

 Project Vulcan

 New Mexico Supercomputing Challenge

 Final Report

April 1
st
, 2009

Team 48

Hope Christian School

Team Members:

Max VanBenthem

Matt Potok

Alex Jennings

Kent Delaney

Teacher:

Pamela Feather

Mentor:

Tom Laub

Acknowledgements

We would like to thank our mentors for all of the help they provided during the course of our

project.

Mr. Tom Laub was extremely helpful in suggesting new ways to think about problems we faced.

He also helped us by pointing out flaws in our logic or providing new logic for us to consider.

Along with helping us think critically, Mr. Laub also dedicated much of his time ensuring that

we progressed on schedule and meeting with us.

Finally, we would like to thank our teacher, Mrs. Pamela Feather. She was the one who

suggested the Supercomputing Challenge. She allowed us to use some of our time in her class to

complete our project.

i

Table of Contents

Introduction…………………………………………………………………………………….1

Problem Definition……………………………………………………………………………...2

Expected Results………………………………………………………………………………..3

Approach………………………………………………………………………………………..4

Conclusion……………………………………………………………………………………...10

References……………………………………………………………………………………...11

Appendix I……………………………………………………………………………………...12

Model A Code…………………………………………………………………………………..15

Model B Code…………………………………………………………………………………..20

ii

iii

Introduction

We are team 48, also known as the 1337 Team. Our project, Project Vulcan, is to

program a robot to be able to interact with its surroundings for one purpose: to locate and

extinguish several candles. The robot will use a series of algorithms, or series of steps, to

accomplish the tasks of finding and extinguishing these candles, as well as avoiding obstacles

that may be in its path. We planned to use the C++ programming language to program this

robot. Sensors located on specific areas of the robot allow the robot to sense candles, obstacles,

and the boundary lines of its playing area. We set out with one goal: attempting not only to

program this robot, but attempting to create a generic program that allows “thinking” on the part

of any robot.

1

Problem Definition

 The problem that we are faced with for this project is creating a program to allow the

robot to quickly and efficiently find and extinguish candles in an obstacle-filled course. This

program must be able to have the robot scan the environment with multiple sensors for obstacles

and candles, move through an obstacle laden field to the candles while avoiding the obstacles,

extinguish the candle with a fan, and repeat the process. This program will also contain

problems that we must solve in order to complete the main problem. One of these minor

problems is how we would access and use the sensors with the problem. Another problem would

be developing a method of prioritizing obstacles before candles, or candles before obstacles, for

the robot. Along with these problems we also have to connect to the robot through a USB cable

or Bluetooth. Application of power along with judging how much velocity to give the motors is

another problem which we must conquer.

2

Expected Results

 Our expected results are comprised of four separate actions that, when applied together,

will accomplish the problem our robot is faced with. These four actions are: scanning of the

environment, taking the data from the scanner and plotting of a course to candles while avoiding

obstacles, activation and alignment of fan to extinguish candles, and repeat of the actions

previously stated. With the correct use of these actions the robot should be able to get to the

candle and extinguish it with little or possibly no error.

 The robot will scan the environment to start. This is because by doing this instead of just

moving about first the robot will be able to know what its current surroundings are. From the

data gathered from the scan it is able to plot a course to specified objects that are defined in the

code. These objects can consist of the obstacles set in the course and candles that the robot is

told to extinguish. This method of searching first and basing calculations on the data gathered

will work better than guessing what the data is and assuming that a specific procedure will work

no matter how the environment is set up. The logic behind this is that by basing calculations off

of data collected the robot will be able to adapt to absolutely any environment it is subjected to.

If all the data is assumed, there is an inherent risk of leaving the field or running into obstacles.

With the search-first-then-action strategy, the robot is able to adapt to situations at a

greater extent because, like a person using their eyes, they see what is around them and try to

avoid what obstacles are in their way based on what they saw. Just acting without scanning is

like sending someone who is told to get to a specific point without running into anything, but has

lost the ability to use any of their senses such as sight, touch, hearing, etc. Just think about it a

little bit and you can come to the conclusion that the senseless person is going to collide with

plenty of obstacles before they make it to the goal, while the person that can use their senses has

a higher chance of avoiding obstacles and making it to the goal.

 The sensors that are used by the robot consist of an optical sensor, three infrared sensors,

and a sonic sensor. The sonic sensor is used to find where the obstacles are located and also used

to give a general guess on the dimensions of the obstacles. The infrared sensors will be used to

determine the location of the candles once the robot is close enough to pick up readings from

them. The optical sensor will be used to keep the robot in the boundaries that are set up around

the field in the form of lines.

