Get with the Flow, Man!

A study of the thermodynamics of civil engineering

New Mexico Supercomputing Challenge
Final Report
April 1%, 2009

Team 52
Los Alamos High School

Team Members:
Ben Batha
Daniel Cox
Gannon Nelson
Will Phillips

Jake Poston

Sponsors:
Ms. Diane Medford
Mr. Lee Goodwin

Mentors:
Dr. Steven Batha

Dr. David Poston

Los Alamos High School Team 52

Table of Contents

SUIMIMIATY ..ttt ettt e bttt s bt e s bt e e sab bt e et e e sab e e e sabeeesabeeesabeeenabbbeeeeeans 3
Problem STAEMENL.ccoouiiiiiiiiiiee ettt ettt e e e 5
IMIOAEL ...ttt ettt ettt st e bt et e eb e et b e et nbe e e et e e neneee 6
BN o F2 1 21 I 5 e KO OO O OSSPSR PPPPTR 6

A. Control €Case (ROAA)........ooovuuuiiiiiiiiieeeeeee e eeee e e e e e e e e e e e e e eeeaaeeees 6

B. Experimental Case (Bride)........cccouiiiiiiieiiiieeiieeeiee ettt sttt e e e ee e e e 6

C. Testing the EXperimental Case........c.cccecueeriiriiiiniieiieieeieeeeeeeesiee et 7

2 DIFTUSION. ..ttt ettt e e e e st e e ettt e st e e et e e e e e e eabbaeeeeeeaaa 8

3. Blackbody Radiation.........ccccuiiiiiiiiiiieeiiieeiteeeee ettt ettt st e s e e e e e 10

4. Day-NIHt CYCLS. .. uuvieiiiiiiiieeeiie ettt ettt se e e st e e st eeeabee e s esnbbeeeeeessnnssaeeeeeeas 11

5. Physical Constants USEd..........cc.eeiiiiiiiiiiiiiieeiieeeiieeete ettt st e s 13
IMEERO. ...ttt et e e e e sttt e et e et e e e ettt e e e e e e abneeees 14
L. DESIZN PIINCIPIES. ...eeeuiiiieiiiiiiiieeiie ettt ettt ettt e et eeateesbbeessnaeeeeennans 14

R I Y4 L oL OO OSSP PPPPPP 15

TR 2 q o) 1163 L 81 (5111 T 16 FO RSP PPPPPRRRN 16
RESULLS. ...ttt ettt et e et e ettt e e e e e eeeeee 17
CONCIUSION. ¢ttt ettt sb e st e bt e et e bt e st e e s b e et e bt e sabeesaeeemneenseesanee 18
RETETEIICES. ...ttt st ettt et et e e e e e e e 19
APPENAIX Az COUC...cniiiieiiieeiie ettt ettt ettt e et e e eat e e sbeeesasaeesnsaeassseaeesesnssssaeeessennnnns 20
LUICEIISE. ¢ttt et ettt et a e e bt s bt e e s n bt e e e et e e enaee 20
Physical Constants (CONSTANTS.PY)...c.vveerierureriuerniieniieieenteeieesreeteesreereesireereesereeneesaeeeneesanes 21
SINELE CIl (CEILPY). ureeiieeieeieee ettt et e e 22
2D € 5 o I €4 e 1 o)) SRR PPSPPPP 23
Cell = XML Converter (CEelltOXMLPY)...ccvrviiiiieiiiieeiieeeiieeeite ettt e e 26
XML — Cell Converter (XMLIOCEILPY)....coeruieeriiiiiieiiiieeiteetee ettt 28
DIIVET (AIIVELPY).ttt ettt et et e et e et e e st e e sabaeesabeeesabeeennbeeeneees 30
Graphical User INterface (QUI.PY)...coveeeruiierriiieiiiieiiiee ettt ettt 34
AUtomatic RUNNET (JAKE.PY).eouvveeeiiieiiiieiiieeeitee ettt e sttt ettt ettt e et ee et e e e sitaeeeesesanbbaaeeeseennes 37

2/41

Los Alamos High School Team 52

Summary

Any person who has driven on a cold New Mexico night is aware that bridges usually freeze
before the rest of the road (some have learned this the hard way). The primary goal of this project
is to understand heat conductivity through a bridge, and determine why the roadway on a bridge
freezes before the road directly in the ground. The secondary goal is to design a computational

model that can determine under which conditions a bridge may or may not freeze.

This simple question, “On a cold night, why does the bridge
“Why does the

bridge freeze before

the road?”

freeze before the road?” requires sophisticated physics to answer.

There are a variety of considerations for such a model. What is

the starting air temperature? What materials are used for the

bridge? What is the heat capacity of each of these materials? To create an effective model we
used a uniform concrete suspension bridge parallel to the ground. We assumed that the starting
temperature for the bridge and ground would be the same, and the starting temperature for air
would be varied. We additionally, examined the sensitivity of the system to different base

conditions.

Using the principle of conservation of energy, we derived a system of equations to model heat
diffusion on both level road and suspended bridge. This model incorporates the scientific
principles of conduction and radiation to calculate unit temperatures after successive day-night
cycles. The graphical interface allows the user to isolate the temperatures of individual parts of

the bridge in order to determine the cause of early freezing.

The model reproduces a real-world situation: material coefficients are based on existing
thermal data and the model can be effectively applied to real-world bridges in cold climate areas
which are subjected to freezing temperatures during the night. This model has the potential for
use by meteorologists, police and transportation safety officials to accurately predict when travel
conditions have the potential to become unsafe in certain areas. The diffusion code can be easily

adapted to a variety of applications such as cellular osmosis and building efficiency and also the

3/41

Los Alamos High School Team 52

potential for a multitude of other uses.

4/41

Los Alamos High School Team 52

Problem Statement

Heat transfer is a broad area of study, thereby requiring the definition of several limitations to
narrow the scope of our project. First, heat flow is assumed to be two-dimensional. This
assumption means that the ends of the bridge is the same temperature as the center of the bridge.
This is the same as assuming that the bridge is infinitely long. Second, the model uses only direct
conduction and blackbody radiation, ignoring convection as a variable meaning that cooling by
the wind is beyond the scope of our model. Third, the spatial grid has reflective boundary

conditions. Meaning that the outermost ground and air in the model have no net heat change.

