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Executive Summary 

I used the StarLogo software development package to write a program that models the behavior 

of an outgoing shock wave of heavy elements from a supernova as it goes through space, being 

affected by the gravitational pull from the other particles, the supernova core, and an arbitrary 

number of stars in proximity. I used this program to answer the question of whether Rocky 

Planets would form more easily when the universe was young and the stars were close to each 

other and would be more difficult as the universe aged and the stars became further apart. The 

program showed that my hypothesis was mostly correct, heavy elements dispersed through space 

when there were only a few stars but aggregated into clusters when there were many. What I did 

not expect, however, was that the actual arrangement of the stars was critical. Clusters of stars, 

especially near the supernova core, caused high local concentrations of iron particles to occur 

even when there were only three neighbor stars. This effect of star clusters on occasional runs 

peaked at intermediate numbers of stars and then decreased at higher ones. So if extremely high 

concentrations of heavy elements instead of the average concentration is important then 

intermediate numbers of neighbor stars may be more effective in creating giant molecular clouds 

and subsequent solar nebulae from which solar systems with rocky planets will form. 
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Introduction 

Rocky planets like earth are most interesting to us because only they can support life as we 

know it. Earth-like planets could not have formed directly after the Big Bang because it only 

created hydrogen, helium, and a tiny amount of lithium and none of the heavier elements that 

rocky planets and life are composed of, like oxygen, silicon, iron, and even carbon. Up through 

around oxygen these elements were only made in stars. Elements heavier than oxygen were only 

made in supernovas that blasted them into space when they exploded. This includes iron, nickel, 

aluminum, and silicon that are the most common elements in the Earth apart from oxygen. If 

after a supernova these elements had just continued to disperse through space on their original 

trajectories radially outwards from the supernova core they would never have condensed into the 

giant molecular clouds and solar nebulae from which solar systems like ours formed. 

Therefore, one or more forces must have altered the trajectories of the supernova ejecta so 

that instead of simply continuing to separate from each other as their distance from the core 

increased and they occupied a larger volume of space these heavy elements collected together to 

form regions where they were highly concentrated. If this had not happened then there never 

would have been enough of them in a solar system for rocky planets to have formed.  

The most likely force that could have condensed heavy elements is gravity, the force 

responsible for all of the interactions of matter in the universe. Since the dark matter that is 

supposed to constitute 80–90% of the universe, although it is not understood, is probably evenly 

distributed in galaxies so that its gravitational force is also even then it is probably stars with 

their highly localized gravity that pull the heavy elements traveling outwards from supernova 

together into clumps. Then, when shock waves or other cosmological phenomena that appear to 

have initiated solar system formation occurred, they swept these bunches of heavy elements into 

the giant molecular clouds of hydrogen that eventually formed solar nebulae and then solar 

systems. 

But if stars are the origin of the force that concentrates the heavy elements that are drifting 

through space so they eventually form rocky planets then there is a problem having to do with 

the age of the universe. Rocky planets could not form after the big bang until after the elements 

of which they are made had been created in supernovae, so it would have taken some time after 

the Big Bang before the first rocky planet was created. But if it is true that the heavy elements 

aggregate because of the gravitational fields of the stars they pass by, then if stars are too far 

apart these elements will not condense and rocky planets also cannot form. Increasing separation 

of stars, however, is exactly what will happen as the universe ages. Therefore, at some time in 

the history of the universe, rocky planets may cease to form and life as we know it will not begin 

on newly created planets as well.  
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To test this I first want to see if the heavy elements ejected by a supernova condense if their 

paths are bent by nearby stars. Since the formation of rocky planets out of solar nebula requires 

high concentrations of heavy elements in the giant molecular clouds from which they form 

(perhaps triggered by shock waves from supernovae) then this aggregation is a required step in 

the process. I then want to test if having fewer stars farther apart so that the gravitational effects 

are weaker weakens or even stops this aggregation. If it does, then as the universe ages and stars 

increase their distance from each other rocky planets will form more rarely or not at all. 

