Far From the Tree: Newtonian Gravitational N-Body

Simulation

Jonathan Robey, Dov Shlachter, Ryan Marcus

April 1, 2009

Team 55

Los Alamos High School

Teacher:

Lee Goodwin

Mentor:

Robert Robey

Contents

1 Introduction
1.1 Problem Statement
1.2 Objective e
1.3 Background

1.3.1
1.3.2

N-Body Codes

Parallelization

2 Description
2.1 Mathematical Model
2.2 Computational Model oo
2.3 C Code Development
2.4 Java Code Development

3 Results

3.1 Test Problems

3.1.1
3.1.2
3.2 Scaling
3.2.1
3.2.2

C Model o s
Java Model
C Model,
Java Model,

4 Conclusions

4.1 Model
4.1.1

4.2 Scaling
4.2.1

4.3 Teamwork

References

A Java Code

B C Code

CUUt Ot B R

N =1 o O D

o ©

12
12
12
12
12
13

15

16

31

Executive Summary

The purpose of this project is to create a three dimensional model that can can accurately pre-
dict the behavior of a Newtonian N-Body system, subject to movement exclusively through
the force of gravity. This was achieved using a first order symplectic method. After having
tested the simulation against various test problems, it has been concluded that the model
calculates with a high degree of accuracy. However, certain test conditions can lead to a de-
generation of the model, often to such a degree that the test run must be abandoned. This
could be dealt with by using a higher order method, but these were deemed too complex
to implement. The model could be improved with the addition of a run-time display, as
the potential applications for the model extend to the world of realistic video games, or a
workaround scheme to allow the Newtonian scheme to be used in situations that would be
more accurate with the use of Relativity, done for the sake of computational efficiency.
Two versions of the model were developed: one written in C, the other in Java. This
was mostly done to see how the various languages, each coupled with a different method of

parallelization, scaled, although absolute performance differences are also important.

1 Introduction

1.1 Problem Statement

Every object in the universe, and certainly every object in the solar system, causes a slight
change in the hypothetically perfect elliptical path of the earth around the sun. As most
of these objects are comparatively tiny or far away, they are of little concern. However, if
a star was to pass through the solar system, our path would be driven erratically out of
control. A slight difference in position or velocity could mean the difference between life
and death. If this sort of situation were to occur, the exact fate of the earth would need to
be predicted, either so that that fate could be prevented or so that the problem could be
prudently ignored. Isaac Asimov raises this problem in his book Nemesis|2|, the name by
which this problem is now known. The simulation of this, however, is mostly a side benefit
of the more interesting (to us) project: a study on data intensive computational models.

In order to continue the trend of increasing performance on their CPUs, manufacturers
have started adding cores instead of simply ratcheting up clock speed. This has led to a
problem for code developers: how does one take advantage of the extra cores? A minor rev-
olution in code design has occurred due to the above question, coupled with a new emphasis
on how well a given task scales over multiple cores.

One would think that the above-mentioned problem would scale easily: each processor
is allowed to calculate new values for as many bodies as there are, divided by the number
of available processors. However, that division, coupled with the needed communication
between processors, often leads to decreased performance for a small number of bodies. This
decrease is not strictly predictable for complex reasons that will be explained more in depth

later on.

1.2 Objective

We propose to create an accurate, scalable, fully three dimensional program, capable of being
tested and verified, that models the behavior of a system driven entirely by the influence
of gravity. This model will be based on Newton’s equation of gravitational attraction. The
code will be written for high efficiency on multiple processors, in order to maintain accuracy

and speed, and will output data to be examined after runtime.

1.3 Background
1.3.1 N-Body Codes

The applied problem was first made widely known by Isaac Asimov in one of his later books,
Nemesis. The underlying premise is that small changes in a gravitational system will lead
to vastly different results in the long term, with the assumption that some of the potential
outcomes are benign to life on earth and that other outcomes will kill all life.

N-Body codes are the most extreme version of a Lagrangian model. In all Lagrangian
methods, the model moves with the objects, instead of objects through the model. This is
slightly obtuse, but makes more sense with specific examples. With a Lagrangian method,
the values in each time-step refer to a moving object, instead of an immobile cell.

At the most extreme version of an N-Body code, no particles are abstracted, meaning
that every particle of dust and sand and water would be its own object in the simulation.
This is obviously impractical in this specific case, as it would require the enormously complex
task of giving all objects a volume and compressibility. In the case of a gravitational N-body

code, the normal abstraction level is at that of planets, moons, and asteroids.

1.3.2 Parallelization

The benefits and disadvantages of parallelization have been debated for years. In 1967,
Gene Amdahl argued that the portion of any algorithm that could not be parallelized would
severely limit the extent to which parallelization could occur.[1] This argument was based
on the assumption that the problem size was constant. In 1988, that assumption was chal-
lenged by John Gustafson. Gustafson argued that effective scaling could be achieved if the
problem size was not considered constant. He asserted that the purpose of having a large
supercomputer was not to run a small simulation faster, but to run a much larger simulation

as fast as the small simulation.|5|

2 Description

2.1 Mathematical Model

The model is based around the standard Newtonian gravitational model:|3]

mimes

F,=G

r2

This model is inaccurate in situations where the side effects of Einsteinian Relativity become
more apparant. This could occur when the velocity of an object approaches the speed of
light, or when two objects whose gravitational attraction is non-negligible are sufficiently
distant from each other that the time light would take to travel between them is a significant
fraction of the time step.

