

Energy Efficiency through

Smart Wall Design

New Mexico

Supercomputing Challenge

Final Report

April 1, 2009

Team #65

Los Alamos Middle School

Team Members

 Rachel Robey

 Gabe Montoya

Teacher

 Bob Dryja

Project Mentor

 Bob Robey

 Derrick Montoya

1

Table of Contents
Table of Contents ... 1
Table of Figures ... 2
Executive Summary ... 3
Introduction .. 4

Problem Statement ... 4

Objective ... 5

Wall Designs ... 5

Experimental Model .. 7
Building ... 7

Testing ... 7

Results ... 8

Mathematical Model .. 10
Heat Transfer ... 10

Thermal Swing ... 12

Computational Model .. 13
Alternating Direction Implicit .. 13

Tridiagonal Solver .. 15

Explicit Finite Difference ... 16

Boundary Conditions ... 16

Assumptions .. 17

Code .. 18
Program .. 18

Computation .. 18

Interactive ... 20

Graphics .. 20

Results ... 21
Verification... 21

Validation .. 24

Conclusions ... 26
Model Capabilities .. 26

Skills .. 26

Teamwork .. 27
Recommendations... 28

Model .. 28

Wall Design ... 28

Appendix.. 29
Bibliography .. 29

Acknowledgements .. 30

Source Code ... 31

2

Table of Figures
Figure 1 Break down of residential energy usage in 2006 .. 4

Figure 2 More recently constructed houses use less energy for space heating 4

Figure 3 Standard wall design and materials ... 5

Figure 4 Over-insulated foam walls.. 7

Figure 5 Experimental test wall .. 7

Figure 6 Data logger used in experimental model ... 7

Figure 7 Set up for the experimental testing .. 7

Figure 8 Temperature data from first experimental test ... 9

Figure 9 Temperature data from second experimental test .. 9

Figure 10 Parts of a sine wave .. 12

Figure 11 Implicit and explicit method line interpolations ... 13

Figure 12 Cell dimensions and their variables ... 13

Figure 13 Locations and indices of flux coefficients .. 14

Figure 14 State variable and flux of cell with indices .. 16

Figure 15 Description of assumptions and limitations in the program .. 17

Figure 16 Flowchart of iteration loop .. 19

Figure 17 Instruction window from program display ... 20

Figure 18 Temperature scale from display window .. 20

Figure 19 Sun/moon clock and outside temperature from display ... 20

Figure 21 Table of wood and insulation properties ... 21

Figure 20 Test problem used in verification of the code .. 21

Figure 22 Table of units ... 22

Figure 23 Input wall used for collecting data for comparisons of time steps and cell resolution ... 22

Figure 24 Results from comparisons of time steps and cell size ... 23

Figure 25 Plot of output from cell size comparison ... 23

Figure 26 Plot of output from time step comparison .. 23

Figure 28 Adjustments made in order to match computer and experimental model 24

Figure 27 Imitation of experimental wall used as input for validation ... 24

Figure 29 Validation comparison of experimental and computational results 25

Figure 30 Teamwork Venn diagram ... 27

file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362451
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362452
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362453
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362454
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362455
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362456
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362457
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362458
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362459
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362460
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362461
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362462
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362463
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362464
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362466
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362467
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362468
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362469
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362471
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362473
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362475
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362476
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362478
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362479
file:///C:\Users\Rachel\Documents\2008\Supercomputing\team_65_report.docx%23_Toc226362480

3

Executive Summary

 We are modeling the heat transfer through walls to

assess their energy efficiency, as an extension to a project

from last year. Even with different team members, we were

able to successfully extend our work.

 One of our foremost goals was to enhance the

interactivity of the input of the wall and the display. Any

wall can be quickly designed, input, and tested, using the

keyboard. The running program has an easy to read real-

time display of temperatures, time, and outside

temperature. This also makes it possible to easily change the resolution and size of the area

modeled.

 Simulations of long periods of time have much faster run times. We implemented a

completely new computational method that makes these long simulations possible. This was done

with an alternating direction implicit method.

 An experimental model was built to be used to validate our computer model. Even though

this we were just beginning validation, and there was still some guesswork at this point, there

were amazing results. The inside temperature from our computational model closely matches the

temperatures from the experimental model.