 Once the robot has finished successfully making its way to the candles while avoiding the

obstacles throughout the course it will have to align its fan and activate it in order to extinguish

the flame of the candle. When the candle is extinguished the robot will repeat the process of

searching, navigating, extinguishing, and repeating indefinitely.

3

Approach

We decided that the best way to approach our problem lay in three simple steps: research

our robot and its components, model different approaches to the logic and physical aspects of the

program, and finally completing the program.

There were a number of factors involved which begged research before we could understand

how to accomplish our goal and structure the program.

 Understanding the robot itself is the key to programming it. Without an understanding of

the robots components, programming is an arduous task. There are three types of sensors, one

controller, a number of servos and motors and one central robot controller.

 The three types of sensors – light, ultrasonic and infrared – are included to allow the

robot to gather data from its surroundings. The playing field of the firefighting competition is a

white field bounded by a black line. The light sensors are used to detect the black line and tell

the robot that the edge of the field has been reached and the robot can no longer move forward.

Infrared (IR) sensors detect the heat emitted by the candles, thereby telling the robot that a

candle is present; when a reading from the IR sensor no longer returns a candle present, the

candle is indicated as extinguished. Ultrasonic (US) sensors are used to find obstacles and

extinguished candles. The reasoning behind this is that an extinguished candle will not emit any

energy for the IR sensor to detect, but is still an obstacle and therefore needs to be avoided.

 The particular light sensor installed on our robot is designed to allow the robot to detect a

black line on a white background and vice versa. This sensor gathers visible light and interprets

that light in black/white values. This sensor has five "eyes" that are able to detect white or black.

Black essentially is the lack of light. The sensor collects data from the five parts, either a 1 or a

0, meaning light or dark, and sends that information to the robot controller. This allows the robot

to "see" where it is moving on the course in relation to the border lines. If the robot detects a

black line within its “eyesight,” the robot “knows” that it has reached the edge of the field.

 Ultrasonic (US) sensors work by sending out a "ping" of ultrasonic sound, which is sound

that is too high for human ears to hear. This sound travels until it reflects off an obstacle and

bounces back toward the sensor. US sensors are designed to pick up an obstacle within a certain

distance, meaning that after a certain distance, the reflected sound waves are too weak to be

picked up by the sensor. In this case, the sensor registers no obstacle at that point. If an obstacle

is within the sensor's area of "vision," the sensor interprets that there is something nearby. This

information is then sent to the controller and can be utilized in the different calculations the robot

will perform in order to navigate successfully through the obstacles.

 The infrared (IR) sensors allow the robot to detect the heat from a candle, even if the

candle is set closely behind an obstacle. IR sensors are specialized light sensors that pick up

light with wavelengths longer than those of the visible spectrum. IR sensors work in a similar

manner to the regular light sensors mentioned earlier. There is, however, only one "eye" present.

This robot uses the Serializer Wireless .NET controller by RoboticsConnection. This

4

contoller allows a .NET structure for C++ programs and allows a variety of connection

possibilities, ranging from bluetooth to USB/Serial cable connections. This controller is made to

be used with the different sensors on the robot. The controller is essentially a mini-computer

processor, with pre-installed C++ libraries. It allows the robot to do calculations and activate

certain classes at certain times, much like a regular computer processor.

 Knowing the specifics about the robot allowed us to determine how to best structure a

program for it. There were several ways to do this. One way was just to have a basic if-then

statement telling the robot what to do. For example, if a human were reading the code, the code

would read, "If there is an obstacle detected by this sensor, turn right 90 degrees, move forward 5

feet, turn left 90 degrees and continue," or "If there is a candle found by this sensor, move

forward 9 inches then activate the fan." Of course, the distances would not be fixed as in these

examples. Another idea would be to implement calculations to determine exact distances and

actions. For example, using basic trigonometry would allow the determination of an exact

degree amount to turn in order to clear the obstacle and a comfortable distance to move forward

in order to move completely past the obstacle. Then an if-then statement would be used to move

directly to any candle that may be in the immediate vicinity of the robot.

 The idea for using trigonometry to navigate through the course was considered at first,

but more research was done to ensure that this idea was as solid as it seemed. The use of

trigonometry in having a robot navigate through the field is better than just saying “there’s an

obstacle, turn 90 degrees, move forward” because it allows the robot to calculate an exact

destination point and how to get there in an indirect way. This follows several steps: finding

how many degrees to turn, calculating the distance needed to clear the obstacle, calculating how

many degrees to turn (in the opposite direction of the first turn), and finally calculating how far

to move forward from this position to arrive within an “extinguishing distance” of the candle.