Newton’s equation does not directly solve for the change in velocity of two objects.
Instead, it is used to calculate the force between two objects. Force is mass times acceleration,
according to Newton’s second law of motion|3|. Therefore, the first object’s acceleration due

to gravity is

Fy = mia,
Substituting for Fj:
mime
mia, = Fy =G =
Solving for a,:
mao
Qg = G?

2.2 Computational Model

The computational model is only first-order. Because of time limitations and the difficulty of
finding any integrators suitable for this model, it was decided the first order method would
be sufficient. With the current computational model, every processor that calculates the
new position for a planet, even if that processor does not calculate the new position for
every planet, requires all the data. In other words, subsets of the problem require all of
the data of the previous iteration of the problem. This could be avoided with a different
method, but would require substantially more inter-processor communication and would

provide negligible net benefits.

The method is a simple first order example of a symplectic method.[6]

Upt1 = Up + apt

(py1 = Qp + Un+lt

The implementation of a higher order method is currently a work in progress.

2.3 C Code Development

The model has been designed to dump the state variables to a binary file at both the end of
the program and during the run of the program. In order to lose as little data as possible,
the data is written to the files directly. In order to manipulate and view these files, a set of
data utilities have been written. To show the data in a visual manner, the Open GL libraries
were used for simplicity of the 3D display.

Parallelization was achieved using the MPI library[4], which spawns multiple processes
to deal with a task on the assumption that every process will be identical in design. The use
of processes makes the code easier to implement over a networked supercomputer, but quite

memory intensive on each node.

2.4 Java Code Development

After data is loaded in RAM, the code creates a static number of threads (defined at runtime)
to begin processing the data. Each thread requests a single object within the model, runs all
the required calculations on that object, then returns the new data. All threads run until all
data is calculated. Minimal effort was required to make the program “thread-safe” thanks to
Java’s 'synchronized’ keyword.

Because of limitations with Java’s virtual machine, it was decided to run the code using
the Java “server” as opposed to the Java “client.” This can be done easily by adding the
switch “-server” to a “java” command. The Java server takes slightly longer to start up then
the client. Once running, the Java server does run significantly faster (4 to 8%) then the
client.

Networking was not implemented using a pre-made library like MPI. In the Java version,
a socket is created that listens for a network connection. Once a connection is recieved,
the socket sends the connected machine a number of objects (generally more than 400) and

waits for the connected machine to return its calculations. This method is incredibly efficient

because it offloads a large amount of data onto an potentially unlimited number of clients.

Most Java is incredibly verbose: this code is no expception. Short cuts were studiously
avoided when possible (and when short cuts were taken, they were clearly labeled and ex-
plained) for the sake of creating the code “the right way.” It is firmly and widely believed
that standardization is important, as no one likes three ternary operators embedded in a

dereferenced inline-class.

3 Results

3.1 Test Problems

Two test problems were chosen: a ring of identical bodies, and a small body orbiting a
massive body. The first test scenario was chosen because it is easy to test with a wide

number of parameters. It is easy to conduct a scaling study with this setup.

3.1.1 C Model

The ring problem tests very well, but has a few eccentricities due to an inherent sensitivity.
This may be exacerbated by the use of a first order method, but there is no current way
to verify this. If two objects get too close together, the dynamic time step decreases in
size in order to prevent instability. This slows down the entire model significantly, and
eventually grinds the simulation to a halt. If, for whatever reason, the relative position,
velocity, or acceleration is even slightly different for any of the bodies, the end results are
wildly different. This verifies the underlying thesis of the Nemesis problem: a slight change
in the initial conditions of a system of this sort can lead to massively different results in the

long term.

The two body problem is much easier to test in depth, as it is not unreasonable to
calculate by hand the positions of objects, even for several time steps. According to Kepler’s
laws of planetary motion, one planet orbiting another generates an elliptical path. This can
be verified using the output positions of the two bodies, or less accurately with the display

function.

The above graphic is taken from the run of the ring-body problem run with fifty bodies.
The white lines tangent to the circle are the current velocity vectors of each body. The ring

is almost perfectly uniform, which implies that the model is being calculated accurately.

3.1.2 Java Model

No test problems were run with the Java model as the locations and velocities of the objects

could not be set at or before runtime.

3.2 Scaling
3.2.1 C Model

In order to test whether or not the computational power of a second processor is worth the
communication backlog at certain problem sizes, a scaling study is normally done. There
have been debates on how this should be done. Problems of various sizes were tested in order
to show not only how well the model scales in specific instances, but how well it is likely to
scale on a problem of a certain size with a certain number of available processors. The chart
below shows the scaling factor for the ring of bodies problem with an increasing numbers of
bodies.

10

Scaling factor

18

16

14

12

08

Scaling Factor

0

04

0z

Due to the relatively low amount of data and communications, whether the number of
bodies is divisible by the number of processors is an important factor in how well the program

scales. The lowest break even point for 2 processors is 22 bodies.

3.2.2 Java Model

No scaling study was run with the Java model because of bugs which prevent the program

from running for more than one iteration.

11

4 Conclusions

4.1 Model
4.1.1 C Model

The model performs with a high degree of accuracy as can be verified with the two test
problems. The ring of bodies verifies the model as being accurate because the bodies maintain
almost perfect rotational symmetry, and the two body problem verifies the model with the
existence of the elliptical path. The model does include some inherent limitations, but this is
only a natural side effect of implementing the more simple Newtonian gravity as opposed the
that defined by Relativity and using only a first order method. There are some work-around
solutions to this, but most of them apply only to specific cases, and any of them would take
some time to design and implement.