 

Description 

I want to first test if the heavy elements ejected by a supernova condense if their paths are 

bent by nearby stars. Since the formation of rocky planets out of solar nebula requires high 

concentrations of heavy elements in the Giant Molecular Clouds from which they form (perhaps 

triggered by shock waves from supernovae) then this aggregation is a required step in the 

process. I want to then test if having fewer stars farther apart makes this aggregation less 

effective. If it does then as the universe ages and stars increase their distance from each other 

then rocky planets may form only rarely or not at all. 

 I can do this with a program written in StarLogo TNG that would calculate the trajectories of 

objects moving through space subjected to the gravitational forces from each other and stars. To 

do this I need to know the mathematical equations that describe the movements of objects 

through space. This field is called Celestial Mechanics. Celestial mechanics is the application of 

Newton’s Laws of Motion to the movement of mass through space. (I’m ignoring Einstein’s 

relativistic corrections.) If I know the mathematical equations that describe Newton’s Laws then 

I can develop the algorithms (the step by step procedure) I need to write a program for doing 

celestial mechanics calculations that describe the motion of masses. The motion and the masses 

that I am interested in for my project are the heavy elements created and then ejected from a 

supernova as they move through space and pass by other stars. 

The place to begin is Newton’s first two Laws of Motion. The first Law is that an object at 

rest will remain at rest, or an object in motion will remain moving at a constant velocity (velocity 

is specified by a magnitude – the speed – and the direction) unless acted on by an outside force. 

The second Law is that applying a force to an object will cause it to accelerate, meaning that 

either or both the magnitude and the direction of its velocity will change. The algebraic equation 

that describes this is: 

F = ma; 
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x

y

Vx

Vy

=arctan(vy/vx)

vx=vcos

vy=vsin

v2=vx
2+vy

2

where F is the force, m is the mass of an object, 

and v is the acceleration. I didn’t need Newton’s 

third Law that for every action there is an equal 

and opposite reaction because I fixed all the stars 

in place.  They therefore only acted on the 

particles that modeled the heavy elements ejected 

by the supernova but were not themselves 

affected by the particles or each other. F and v 

are vectors, mathematical objects that have both 

a value and a direction. Vectors are designated 

by writing them in bold type. Speed, which is 

only the magnitude of the velocity, is what is 

called a scalar number. An important property of 

vectors that was critical in writing my program is 

that they can be placed in a Cartesian plane and 

separated into their x and y components by 

trigonometric functions that are included in 

StarLogo, the sine, cosine, tangent, arctangent 

(Figure 1). The x and y components can be added 

to each other separately, which provides a way of adding the vectors for force, acceleration, and 

velocity in the program. 

The way that I do the calculation is to do everything in moves that correspond to an interval 

of time. Starting with all of the particles that have been ejected from the supernova in their 

original positions, their new positions are: 

positionnew = positionoriginal + (velocity  time). 

In Cartesian coordinates this equation becomes: 

(xnew, ynew) = (xoriginal + velocityx  time, yoriginal + velocityy  time). 

In words, these equations say that the velocity (speed and direction) of an object remains 

constant unless an external force acts on it, so that its position is its original position displaced by 

its velocity multiplied by the amount of time it has been moving. I describe the position by using 

Cartesian coordinates. I separate the total velocity into its x and y components. 

Next I have to calculate how the velocities change in the gravitational fields from all of the 

stars. This is where Newton’s second Law is applied. 

F = ma : a = F/m 

Figure 1. Vectors. In a Cartesian plane a 

vector v of length v can be separated into 

its x component, vx and its y component, 

vy, that together make a right triangle with 

an angle . These parameters of the triangle 

are related to each other by the 

trigonometric functions sine, cosine, 

tangent/arctangent, and Pythagorean’s 

theorem. 
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If an external force does act on an object then it produces an acceleration (a change in speed 

and/or direction) that is proportional to the force and inversely proportional to its mass. 

The change in velocity, the new component of the velocity that happens in one turn, is just 

like the position, the acceleration times the amount of time that it acts: 

vnew component = a  time: vnew x component = ax  time, vnew y component = ay  time 

In words, the acceleration multiplied by the time the object is accelerating with that value 

produces a new velocity component. Just like with the velocity, I can separate the acceleration 

into x and y components. 

vnew = voriginal + vnc: vnewx = voriginalx + vncx, vnewy = voriginaly + vncy 

In words, the new velocity is the sum of the original velocity and the new component produced 

by the force. 