For example, an equation to find how many degrees to turn might be:

Where “D” is the degrees to turn, “X” is the distance from the robot to the obstacle when

the robot is at angle “Zero” (has not turned from its current course), “Z” is the diagonal distance

from the robot to the edge of the obstacle, and “d” is a predetermined constant – in degrees – to

allow the robot to clear the edge of the obstacle after turning. By taking the arcsine of X divided

by Z, the angle from the robot facing degree “Zero” to the edge of the obstacle may be obtained.

Adding the extra “d” degrees allows the robot to effectively avoid the obstacle with no problem.

Finding the distance to move in order to completely clear the obstacle is just another

simple calculation:

Where “C” is the “clearance” distance being calculated and “c” is a pre-derived constant based
5

off of the dimensions of the robot and used to ensure a confident clearance of the obstacle.

 It is not quite artificial intelligence (AI) because the robot has been told what to do with

the data that it collects from its sensors, but it is similar to AI because the robot can run the

calculations with ANY data that it collects, much like a human would say that 2 + 2 = 4 or 24 +

12 = 36. Any numbers can replace the two addends just like any data from the sensors can

replace variables. In this way, the robot can "think" in a very basic and guided manner.

With this logic built, a language was needed. There were two possibilities that were

immediately available to us: JAVA and C++. After researching the controller in the robot, C++

was chosen. Most of the research done in this aspect was done by reading through the pre-

installed header files. These header files provide information needed to initialize and manipulate

sensor and motor classes correctly and effectively. Along with the pre-installed header files, a

few test files were also included to make sure that the controller was able to communicate with

its various members.

Any basic coding document consists of three different segments: included files, variable

declarations, and code to be executed using the declared variables. Included files generally are

header files that define new information how certain information can be processed or

manipulated.

A typical C++ program is structured in three main parts: preprocessor directives, variable

declarations, and function declarations. This allows a well-structured program to be created.

Preprocessor directives are directions specifically for a computer processer to take before

the program is compiled. These directions, denoted by a pound sign (#) may include defining

constants for your program or including files that allow the manipulation of data. Defining

constants requires the DEFINE command followed by a variable name and a value for that

variable, for example:

#define PI 3.14

This command defines the constant PI as 3.14. A constant defined in this manner may not be

changed during the program’s execution, whereas any variable declared after the preprocessor

directives may be altered.

Including files, as mentioned, allows the inclusion of code that makes data manipulation

possible. The directives

#include <iostream>

 #include <iomanip>

allow input and output between a user and a screen as well as manipulation of that input/output.

Some included files contain math functions and other specialized functions, giving C++ a wide

array of uses. Many included files end with the “.h” extension, marking them as a C header file,

or a file that defines certain functions and variables outside of a program’s scope.

6

The next portion of a C++ program is variable declarations. These require two parts: a

variable type and a name. Variable types tell the processor what type of information is to be

stored under that variables name. The simplest types of variables are integer (int), character

(char), and string. A value can be assigned to variables when declaring them as well, but this is

not required:

 int Num = 35;

This command creates a variable named Num and sets its value to 35. Variables may also be

defined as constants by placing the const keyword in front of the variable type.

The final segment of a C++ program is the declaration of functions to be called during

the course of the program’s execution. Functions also require a type in front of the function

name. This type, however, determines what type of information is returned by the function.

Declaring a function takes place as follows:

 Int functionName()

 {

 Code to be executed

 }

 The built-in C++ libraries contained several test programs to ensure that the robot

controller was indeed working. The three main parts of one of these files is outlined below:

Including Files:

 #include "stdafx.h"

#include "PidMotor.h"

Defining variables:

const FLOAT64 CPidMotor::DEFAULT_VELOCITY_DIVIDER_DEFAULT =

ActuatorConstants::DEFAULT_VELOCITY_DIVIDER_DEFAULT;

const FLOAT64 CPidMotor::DEFAULT_GEAR_REDUCTION =

ActuatorConstants::DEFAULT_GEAR_REDUCTION;

const FLOAT64 CPidMotor::DEFAULT_WHEEL_DIAMETER =

ActuatorConstants::DEFAULT_WHEEL_DIAMETER;

const FLOAT64 CPidMotor::DEFAULT_WHEEL_CIRCUMFERENCE =

ActuatorConstants::DEFAULT_WHEEL_CIRCUMFERENCE;

const FLOAT64 CPidMotor::DEFAULT_TRACK_CIRCUMFERENCE =

ActuatorConstants::DEFAULT_TRACK_CIRCUMFERENCE;

Function Definitions:

 string CPidMotor::GenerateCommand(COMMAND_TYPE eCommandType)

7

{

string strCommand;

Code to be executed

return (strCommand);

}

PidMotor.cpp code snippets, test file contained in the Serializer libraries in the robot controller

 This example defines what files to include, defines some variables, and defines a function

that returns string data.