As of yet a run-time display has not been written, so the smoothness’ of the model
cannot be tested. The creation of such a display is a reasonably high priority, however, as it

may provide further insight into the entire model.

4.2 Scaling
4.2.1 C Model

From our tests of the model, it appears that the method scales in a roughly linear way. As
the complexity of the model increases in a more than exponential manner with regard to
the number of bodies being accounted for, the additional overhead communication increases
very quickly. This may account for the somewhat erratic scaling. Other possible sources
include the sizes of various on-die caches, communication latency, and access to necessary
memory.

The multi-processor library used was MPI, which was chosen for its ability to work on
networked clusters as well as individual, non-connected nodes. Each processor calculates the
new position and velocity for a fraction of total bodies per time-step.

Every communication between processors takes time and system resources that could
have been used in calculating the new positions and velocities of planets. With a first order
method, the number of calculations required per planet per time-step is relatively small.
This means that one communication between processors replaces a certain amount of time
that could have been spent in computation, the specific amount that is consumed varies
depending on the machine and the design of the code. If a higher order method were used,

one or both of two things would happen that would most likely reduce the relative amount

12

of communication overhead. Larger time-steps could be used to achieve the same accuracy,
which would mean that fewer inter-processor communications would be required per run
of the model. Conversely, far more calculations would be required for a time-step of the
same size that would result in higher accuracy, which would mean that each communication
replaces a smaller fraction of the model’s computation.

Furthermore, it requires almost the same amount of communication overhead in MPI to
pass one variable between processors as it does to pass an entire array. This leads to the
conclusion that variables might be grouped together in arrays to diminish overhead, although

this would lead to more arcane and less readable code.

4.3 Teamwork

Two of the team members are programmers of superior skill, with the third competent but
overshadowed in skill and experience. This third person is a competent and fluent technical
writer, one who can more than make up for his team mates lack of disposition to put anything
into words. The C version of the model was written entirely by one programmer, with the
Java version created solely by the other. The technical writer was able to get most of the work
done while the C programmer and the Java programmer were arguing as to the superiority
of their preferred languages.

All members of the team have experience with presentation. This is most obvious in the
technical writer, who is closely followed in skill by the Java programmer in presentation and

speaking. The C programmer is competent at speaking, but prefers not to do so.

13

Acknowledgements

e Robert W. Robey
e Lee Goodwin

e Cleve Moler

14

References

[1] Gene M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In AFIPS 67 (Spring): Proceedings of the April 18-20, 1967,
spring joint computer conference, pages 483-485, New York, NY, USA, 1967. ACM.

[2] T. Asimov. Nemesis” Doubleday, Bantam Division, 1989.
[3] S.R. Diamond. Fundamental Concepts of Modern Physics. AMSCO School Pub., 1970.

[4] Message Passing Interface Forum. MPI: A message-passing interface standard. Interna-

tional Journal of Supercomputer Applications, 8:159-416, 1994.

[5] J.L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 31(5):532—
533, 1988.

[6] Cleve Moler. Chapter 17. draft of book intended to demonstrate MATLAB, presented
at New Mexico Supercomputing Challenge Kickoff, 2009.

15

A Java Code

File: Station.java

package grandCentral;

public class Station implements ThreadCommunicator {
protected int localThreadCount;

protected int networkThreadCount;

protected double timeToRun;

protected double timestep;

protected ArrayList<AbstractThread> threadList;
protected ArrayList<SpaceObject> currentObjects;
protected int currentlndex;

protected int doneCount;

protected Album theAlbum;

protected Socketeer theSock;

public Station (int numLocalThreads, int numNetworkThreads, double times, doul

localThreadCount = numLocalThreads;
networkThreadCount = numNetworkThreads;
timeToRun = times;

timestep = theTimeStep;

threadList = new ArrayList<AbstractThread >();
currentObjects = new ArrayList<SpaceObject >();
currentlndex = 0;

doneCount = 0;

theAlbum = new Album ();

theSock = new Socketeer (7737);

¥

public void addObject (SpaceObject o) {
currentObjects.add(o0);

¥

public void start () {

int i = 0;

// store the inital conditions
theAlbum.addRecord (timeToRun + 1.0, currentObjects);
/) create the local threads

while (i != localThreadCount) {

16

LocalSpaceObjectThread myThread = new LocalSpaceObjectThread (this
timestep);

threadList .add (myThread);

// run the thread

threadList.get (threadList.size () — 1).start ();

1++;

}

// create the network threads

i = 0;

while (i != networkThreadCount) {

NetworkSpaceObjectThread myThread = new NetworkSpaceObjectThread (this, timest
threadList .add (myThread);

threadList.get(threadList.size () — 1).start ();

1+

}

}

public SpaceObjectLooper getLooper () {

return (new SpaceObjectLooper (theAlbum.getLast ()));

}

public synchronized ArrayList<SpaceObject> getObject(int numObjects) {
if (!isReady()) {

return null;

}

ArrayList<SpaceObject> toReturn = new ArrayList<SpaceObject >();
while (isReady () && toReturn.size () != numObjects) {
SpaceObject myObject = currentObjects.get(currentIndex);
toReturn.add (myObject);

currentIndex+—+;

}

return toReturn;

}
public boolean isFinished () {

return (timeToRun —— 0);

}

protected boolean isReady () {

return ((currentIndex != (currentObjects.size ())));

17

}

public synchronized void saveObject(SpaceObject ourObject) {
doneCount-+-+;

// the id of the object should also be its index.