In this model, heat flow is calculated on a two-

dimensional grid experimental and control. The air is

represented around the concrete bridge in the experimental

BRIDGE
(ICES BEFORE
N\ ROAD

model (the bridge) and there is a ground layer below and to
the sides of the concrete in the control model (normal

road). After this, implementation was simple. There are two
primary goals of the diffusion algorithm: (1) calculate how
much heat is conducted between cells during each timestep

and (2) calculate how much heat escapes due to blackbody
o Figure 1: A signpost frequently seen
radiation at the top layer of the model. by passing motorists
An explicit step method of adjacent-cell diffusion is used to calculate heat diffusion. The
advantages of explicitly calculating the steps is simple math, the code does not require algebra.
The disadvantage is that we must use very small time steps to prevent the risk of divergence, i.e.

where the temperatures could go out of bounds or exhibit speckling.

5/41

Los Alamos High School Team 52

Model

1. Spatial Grid
We modeled two cases using the same theoretical stretch of road. The first is a ground road
wherein the road is embedded in the ground and air is on top. The second is when the road is

completely surrounded by air, as in the example of a suspension bridge.

A. Control Case (Road)

We began with a control case. The road rests on top of a)
layer of ground representing the typical cross-section of a alr
straight road on even ground. This allowed us to test the
heat diffusion code for the convergence and thereby

improve the efficiency of our code.

Figure 2: Road on level ground

B. Experimental Case (Bridge)

After the control case was completed, we designed the
experimental case. Utilizing the bridge model. Though the air
ground would have some stabilizing effect, our model
assumes that this variable is negligible on a long bridge. road
The cross-section is taken from the mid-point of the bridge
surrounded only by air, with no adjacent ground, thereby

accurately modeling a bridge where there is no direct path

for heat transfer between the road and the ground.
Figure 3: Bridge suspended in air

6/41

Los Alamos High School Team 52

C. Testing the Experimental Case

The assumption that the bridge is acting as a block of concrete suspended in air is critically
important to our experiment. To substantiate this assumption, we tested a preliminary version of
the model without blackbody radiation on a different cross-section of the bridge (the bridge cut
lengthwise). For a bridge of over fifty meters, the temperature difference due to ground
conduction was found to be less than one tenth of a degree. Although the struts of the bridge
(Figure 4) cause a change in temperature if they are close to the test cross-section, this change

was found to be insignificant when compared to the blackbody radiation from the top of the

bridge.

Figure 4: 3D model of a bridge, showing the experimental cross-section (which is perpendicular
to the lengthwise cross-section) and the struts that support the bridge

7/41

Los Alamos High School Team 52

2. Diffusion
The best way to ensure that Newtonian physics is satisfied is to start with the law of

conservation of energy. Thus, the net energy of the system is always conserved.

AQ — O (Equation 1)

Or, expressed another way:

Qin — Qout (Equation 2)

Equation 2 will be useful later. Now, we can start with the heat equation:

dU

T
E = KVl (Equation 3)

Let's expand it for three dimensions:

dU d*u d*u d*u
=K + (Equation 4)

dt dx dy dz

We also know a constant-based value for K, where k is thermal conductivity, Pis density, and

C

P is the specific heat capacity.

k
= pC, (Equation 5)

Let's look at a segment of our spatial grid

f f f
Urr—]._."—] Un—]._." U:r—].j—]
t t t
Un._."—] n.j Un._."—] (Equation 6)
! ! !
Un—]._."—] Un—]._." U:r—].j—]

Note on conventions: The superscript is the time step, and the subscript is the location in the grid.

8/41

Los Alamos High School Team 52

So the new temperature U at (n,j) will be calculated based on all of the cells adjacent (but not
diagonal to it. Let's call each of these individual changes in energy q (which is measured in Watts
per second). In order to calculate q, we use our original heat equation and our understanding of

the law of conservation of energy.

d
d_? = Zq (Equation 7)

We also have to convert between energy and temperature

d dl
d—? =pVC P ? (Equation 8)

Setting these two equal and expanding, we get:

L.

dU Uiy — U Uiig — Ups1 — Uy
PAAYALC,—— = a;-mx% L AxAZK 0 ApAyg 2L

Y Ay Az

Ui — U Uj—Ujs Uk — Ups
+AyAZK # +AxAzZK T + AxAyK T (Equation 9)

Since we are working in two dimensions, we can assume that that z is dimensionless, which

means that

Az = AxAy (Equation 10)

With this, we get
dU o] . o] . 7 .] .
pﬂt’ﬁ_‘sf}JE =AvK(Uis)—Uj) +AxK [Uj_J — Uj)'l +AVK(U;—Uj) +A°K I:UJ.' — Uj_jj

(Equation 11)

This equation can easily be solved by a computer.

9/41

Los Alamos High School Team 52

3. Blackbody Radiation
Adding the blackbody radiation term was simple. We added a fixed differential for the
blackbody radiation equation at the top-most level of cells in the i+1 direction.
g = AGEI:T4 - T{h (Equation 12)
¢ = Stephan-Boltzmann constant
€ = emissivity
We assumed the sink temperature (T,) was the average temperature of space, which means

there are no clouds above our model.

10/41

Los Alamos High School Team 52

4. Day-Night Cycles
To model a more realistic situation we used a sine wave to model a diurnal (day/night) cycle.

The expression:

. . 2mxtlime 0w
Temperature(time) = Temperaturey + 105m(m - g) (Equation 13)

Shows how the temperature, in (K), of the air in the model varies with time (s). The 10

establishes the amplitude of the cycle.

Plus or minus 10 Kelvin was found to be a reasonable change in temperature over the course

of a day in Los Alamos, New Mexico.

The next term, inside of the sin function, models where in the day the model currently is. The
bottom term is the number of seconds in a day and the numerator is the current time. Pi/3
establishes that the coldest place in the model will be approximately 4:00 AM. The day/night
cycles are needed to approximate the blackbody radiation effects on the temperature in the
system without actually modeling the blackbody radiation. This makes a more realistic system in
the model, modeling only the conservation of energy and the energy lost to space and cannot gain
any energy. This allows the model to be far more complex and realistic without the added time of

actually modeling the radiation from the sun.