Our first step, as mentioned, was research. Because almost our entire objective is

centered around the robot that we programmed, much of our research was about the robot: its

component sensors, motors, controller, and how they all worked.

The second step we took was to model different ways to have the robot navigate through

the course and extinguish candles. We also had to determine how to prioritize searching for

candles and obstacles. For example, let’s say we have finding candles as a higher priority. The

robot sees the candle, ignores any obstacle that may or may not be in between the robot and the

candle, and executes code to move the robot straight to the candle. The robot will bump into the

obstacle and have to start the course over. Or, say the opposite. The robot searches for obstacles

first and executes the proper code for avoiding obstacle. The problem with this is that the robot

will see an obstacle almost anywhere on the field; therefore, it will move according to the

obstacles and ignore the candles entirely. We created two main models – using the NetLogo

modeling software discussed in Appendix I – that simulated both of these strategies; these

models were modified several times, giving us working models for both strategies. The code for

these two models is also included at the end of Appendix I.

Models A and B were similar in many aspects, such as navigational methods; however,

they changed the priorities. Model A focused on obstacles first, then candles, whereas Model B

searched for candles first, then obstacles. Model B was more successful and therefore will be

discussed in greater detail. This model searched for candles with code to avoid obstacles while

moving forward and while moving toward the candle constructed inside each function. Model B,

however, had problems facing oddly shaped obstacles. For example, if an "L" shaped obstacle is

placed directly next to the field's boundary, the robot would get caught in the cul-de-sac bordered

by the obstacle and boundary line and fail to escape. This remained the only major problem that

was unsolved when we finished with our modeling.

Both models were successful during their simulation. However, we decided to use the

logic from Model B to structure our actual program. Therefore the logic would be:

 Search in a 360 degree arc for any candles near the robot.

8

 If a candle is found, head toward it, avoiding any obstacles, and activate its fan to

extinguish the candle.

 If a candle is not found, head forward and slightly to one side - avoiding any obstacles -

and search for a candle again.

Avoiding an obstacle would be very simple: If an obstacle is found with the ultrasonic

sensor, turn X degrees to the right/left.

Our approach to the programming was simple as well: move the robot, then work on its

sensors. The logic behind this was that if the robot cannot move, the sensors and its overall goal

are pointless. However, connecting to the robot made the programming difficult. The Bluetooth

and a USB/Serial cable failed to allow a connection to the robot. During this time, we worked on

our previously discussed models and attempted to fix the problem. A discussion from a leader in

the New Mexico RoboRAVE yielded no fruit. We managed to find a piece of software from a

similar robot that finally allowed us to communicate with the robot.

This approach of research, modeling, and then taking action was excellent for our project.

Despite the difficultly connecting to the robot, we were able to determine that a program can be

made to allow a robot to "think" for itself and adapt to different situations.

9

Conclusion

Though this project had a few unpredicted and suboptimal events, it can be rated as an

overall success. As connecting to the robot proved much more difficult than originally planned,

we were never able to write and test a successful program for the actual robot. However,

through NetLogo, we were able to simulate the firefighting robot challenge. We were able to

write two distinct programs that successfully completed the challenge. Both programs had

advantages and disadvantages. Had we been able to successfully connect to the robot, we would

have used a hybrid of these programs to maximize robot success. Our material goal of producing

a robot programmed to extinguish candles and navigate an obstacle-laden field was not reached.

However, in theory, we succeeded in producing a program that would allow the robot to do as

we had planned. In this sense, our project was a success.

10

References

Beginning Programming for Dummies aided in our figuring out how classes of the

SerializerCpp library were declared.

Brain, Marshall. “How USB Ports Work.” 1998. How Stuff Works. A Discovery Company.

HowStuffWorks, Inc. 17 December 2008

<http://computer.howstuffworks.com/usb3.htm>.

Loyd, Ryan, Matthew Paiz, and Mark Wunsch. Dynamic Software Evolution: An

Evolutionary Approach to Artificail Intelligence. New Mexico Supercomputing

Challenge Final Report. 5 April 2006.

“Programming Your Robot to Navigate.” RidgeSoft.com, v. 1.2. 2005 RidgeSoft LLC.

