
Mathematical Model 

The model described below is based on the work of Lu (2006) and Lu and Kim (2005) 

with our own understanding and some modifications.  The mathematical model can be derived 

using the atomic flux and the driving force of diffusion.  The atomic flux vector, jJiJJ


21 ,  

is defined as the amount of chemical species passing over unit length per unit time.   

Deriving the Equations (One Dimensional Version): 

 

 

Figure 1: Derivation of one dimensional model 

 

txJ ,  is the amount of chemical species entering the shaded region per unit time and 

txxJ ,  is the amount of chemical species leaving the region per unit time.  x
t

C
 is the 

change in the number of moles of species accumulating (change in concentration) in this region 

per unit time, where  is the number of species per unit length.  Thus, the amount of species 

entering the region minus the amount of species leaving the region is equal to the change in 

concentration per unit time.  In mathematical terms, x
t

C
txxJtxJ ,, .  Bringing 

the x  to the left side and taking the limit as 0x , we obtain 
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.  Using Fick’s diffusion law (Pelesko and Bernstein, 

2003), which states that the atomic flux is negatively proportional the gradient of chemical 

potential (energy stored per mol of a species) per unit length, we can write the above equation as 
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, where M  is the proportionality constant known as the 

diffusion coefficient, and μ is the chemical potential.  This is the one dimensional model of our 

system and can be extended to two dimensions, which we are studying.  The two dimensional 

derivation is similar but slightly more difficult, and we will not show it here.  In the two 

dimensional model, 
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.  As demonstrated by Lu 

and Kim (2005), μ is defined as Ch
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g 22
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, where g  is the excess energy 

created from the mixing of the chemical components (see Eq. 3), f  ( 21 CC ) is the 

surface stress (surface energy per unit of strain in the surface) assumed to be proportional to 

concentrations,  is the strain in the surface, and h is a constant characterizing the contribution 

of chemical potential from phase boundaries.  Since we are studying the patterns formed by two 

chemicals, the final set of equations is 
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where (Lu and Kim, 2005) 
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C1 — concentration of chemical component 1 

C2 — concentration of chemical component 2 

1 — chemical potential of component 1 

2 — chemical potential of component 2 

M — diffusion coefficient 

Λ — moles of component per area 

g — excess energy created from the mixing of chemicals 

kB — Boltzmann’s constant 

           — bonding strength (subscript such as 12 means component 1 to component 2) 

 T — absolute temperature 

f — surface stress due to concentration variations 

           — strain in the surface 

h1 and h2 — constants characterizing chemical potential from phase boundaries 

E — Young’s modulus (stiffness of substrate) 

v — Poisson’s ratio of the substrate 

           — surface stress per mole of component 1 

           — surface stress per mole of component 2 

Scaled Equations: 

We now scale the equations to reduce model parameters.  The scaled equations are 
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Only the Q’s, S, and H after scaling need to be assigned values for simulations.  Putting in 

additional parameters such as E will be unnecessary because we will eventually calculate Q 

anyways. 

 

 

 

Adding Temperature Effects: 

Eq. 5 and Eq. 6 assume a constant temperature.  However, it is obvious that temperature 

fluctuations cause chemicals to behave differently.  This is an important aspect that we plan to 

model, and these equations have to be modified to include temperature changes during a 

simulation.  The terms we add in are based on experimental data and observations.  According to 



Anderson and Crerar (1993), g  (see Eq. 3) is a linear function of temperature.  First we change 

the equations slightly.  In Eq. 3, instead of having T multiply to the entire equation, we only 

multiply it to the ideal mixing terms (the logarithmic terms).  A new T0 is introduced and is 

multiplied to the rest of the equation (the non-ideal mixing terms).  We then multiply the terms 

containing 0

ab  and 1

ab  by TTab 01 , where ab  is a constant.  For example, 
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Using this new equation, P1 and P2 (Eq. 9 and Eq. 10) become 
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Temperature changes also affect the rate at which the chemicals diffuse; thus, M1 and M2 

must be a function of temperature.  According to experimental results (Kaganovskii et al., 1998), 

this rate increases exponentially with temperature.  To capture this effect this, we multiply M1 

and M2 by 0

11

TTR

E

e , where ΔE is the activation energy (kilojoules per mole) and R is the ideal 

gas constant (8.314 joules per mole Kelvin).  The final modification we make is to Young’s 

modulus E, the stiffness.  The experimental results of Jeong et al. (2003) show that Young’s 

modulus decreases linearly as temperature increases.  So we multiply it by TT01 .  This 

constant divides all of the Q’s after scaling.  In general, after scaling and transforming, the 

temperature constants will remain unchanged.  