This function is applied to the air in the model so the day/night cycle does not interfere with
the diffusion in the other materials. In the real world, the air cools and warms the ground and
roads as opposed to the variables. This is highlighted by the fact that the air in the model acts as a
temperature sink, so air is the best agent to change temperature of the entire model. The model
can only handle blackbody radiation as its mechanism of heat loss. To ensure that other sources
of loss and gain were accounted for the day/night cycles, a redundancy check is necessary ensure

that the heat lost and gained throughout the day is accurately considered and reflected in a model

11/41

Los Alamos High School Team 52

this complex.

12/41

Los Alamos High School Team 52
5. Physical Constants Used
Stephan-Boltzmann constant: 5.670 * 10
material specific heat thermal density emissivities
J *kg!'*K") | conductivity (W (kg * m™) (dimensionless)
¥ K")
cast 1000 0.38 1200 0.92
concrete,
lightweight
soil (clay 800 0.36 - 0.69 1230 — 1590 ~0.89
loam) (median: ~0.50) (median: ~1300)
dry air @ 1005 0.0257 1.205 ~0.30
293.15K
Sources:

e concrete: “Thermal Properties of Building Materials.”

www.bath.ac.uk/~absmaw/BEnv 1/properties.pdf

e air: “Air Properties.” The Engineering Toolbox

http://www.engineeringtoolbox.com/air-properties-d 156.html

e soil: “Soil Thermal Conducitivity.” Soil Science Society of America Journal.

http://soil.scijournals.org/cgi/content/short/64/4/1285

e emissivities:

o concrete: http://www.infrared-thermography.com/material-1.htm

13/41

http://www.bath.ac.uk/~absmaw/BEnv1/properties.pdf
http://www.infrared-thermography.com/material-1.htm
http://www.infrared-thermography.com/material-1.htm
http://soil.scijournals.org/cgi/content/short/64/4/1285
http://www.engineeringtoolbox.com/air-properties-d_156.html

Los Alamos High School Team 52

Method

1. Design Principles

The reason for stating design principles in a computational science project is the necessity for
the code running the model to be elegant as well as powerful. This makes it possible to validate
the model, minimize errors and reduce the time spent writing (or rewriting) code. The design

principles used are:

-Simple is better than complex The model should allow one right way to do things. The

algorithm must follow a logical flow and methods must be divided clearly into small tasks.

‘Don't reinvent the wheel Use existing libraries to create the program. The scope of the

coding is the model itself, not the plotting, importing, or array handling.

-Rapidly prototype Make the code quickly, minimizing writing time spent while

maximizing maintainability. Optimize only when the a module is stable enough to support it.

-Scale for performance Design for one processor, and make the program is as efficient as
possible. Then scale to hundreds of processors (or GPU cores), ensuring that the problem

properly harnesses this power.

14/41

Los Alamos High School Team 52

2. Language

When considering the language for our model we looked back to our design principles. We
chose Python, because it meets goals 1, 2, and 3 “out of the box.” We reached goal 4 using Psyco,
a library that enhances computational performance in Python. Pysco enhances the performance
of Python by compiling certain things back to essentially what is C code. This allows substantial
speed up, many tests by a factor of two. The libraries that are used with Python, such as scipy and
numpy, boost speed at scientific tasks and array operations. The combination of Pysco and these
libraries allows the team to develop something close in speed to native code, in a about a quarter
of the time. These considerations allowed the team to create a model more computationally
accurate and more detailed. The model demonstrates extensibility through its Python object

structure and efficiency through its use of Psyco.

The computer code is written in the Python computer language and utilizes a Graphical User
Interface (GUI) that allows the user to change the variables geometry, boundary conditions, and
computational parameters (e.g. time step, node spacing). The code uses the Matplotlib API to
produce 2D temperature contour plots which allow the user to see temperature gradients and the
coldest place in the model. The Matplotlib API was written to function with the scipy and numpy
libraries and allows basic animations “out of the box” plus more complex animation with
integration into window management APIs, such as GTK. These careful design considerations
will allow the user to experience the maximum amount of benefits without sacrificing traditional
speed. The GUI would have been hundreds if not thousands of lines if it was written in C. Python
uses less than one hundred lines even with the animation. Without the extensive computational

science libraries built on Python these benefits would be unachievable.

15/41

Los Alamos High School Team 52

3. Explicit Method

The temperature change of an object (e.g. a bridge) is determined by the flow of energy
to/from the object as compared to the energy storage potential of the object. In solid materials,
heat flows via thermal conduction, and energy is stored as a function of the specific heat of the
materials. The goal of this project is to write a computer code that solves the time dependent
heat conduction equation as a function of material type, geometry, and boundary conditions. The
“finite-difference” method is used to simplify the differential heat transfer equation into explicit
calculations (which are a function of the node spacing of the solution). Boundary conditions are

applied at the edge nodes as needed.

With the explicit method, we always use the previous time step temperatures to calculate the
temperatures for the next time step. This is different from other methods, where temperatures are
calculated by using an algebraic solver on an equation that contains both steps. The explicit

method allowed us to write a simple program that makes the calculations very quickly.

We used first-order differentiation for the finite difference method. This means that all of the
calculations are based on an independent value for the change in temperature in between cells. In
order to get the heat transfer, we average the thermal properties of adjacent cells to calculate the

new (half-step thermal values). This is then used in the original finite difference equation.

16/41

Los Alamos High School Team 52

Results

At the conclusion of our project we determined that the bridge does in fact freeze before the
road. Because the bridge is surrounded by air. Ground has a higher specific heat than air, which
means that concrete encased in ground will be less susceptible to significant changes in
temperature. Concrete suspended in air however, has much less tolerance for the energy change at

night.

In order to display the results in a visual format. We used the matplotlib API and designed an
integrated GUI. This allowed us to show multiple graphs and do real-time refreshing. Our first
graph accomplished what we required though it still problems redrawing certain elements of the

interface.

Our final GUI allowed us to view all of the results on one screen and it allowed live updating.
It demonstrates the progress of the bridge plus a line graph to display the progression of each
individual material. This made it easy to determine what happened to each of the different
materials as the simulation progressed, facilitating our conclusion for why the bridge freezes

first.