Also, note that StarLogo TNG automatically steps forward in time. If I make each turn equal 

to one unit of time then I can leave the time out of my calculations for both the velocity and the 

acceleration. 

All that remains is the equation that describes the force of gravity. This is well known: 

F = G  m1  m2 / distance 
2 

In words, the gravitational force between two objects equals the gravitational constant (I varied 

this in my program to make it easier to run based on making it slightly below the force necessary 

so that the particles ejected from the supernova would fall back) multiplied by the masses of the 

two objects that are attracting each other an divided by the square of the distance. Using these 

equations we can understand the way in which gravity makes a thrown object (Figure 2): 1) hit 

the ground; 2) go into orbit; or escape from a planet by accelerating it towards the center of the 

planet without necessarily changing its speed (that happens from air resistance or when the 

object is moving outwards from the center and not tangentially). 

 

Figure 2. Gravity and velocity. Gravitational force 

will make a cannonball fired at a tangent to the 

earth’s surface accelerate towards the center of the 

earth. Below orbital velocity the cannonball will hit 

the earth (A and B). At orbital velocity (C and D) the 

cannonball is moving as fast as it falls so that it 

orbits. At escape velocity (E) the cannonball leaves 

the gravitational well of the earth.  
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In order to implement these equations I wrote the program ―Supernova‖ that went through 

the following steps in a two dimensional space that went from -50 through 50 in integer 

increments: 

1. Setup the region of space with the supernova at a particular position (the origin) and a 

certain number of stars randomly distributed around it (it would be better to position the 

stars myself but I didn’t time to implement that in the code). 

2. Set off the explosion that fires the heavy elements (as particles) into space radially from 

the supernova, all with the same speed. 

3. Calculate their new positions. 

4. Remove any particle that is within one unit of the boundaries. 

5. Sum the x and y accelerations that result from the gravitational force each particle and 

star exerts on the other particles. 

6. Add this acceleration to the original velocity to get the new velocity.  

7. Count the total number of ejecta particles and the number of ejecta particles that are 

within one unit of each other and write the results into a table. 

8. Repeat steps 3-5 up to 600 seconds in 0.2 second increments (one clock tick). Note that I 

actually split 3 and 4/5 into separate turns because of a quirk in StarLogo that caused 

some particles to move before the entire turn was complete. 

The actual program is shown in the presentation (and possibly as an appendix if it doesn’t make 

the file too large to download since it is all images of the screens from StarLogo). 

Prior to performing the actual runs I tried different combinations of initial velocity, masses 

for the stars and supernova core and iron particles, and the gravitational constant. I eventually 

settled on a combination that allowed all of the particles to escape from the space when there 

were zero stars but in which the gravitational pull from the core was close to being in balance 

with the original velocities of the particles and in which the masses of the neighboring stars were 

just below 1/3 that of the supernova core. The ejecta particles were 1/250 the masses of the 

neighboring stars. 

I performed 10–12 runs for three, seven, and eleven neighboring stars. I recorded the image 

of the two-dimensional space at the very beginning to obtain the positions of the stars and at the 

end to obtain the positions of the remaining ejecta particles. I plotted the number of ejecta (called 

―nirons‖) particles and the number of particles within one unit of each other, called ―close,‖ as a 

function of time over the run. Close always begins quite high because all of the particles are 

contained in a circle of radius one at time=0. There was some kind of an error in the ―close‖ 
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calculation that caused large oscillations in its value for the first up to a dozen or so points, after 

which it gave correct values 

To better evaluate and interpret the data I then the subtracted the results for ―nirons‖ and 

―close‖ from those obtained with zero neighboring stars, in which case the ejecta formed a 

continuously expanding circle, the components of which all eventually left that region of space. 

They left at different times because they formed a circle whereas the space was a square. 

 

Results 

Zero stars baseline. Doing the calculation with zero stars gives a baseline for comparison 

with results from calculations with stars. The supernova explosion sends all of the ejecta 

particles that begin in a circle with radius one radially outwards. With time their velocity 

decreases because of the gravitational pull of the supernova core. Eventually the first particles 

come to the boundary of the system and leave it. Because they form a circle within the square 

perimeter of the calculation space they depart over a period of time. Similarly, because of the 

circular symmetry of the particles, the ―close‖ parameter decreases in steps that correspond to 

arriving at a radius for which a set of the particles on the perimeter cross the boundary between 

being counted in ―close‖ and being beyond its limit as the perimeter increases in size. 