Wang, Wallace. "Beginning Programming: All-in-one Desk Reference For Dummies."

Hoboken, NJ: Wiley Publishing, Inc. 2008.

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected

Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

11

Appendix I: NetLogo

We used NetLogo to simulate the robot and its function of finding and extinguishing

candles. This program provided an agent based simulation language that was relatively simple to

learn and capable of successfully imitating the robot. By evaluating different approaches to

solving the problem, we were able to determine the best program for the actual robot.

NetLogo uses a programming language particular to itself, but similar to other languages

such as C++ and Java. However, the detailed syntax differs from these more commonly known

programming languages. One difficulty our group faced was learning this new language in order

to successfully simulate the robot program. We accomplished this task mainly by writing simple

programs to complete minor tasks. We then slowly increased the magnitude of our programs to

encompass larger and larger tasks.

The evolution of our programming began with simply setting up the playing field. All

the patches in the model area were set the color blue. This is a simple line of code, requiring

only two lines of code:

ask patches [

set pcolor blue]

Figure 1

Then the patches on the borders were set black. This represented the playing field that the actual

robot would have to navigate through. Setting the edges black proved slightly more difficult:

ask patches with [max-pxcor = pxcor] [set pcolor black]

ask patches with [min-pxcor = pxcor] [set pcolor black]

ask patches with [max-pycor = pycor] [set pcolor black]

ask patches with [min-pycor = pycor] [set pcolor black]

Figure 2

We then created a robot, called a turtle in NetLogo. To create a robot in NetLogo, you

simply input the code: create-robots (number of robots). This appeared as a small arrow on the

model area. We then wrote a program that allowed the robot to move around the field and turn

around when it reached the border. In order to accomplish this, we wrote a short line of code

telling the robot to move back one space and turn 130 degrees to the right if it found itself on a

black patch.

ask robot 0 [

 ; robot 0 asks the patch it is on (the patch that is 0 patches ahead of it)

 ask patch-ahead 0 [

 ; if the patches color is black then robot 0 backs up one patch and turns right 130

 ; degrees, thus turning back into the field and remaining in bounds

 if pcolor = black [

 ask robot 0 [bk 1 rt 130]

]

]

]

 End

Figure 3

Next, we turned several blocks different colors to simulate obstacles and candles. The

red blocks represented obstacles, and the yellow blocks represented candles. We used a similar

algorithm to the borderline avoidance to allow the robot to navigate around the obstacles. This
12

time, however, if the robot saw a red square five or less squares away in a radius of sixty

degrees, it would turn right ninety degrees, move forward one patch, and turn left ninety degrees.

This algorithm allowed the simulated robot to successfully move around an obstacle in its path.

In order to accomplish this task, we had to use two loops: one to loop the distance search and

another to loop the angle search. The code to loop the distance search is a while statement: while

[distToObstacle <= 5]. The angle incrementation is contained within this distance

incrementation:

while [distToObstacle <= 5]

[set LEFT_TO_RIGHT_SEARCHER (-30)

while [LEFT_TO_RIGHT_SEARCHER <= 30] […] ...].

Figure 4

The final step in our programming development required the robot to locate and

extinguish the candle. Extinguishing the candle was fairly simple. All that was required to

accomplish this was to tell the robot to set the patch color to a different color than yellow. In the

simulation, if a yellow space is one patch in front of the robot, it is turned grey or green.

Locating the candle proved to be the hardest piece of the program. Our team developed two

separate programs to accomplish this task.

The first program, Model A, approached this task in the same manner as the obstacle

avoidance system. This time, however, the robot would move towards the object it saw. It used

the same double-loop system as the obstacle avoidance code. First, it looped the distance while

the distance was less than or equal to six. Within that loop, the robot searched from negative

thirty degrees to positive thirty degrees. This code was nearly identical to the code located in

figure 4. If the robot saw a yellow square six or less patches away in a radius of sixty degrees, it

would turn the correct angle towards the candle and move one less patch forward than the total

distance to the candle. Turning the correct angle proved to be a slight problem. We made the

process a little more complicated than it needed to be. Instead of turning the robot left the

absolute value of the angle that returned a yellow patch, or right the value of the angle that

returned a yellow patch, we originally programmed the robot to turn left sixty degrees minus the

angle. We corrected this mistake by replacing the incorrect code with:

ask robot 0 [

 lt abs x

 fd (distToCandle - 1)

Figure 5

and

ask robot 0 [

 rt x

 fd (distToCandle - 1)

Figure 6

Moving forward one patch less than the total distance to the candle places the candle one patch

in front of the robot, allowing it to be extinguished. This program found candles successfully,

but it did so in a seemingly random search. The robot had limited line of sight, allowing it to

only see in a particular window. If there were no candles, it continued forward, even if there was

nothing in that area.