17/41

Los Alamos High School Team 52

Conclusion

The computer model has reproduced the expected “real world” observation, i.e. that the
bridge freezes before the road. The code can be used to show whether a bridge will freeze on a
given night, and how fast it will freeze given specific user input (e.g. dimensions, material
constants, and temperatures). The code also provides two-dimensional contour temperature plots

that show how the bridge cools down as a function of time.

Through researching, writing and running code we were able to understand the physics
involved. Determining why the bridge freezes before the road requires an understanding of heat
conduction and storage in materials. The simplest answer to the question “why does the bridge
freeze before the road?” is that the bridge has less stored energy than the road (because of the
ground under the road). If heat is removed at the same rate from both the road and the bridge
(e.g. the simple case of thermal radiation to space), the bridge will cool down faster and freeze

before the road.

The most significant original achievement is that we were able to create a heat diffusion
model of a bridge. The code achieved this by creating a self updating contour graph using the
API Matplotlib. This allowed us to create a powerful framework for typical heat diffusion. The
code incorporates important physical phenomena including blackbody radiation and diffusion by

conduction.

As a next step, the model could be extended to be three-dimensional or to compensate for
convention due to wind. In the future, the code could be modified to solve a wide range of
thermal problems, perhaps providing solutions to some of our nation’s most urgent needs, such as

energy efficiency and electricity production.

18/41

Los Alamos High School Team 52

References
Evans, Lawrence C. Partial differential equations. Providence, R.I: American Mathematical

Society, 1998.

Hetland, Magnus Lie. Beginning Python: From Novice to Professional (Beginning: From Novice

to Professional). New York: Apress, 2005.

Holmes, Mark H. Introduction to Numerical Methods in Differential Equations (Texts in Applied

Mathematics). New York: Springer, 2006.

McConnell, Steve. Code Complete, Second Edition. New York: Microsoft P, 2004.

McCrory, Prof. RL. “MAS 545 Numerical methods in Hydrodynamics.” University of Rochester.
1985.

Numpy Doucmentation. 9 Feb. 2005. SciPy. 1 Apr, 2009 <http://numpy.scipy.org/#docs>.

Matplotlib v0.98.5.2 documentation. Sourceforge. 1 Apr, 2009 <http://matplotlib.sourceforge.net/

contents.html>.

Siegel, Robert and John R. Howell. Thermal radiation heat transfer. Washington, D.C:
Hemisphere Pub. Corp., 1992.

19/41

Los Alamos High School Team 52

Appendix A: Code

License

Because we believe in free software, we have made the code for this project freely available to
anyone who is interested. For convenience, we have appended the most recent revision of the
code at the time of this writing. You may access the up-to-date version from the repository at

http://code.google.com/p/scc08/. This code is distributed under the GNU General Public License

v3. You can view this license at http://www.gnu.org/licenses/epl.html.

scc08 — heat diffusion model
Copyright (C) 2009 Ben Batha, Daniel Cox, Gannon
Nelson, William Phillips, and Jake Poston

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

20/41

http://www.gnu.org/licenses/gpl.html
http://code.google.com/p/scc08/

Los Alamos High School Team 52

Physical Constants (constants.py)

location: trunk/constants.py
size: 637 bytes
last updated: r147 (April, 2009)

OCo~NOOULEWNRE

class Constants:
stephan boltzmann constant = 1.3806503 10 -23
SPECIFIC HEATS =
all specific heats are in J / kg / K
'concrete': 1000.,
'soil': 800.,
'air': 1005.,

THERMAL CONDUCTIVITIES =

all thermal conductivities are in W / m / K
‘concrete': .38,

'soil': .50,

'air': .0257,

DENSITIES =

all densities are in kg / m™3
‘concrete': 1200.,

'soil': 1300.,

‘air': 1.205,

EMISSIVITIES =

emissivities are scalars

'concrete': 0.92, # http://www.infrared-
thermography.com/material-1.htm

'soil': 0.89,

'air': 0.30,

21/41

Los Alamos High School Team 52

Single Cell (cell.py)

location: trunk/cell.py
size: 539 bytes
last updated: r88 (March 23, 2009)

1 from constants import Constants as c

2 class Cell:

3 def init (self, material, temperature=300.

4 self.material = material # string to describe material
(try ground, concrete, or air)

5 self.temperature = temperature

6 self.density, self.thermal conductivity,
self.specific_heat capacity, self.emissivity) = \

7 Cc.DENSITIES[material], c.THERMAL CONDUCTIVITIES material],
C.SPECIFIC HEATS[materiall, c.EMISSIVITIES|material

8

9 def str (self):

10 return "<" + str(self.temperature) + ">"

22/41

Los Alamos High School Team 52

2D Grid (grid.py)

location: trunk/grid.py
size: 3.6 KB
last updated: r88 (March 23, 2009)

1 from numpy import shape as npshape

2 from constants import Constants as c

3

4 class Grid:

5 def init (self, fields, delta x, delta y, delta t,
sink temperature):

6 self.fields = fields

7 self.shape = npshape(fields

8

9 self.iteration = 0

10 self.sink temperature = sink temperature

11

12 self.delta x = delta x

13 self.delta y = delta y

14

15 self.delta t = delta t

16

17 print (delta x, delta y, delta t

18

19 # Your code has to do the work to create a field that works. It
must be a 2D array of Cells

20

21 def str (self):

22 return str(self.fields

23

24 def downflux(self, i, j):

25 if(j == 1 # 2000 leagues under the sea

26 return 0

27 dimensions = self.delta x / self.delta y

28 theta = self.delta t / (self.fields[il[j].density
self.delta x * self.delta y * self.fields[i][j].specific heat capacity

29 thermal conductivity avg = (self.fields[i

jl.thermal conductivity + self.fields[i][j-1].thermal conductivity) /

2.0

30 delta temperature = (self.fields[i][j-1].temperature -
self.fields[i][j].temperature