 We have done significant additional work from our previous project. All interactive input

is new, and the graphics have had considerable changes and improvements. We created an

experimental model, which wouldn’t have been possible previously. We also added the new

method and began verification and validation of our model.

 Quickly design and test any

wall using interactive

features

 Much faster run times for

long simulations using

implicit method

 Experimental model

comparison for validation

4

Introduction

Problem Statement

 Energy conservation through building energy

efficient homes has become an even more important

issue in recent years. Both environmental and

economical concerns have contributed to this interest.

Space heating and cooling are the principal use of

residential energy (Figure 1). Newer houses are being

built to be more energy efficient as a result of this

concern (Figure 2). Conserving heat already in a house

by means of good wall design can cut down energy needs

significantly, and, in turn, costs and fuel. There are countless wall designs available which have

been created to be more energy efficient. When selecting a design it important to know how

effective the design actually is, and how well it performs in individual climates. Our purpose is to

create a versatile program that is capable of testing walls for efficiency in different environments.

 This is a continuation of a project from last year. It was still somewhat incomplete at the

end, and we were still interested in working with the problem more. Whereas last year’s project

was more focused on a specific wall design, this year was meant to be more flexible. We also took

the opportunity to do some of the program improvements we had been interested in, such as

better resolution and longer time steps.

0

0.5

1

1.5

2

1990-2001 1980- 1989 1970 - 1979 1960 - 1969 1950 - 1959 1949 or
Before

Q
u

a
d

ri
ll

io
n

 B
tu

Year of Construction

Space-Heating Energy Consumption in U.S.
Households

LPG

Fuel Oil

Electricity

Natural gas

Figure 1 Break down of residential energy usage in
2006 (Revelle & Galland, 2008)

Figure 2 More recently constructed houses use less energy for space heating
(Energy Information Administration, 2001)

5

Objective

 Our objective was to extend our previous model to be used for a larger variety of walls and

allow more extensive testing. Solving this problem computationally gives us the advantage of

putting in changing conditions such as a thermal swing to simulate night and day. We added an

‘interactive’ wall design, which takes input from the keyboard to initialize the cell materials; this

is very functional because we can easily change the wall that is being tested. We completely

rewrote the code method, changing to Alternating Direction Implicit (ADI) which lets longer

tests, such as months, be computed in shorter run times. We planned to compare data from our

program runs, such as explicit versus implicit. We also built an experimental model, which we

wanted to match in our program and compare results. This is the validation section of our project.

Wall Designs

 There are many different wall designs

proposed for energy efficiency. Our goal was

to create a versatile program that was capable

of testing a large range of walls, but we

selected a few specific ones to try. Although

solar gain is significant, especially in New

Mexico, it requires radiation and the ability of

glass to trap heat. This is more complex than

we intended to make our program this year,

so we did not choose any designs that were

dependent on solar gain. We did want to try

designs which take advantage of thermal

swing, which we model on the outside

boundary. This is also a good way to take

advantage of the computer model, because it

is hard to incorporate changing conditions in

hand calculations.

S
tu

cc
o

S
h
ea

th
in

g

S
tu

d

(1
½

 x
 5

½
)

D
ry

w
a
ll

(5
/8

”)

F
ib

er
g

la
ss

In
su

la
ti

on

(4
”)

Studs

16” on

center

P
ly

w
oo

d

Figure 3 Standard wall design and materials

6

 Our standard wall uses stucco, the foam sheathing, plywood, wooden studs, fiberglass

insulation, and sheetrock (Figure 3). Stucco is common in building here in New Mexico. It

consists of aggregate (sand, gravel, crushed stone or concrete), a binding material that works as a

glue, and water. It is applied to the next layer, foam sheathing. The innermost layer sheetrock,

which is a plaster, sometimes mixed with a fiber, and enclosed by heavy paper. Between the foam

and sheetrock are wooden studs with fiberglass insulation. The studs are the framework and

provide the structure of a building. The rest of the wall is built off the structure. However, there is

a lot of heat loss through the studs because heat flows through the wood much more quickly than

the insulation. The fiberglass insulation is meant to prevent the majority of the heat flow, and

works best when it’s not compressed.