 

Figure 3. Zero stars, images. On the right is the configuration with zero stars at the time = 0. 

The supernova core is the red circle in the center, the blue particles form a circle of radius one 

around it. At some time after the explosion the ninety particles that have moved radially 

outwords from the center so that they still occupy the perimeter of a circle have separated so they 

can be distinguished from each other. 
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Figure 4. Zero stars, results. On the right is the number of particles. On the left is the value of 

the ―close‖ parameter. The results are discussed in the text. 

One star. The figures with one star show how its gravitational field perturbs the trajectories 

of the nearby particles as they pass by. The symmetry of the circle is broken as the particles 

approaching the star are accelerated towards it and move beyond the perimeter of the circle. As 

they pass by then swing around the star and are given a large component of velocity towards it 

perpendicular to their original direction. This can be seen in the close pairs when the perimeter of 

the circle is at the star. This transverse motion and clustering continue even afterwards, as can be 

seen in the second picture at the later time. 

 

Figure 5. Effects of one star. The gravitational field of a single star first accelerates the nearby 

particles towards it and then gives them a large velocity component towards the star transverse to 

their original trajectory that causes them to cluster. 
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Seven stars. Eleven run with seven stars gave quite interesting results (Figure 6.) The number 

of iron particles minus the number with zero stars as a function of time all had the same shape 

and peak position because this originated in the zero stars calculation. But the spread in the 

numbers was almost a factor of two, with one calculation being especially low. Despite this the 

slopes beyond the peak that show the rate of loss of the iron particles are all similar. The ―close‖ 

parameter displays even more diversity. Eight of the runs remained very close to zero until close 

to 300 seconds until they rose above the zero star value and then decreased slowly. But three of 

the runs, and especially two of these, gave ―close‖ values that are so high they are not even 

comparable. The results appear bimodal instead of following normal statistics where they would 

be clustered around the average. This kinds of distribution points to completely different kinds of 

behavior for the majority of the results with low values and the ones with the high values. 

Interestingly, the runs with the high numbers for ―close‖ do not have high numbers for the 

particle count. This means that since the same number of particles remain in the space, the ones 

that are there are closely clustered together. 

Three stars gave similar results (not shown), with only one run out of the total that was 

significantly higher than the others but still much lower than the two with seven stars.  

 

Figure 6. Seven stars, results. Left; number of particles minus the number of particles for zero 

stars at the same time. Right; ―close‖ parameter minus the value for zero stars at the same time. 

Three stars. The reason for the bimodal behavior can be seen in Figure 7, which shows the 

results for three stars. In most cases the number of particles was at or close to zero by the end of 

the 600 seconds and the number of close pairs was also at zero. These values are lower than for 

seven stars. There were, however, two runs where the number of particles stayed high and the 
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number of close pairs also not only became very high – around 1/3 of the two high values for the 

seven stars – but was actually increasing with time. Inspection of the pattern of stars and 

particles showed why. If the stars were clustered then two effects were observed. The first is that 

the stars in proximity to each other acted as a single more massive star for iron particles away 

from them that decelerated the ones moving in that direction and could actually cause their 

directions to reverse and move towards the star group. The second effect is that the stars in a 

cluster often directed the iron particles towards each other. Especially if the motion was towards 

the more massive core, the core would trap the particles for a long period giving a very high 

density around it. As more particles were trapped in the gravitational well of the core with time 

the number of pairs increases. This same effect is what caused the extreme behaviors for the 

seven stars. There are differences between the two sets of runs, however. For three stars the slope 

of the number of particles is smaller than for seven, although it increases towards the end. The 

value of ―close‖ is smaller, but increases at the end. And the differences from the average are 

larger for three stars. So the effects of the clustering are at least somewhat dependent on the total 

number of stars in space. 

 

Figure 7. Three stars, results and image. Left; the number of particles minus those for zero 

stars. Center; the value of ―close‖ minus the results for zero stars. Right; the final distribution of 

particles for the run that gave the largest number for ―close.‖ This configuration of stars caused a 

large number of iron particles to fall back towards the supernova core where they became 

trapped in its gravitational well. The high concentration gives the large value for ―close.‖ As 

more particles fall deeper into the well and the concentration increases with time the number 

continues to rise, even at the end of the calculation.   