// but in the crazy world of threads, we can’t be so sure.
// but it would still be nice to have the preformance increase ...
// so let’s just check!

if (currentObjects.get(ourObject.id).id = ourObject.id) {
// yay! It is working!

currentObjects.set (ourObject.id , ourObject);

} else {

// ah... we got threaded!

int i — 0:

while (i != currentObjects.size ()) {

if (currentObjects.get(i).id = ourObject.id) {
currentObjects.set (i, ourObject);

break ;

}

1++;

}

}

if (isReady () || isFinished () || doneCount != currentObjects.size()) {
if (doneCount % 1000 = 0) {

System.out. println ("Got object: " + doneCount);

}

return ;

}

// there are no more objects

// time to copy...

theAlbum .addRecord (timeToRun, currentObjects);
timeToRun——;

currentIndex = 0;

}

public Stillframe getCurrentFrame () {

return theAlbum.getLastFrame ();

}

18

}

File: ThreadCommunicator.java

package grandCentral;

public interface ThreadCommunicator {

public SpaceObjectLooper getLooper ();

public Stillframe getCurrentFrame ();

public void saveObject (SpaceObject ourObject);

public ArrayList<SpaceObject> getObject (int numObjects);
public boolean isFinished ();

}

File: NBodySocket.java

package networkStuff;

public class NBodySocket {

protected int numObjects;

protected SocketTalker theTalker;

protected Socket theSocket;

public NBodySocket(Socket theSock) {

theSocket = theSock;

}

public void setTalker(SocketTalker ST) {

theTalker = ST;

}

// precondition: We've already set the SocketTalker
public void checkBuffer () {

try {

BufferedReader ourReader = new BufferedReader (

new InputStreamReader(theSocket.getInputStream()));
String thelLine = ourReader.readLine ();

// parse theLine

// the first character of any line will contain the lines
// "command"

// possible commands are:

// 1: set optimal number of objects, and send me my first set
// 2: save a space object burst and send the next set
switch (Integer.valueOf(theLine.substring (0, 1))) {

case 1:

19

numObjects = Integer.valueOf(theLine.substring (1));
theTalker.sendNextSet ();

break ;

case 2:

Stillframe myFrame = new Stillframe (0);
myFrame. setData (theLine);
theTalker.gotObjectsToSave (myFrame);
theTalker.sendNextSet ();

break ;

}

} catch (IOException e) {

// TODO Auto—generated catch block
e.printStackTrace ();

}
}

public void sendDataset (ArrayList<SpaceObject> objectIDs ,
Stillframe theFrame) {

// formatted as such:

// object.ids ,for ,this ;machine || stillframe

String toSend = "";

for (SpaceObject o : objectIDs) {

toSend += String.valueOf(o.id) + ((char) 1);

}

// remove the last comma and add the seperator and add the frame
toSend = toSend.substring (0, toSend.length() — 1) + ((char) 0)
+ theFrame.getData ();

try {

DataOutputStream myStream = new DataOutputStream (theSocket
.getOutputStream ());

myStream . writeBytes (toSend + ((char) 10)); // char 10 is the end
// line character that we

// look for with

// readLine.

} catch (IOException e) {

// TODO Auto—generated catch block

e.printStackTrace ();

20

of

}
}

public int getOptimalObjects () {

return numObjects;

}

public boolean isConnected () {

return theSocket.isConnected ();

}

public void close() throws IOException {
theSocket.close ();

}
}

File: Socketeer.java

package networkStuff;

public class Socketeer {

protected ServerSocket theSocket;

public Socketeer(int portNumber) {

try {

theSocket = new ServerSocket (portNumber);
} catch (IOException e) {
e.printStackTrace ();

}
}

public synchronized NBodySocket getSocket () {
NBodySocket mySocket = null;

try {

mySocket = new NBodySocket (theSocket.accept());
} catch (IOException e) {

// TODO Auto—generated catch block
e.printStackTrace ();

}

return mySocket;

}

1

File: SocketTalker.java;
package networkStuff;

21

public interface SocketTalker {

public void gotObjectsToSave(Stillframe sf);
public void sendNextSet ();

1

File: NBody.java

package runner;

public class NBody {

public static void main(String || args) {

if (args.length != 4) {

System .out . println ("NBody, SCC 2008 —2009");
System.out. println ("Dov, Ryan, and Jon");

System .out . println(" ");

"Usage: nbody.jar <num local threads> <num network threads

System.out . println (
System.out. println ("");
System.out.println ("If there is no objects.xml file , random objects will be g
System.out.println ("Upon the end of the run, the entire album will be saved ¢t
System.out.println ("");

System.out. println ("Happy computing!");

System . exit (0);

¥

int numThreads = Integer.valueOf(args|[0]);

int numNetworkThreads = Integer.valueOf(args|[1]);

int numObjects = Integer.valueOf(args|[2]);

int numSteps = Integer.valueOf(args|[3]);

Station myStation = new Station (numThreads, numNetworkThreads, numSteps, 1);
SpaceObject myObject;

int i = 0;

while (i != numObjects) {

myObject = new SpaceObject ();

myObject . makeRandom (i);

myStation.addObject (myObject);

14+

¥

// let ’er rip!

myStation.start ();