31

32 return dimensions * theta * thermal conductivity avg
delta temperature

33

34 def upflux(self, i, j

23/41

Los Alamos High School Team 52

35 j == self.shapel[l] - 1): # watchin' the stars
36 self.blackbodyflux (i, j
37 dimensions = self.delta x / self.delta y
38 theta = self.delta t / (self.fields[il[j].density
self.delta x * self.delta y * self.fields[i][j].specific heat capacity
39 thermal conductivity avg = (self.fields[i
jl.thermal conductivity + self.fields[i][j+1].thermal conductivity) /
2.0
40 delta temperature = (self.fields[i][j+1].temperature -
self.fields[i][j].temperature
41
42 dimensions theta thermal conductivity avg
delta temperature
43
44 leftflux(self, i, j):
45 i== : # far left... dude
46 0
47 dimensions = self.delta y / self.delta x
48 theta = self.delta t / (self.fields[il[j].density
self.delta x * self.delta y * self.fields[i][j].specific heat capacity
49 thermal conductivity avg = (self.fields[i
jl.thermal conductivity + self.fields[i-1][j].thermal conductivity) /
2.0
50 delta temperature = (self.fields[i-1][j].temperature -
self.fields[i][j].temperature
51
52 dimensions * theta * thermal conductivity avg
delta temperature
53
54 rightflux(self, i, j
55 i == self.shapel(0] - 1): # far right, sir.
56 0
57 dimensions = self.delta y / self.delta x
58 theta = self.delta t / (self.fields[il[j].density
self.delta x * self.delta y * self.fields[i][j].specific heat capacity
59 thermal conductivity avg = (self.fields[i
jl.thermal conductivity + self.fields[i+1][j].thermal conductivity) /
2.0
60 delta temperature = (self.fields[i+1][j].temperature -
self.fields[i][j].temperature
61
62 dimensions * theta * thermal conductivity avg
delta temperature
63
64 blackbodyflux(self, i, j):
65 theta = self.delta t / (self.fields[i][j].density
self.delta x * self.delta y * self.fields[i][j].specific heat capacity
66 temperature flux = self.fields[i][j].temperature 4 -
self.sink temperature 4
67 -1.0 * theta * c.stephan boltzmann constant

24/41

Los Alamos High School Team 52

self.delta x * self.fields[i|[j].emissivity * temperature flux

68

69 def calculate(self, i, j

70 return self.fields[i][j].temperature + self.upflux(i,j) +
self.downflux(i,j) + self.leftflux(i,j) + self.rightflux(i,j) \

71 + self.blackbodyflux(i,j

72

73 def step(self):

74 for i in range(self.shape[0]):

75 for j in range(self.shape[l

76 self.fields[i][j].temperature = self.calculate(i,j

25/41

Los Alamos High School

Cell > XML Converter (CelltoXML.py)

location: trunk/CelltoXML.py
size: 2.8 KB
last updated: r128 (March 25, 2009)

OooNOUEWNKE

30

31
32
33
34

35
36
37
38

#! sJusr/bin/python

import cell as cell

from xml.dom.minidom import Document
from os.path import exists

import psyco

psyco.full

def toXML(cellArray, filename = ''

]
]

Create the minidom document
doc = Document

Create the <wml> base element
wml = doc.createElement("Runl"
doc.appendChild (wml
for i in range (0, len(cellArray
for j in range (0, len(cellArray|i

Create the main <card> element

material = ""

temperature = ""

density = ""

thermal conductivity = ""

specific_heat capacity = ""

emissivity = ""

material += cellArray[i][j].material

temperature += "%s"% cellArray[il[j].temperatur

thermal conductivity += "%s"% cellArray[i
thermal conductivity

specific _heat capacity += "%s"% cellArray|i
specific_heat capacity

emissivity += "%s"% cellArray[il[j].emissivity

Node = doc.createElement("Cell")# +"%s"% j)

wml.appendChild (Node

Coor = doc.createElement("Material-" + "%s"% 1

Coor.setAttribute("Type ", material
Node.appendChild(Coor

Temp = doc.createElement("Temperature-" + "%s"

e

+

i

+

Team 52

26/41

Los Alamos High School Team 52

"%s"% j

39 Temp.setAttribute("u ", temperature

40 Node.appendChild(Temp

41

42 Specific = doc.createElement("Specific Heat-" + "%s"% i +
R I T

43 Specific.setAttribute("c", specific heat capacity

44 Node.appendChild(Specific

45

46 Emissivity = doc.createElement("Emissivity-" + "%s"% i +
R I I

47 Emissivity.setAttribute("e", emissivity

48 Node.appendChild(Emissivity

49

50 tConductivity = doc.createElement("Thermal Conductivity-" +
"%s"% 1+ "-" + "%s"% j

51 tConductivity.setAttribute("k", thermal conductivity

52 Node.appendChild(tConductivity

53 kw = False

54 i=0

55

56 kw == False):

57 filename == ""):

58 exists("test" + "%s"% i + ".xml") == False):

59 out file = open("test" + "%s"% i + ".xml", "w"

60 out file.write(doc.toprettyxml(indent=" "

61 out file.close

62 kw = True

63 :

64 i+=1

65 :

66 exists(filename + ".xml") == False):

67 out file = open(filename + ".xml", "w"

68 out file.write(doc.toprettyxml(indent=" "

69 out file.close

70 exists(filename + "%s"% i + ".xml") == False):

71 out file = open(filename + "%s"% i + ".xml", "w"

72 out file.write(doc.toprettyxml(indent=" "

73 out file.close

74 kw = True

75 :

76 i+=1

27141

Los Alamos High School Team 52

XML - Cell Converter (XMLtoCell.py)

location: trunk/XMLtoCell.py
size: 1.5 KB
last updated: r128 (March 25, 2009)

1 #! sJusr/bin/python

2

3 from xml.dom import minidom

4 import urllib, sys

5 import psyco

6

7 psyco. full

8

9 class readXML():

10 def init (self):

11

12 def data(self):

13 return self.data

14 def read(self):

15 Count = 0

16 Data =

17

18 for i in range (0, len(xmldoc.getElementsByTagName("Cell"

19 for j in range (0, 15):

20 data_list = xmldoc.getElementsByTagName("Material-" +
"%s"% 1 4+ "-" + "%s"% j)# “[" + "$s"% I+ "]" + "[" + "%5"% j + "]")

21 for data _element in data list:

22 type = data element.getAttribute("Type"

23

24 data list = xmldoc.getElementsByTagName ("Temperature-"
+ "%s"% 1+ "-" + "%s"%]