Eleven stars. On going from seven to eleven stars the trends between three and seven reverse. 

There is a wider distribution of particle numbers remaining with time. In addition, although the 

number of close pairs is relatively large, there are no instances where it is overwhelmingly larger 

than the average. There may, however, be two types of behavior that give larger and smaller 
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values for ―close.‖ I think this is because with a large number of stars a third effect becomes 

important. The accelerations of the particles towards groups of stars or after curving closely 

around a star are so large that the particles are no longer trapped in local gravitational wells but 

are continuously shunted into different areas of space. Since there is no region such as the area 

around the supernova core that may be a deep gravitational well that collects and traps large 

numbers of particles in a small area to give a high concentration, the concentration remains 

relatively low and the value of ―close‖ remains low as well. 

 

 

Figure 8. Eleven stars, results. Left; the number of particles minus those for zero stars. Right; 

the value of ―close‖ minus the results for zero stars. Although the distribution of particle 

numbers is larger than for seven stars, there are no significant outliers for ―close‖ although there 

do appear to be two types of behavior that give larger and smaller numbers.  

Comparisons of Average Values for Three, Seven, and Eleven Stars. Comparing only the 

average results for the three different numbers of stars more clearly shows the trends suggested 

by the individual results. Seven stars retains the greatest number of iron particles for the longest 

time. (The peak is because the zero star results have been subtracted and there is a discontinuity 

at that time.) The number of close pairs is greatest for seven stars. (The bug in the program is 

evident at shorter times.) Oddly, three stars actually gives a greater number of close pairs at 600 

seconds. This must mean that the clustering effect decreases after a certain threshold in the 

number of stars. But the averaging process does not show the fact that the different distributions 

of stars mostly give a particular result, with a few distributions giving an enormous number of 

pairs with time because they divert large numbers of iron particles into orbit around the 

supernova core. 
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Figure 9. Comparison of average results for different numbers of stars. Left; average value 

of the number of particles minus the zero star results for the different numbers of stars. Right; 

average value of ―close‖ minus the zero star results for the different numbers of stars. For three 

and seven stars the averages may not be useful because they may exhibit bimodal behavior 

instead of statistical. 

 

Conclusion 

Overall, these calculations do demonstrate that heavy elements created in supernovas and 

then ejected into space by the explosion are concentrated by neighboring stars while in their 

absence they simply disperse into space without ever aggregating in a way that solar nebular 

would have high concentrations and form solar systems with rocky planets.  

However, the actual arrangement of the stars is critical in this process, especially when the 

total number of stars is small or intermediate. This unexpected result is because, after being 

trapped by the gravitational pull of a cluster of stars that are close to each other, the particles 

eventually cluster around the supernova core or in other gravitational wells. This causes the 

heavy elements to clump together in a high concentration in case a shock wave from another 

supernova sweeps through or some similar event occurs; rocky planets are not limited to forming 

in proximity to the supernova core in which they were created. In the case of high star densities 

most arrangements of stars give larger numbers of close pairs on average, but there are no longer 

any cases with very high concentrations of stars in gravity wells. 
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Therefore, while it does appear likely that as the universe ages and the distance between stars 

increases the formation of rocky planets will slow down, it may continue at a low level for a very 

long period of time because there will still be configurations of even a small number of stars that 

continue to cause them to aggregate into regions with high concentrations. 

 

Recommendations 

It would be useful to continue to refine the masses of all of the objects, the velocities of the 

particles, and the gravitational constant to attempt to give results that can be compared against 

our universe. It would be extremely difficult to extend these calculations to three dimensions 

with StarLogo. StarLogo is not the optimum programming language or environment for these 

kinds of calculations anyway because its emphasis on agents means it is not easy to determine 

long range interactions between objects, such as occurs in celestial mechanics. 

I have also begun calculating the gravitational potential as a function of position for the 

various arrangements of stars and have completed additional sets of runs for seven and eleven 

stars. I am hoping that this will enable better understanding of the clustering phenomenon that I 

observed and especially what configurations of stars cause it. 
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