}

22

}

File: Album.java

package scribe;

public class Album {

protected ArrayList<Stillframe > theFrames;

public Album () {

theFrames = new ArrayList<Stillframe >();

}

public void addRecord(double timestep, ArrayList<SpaceObject> objects) {
/) stillframe makes the deep copy for us

Stillframe myFrame = new Stillframe (timestep, objects);
theFrames.add (myFrame);

}

public ArrayList<SpaceObject> getStillframe (double timestep) {
for (Stillframe sf : theFrames) {

if (sf.getTimeStep() = timestep) {

return sf.getRecord ();

}

}

return null;

}

public ArrayList<SpaceObject> getLast () {

return theFrames.get (theFrames.size () — 1).getRecord ();
}

public Stillframe getLastFrame() {

return theFrames. get (theFrames.size () — 1);

}
}

File: Stillframe.java

package scribe;

public class Stillframe {

protected double timeStep;

protected ArrayList<SpaceObject> record;

public Stillframe (double timeStep, ArrayList<SpaceObject> theWorld) {
this.timeStep = timeStep;

record = new ArrayList<SpaceObject >();

23

// we need to make a deep copy
for (SpaceObject o : theWorld) {
record.add(o);

}
}

public Stillframe (double timeStep) {

this.timeStep = timeStep;

record = new ArrayList<SpaceObject >();

}

public double getTimeStep () {

// int is a primitive type so we will not need any kind of deep copy. We
// can just return it.

return timeStep;

}

public ArrayList<SpaceObject> getRecord () {

// this may seem dumb, but we can’t pass a reference to the protected
// property. We need to create a deep copy.

ArrayList<SpaceObject> toReturn = new ArrayList<SpaceObject >();

for (SpaceObject o : record) {

toReturn.add(o);

}

return toReturn;

}

public String getData() {

StringBuilder toReturn = new StringBuilder ();
for (SpaceObject o : record) {
toReturn.append(o.getData() + ((char) 2));

}

// remove the last comma

return toReturn.toString ().substring (0, toReturn.length() — 1);
}

public void setData(String data) {

String [| temp = data.split("" + ((char) 2));
for (String s : temp) {

SpaceObject o = new SpaceObject ();
o.fillData(s);

24

record.add(o);

}
}

public int getNumberOfObjects () {
// this won’t be a pointer

// int is primitive

return record.size ();

}

}
File:

Dimension . java

package spaceObjectStuff;

public
public
public
public

}
File :

double x;
double y;
double z;

class Dimension {

SpaceObject.java

package spaceObjectStuff;

public
public
public
public
public
public
public

int

double mass;

class SpaceObject {
id ;
Dimension location ;

Dimension velocity ;

double radius;
SpaceObject () {

location = new Dimension ();

velocity = new Dimension ();

}

public void makeRandom(int theld) {

id =
location
location

location

velocity .
velocity .

velocity .

theld ;
. X
oy
VA

N < M

.random
.random
.random
.random
.random

.random

()
()
()
)
()
()

* 10000.
* 10000.
* 10000.
* 10000.
* 10000.
* 10000.

25

mass = (Math.random () % 10000000.0);
radius = (Math.random () % 1000000.0);
}

public void fillData(String theData) {
String || temp = theData.split (("" + (
int i = 0:

while (i < temp.length) {

switch (i) {

case 0:

id = Integer.valueOf(temp|[0]);

case 1:

char) 1));

location.x = Double.valueOf(temp|[1]);
case 2:

location.y = Double.valueOf(temp|2]);
case 3:

location.z = Double.valueOf(temp|[3]);
case 4:

velocity .x = Double.valueOf(temp[4]);
case 5:

velocity .y = Double.valueOf(temp|[5]);
case 6:

velocity .z = Double.valueOf(temp[6]);
case 7:

mass = Double. valueOf (temp [7]);

case 8:

radius = Double.valueOf(temp[8]);

}

1++;

}

}

public String getData() {
return "" + id + ((char) 1) + location.x + ((char) 1) + location.y + ((char)

}
}

File: AbstractThread.java
package threadStuff;

26

public interface AbstractThread {

public void start ();

¥

File: LocalSpaceObjectThread.java

package threadStuff;

public class LocalSpaceObjectThread extends Thread implements AbstractThread
public ThreadCommunicator theMain;

public SpaceObject theObject;

public double timestep;

public final double gravity = 0.00000000006674;
public LocalSpaceObjectThread (ThreadCommunicator theTalker, double theStep) {
theMain = theTalker;

timestep = theStep;

1

public void run() {

while (!theMain.isFinished ()) {

theObject = getNextObject ();

if (theObject != null) {

calculateVelocity ();

calculatePosition ();

theMain.saveObject (theObject);

}
}
}

protected SpaceObject getNextObject () {
ArrayList<SpaceObject> theList = theMain.getObject (1);

if (theList = null) { return null; }
return thelList.get (0);
}

protected void calculatePosition () {
theObject.location.x = theObject.location.x
+ (theObject.velocity .x % timestep);
theObject.location.y = theObject.location.y
+ (theObject.velocity .y * timestep);
theObject.location.z = theObject.location.z
+ (theObject.velocity .z % timestep);

27

}

protected void calculateVelocity () {

SpaceObjectLooper ourLoop = theMain.getLooper ();
SpaceObject currentObject;

Dimension dist = new Dimension ();

