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Statement: 

 Our challenge is to further investigate the sequence of fractal images developed 

within the Mandelbrot set by changing the exponential power of the set to a fraction.  In 

this problem we will specifically focus on the Mandelbrot solution of the Julia set 

fractals.  These fractals are geometric figures that repeat themselves (are self-similar) 

under all levels of magnification.  The particular fractal set we are working with are Julia 

set fractals, narrowing in on the Mandelbrot solution of that set, which is found through 

the formula: (a+bi)
 2 

+ (c). 

 Self-similar geometric figures are found everywhere in nature, from the surface of 

the Moon, to a stalk of broccoli. Even in tree braches we see how self-similar, fractal-like 

patterns are created.  By applying that pattern, or set, to a tree, scientists can 

mathematically determine how much CO2 is captured in that tree, and by expanding the 

set, the amount of carbon captured by the whole forest can be estimated.   

 Fractal patterns have other uses in the natural sciences, and indeed this is a rapidly 

growing area of study.  For example, human blood vessels mimic fractal patterns, 

naturally taking advantage of a fractal’s inherent efficiency, due to a near-infinite surface 

area, for transporting oxygen and nutrients to all of the body’s cells.   These healthy cells 

appear in quite different patterns, compared to the cancerous cells, in someone with 

cancer.  

These once invisible, though pervasive, geometric figures were made visible with 

the help of computers.  By using the processing power of computers to graphically plot a 

fractal set, a process that would take days manually, fractal patterns can now be examined 



and studied.  Fractal images are being used for more than mere intellectual exercises, 

however.  By using fractals, programmers can create more realistic computer-generated 

mountains by using the self-similar nature of the fractal set to create natural appearing 

“roughness”, making the mountains look more realistic.  Perhaps the most famous, or at 

least most widely viewed, use of fractal images to create natural-looking terrain are the 

three most recent Star Wars films.  Virtually all of the sets were “virtual”, in that they 

existed only within the computers of Industrial Light and Magic.  The “lava scene”, 

which is the climax of Star Wars, Episode 3, The Revenge of the Sith was really just a 

beautiful and exciting use of fractal mathematics (if only Lucas took as much care with 

the plot…).   

 

Our problem is to change the Mandelbrot set by altering the exponent in which it 

is found, to a fractional power.  Using the software Xaos, when we ran the Mandelbrot 

set with integer exponents from 1 to 6, the sequence of the sets appear to mimic cellular 

mitosis. This brings us to our hypothesis, that when the Mandelbrot set is run to fractional 

powers we predict that the resultant images will demonstrate mimicry of cellular mitosis. 

 

Description of method: 

Julia set fractals exists on the real and imaginary number plane.  So complex 

numbers are in the form of a binomial (real + imaginary) i.e.: (3+5i). We will generate a 

thirty-frame per-second film that will show the morphing of the Mandelbrot set formula 

when moving the exponent fractionally from one to four. We will color the exterior tested 

locations based on the speed the tested location moves away from the set. The problem is 



you can’t raise a binomial (a+bi) to a fractional power with normal high school algebra so 

we use DeMoivre’s theorem. 

   DeMoivre’s Theorem, named after Abraham de Moivre, states that for any 

complex or real number, x and any integer: (cosx + i sinx)^n = cos (nx) + i sin (nx).  This 

is important because it connects complex numbers with trigonometric identities (θ,d).  

This allows us to take a complex number and raise it by the ¾ power or any real number. 

 DeMoivre was born in 1667 in France.  His family then moved to England when 

he was a little boy.  When reading Isaac Newton’s Principia Mathematica as an adult, it 

was this work that had inspired him to work in the fields of mathematical research.  He 

realized that Isaac Newton’s work was a breakthrough in the fields of mathematics and 

science. 

By using De Moivre’s Theorem, this lets us raise the complex numbers by 

converting the location to be tested to circular coordinates i.e.: (3+5i) becomes angle Ө = 

tan
-1 

because tangent of an angle is opposite over adjacent. So for Ө = tan-x/y, and r (the 

distance from [Ø, Ø]) is found by using the distance formula (Pythagorean Theorem) i.e.: 

r = sqrt (3)
2 

+ (5)
2
. Now Ө, r, is angle, distance. De Moivre’s theorem says for complex 

numbers in the form of (x +yi) = z, r = sqrt (x
2
+y

2
), 

Ө = tan
-1

(x/y), z
n
 = ((r

n
)(cos(nӨ)) + (r

n
)(sin(nӨ))i) 

                      Real part                  Imaginary part  

If z is the complex number Mandelbrot set is found by z
2
 + c, where c is the original 

position.   



 The equation (cosx + i sinx)^n = cos (nx) + i sin (nx) will work for the unit circle.  

If we wanted to use a point like (2,4i) out of the unit circle, and raise it to the n
th

 power, 

then you need to find the angle (θ) and the distance (d) so if:  

(2,4i)
2
 = (2 +4i)(2 + 4i) =  

4 + 16i +16i
2
 = 4 – 16 + 16i =  

(-12 + 16i). 