 There are many ways to make a wall more energy efficient. One approach is to add more

mass so the energy travels through the wall more slowly. The wall can become unreasonably large

though, and one application of our program would be to experiment with effectively adding mass

without adding too much extra space. The use of water is also very common, because it has a large

heat capacity. Energy is stored up in the water and emitted later. These are just a few possible

design techniques that our program could be used to investigate. Since our goal was to make a

program capable of testing these kinds of walls, we didn’t spend very much time actually working

with these designs.

7

Figure 4 Over-insulated foam walls

Experimental Model
Building

 We built an experimental model to be used for validation of our code. Our model

consisted of a standard wall (Figure 4) and over-insulated foam walls for all of the other sides of

the box (Figure 5). This minimized the influence from the other sides of the box, making it

possible to test just the standard wall. We chose to use a concrete wall board in the place of

stucco because it was easier to handle

and they have similar heat transfer

properties (Cooling and Heating: Load

Calculation Manual, 1979). To build

the wall, we started with a stud frame

and screwed on the plywood and

concrete board. Then we filled in the

insulation and screwed the sheetrock

into place. The foam walls were difficult

to build because we did not want to use

wood for a structure since it would not

resist heat flow very well. We used a

rigid foam for studs, with a thicker piece of soft foam on the

outside, thinner on the inside, and insulation between. We positioned the pieces and pushed in

nails so everything would be aligned for us to glue them together. We built each side separately,

and later put them together. Since the box is front heavy, we put weights in the back to stabilize

it. We put the box in the shadiest spot that we could find. We did this because we wanted to

reduce solar radiation as much as possible. After setting the box up, we

wrapped all the sides except the front in insulation and plastic. This was

done to further reduce the heat lost from the sides.

Testing

 After researching different thermometers, we found a USB

data logger that can be plugged directly into the computer (Figure 6).

Figure 6 Data logger
used in experimental
model

Figure 5 Experimental test wall

8

The time between samples, number of samples, etcetera can be set. We had created a rack to hold

a light bulb and data logger inside of the box. The light bulb was put into the box to simulate the

constant flow of energy in the model. We decided on using a 25 watt light bulb after learning

from a dry run that a 40 watt bulb was bringing the box up over 100°F even with a very cold

outside temperature. In between the light bulb and the data logger a piece of foil was placed to

minimize radiation. The other data logger was taped onto a nearby window to take the outside

temperature. In the first test the outside data logger was open to the elements; in the second test

the data logger was wrapped in a plastic bag to reduce the influence of weather, such as wind, on

the results. We were testing during late January and the very beginning1, so the temperatures were

fairly cold, but the weather more mild (no storms). Figure 7 shows the setup for our test, with the

rack, the inside of the box, and the sides completely wrapped up and covered.

Results

 We downloaded the data onto the computer from the data loggers after each test, and

plotted the inside and outside temperatures together (Figure 8 and Figure 9).The very beginning

of the plots should be discounted because they show the starting conditions, which are atypical.

These are things such as placing the data logger or taking it out, and the light bulb warming up.

The effect of putting the outside data logger in a bag is very clear in the difference between the

two plots. The wind influenced the temperature readings and caused spikes in the plot, while

second test has a much smoother line. The thermal swing is evident for the outside graph in both

tests and is still visible on the inside. The inside remained well above the outside temperature,

occasionally getting too warm, at 80°F or more.

1
 Specifically, our first test ran from January 24 3:45 pm to January 27 7:53 pm and our second test from
February 1 2:23 pm to February 4 9:02 am.

Figure 7 Set up for experimental testing

9

0

10

20

30

40

50

60

70

80

90

2:
23

 P
M

4
:5

2
P

M
7:

21
 P

M

9
:5

0
 P

M
12

:1
9

 A
M

2:
4

8
 A

M
5:

17
 A

M

7:
4

6
 A

M

10
:1

5
A

M
12

:4
4

 P
M

3:
13

 P
M

5:
4

2
P

M

8
:1

1
P

M
10

:4
0

 P
M

1:
0

9
 A

M

3:
38

 A
M

6
:0

7
A

M

8
:3

6
 A

M

11
:0

5
A

M
1:

34
 P

M

4
:0

3
P

M
6

:3
2

P
M

9
:0

1
P

M
11

:3
0

 P
M

1:
59

 A
M

4
:2

8
 A

M
6

:5
7

A
M

T
e

m
p

e
ra

tu
re

 (
°F

)