Dimension accel = new Dimension ();

double distance = 0.0;

double sqDistance = 0.0;

double magAccel = 0.0;

while (!ourLoop.isFinished ()) {

currentObject = new SpaceObject ();

currentObject = ourLoop.nextObject ()

if (currentObject.id != theObject.id) {

// it isn’t us. We can use it.

dist.x = currentObject.location.x — theObject.location .x;
dist.y = currentObject.location.y — theObject.location.y;
dist.z = currentObject.location.z — theObject.location.z;
sqDistance = Math.pow(dist.x, 2) + Math.pow(dist.y, 2)

+ Math.pow(dist .z, 2);

distance = Math.sqrt (sqDistance);

magAccel = (currentObject.mass / (sqDistance)) % gravity;
accel.x = (magAccel x dist.x) / distance;

accel.y = (magAccel x dist.y) / distance;

accel.z = (magAccel x dist.z) / distance;
theObject.velocity .x = theObject.velocity .x

+ (accel.x *x timestep);

theObject.velocity .y = theObject.velocity .y

+ (accel.y *x timestep);

theObject.velocity .z = theObject.velocity .z

+ (accel.z * timestep);

}
}
}
}

File: NetworkSpaceObjectThread. java
package threadStuff;

28

public class NetworkSpaceObjectThread extends Thread implements AbstractThrea
protected double timestep;

protected ThreadCommunicator theMain;

protected NBodySocket theSocket ;

protected Socketeer theSock;

public NetworkSpaceObjectThread (ThreadCommunicator theTalker , double ts, Socl
timestep — ts;

theMain = theTalker;

theSock = socks;

¥

public void run() {

// first , get a socket.

theSocket = theSock.getSocket ();

theSocket.setTalker (this);

while (theSocket.isConnected () && (!theMain.isFinished ())) {
theSocket.checkBuffer ();

}
}

public void sendNextSet () {

ArrayList<SpaceObject> toGive = theMain.getObject (theSocket.getOptimalObjects
while (toGive = null) {

toGive = theMain.getObject (theSocket.getOptimalObjects ());

}

theSocket.sendDataset (toGive, theMain.getCurrentFrame ());
}

public void gotObjectsToSave(Stillframe sf) {
ArrayList<SpaceObject> theList = sf.getRecord();

for (SpaceObject o : thelList) {

theMain.saveObject (0);

}
}
}

File: SpaceObjectLooper.java

package threadStuff;

public class SpaceObjectLooper {
private ArrayList<SpaceObject> ourList;

29

public SpaceObjectLooper (ArrayList<SpaceObject> thelist) {
ourList = new ArrayList<SpaceObject >();

for (SpaceObject o : theList) {

ourList.add(o0);

}

}
public boolean isFinished () {

return ourList.isEmpty ();

ki

public SpaceObject nextObject () {
SpaceObject toReturn = ourList.get (0);
ourList .remove (0);

return toReturn;

}
}

30

B C Code

#include <stdio.h>

#include <stdlib .h>

#include "body.h"

#ifndef NOMPI

#include <mpi.h>

#endif

#include <math.h>

//define macro to find maximum of 2 values

#define max(f,g) ((£)=(g))?(f):(g)

//define macro to find minimum of 2 values

#define min(f,g) ((£)<(g))?(f):(g)

#define PI 3.1415926535897932384626

int saveFile(char xfilename, modelState xstate);

int readFile(char xfilename , modelState xstate);

int engine(int argc, charx argv|], model ins){

double xtpx, *tpy, *tpz;//temporary position vectors
double xtvx, xtvy, *xtvz;//temporary velocity vectors
double xax, xay, *az, a;//acceleration vector

double rx, ry, rz, rSq, r;//difference in position vectors
double starttime , slavetime, totaltime;//timeing variables
double v, IMaxA, IMaxV, IMinD, deltaT;//local dynamic timestep vars
double gMaxA, gMaxV, gMinD;

int size, rank;//basic processor data

int n, rem, myStart, mysize, myEnd;//basic processor data location info
int xrecvCounts, xoffset;//Arrays for communication

int i,j;

double initTime;

int d;

char savefile [50];

int iter;

double m,s,c;

modelState curr;

//start MPI

#ifndef NOMPI

31

MPI Init (&arge, &argv);
MPI_Comm_ rank (MPL_ COMM_WORID, &rank);
MPI_Comm _size (MPL COMM_WORLD, &size);
#else

rank =0;

size=1;

#endif

if (ins.sigma>=1||ins .sigma<=0){
ins.sigma=0.9;

¥

//Load data from file

if (rank==0&&('ins .scaleStudy)){

if (readFile(ins.loadFile , &curr)){
#ifndef NOMPI

MPI Finalize ();

#endif

return 1;

}
}

//Hard coded init for scaling study
if (ins.scaleStudy&&rank==0){

double rad=25.0;

curr .nBodies=ins .nBodies;
curr.time=0.0;

curr.mass=dvector (curr.nBodies);

curr.px=dvector (curr.nBodies);

curr.nBodies);

curr.py=dvector
curr .pz=dvector (curr.nBodies
curr.vx=dvector

curr .nBodies

A~~~ N /N A/~

curr.vy=dvector ;

)
)
curr .nBodies);
)
)

curr.vz=dvector (curr.nBodies
for (i=0;i<ins.nBodies;i++){
c=cos (2.0« PIx((double)i)/((double)(ins.nBodies)));
s=sin (2.0xPIx((double)i)/((double)(ins.nBodies)));
curr.mass|i]=1.0;

curr.px|i]|=cx*rad;