Then, 

r = √a
2 

+ b
2
 , r =√2

2
 + 4

2
 , r = √4 + 16 , r = √20, 

   Real:     (√20)
2
 * (cos(tan

-1
(2))(2)) = -12, 

                  Imaginary:     (√20)
2
 * (sin(tan

-1
(2))(2)) = 16 

  

 

 

Results of study: 

 During our study we have learned that our prediction was incorrect.  We used 

DeMoivre’s theorem to expand our Mandelbrot set to the powers of 1.01 to 4 with .01 

increments.  This is important because as you raise the Mandelbrot from 1.01 to 4, you 

see that the Mandelbrot set starts from a small speck, expanding form the right clockwise, 

and has a “shelf” that is a product of the exponent less than 2.  At the power of 2, it 

becomes the regular Mandelbrot set.  At the power of 3, there are 2 lobes that make up 

the set and at 4, there are 3 lobes.  In between the powers of 3 and 4 the “shelf” appears 

and spins clockwise to complete the next powers lobe.The short video of our output can 

be found at: http://chileped.home.comcast.net/~chileped/Fractal_Video.mov  The video 

shows the change in the set from 1.01 to 4.00 in hundredths of a power. 

This thought that a cellular mitosis model would be created did not occur.  

http://chileped.home.comcast.net/~chileped/Fractal_Video.mov


Conclusion: 

Though our prediction was erroneous, we did however find out that fractals are 

mathematical models of structures found in nature all around us.  Even before Benoît 

Mandelbrots research, many people had noticed these patterns – the organized roughness 

that occurs in nature.  This means that, for example, genetic coding of say, human blood 

vessels are designed to efficiently allow blood to all of the body with room to spare.  Our 

most significant achievement was learning how to make the program and understanding 

the entirety of the math that went with it.  Another great discovery was taking out 

Mandelbrot set model to the power of -2, which yielded very interesting results. 

Supporting information / Model Code: 

For this project we used the program Netlogo.  Net logo is a simple educational 

tool that allows with simple syntax to make a model of a physical situation or geometric 

series.   Below is a screen shot of the Interface page. 



The code that we used to make all the different Mandelbrot pictures was: 

turtles-own 

[  z-real  ;real coordinate. 

   z-imag  ;imaginary coordinate. 

   c-real  ;holds real and imag position. 

   c-imag 

   ar  ;in polar this is radius from (0,0).     

   tda  ;in polar this is theta. 

   counter  ;counts number of times before reaching the test limit for “not in set”. 

   ] 

to setup 

  clear-all  ;clears graphic screen, prepares program 

 crt 1 [setxy -200 200 set color 1]  ;sets turtle one at (-200,200) on a 400 by 400 matrix    

with a color of 1 

 ask turtles [set heading 90 repeat 400 [ repeat 400 [testing fd 1] set xcor (xcor - 400) set 

ycor (ycor - 1) ]]  ;tells turtle to test one point and move over 1 (90 degrees) 400 times, 

then goes back <-400,-1> and repeats./ checks every point on the screen. 

end 

 

to testing 

  set z-real (xcor * scale)  ;shrinks scale and holds the tested place 

  set c-real z-real  ;sets original position holder 

  set z-imag (ycor * scale)  ;shrinks scale and holds the tested place 



  set c-imag z-imag  ;sets original position holder   

  set counter Color_ Range  ;sets counter at current color choice on slider 

  repeat Testing_loops [ set counter (counter + Color_Steps ) DeMoivre calc if distancexy 

( z-real / scale ) ( z-imag / scale ) > ( 2 / scale ) [ set color counter stamp stop ] ] 

  set color black stamp  ;testing loop 

end 

to DeMoivre 

  if z-real = 0 [set z-real z-real + .000000000001 ]  ;avoids dividing by 0 

  set ar ( sqrt((z-real) ^ 2 + (z-imag) ^ 2 ))  ;finds distance from origin in polar coordinates 

  set tda ( atan z-imag z-real )  ;finds theta from coordinates 

end 

to calc 

  set z-wreal (((ar) ^ Exponent ) * (cos( Exponent * tda )) + c-real)  ;calculation of new 

real variable position 

  set z-wimag (((ar) ^ Exponent ) * (sin( Exponent * tda )) + c-imag)  ;calculation of 

imaginary variable position 

end 



 

 This is the Mandelbrot raised to the 1.78
th

 power. 

We also found out that when you raise the set to a negative such as -2, the set comes out 

like this: 

 

   



     

Dedications:  

 We owe a very special thanks to Joe Vertrees, our math teacher and mentor 

throughout this project.  Richard Foust, also one of our teachers at Freedom High, has 

helped us as well.  Abraham de Moivre, deserves our thanks for his theorem which to a 

great extent, made our project possible.  Benoît B. Mandelbrot, credited for the discovery 

of the Mandelbrot set, is the reason for why we did this project on fractals.  His 

fascinating, modern discovery is what led us to continue on his fascinating research. 
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