Numerical Solution 

The set of integral-differential equations Eq. 5 and Eq. 6 are impossible to solve 

analytically.  However, we can use the Fourier Transform to simplify them enough so that they 

can be solved numerically using a semi-implicit method.  First, initial and boundary conditions 

must be given in order to solve these equations.  The initial condition is the beginning pattern 

created by the user.  Two possible initial conditions are considered: homogeneous and 

heterogeneous (e.g. certain areas have higher concentrations).  For boundary condition, we let 

both concentrations to be zero at infinity, that is, 
0,,,0,,

0,,,0,,
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.  This 

convention is useful when we transform the equations.  In addition to these, we also let the 

successive derivatives (up to the third order) to be zero at infinity
1
.  Again, these help in the 

Fourier transformations. 

Let the Fourier Transformation be defined as  
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The 
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can be included however it is unnecessary because it will eventually drop out and will 

only act as minor scaling factor if we do include it.   
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Transformation of the Time Derivative: 
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Transformation of the Laplacian: 
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We here only show the transformation of the first term since the transformation of the 

second one follows the same procedure.     
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Here we use integration by parts
2
 twice and the boundary conditions, which are 
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tkkPk ,, 21

2
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.  This method can be extended to any order derivative since it only requires 

integration by parts and the boundary conditions.  Therefore, C4  becomes Ck


4
). 

Transformation of the Double Integration Term: 

The transformation of the double integral terms in Eq. 7 and Eq. 8 is adopted from Hu et 

al. (2007).  This transformation involves writing the double integral as a convolution and using 

the fact that the Fourier transformation of a convolution is the product of the Fourier 

transformation of each function
3
 (Convolution Theorem). 
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Again we here only show the transformation of the first term.  Let 

2
1

2

22

2

11 xx .  Taking the partial derivative of  with respect to 1 , we have 

2
3

2

22

2

11

11

1 xx

x
.  Substituting it into the first term of Eq. 23, we 

obtain 21

11

dd
C

, which is the convolution of the partial derivatives of 
2

1
2

2

2

1 xx  

and txxC ,, 21  (t is constant) with respect to 1x , or 
11

21

11 x

C

x
dd

C
.  Using the 

Convolution Theorem and the method for transforming spatial derivatives (previous 

transformation), we obtain  

Cikik

dxdxe
x

C
dxdxe

x
dxdxe

x

C

x

xkxkixkxkixkxki


11

21

1

21

1

21

11

221122112211

 

Ck
2

1                       (24) 

                                                 
3
 xgFxfFxgxfF  



Similarly, the transformation of the second term is Ck
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2 .  Thus, the Fourier transformation of 

the double integral is the sum of the two individual transformations, or Ck
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Consequently, Eq. 5 and Eq. 6 become 
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Semi-Implicit Method: 

Eq. 26 and Eq. 27 can be solved using a semi-implicit method proposed by Chen and 

Shen (1998).  This method treats the non-linear P


 terms explicitly and the linear C
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 terms 

implicitly.  First, let tkkPPn ,, 21


, tkkCCn ,, 21


, and ttkkCCn ,, 21

1


 (with 

subscripts 1 and 2).  Also, let 
t

CC

t

C nn


1

 (also with subscripts).  Eq. 26 and Eq. 27 become 



1

22

31

11

31

1

4

1

21

1

1 222 nnnn
nn

CQkCQkCkPk
t

CC 


        (28) 

 

1

23

31

12

31

2

4

2

22

1

2 222 nnnn
nn

CQkCQkCHkPkS
t

CC 


       (29) 

In matrix form, these equations combine as 
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Eq. 31 is in the form that can be implemented in a code.  The inverse matrix can be found 

using a formula for 2x2 matrices
4
.  With the temperature constants added in the previous section, 

Eq. 31 becomes (the key equation) 
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The concentrations are calculated as follows (Figure 3).  In real space, we use C to 

calculate P.  Then we transform C and P to find
nC


and nP


.  In Fourier space we use 

nC


 and nP


 

to calculate 
1nC


.  We transform 

1nC


 into real space and repeat the same process. 