32

curr.py|i]=s*rad;

curr.pz|i|=0;

curr.vx|i]=—sx*rad;

curr.vy|i]=cx*rad;

curr.vz|i|=0;

ki

if (stremp("", ins.dataFile)&&rank==0){

sprintf(savefile , "%s%.2f.planet", ins.dataFile, curr.time);

saveFile (savefile , &curr);

}
}

//Print initial data

if (ins.debugOutputé&rank==0){

printf (" Output for time %f\n", curr.time);

for (i=0;i<curr.nBodies;i++){

printf ("Body %d: mass %f pos (%f,%f,%f) vel (%f,%f,%f)\n", i, curr.mass|[i]|, c
}

printf("\n\n");

}

#ifndef NOMPI

//Broadcast data to other processors from root process
MPI_Becast(&(curr.nBodies), 1, MPI INT, 0, MPL COMM WORID);
MPI_Beast(&(curr.time), 1, MPI DOUBLE, 0, MPL COMM WORID);
//allocate memory

if (rank!=0){

curr . mass=dvector (curr.nBodies);

curr.px=dvector (curr.nBodies);

curr .py=dvector (curr.nBodies);

curr . pz=dvector (curr.nBodies

curr.vy=dvector (curr.nBodies);

()
()
curr.vx—dvector (curr.nBodies);
()
()

curr .vz=dvector(curr.nBodies

¥

MPI_ Becast(curr.mass, curr.nBodies, MPI DOUBLE, 0, MPI COMM WORID);
MPI_Becast(curr.px, curr.nBodies, MPI DOUBLE, 0, MPL COMM WORID);
MPI_Becast(curr.py, curr.nBodies, MPI DOUBLE, 0, MPL COMM WORID);

33

MPI_Becast(curr.pz, curr.nBodies, MPI DOUBLE, 0, MPI COMM WORID);
MPI_Bcast(curr.vx, curr.nBodies, MPI DOUBLE, 0, MPL COMM WORID);
MPI_Becast(curr.vy, curr.nBodies, MPI DOUBLE, 0, MPL COMM WORLD);
MPI_Becast(curr.vz, curr.nBodies, MPI DOUBLE, 0, MPI COMM WORID);

//Broadcast intructions to other processors from root process

MPI_Beast(&(ins .debugOutput), 1, MPI INT, 0, MPL COMM WORID);
MPI_Becast(&(ins.timeRun), 1, MPI INT, 0, MPL COMM WORID);
MPI_ Bcast(&(ins.endTime), 1, MPI DOUBLE, 0, MPL COMM WORID);
MPI_Becast(&(ins.timeStep), 1, MPI DOUBLE, 0, MPL COMM WORID);
MPI_ Bceast(&(ins.sigma), 1, MPI DOUBLE, 0, MPL COMM WORID);
MPI_ Becast(&(ins.G), 1, MPI _DOUBLE, 0, MPL COMM WORID);

#endif

ax=dvector (curr.nBodies);

ay=dvector (curr.nBodies);

az=dvector (curr.nBodies);

//get data dump info

initTime=curr.time;

d=1;

//split up mesh

//Allocate communication arrays
recvCounts=ivector (size);

offset=ivector (size);
n=curr.nBodies/size;//calculate default size
rem=curr.nBodies%size;//calculate remaining bodies to split between processor
1=0;

for (i=0;i<size;i++){//calculate values for communication arrays
offset [i]=j;

recvCounts|i|=n+(rem>i171:0);
jt=recvCounts|i];

}

myStart=offset [rank |;

mysize=recvCounts |[rank |;

myEnd—offset [rank|+recvCounts |rank|;
//allocate memory

tpx=dvector (mysize);

tpy=dvector (mysize);

34

tpz=dvector ;

mysize

)
tvx=dvector (mysize);
)
)

tvy=dvector (mysize

b

A~ N /N /N

tvz=dvector
//get first time

if (ins.timeRun){

Zifndef NOMPI

starttime=MPI_ Wtime () ;

#endif

}

//begin main loop

iter =0;

if (rank==0){printf("Beginning model run with %d bodies\n", curr.nBodies);}

for (;curr.time<ins.endTime;){

mysize);

//do calculations
for (i=myStart;i<myEnd;i+-+){

//zero acceleration

ax|i]=0;

ay [1]=0;

az|[i]=0;

//zero timestep calcs
IMaxA =0;

IMaxV =0;

IMinD=—1;

for (j=0;j<curr.nBodies; j++){

if (i'=j){//do not do calculation if refering to self
rx=curr.px|j|—curr.px|[i];

ry=curr.py|j]—curr.py|i];

rz=curr.pz|j|—curr.pz|i];

ISQ=IX*kIX+TYy*Iy+TIZ2%17 ;

r=sqrt (rSq);

//get magnitude of gravitational force on i due to]
a=ins .Gxcurr.mass|[j]|/(rSq);

//calculate components

ax [i|+=axrx/r;

ay [iJ+=a*ry/r;

35

az | i|l4=axrz/r;

if (r<IMinD || IMinD <0){

IMinD=r ;

}

}

}

a—ax |1i|xax|i|+ay|i]|xay|i]+az[i]|*xaz|i];

if (a>1MaxA){

IMaxA=a;

}

v=curr.vx|[i|xcurr.vx[i]+curr.vy|[i]|*curr.vy[i]+curr.vz|[i|+curr.vz|i];
if (v>IMaxV){