25 for data element in data list:

26 t = data_element.getAttribute("u"

27

28 data list =
xmldoc.getElementsByTagName("Specific Heat-" + "%s"% i + "-" + "%s"% j

29 for data element in data list:

30 Cc = data element.getAttribute("c"

31

32 data list = xmldoc.getElementsByTagName ("Emissivity-" +
oS 1 4 Mot 4 "%s'S

33 for data element in data list:

34 e = data element.getAttribute("e"

35

36 data list =
xmldoc.getElementsByTagName ("Thermal Conductivity-" + "%s"% i + "-" +

28/41

Los Alamos High School Team 52

%S j
37 for data _element in data list:
38 k = data_element.getAttribute("k"
39
40 Data.append([str(type),float(t),float(c),float(e),float

29/41

Los Alamos High School Team 52

Driver (driver.py)

location: trunk/driver.py
size: 4.6 KB
last updated: r129 (March 26, 2009)

import psyco

import numpy as np

from cell import Cell

from grid import Grid

import copy as cp

#import matplotlib.pyplot as plt
#from pylab import *

import CelltoXML as xml

import time

10 import math

OCo~NOOULEWNRE

11

12 psyco. full

13

14 class Driver

15

16 def init (self, deltax, deltay, deltat, case, bridge,
dimensions, soilTemp, airTemp, concreteTemp):

17 e

18 Creates a grid to run, initializes all of the cells

19 with the data, bridge stores (startx, starty, endx, endy)

20 dimensions are the (height, and width of the bridge

21 case 1: air

22 case 2: air and ground

23 e

24

25 #initialize class variables

26 self.deltax = deltax

27 self.deltay = deltay

28 self.deltat = deltat

29 self.bridge = bridge

30 #initialize useful variables

31 self.dimensions = dimensions

32 self.ground = Cell('soil', soilTemp

33 self.air = Cell('air', airTemp

34 self.concrete = Cell('concrete', concreteTemp

35

36 self.fields =

37 if case == 1:

38 self.fillAir

39 else:

30/41

Los Alamos High School Team 52

40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69

70
71
72
73

74
75
76
77
78
79
80
81
82
83
84
85

self.fillGround

self.myGrid = Grid(self.fields, self.deltax, self.deltay,
self.deltat, 2.725

def run(self, iterations):

Runs the grid for a specified number of iterations
#print self.myGrid
#print self.myGrid. fields

for 1 in range(iterations):
self.myGrid.step

def fillAir(self):
Initializes the cells in the grid, with concrete surronded by
air

for i in range(self.dimensions|1
for j in range(self.dimensions|[0]):
if i >= self.bridge[0] and i <= self.bridge[2]) \
and (j >= self.bridge[l] and j <= self.bridge[3
self.fields.append(cp.deepcopy(self.concrete
else:
self.fields.append(cp.deepcopy(self.air

self.fields = np.reshape(self.fields,
self.dimensions[0],self.dimensions|1

def fillGround(self):
Initializes the cells in the grid, with concrete surronded by
ground

for i in range(self.dimensions|1
for j in range(self.dimensions[0]):
if (i »>= self.bridge[0] and i <= self.bridgel[2]):
if(j »>= self.bridge[1l] and j <= self.bridgel[3
self.fields.append(cp.deepcopy(self.concrete
else:
self.fields.append(cp.deepcopy(self.ground

elif (i > self.bridge[2
self.fields.append(cp.deepcopy(self.ground

31/41

Los Alamos High School Team 52

86

87 else:

88 self.fields.append(cp.deepcopy(self.air

89

920

91 self.fields = np.reshape(self.fields,

self.dimensions[1],self.dimensions|0

92

93 def changeAir(self, amount):

94 for i in self.fields:

95 for j in i:

96 if j.material == 'air':

97 j.temperature + amount

98

99 def dayNight(self, time):

100 amount = 10 * math.sin 2 * math.pi * time) / (86400 -
math.pi / 3

101 self.changeAir(amount

102

103 def toXML(self, numlter, name): #, interval, cellArray):

104 for i in range(numIter):

105 self.myGrid.step

106 self.dayNight(self.deltat * i

107 xml.toXML (self.myGrid.fields, name) #enter name

108

109 def checkCement(self):

110 for i in self.fields:

111 for j in i:

112 if(j.material == 'concrete'

113 if(j.temperature <= 273.13):

114 return False

115 else:

116 return True

117

118 def tillFrozen(self, increment, name):

119 """runs the model until the first cement is frozen"""

120 i=0

121 while self.checkCement

122 self.myGrid.step

123 self.dayNight(self.deltat * i

124 i += increment

125 xml.toXML (self.myGrid.fields, name) #enter name

126 return i

127

128 def rapidChange(self, increment, name, when, amount):

129 """runs the model until the first cement is frozen"""

130 i=0

131 happened = False

132 while self.checkCement

133 self.myGrid.step

32/41

Los Alamos High School

134
135
136
137
138
139
140
141
142
143

144
145

self.dayNight(self.deltat * i
if (happened == False and i >= when):
self.changeAir(amount

happened = True

1 += increment
xml.toXML (self.myGrid.fields, name

return i

if name ==
dr = Driver

__main_ ":
.5, .5, 0.0004, 2,

7,7,9,9),

don't use time steps over 4 * 10 ** -4

dr.toXML(2,

"filename"

Team 52

#enter name

16,106),

300,300,300) #

33/41

Los Alamos High School Team 52

Graphical User Interface (gui.py)

location: trunk/gui.py
size: 3.1 KB
last updated: r148 (April 1, 2009)

1 import psyco

2 import numpy as np

3 from cell import Cell

4 from grid import Grid

5 import copy as cp

6 from pylab import

7 import time

8 from driver import Driver

9

10 psyco.full

11

12

13 def updateData(dr):

14 data =

15 temp = dr.myGrid.fields

16 for i in range(len(temp

17 data.append

18 for j in range(len(temp|i :
19 datali].append(temp[i][j].temperature
20 return data

21

22 def getMats(dr):

23 mats =

24 temp = dr.myGrid.fields

25 for i in range(len(temp

26 mats.append

27 for j in range(len(temp|i :
28 mats[i].append(temp[i][j].density
29 return mats