The second program, Model B, took on an innovative technique. This program told the

robot to spin in a circle every few times it moved forward. While spinning it searched for a

candle six or less patches away. If it saw a yellow patch, it would move forward one less patch

than the total distance to the yellow patch. This program also successfully located candles. It
13

seemed somewhat slower than Model A, but it was a much more organized system. The spin

took a lot of time, but, overall, Model B was more successful at finding the candle than Model A.

These two models gave us a better understanding of how the actual robot would act. It

prepared us to write the actual program, and gave us an understanding of what we needed to do.

Without the NetLogo modeling, it would have taken much longer to develop a successful

program for the firefighting robot.

14

Model A Netlogo Simulation Code

GLOBALS

[

LOOP_CANDLE_SETTER

LEFT_TO_RIGHT_SEARCHER

distToObstacle

x

distToCandle

]

; robot breed declaration

breed [robots robot]

to setup

 ; clears the screen of all present items for the setup of the firefighting field

 clear-all

 ; sets all patch colors to blue, because black will be used for the boundaries of

 ; the firefighting field

 ask patches [

 set pcolor blue

]

 ; sets all patches with their x coordinate equal to the maximum and minimum x coordinates

 ; of the field, likewise for y coordinate values. This creates a black "box" around the

 ; blue field

; queries all patches sets the color black

; | with x equal to max-x |

 ask patches with [max-pxcor = pxcor] [set pcolor black]

 ask patches with [min-pxcor = pxcor] [set pcolor black]

 ask patches with [max-pycor = pycor] [set pcolor black]

 ask patches with [min-pycor = pycor] [set pcolor black]

 ; creates four obstacles

 repeat 4 [

 ; queries all patches selects random x and y coordinates (the minus 8 is to center the

 ; obstacles in the field. |

 ; | | sets the color to red

 ask patch (random 20 - 6) (random 20 - 6) [set pcolor red ask neighbors [set pcolor red]]

]

 ; places a candle in the midts of an obstacle. Candles are colored yellow
15

 ; NOTE: more candles will be added later, after a successful first extinguishing

 repeat 3 [

 ; LOOP_CANDLE_SETTER is set to "no" to allow the while loop to run and place one candle

 set LOOP_CANDLE_SETTER "no"

 while [LOOP_CANDLE_SETTER = "no"] [

 ask patch (random 20 - 6) (random 20 - 6) [

 ; checks the patch color, if the patch is red, the code tries again

 if pcolor != red [

 set pcolor yellow

 set LOOP_CANDLE_SETTER "yes"

]

]

]

]

 ; creates a turtle of the robot breed

 create-robots 1 [

 ; sets the y coordinate to the minimum y coordinate plus 1, placing the robot one patch

 ; above the lowest boundary, and the x coordinate at the maximum x coordinate minus 1,

 ; making the robots position the very lower right corner of the valid plaing field

 set ycor (min-pycor + 1) set xcor (max-pxcor - 1)

 ; sets the robots color to orange, for visibility purposes

 set color orange

]

end

; code body to allow the robot to detect the boundaries of the field

to checkLine

 ; queries robot 0

 ask robot 0 [

 ; robot 0 asks the patch it is on (the patch that is 0 patches ahead of it)

 ask patch-ahead 0 [

 ; if the patches color is black then robot 0 backs up one patch and turns right 130

 ; degrees, thus turning back into the field and remaining in bounds

 if pcolor = black [

 ask robot 0 [bk 1 rt 130]

]

]

]

 end

; if the patch color is green (exstinguished candle) it will back up 1 and turn left

16

; 30 degrees

to avoidCandle

 ask robot 0 [

 ask patch-ahead 1 [

 if pcolor = green [

 ask robot 0 [bk 1 lt 80]

]

]

]

end

; code body to allow the finding and avoiding of obstacles (red patches)

to avoidObstacle

 set distToObstacle (0)

 while [distToObstacle <= 5] [

 set LEFT_TO_RIGHT_SEARCHER (-30)