 
Figure 2: Procedure used to calculate the concentrations 

 

Coordinates in Fourier Space: 

The coordinates in Fourier space are not the same as those in real.  Fourier space is made 

up of frequencies as it is also called the frequency domain/space.  For a two dimensional set of 

data, the frequencies for each row (left to right) are  
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The columns (top to bottom) follow the same sequence.  The sign doesn’t matter for the middle 

term.   is the sampling interval, which acts like a length scale.  For example, 1.0  could 

mean there are 0.1 nm per pixel.



Fast Fourier Transform (FFT) 

If we could use Eq. 32, the calculations would be incredibly simple.  Unfortunately, Eq. 

32 is in Fourier space, which we can’t intuitively see.  In addition, we can’t find a formula for the 

transformation of txxP ,, 21  because it is non-linear, that is, tkkP ,, 21


 can’t be calculated 

directly in Fourier space.  Also, we can’t transform Eq. 32 back to real space using the Fourier 

transformation in the previous section because it is not in the right form.   

The solution to this problem is the Fast Fourier Transformation (FFT).  This is an 

efficient and fast algorithm for transforming data sets between real and Fourier space.  The 

Discrete Fourier Transformation (DFT) is defined as 
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F is the transformation of the discrete data set f.  One could simply put this into a computer and 

obtain the transformations.  However, for large data sets, say 512x512, this method can take a 

very long time.  For data sets of this size, the FFT algorithm is the best solution; in fact, 

calculations that would take days and possibly even weeks can be reduced to merely seconds and 

minutes, which is an enormous advantage. 

Take the one dimensional DFT 
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 The two dimensional DFT is a combination of two one dimension DFT’s 



Thus F can be written as the DFT of the even indices plus a complex constant
6
 times the DFT of 

the odd indices.  mF e  and mF o  are periodic with periods of length N / 2, thus, 

2

N
mFmF ee  and 

2

N
mFmF oo  for 

2

N
m .  F originally requires 2N  

operations, but, by separating it into evens and odds, F now only requires 
2

2N
 operations, which 

is slightly faster.  We continue breaking F down into smaller sets of size N / 4 of evens and odds
7
 

and so on until we are left with sets of size 1.  F eventually only requires NN 2log  operations, 

which is significantly faster for large N.  In the end, we have a seemingly meaningless string of 

e’s and o’s.  Actually, this seemingly meaningless string is extremely useful in finding which 

nf  goes with mF oeoeeeoeoo..... .  Take the string, reverse it, and let e = 0 and o = 1.  What does 

this produce?  It produces the binary representation of n (in nf ) (Press et al.2002)!  Thus, a 

faster way to break down F until there are N sets of size 1 left is by taking the binary 

representation of the indices of the initial set and “flipping” them.  This is called bit reversing, 

the first part of the FFT.   

Once we have bit reversed the initial set, we have to regroup everything.  This method is 

called the butterfly method
8
, which is also known as the Danielson-Lanzos Formula.  The 

amazing aspect of this formula is that it is iterative.  The butterfly method first takes two 

consecutive elements (after bit reverse) and combines them into a set of size two.  Each element 

of the new set is calculated using a similar formula as that of Eq. 34.  There are N / 2 such sets.  

Then, two consecutive sets are combined to create a new set of size four (one element of one set 
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combines with an element of the other) using a similar formula.  There are N / 4 such sets.  This 

continues until you are left with one large set of size N, which is the transformation.  The 

following is a diagram for combining the elements (size 8).  The left side is already bit reversed. 

 

Figure 3: Method of combining elements after bit reversing.  

http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html 

 



The following is a simple 2 point DFT 

   

 

 

 

 

 

 

 

 

 

 (35) 

 

 

 

 

The FFT cannot simulate an infinitive domain.  To resolve this problem, the simulation is 

carried out in a square cell, which is replicated many times to cover the whole space (Lu and 

Kim, 2005). 

 

Numerical Stability and Convergence Analysis 

We have found that Eq. 32 is very sensitive to time step Δt and sampling interval Δ.  We did 

numerical convergence test in order to choose appropriate Δt and Δ.  See Appendix A for 

discussion. 
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