 super(C);

 }

 }

}

 112

// WindSlider.java

// Created on February 4, 2007, 2:48 AM

// @author Christopher Morrison

//This class is the component that gives wind angle

package phoenix;

import javax.swing.*;

import java.util.*;

import java.awt.*;

import java.awt.event.*;

import java.math.*;

public class WindSlider extends JComponent implements MouseListener, MouseMotionListener

{

 Dimension D;

 Color C;

 Degrees UserAngle=new Degrees(0,Degrees.degrees);

 Degrees CurrentAngle=new Degrees(0,Degrees.degrees);

 Degrees WindAngle=Data.WindAngle;

 double WS=Data.WindSpeed;

 public WindSlider()

 {

 this.addMouseListener(this);

 this.addMouseMotionListener(this);

 D=new Dimension(100,100);

 this.setSize(D);

 this.setPreferredSize(D);

 }

 public WindSlider(int size)

 {

 this.addMouseListener(this);

 this.addMouseMotionListener(this);

 D=new Dimension(size,size);

 this.setSize(D);

 this.setPreferredSize(D);

 }

 public void paintComponent(Graphics G)

 {

 super.paintComponent(G);

 Graphics2D G2d = (Graphics2D)G;

 GradientPaint greyish = new GradientPaint(0,0,new Color(120,120,120),100,

0,Color.LIGHT_GRAY);

 G2d.setPaint(greyish);

 G2d.fillRect(0,0,D.height,D.width);

 G2d.setColor(Color.BLACK);

 G2d.drawOval(10,10,D.width-20,D.height-20);

 G2d.drawOval((int)D.width/2-5,(int)D.height/2-5,10,10);

 G2d.drawLine(8,(int)D.height/2,12,(int)D.height/2);

 G2d.drawLine((int)D.width/2,8,(int)D.width/2,12);

 G2d.drawLine(D.width-8,(int)D.height/2,D.width-12,(int)D.height/2);

 G2d.drawLine((int)D.width/2,D.height-8,(int)D.width/2,D.height-12);

 BigDecimal BG=new BigDecimal(CurrentAngle.getDegree());

 BigDecimal bg=BG.setScale(1,BigDecimal.ROUND_HALF_UP);

 113

 double rounded=bg.doubleValue();

 G2d.drawString(Double.toString(rounded),D.width-35,D.height-5);

 BG=new BigDecimal(WindAngle.getDegree());

 bg=BG.setScale(1,BigDecimal.ROUND_HALF_UP);

 rounded=bg.doubleValue();

 G2d.drawString(Double.toString(rounded),D.width-35,15);

G2d.drawLine(D.width/2,D.height/2,(int)(D.width/2*Math.sin(CurrentAngle.getRadian()+Math.PI/2)+D.w

idth/2),

 (int)(D.width/2*Math.cos(CurrentAngle.getRadian()+Math.PI/2))+D.height/2);

 }

 public Degrees getAngle()

 {

 return WindAngle;

 }

 public void mouseExited(MouseEvent E)

 {

 CurrentAngle=WindAngle;

 this.repaint();

 }

 public void mouseEntered(MouseEvent E)

 {

 double X =(E.getX()-D.width/2);

 double Y =(D.height/2-E.getY());

 CurrentAngle=Degrees.CalculateAngle(X,Y);

 repaint();

 }

 public void mouseReleased(MouseEvent E)

 {

 /*if(E.getButton()==MouseEvent.BUTTON1) //add fire

 {

 double X =(E.getX()-D.width/2);

 double Y =(D.height/2-E.getY());

 if(JOptionPane.showConfirmDialog(this,"Set Wind Angle:

"+CurrentAngle.getDegree()+"?")==JOptionPane.OK_OPTION)

 {

 WindAngle=Degrees.CalculateAngle(X,Y);

 Data.WindAngle=WindAngle; //program specific

 }

 }*/ //moved into parent class

 repaint();

 }

 public void mousePressed(MouseEvent E)

 {

 }

 public void mouseClicked(MouseEvent E)

 {

 114

 }

 public void mouseMoved(MouseEvent E)

 {

 double X =(E.getX()-D.width/2);

 double Y =(D.height/2-E.getY());

 CurrentAngle=Degrees.CalculateAngle(X,Y);

 repaint();

 }

 public void mouseDragged(MouseEvent E)

 {

 }

}