 ; loops while LEFT_TO_RIGHT_SEARCHER is less than or equal to 1

 while [LEFT_TO_RIGHT_SEARCHER <= 30] [

 ; queries robot 0

 ask robot 0 [

 ; robot 0 queries the patch that is right LEFT_TO_RIGHT_SEARCHER patches and 5

patches

 ; ahead

 ifelse LEFT_TO_RIGHT_SEARCHER < 0

 [ask patch-left-and-ahead abs LEFT_TO_RIGHT_SEARCHER distToObstacle [

 ; if the patch color is red, then robot 0 turns right 90 degrees, moves forward

 ; one patch, then turns left 90 degrees, effectively avoiding the obstacle

 if pcolor = red [

 ask robot 0 [

 rt 90

 fd 1

 lt 90

]

]

]

]

 [ask patch-right-and-ahead LEFT_TO_RIGHT_SEARCHER distToObstacle [

 ; if the patch color is red, then robot 0 turns right 90 degrees, moves forward

 ; one patch, then turns left 90 degrees, effectively avoiding the obstacle

 if pcolor = red [

 ask robot 0 [

17

 rt 90

 fd 1

 lt 90

]

]

]

]

]

 ; increments LEFT_TO_RIGHT_SEARCHER in order to limit the while loop

 set LEFT_TO_RIGHT_SEARCHER (LEFT_TO_RIGHT_SEARCHER + 1)

]

 set distToObstacle (distToObstacle + 1)

]

end

; code that allows robot to find the yellow block

to findCandle

 set distToCandle (0)

 while [distToCandle <= 6] [

 set x (-30)

 while [x <= 30] [

 ; queries robot 0

 ask robot 0 [

 ; robot 0 queries the patch that is right LEFT_TO_RIGHT_SEARCHER patches and 5

patches

 ; ahead

 ifelse x < 0

 [ask patch-left-and-ahead abs x distToCandle [

 ; if the patch color is yellow, move towards patch

 if pcolor = yellow [

 ask robot 0 [

 lt abs x

 fd (distToCandle - 1)

]

]

]

]

 [ask patch-right-and-ahead x distToCandle [

 ; if the patch color is yellow, move towards patch

 if pcolor = yellow [

 ask robot 0 [

 rt x

18

 fd (distToCandle - 1)

]

]

]

]

]

 ; increments LEFT_TO_RIGHT_SEARCHER in order to limit the while loop

 set x (x + 1)

]

 set distToCandle (distToCandle + 1)

]

end

; code that allows robot to simulate extinguishing the candle

to exstinguishCandle

 ask robot 0 [

 ; robot asks patch ahead of it if it is yellow and extinguishes it (turns it blue)

 ; if it is

 ask patch-ahead 1

 [if pcolor = yellow [

 set pcolor green

]

]

]

end

; code that initiates all motions and actions of the robot

to move

 ; asks the first robot (value of n - 1, where n is the total number of robots in the

 ; field. in this case n = 1) to move forward one patch

 ask robot 0 [

 fd 1

 checkLine

 avoidObstacle

 findCandle

 exstinguishCandle

 avoidCandle

]

end

19

Model B Netlogo Simulation Code

GLOBALS

[

;;;

; All variables have a numerical value, including true/false. ;

; True/false variables will be set at 1/0 respectively. ;

;;;

candleSetYesNo ; true/false if a candle has been successfully set

candleDistance ; distance searched from the turtle for a candle (in patches)

MAXcandleDistance ; maximum distance searched for a candle

candleYesNo ; true/false if a candle has been found by the turtle

degreeCounter ; number of degrees turned from the starting direction. 1 = 0 turned degrees

obstacleDistance ; distance searched from the turtle for an obstacle (in patches)

MAXobstacleDistance ; maximum distance searched for an obstacle

obstacleYesNo ; true/false if an obstacle has been found by the turtle

]

; create the robot breed

breed [robots robot]

to setup

 ; clear the whole screen if pre-existing items are present

 clear-all

 ; creates the active robot at the lower right corner, which in this field is at

 ; (15, -15) in patches

 create-robots 1 [set xcor 15 set ycor -15 set color orange]

 ; This long line of code asks patches that do not have their x coordinates

 ; or y coordinates equal to the maximum x coordinates or y coordinates (respectively)

 ; to set their color blue. This creates the playing field with boundaries in one

 ; easy step

 ask patches with [pxcor != max-pxcor and pxcor != min-pxcor and pycor != max-pycor and

pycor != min-pycor] [set pcolor blue]

 ; this creates four obstacles

 repeat 4 [

 ; selects a random patch, within a defined area, and sets its color to red

 ; then its neighbors are turned red in order to create a larger obstacle

 ask patch (random 16 - 8) (random 16 - 8) [set pcolor red ask neighbors [set pcolor red]]