30

31 def setLabels(type):

32 xlabel ("Meters"

33 ylabel("Meters"

34 if (type == :

35 title("A road"

36 else:

37 title("A bridge"

38

39 def setUserInput():

40 str = raw_input("What do you want: Ground or Air? (The default is

air) \n"

34/41

Los Alamos High School

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

str

if(str == "Ground" or str == "ground"
type = 2

else:
type = 1

return type

def getAirPts(dr):
temp = dr.myGrid.fields
for 1 in range(len(temp
for j in range(len(temp|i

if(temp[i][j].material == 'air'
return temp[i][j].temperature

def getBridgePts(dr):
temp = dr.myGrid.fields
for i in range(len(temp
for j in range(len(temp|i

if(temp[i][j].material == 'cement'
return temp[i][j].temperature

def getGroundPts(dr, type):
if (type != 2):
return None
else:
temp = dr.myGrid. fields
for 1 in range(len(temp
for j in range(len(temp|i

if(temp[i][j].material == 'ground'
return temp[i][j].temperature

def run
type = setUserInput

Team 52

dr = Driver(.5, .5, 0.0004, type, (7,7,9,9), (16,16), 300,300,300

don't use time steps over 4 * 10 ** -4
current = updateData(dr
gmats = getMats(dr
countsteps = 0
ion

setLabels(type

airdata =

grounddata =

bridgedata =
airdata.append(getAirPts(dr

grounddata.append(getGroundPts(dr, type

bridgedata.append(getBridgePts(dr

datapts = plot(airdata, 'g+', grounddata,

subplot (211

'b+')#, bridgedata,

Il,.*l)

35/41

Los Alamos High School

90
91
92
93
94
95
96
97
98

99

100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118

airdata.append(getAirPts(dr
grounddata.append(getGroundPts(dr, type
bridgedata.append(getBridgePts(dr

CS = contour(gmats, type+l

subplot (212

grid(True

xlabel("The timestep is: " + str(countsteps*.004
ylabel ("Temperature"

datapts = plot(airdata, 'gD-', grounddata, 'bs-'

I,,.*I)

for i in range(1,20000):
dr.run(10
current = updateData(dr
clf()
airdata.append(getAirPts(dr
grounddata.append(getGroundPts(dr, type
bridgedata.append(getBridgePts(dr
subplot (211
CSF = contourf(current
CD = colorbar(CSF, extend ='both'
subplot (212
datapts = plot(airdata, 'gD-', grounddata,

bridgedata, 'r*')

xlabel("The timestep is: " + str(countsteps
countsteps += 10

show()

draw()

if _name_ == " main ":

run

Team 52

#, bridgedata,

'bs-"')#,

.004

36/41

Los Alamos High School Team 52

Automatic Runner (jake.py)

location: trunk/jake.py
size: 6.6 KB
last updated: r125 (March 25, 2009)

NOoOuUu s WNE

(o]

10
11
12
13

15
16
17

18
19
20
21
22
23
24
25
26

27
28

30
31
32
33

34
35

import copy as cp
import numpy as np
from driver import Driver

savedir = "output/"

deltax, deltay, deltat, (concrete locs),
(dimensions), soil, air, concrete

coldfrontroad = Driver(.5, .5, 0.0004, 2, (56,56,72,72), (128,128),
300, 300, 300)

end = coldfrontroad.rapidChange (10, "coldfrontroadlTemp", 10000, -30)
print "running the first"

f = open(savedir + "coldfrontroadlTemp.data")

f.write(end + "\n" "for regular, temperature 300,300,300")

f.close()

print "done"

coldfrontroad = Driver(.5, .5, 0.0004, 2, (56,56,72,72), (128,128),
330, 340, 320)

end = coldfrontroad.rapidChange(10, "coldfrontroad2Temp", 10000, -30)
print "running the first"

a = open(savedir + "coldfrontroad2Temp.data")

a.write(end + "\n" "for regular, temperature 330,340,320")

a.closel()

print "done"

coldfrontroad = Driver(.5, .5, 0.0004, 2, (56,56,72,72), (128,128),

315, 360, 273)

end = coldfrontroad.rapidChange (10, "coldfrontroad3Temp", 10000, -30)
print "running the first"

b = open(savedir + "coldfrontroad3Temp.data")

b.write(end + "\n" "for regular, temperature 315,360,273")

b.close()

print "done"
B
T T T A A A A T T T T T T R A TSRS AAHHA

largeboundaryroad = Driver(.5, .5, 0.0004, 2, (56,56,72,72), (128,128),
300, 300, 300)

37/41

Los Alamos High School Team 52

36
37
38
39

40
41
42
43
44
45

46
47
48
49

50
51
52
53
54
55
56

57
58
59
60

61
62
63
64

65
66

67
68
69
70

71
72
73
74
75

76

end = coldfrontroad.tillFrozen(10, "largeboundaryroadlTemp")
print "running the first"

c = open(savedir + "largeboundaryroadlTempdata")

c.write(end + "\n" "for (56,56,72,72) - (128,128) temperature
300,300,300")

c.close()

print "done"

coldfrontroad = Driver(.5, .5, 0.0004, 2, (56,56,72,72), (128,128),
330, 340, 320)

end = coldfrontroad.tillFrozen(10, "largeboundaryroad2Temp")

print "running the first"

d = open(savedir + "largeboundaryroad2Temp.data")

d.write(end + "\n" "for (56,56,72,72) - (128,128) temperature
330,340,320")

d.closel()

print "done"

coldfrontroad = Driver(.5, .5, 0.0004, 2, (56,56,72,72), (128,128),
315, 360, 273)

end = coldfrontroad.tillFrozen(10, "largeboundaryroad3Temp")

print "running the first"

e = open(savedir + "largeboundaryroad3Temp.data")

e.write(end + "\n" + "for (56,56,72,72) - (128,128) temperature
315,360,273")

e.close()

print "done"

i T s
e i

coldfrontroad = Driver(.5, .5, 0.0004, 2, (20,20,108,108), (128,128),
300, 300, 300)

end = coldfrontroad.tillFrozen(10, "largeroadlTemp")

print "running the first"

g = open(savedir + "largeroadlTemp.data")

g.write(end + "\n" + "for (20,20,108,108) - (128,128) temperature
300,300,300")

g.closel()

print "done"

coldfrontroad = Driver(.5, .5, 0.0004, 2, (20,20,108,108), (128,128),
330, 340, 320)
end = coldfrontroad.tillFrozen(10, "largeroad2Temp")