IMaxV=v;

}

}

IMaxA=sqrt (IMaxA) ;

IMaxV=sqrt (IMaxV);

//NOTE: Some error occurs in the dynamic timestep calculation code, most obvi
#ifndef NOMPI

MPI_ Allreduce(&IMaxA, &MaxA, 1, MPL DOUBLE, MPL MAX, MPL COMM_WORLD):
MPI_Allreduce(&IMaxV, &MaxV, 1, MPI_DOUBLE, MPI MAX, MPL COMM WORID):
MPI_ Allreduce(&IMinD, &gMinD, 1, MPL_DOUBLE, MPI_MIN, MPL COMM_WORID):
#else

gMaxA=IMaxA ;

gMaxV=IMaxV ;

gMinD=IMinD ;

#endif

deltaT=(—(gMaxV/gMaxA))+ (sqrt (gMaxVsgMaxV-+2xgMaxAxgMinD*ins . sigma) /gMaxA) ;
deltaT=min (deltaT ,ins.endTime—curr.time);

//deltaT=ins .timeStep;//debug: constant deltaT

//if (rank==0){printf("iter %3d dT=%15.10g, mV=%15.10g, mA=%15.10g, mD=%15.10g
for (i=myStart ; i<myEnd;i++){

//update velocity in temporary variables

tvx |[i—myStart|=curr.vx[i]|4+ax|i]|xdeltaT;

tvy [i—myStart]|=curr.vy[i]+ay|i]|*deltaT;

tvz [i—myStart|=curr.vz|i|+az[i]|xdeltaT;

36

//update position in temporary variables

tpx [i—myStart]=curr.px[i]+tvx[i—myStart|xdeltaT ;

tpy [i—myStart]=curr.py|[i]+tvy[i—myStart|xdeltaT ;

tpz [i—myStart|=curr.pz|[i|+tvz[i—myStart|xdeltaT ;

}

#ifndef NOMPI

//wait for all processes to finish before communication

MPI_Barrier (MPL COMM_WORID);

//do communication

MPI_Allgatherv (tpx , mysize ,MPI DOUBLE, curr . px,recvCounts , offset ,MPI DOUBLE,MPL
MPI_Allgatherv (tpy , mysize ,MPI DOUBLE, curr . py,recvCounts , offset ,MPI DOUBLE,MPL
MPI_Allgatherv (tpz , mysize ,MPI DOUBLE, curr . pz,recvCounts , offset ,MPI DOUBLE,MPL
MPI_Allgatherv (tvx , mysize ,MPI DOUBLE, curr .vx,recvCounts , offset ,MPI DOUBLE,MPL
MPI_Allgatherv (tvy , mysize ,MPI_ _DOUBLE, curr .vy,recvCounts , offset ,MPI DOUBLE,MPL
MPI_Allgatherv (tvz , mysize ,MPI DOUBLE, curr . vz ,recvCounts , offset ,MPI DOUBLE,MPL
#else

for (i=myStart;i<myEnd;i-++){

curr.px|i|=tpx|i—myStart |;

curr.py|i]=tpy|i—myStart |;

curr.pz|i]—=tpz|i—myStart|;

curr.vx|[i]=tvx|[i—myStart|;

curr.vy|[i]=tvy|i—myStart];

curr.vz|[i]=tvz|i—myStart|;

}

#endif

//update time

curr . timet=deltaT ;

//print iter every 100 iters

if (rank==0){iter++;}

J/if (iter%1000==0&&rank==0){printf("iter %d time: %f\n", iter, curr.time);}
//dump data if necessary

if (rank=—=0&&ins .dataDump>0&&(curr . time—initTime)/ins .dataDump>=d){

d-++;

//print to terminal if option active

if (ins.debugOutput){

printf ("Output for time %f\n", curr.time);

37

for (i=0;i<curr.nBodies;i++){
printf("Body %d: mass %f pos (%f,%f,%f) vel (%f,%f,%f)\n", i, curr.mass|[i], ¢

curr.vx|[i], curr.vy|i]|, curr.vz[i]);

}

printf("\n\n");

}

//dump data

if (stremp("", ins.dataFile)){

sprintf(savefile , "%s%.2f.planet", ins.dataFile, curr.time);

saveFile (savefile , &curr);

}
}
}

//dump data

if (stremp("", ins.dataFile)&&rank==0){

sprintf(savefile , "%s%.2f.planet", ins.dataFile, curr.time);
saveFile (savefile , &curr);

}

//print to terminal if option active

if (rank—0&&ins . debugOutput){

printf (" Output for time %f\n", curr.time);

for (i=0;i<curr.nBodies;i++){

printf ("Body %d: mass %f pos (%f,%f,%f) vel (%f,%f,%f)\n", i, curr.mass|[i|, ¢
curr.vx|[i], curr.vy|[i], curr.vz[i]);

}

printf("\n\n");

}

if (rank==0){printf("%d iters, avg timestep=rg, Model end time=Yg\n", iter , (cu
“itndef NOMPI

//find time taken

if (ins.timeRun){

slavetime = MPI_Wtime() — starttime;

MPI_ Reduce (&slavetime , &totaltime , 1, MPI DOUBLE, MPI SUM, 0, MPL COMM WORLL
if (rank==0){

printf("Time for run: %f sec, avg time/timestep %g sec\n", (totaltime /((doubl

}

38

i
//end MPI

MPI_ Finalize ();
#endif

return (0);

}

39