]
20

 ; this creates four candles

 repeat 4 [

 ; candleYesNo is set to false (0)

 set candleSetYesNo 0

 ; loops until candleYesNo is set to true by placing a candle in a random patch

 while [candleSetYesNo = 0] [

 ask patch (random 16 - 8) (random 16 - 8) [

 if pcolor != red [

 if pcolor != yellow [

 set candleSetYesNo 1

 set pcolor yellow

]

]

]

]

]

end

to checkObstacle

 ; sets the maximum search distance to 5 patches

 set MAXobstacleDistance 5

 ; sets obstacleYesNo to false

 set obstacleYesNo 0

 ; degrees to the right or left, negative = left, positive = right

 set degreeCounter (-30)

 ; loop until all the possible directions have been searched or an obstacle has been found

 while [degreeCounter <= 30 and obstacleYesNo = 0] [

 ; sets the distance to look away from turtle

 set obstacleDistance 1

 ; loops until obstacleDistance reaches the maximum distance or an obstacle is found

 while [obstacleDistance <= MAXobstacleDistance and obstacleYesNo = 0] [

 ; if degreeCounter is negative, it searches left

 ask robot 0 [

 if degreeCounter < 0 [

 ask patch-left-and-ahead (abs degreeCounter) obstacleDistance [

 if pcolor = red or pcolor = grey [

 set obstacleYesNo 1

 ask robot 0 [rt 30]

]

]

]

21

 ; if degreeCounter = 0, then the turtle searches stright ahead

 if degreeCounter = 0 [

 ask patch-ahead obstacleDistance [

 if pcolor = red [

 set obstacleYesNo 1

 ask robot 0 [rt 90]

]

]

]

 ; if degreeCounter is positive, then the turtle searches right

 if degreeCounter > 0 [

 ask patch-right-and-ahead degreeCounter obstacleDistance [

 if pcolor = red [

 set obstacleYesNo 1

 ask robot 0 [lt 30]

]

]

]

]

 ; increments the distance to search

 set obstacleDistance (obstacleDistance + 1)

]

 ; increments the turn amount

 set degreeCounter (degreeCounter + 1)

]

end

to checkForObstacle

 ; if a robot detects an obstacle in the way, it turns left to avoid it

 ask robot 0 [

 ask patch-ahead 1 [

 if pcolor = red [

 ask robot 0 [

 lt 90

]

]

]

]

end

to headToCandle

22

 ; if a candle has been found, then the robot moves forward that distance - 1,

 ; checking for obstacles after each advance

 repeat (candleDistance - 1) [

 ask robot 0 [

 fd 1

 checkForObstacle

 checkLine

]

]

 ; if the robot finds a candle, it is extinguished

 ask robot 0 [

 ask patch-ahead 1 [

 if pcolor = yellow [

 set pcolor grey

]

]

]

end

to checkCandle

 ; the maximum distance from the turtle to look for a candle

 set MAXcandleDistance 10

 ; candleYesNo is set to false

 set candleYesNo 0

 ; degreeCounter is "zeroed" out, 1 = 0

 set degreeCounter 1

 ; loops until degreeCounter records a complete turn or a candle is found

 while [degreeCounter <= 360 and candleYesNo = 0] [

 ; sets the distance from the turtle to look for a candle

 set candleDistance 1

 ; loops while that distance is less than the maximum distance or a candle is found

 while [candleDistance <= MAXcandleDistance and candleYesNo = 0] [

 ask robot 0 [

 ask patch-ahead candleDistance [

 if pcolor = yellow [

 set candleYesNo 1

 headToCandle

]

]

]

 ; increments candleDistance

23

 set candleDistance (candleDistance + 1)

]

 ; asks the robot to turn rith 1 degree then records the turn by incrementing degreeCounter

 ask robot 0 [rt 1]

 set degreeCounter (degreeCounter + 1)

]

end

to checkLine

 ; if the robot sees a black patch under it, then it backs up and turns back into the field

 ask robot 0 [

 ask patch-ahead 0 [

 if pcolor = black [

 ask robot 0 [

 bk 1

 rt 135

]

]

]

]

end

to move

 ask robot 0 [

 ; asks the robot to move forward 10 patches and turn right 10 degrees

 repeat 10 [

 fd 1

 ; after moving forward, the robot checks for the boundary

 checkLine

 ; the robot checks for obstacles before moving forward

 checkObstacle

 ; robot doesn't travel in a straight line

 rt 2

]

 ; after the completion of movement, the robot checks for a candle

 ; executing sub-bodies of code as defined by the conditions

 ; set in the "function"

 checkCandle

]

end

24