38/41

Los Alamos High School Team 52

77
78
79

80
81
82
83
84

85
86
87
88

89
90
91
92

93
94
95
96
97
98

99

100

101
102
103
104
105
106
107
108

109

110
111
112
113
114
115
116
117

print "running the first"

h = open(savedir + "largeroad2Temp.data")

h.write(end + "\n" + "for (20,20,108,108) - (128,128) temperature
330,340,320")

h.close()

print "done"

coldfrontroad = Driver(.5, .5, 0.0004, 2, (20,20,108,108), (128,128),
315, 360, 273)

end = coldfrontroad.tillFrozen(10, "largeroadlTemp")

print "running the first"

i = open(savedir + "largeroadlTemp.data",)

i.write(end + "\n" + "for (20,20,108,108) - (128,128) temperature
315,360,273")

i.close()

print "done"

i
B

import copy as cp
import numpy as np
from driver import Driver

deltax, deltay, deltat, what, (concrete locs),
(dimensions), soil, air, concrete

coldfrontbridge = Driver(.5, .5, 0.0004, 1, (56,56,72,72), (128,128),
300, 300, 300)

end = coldfrontbridge.rapidChange(10, "coldfrontbridgelTemp", 10000,
-30)

print "running the first"

f = open(savedir + "coldfrontbridgelTemp.data")

f.write(end + "\n" "for regular, temperature 300,300,300")

f.close()

print "done"

coldfrontbridge = Driver(.5, .5, 0.0004, 1, (56,56,72,72), (128,128),
330, 340, 320)

end = coldfrontbridge.rapidChange(10, "coldfrontbridge2Temp", 10000,
-30)

print "running the first"

a = open(savedir + "coldfrontbridge2Temp.data")

a.write(end + "\n" "for regular, temperature 330,340,320")

a.close()

print "done"

coldfrontbridge = Driver(.5, .5, 0.0004, 1, (56,56,72,72), (128,128),

39/41

Los Alamos High School Team 52

118

119
120
121
122
123
124

125
126

127
128
129
130

131
132
133
134
135
136

137
138
139
140

141
142
143
144
145
146
147

148
149
150
151

152
153
154
155

156
157

315, 360, 273)

end = coldfrontbridge.rapidChange(10, "coldfrontbridge3Temp", 10000,
-30)

print "running the first"

b = open(savedir + "coldfrontbridge3Temp.data")

b.write(end + "\n" "for regular, temperature 315,360,273")

b.close()

print "done"
B
B Y Y HHH BB

largeboundarybridge = Driver(.5, .5, 0.0004, 1, (56,56,72,72),
(128,128), 300, 300, 300)

end = coldfrontbridge.tillFrozen(10, "largeboundarybridgelTemp")
print "running the first"

Cc = open(savedir + "largeboundarybridgelTempdata")

c.write(end + "\n" "for (56,56,72,72) - (128,128) temperature
300,300,300")

c.close()

print "done"

coldfrontbridge = Driver(.5, .5, 0.0004, 1, (56,56,72,72), (128,128),
330, 340, 320)

end = coldfrontbridge.tillFrozen(10, "largeboundarybridge2Temp")
print "running the first"

d = open(savedir + "largeboundarybridge2Temp.data")

d.write(end + "\n" "for (56,56,72,72) - (128,128) temperature
330,340,320")

d.closel()

print "done"

coldfrontbridge = Driver(.5, .5, 0.0004, 1, (56,56,72,72), (128,128),
315, 360, 273)

end = coldfrontbridge.tillFrozen (10, "largeboundarybridge3Temp")
print "running the first"

e = open(savedir + "largeboundarybridge3Temp.data")

e.write(end + "\n" + "for (56,56,72,72) - (128,128) temperature
315,360,273")

e.closel()

print "done"

s
i

coldfrontbridge = Driver(.5, .5, 0.0004, 1, (20,20,108,108), (128,128),

40/41

Los Alamos High School Team 52

158
159
160
lol

162
163
164
165
166

167
168
169
170

171
172
173
174
175

176
177
178
179

180
181

300, 300, 300

end = coldfrontbridge.tillFrozen(10, "largebridgelTemp"

print "running the first"

g = open(savedir + "largebridgelTemp.data"

g.write(end + "\n" + "for (20,20,108,108) - (128,128) temperature
300,300,300"

g.close

print "done"

coldfrontbridge = Driver(.5, .5, 0.0004, 1, (20,20,108,108), (128,128),
330, 340, 320

end = coldfrontbridge.tillFrozen(10, "largebridge2Temp"

print "running the first"

h = open(savedir + "largebridge2Temp.data"

h.write(end + "\n" + "for (20,20,108,108) - (128,128) temperature
330,340,320"

h.close

print "done"

coldfrontbridge = Driver(.5, .5, 0.0004, 1, (20,20,108,108), (128,128),
315, 360, 273

end = coldfrontbridge.tillFrozen(10, "largebridgelTemp"

print "running the first"

i = open(savedir + "largebridgelTemp.data",

i.write(end + "\n" + "for (20,20,108,108) - (128,128) temperature
315,360,273"

i.close

print "done"

41/41

	Summary
	Problem Statement
	Model
	1. Spatial Grid
	A. Control Case (Road)
	B. Experimental Case (Bridge)
	C. Testing the Experimental Case

	2. Diffusion
	3. Blackbody Radiation
	4. Day-Night Cycles
	5. Physical Constants Used

	Method
	1. Design Principles
	2. Language
	3. Explicit Method

	Results
	Conclusion
	References
	Appendix A: Code
	License
	Physical Constants (constants.py)
	Single Cell (cell.py)
	2D Grid (grid.py)
	Cell → XML Converter (CelltoXML.py)
	XML → Cell Converter (XMLtoCell.py)
	Driver (driver.py)
	Graphical User Interface (gui.py)
	Automatic Runner (jake.py)