Time

Test 2

Inside

Outside

0

10

20

30

40

50

60

70

80

90

100

3:
4

8
 P

M
6

:3
8

 P
M

9
:2

8
 P

M
12

:1
8

 A
M

3:
0

8
 A

M
5:

58
 A

M
8

:4
8

 A
M

11
:3

8
 A

M
2:

28
 P

M
5:

18
 P

M
8

:0
8

 P
M

10
:5

8
 P

M
1:

4
8

 A
M

4
:3

8
 A

M
7:

28
 A

M
10

:1
8

 A
M

1:
0

8
 P

M
3:

58
 P

M
6

:4
8

 P
M

9
:3

8
 P

M
12

:2
8

 A
M

3:
18

 A
M

6
:0

8
 A

M
8

:5
8

 A
M

11
:4

8
 A

M
2:

38
 P

M
5:

28
 P

M

T
e

m
p

e
ra

tu
re

 (
°F

)

Time

Test 1

Inside

Outside

Figure 9 Temperature data from second experimental test

Figure 8 Temperature data from first experimental test

10

Mathematical Model
Heat Transfer

 The flow of heat can be represented with three main equations (Kreith, Priciples of Heat

Transfer, 1973), which make up the primary part of our mathematical model. Heat energy is

transferred through conduction, convection, and radiation. Conduction is the movement of heat

within a substance or between substances with a direct physical link. Energy is shifted from

molecule to molecule. Because it does not require the molecules to move it occurs in all types of

matter, including solids, and is found everywhere in our model. Convection is not strictly a type

of heat transfer, but rather conduction combined with the movement of the molecules. Heat

moves from a warm surface to and adjacent fluid or gas, which then rises. They lose heat to the

colder molecules around them and sink back down, where they may be heated again, creating a

circular flow. Convection occurs at the wall surfaces where it meets air. Radiation transfers heat

without passing through all the molecules in a material. It travels in waves away from a warm

body and is absorbed by objects it comes into contact with. The properties of each material were

looked up in tables (Cooling and Heating: Load Calculation Manual, 1979) (Ashrae Handbook

1977 Fundamentals, 1977).

The rate of heat flow by conduction is equal to the product of the following values:

 , the conductivity of the material

 , the area through which heat is flowing, measured perpendicular to the direction of flow

 , the temperature gradient, or difference in temperature with respect to the distance

 and direction of heat flow

Since heat will always flow from an area of higher temperature to an area of lower temperature,

the heat flow should be positive when the temperature gradient is negative, and a negative sign is

included accordingly. This is written as an equation as shown below.

In general, convection may be approximated by:

11

where = the convective heat transfer coefficient

 = the area through which heat is flowing, measured perpendicularly

 = the difference between the surface and air temperatures

Convection is to just increase the rate of conduction, because that is its essential effect.

The net rate of radiant heat transfer from one blackbody, or ideal radiator, into another is given

by:

where (sigma) = the Stefan-Boltzmann constant which is equal to 0.1714 x 10-8 BTU/hr ft2 R4

 = the surface area

 = the difference of the temperature of the emitting body to the fourth power

 and the temperature of the receiving body to the fourth power

In radiation, a blackbody is emits and absorbs the maximum amount of radiation at all

wavelengths at any temperature. Real materials do not behave this way, and emit energy at a

lower rate which is dependent on the properties of the surface. Radiation occurs both from the

sun to the wall and from the wall into the night sky.

 The equation of state shows the relationship between the temperature of a material and

the energy that it contains. We use a fairly simple form of the equation, which is as follows:

where = energy

 = constant volume specific heat, or the energy required to raise a unit of mass one

degree

 = the temperature of the material

 Our problem involves only one conservation law, that of energy. There are no changes in

density, mass, or momentum, so their conservation does not apply. Energy, however, is moved

and changed in the process of heat transfer. “The law of conservation of energy states that energy

can be neither created nor destroyed (Faires, 1970).” Since this heat transfer is not being applied

12

to a nuclear process, we may ignore the exception of the conversion of energy into mass or mass

to energy. This law supports the equations:

where and are the energy entering and leaving the system respectively

 is change in the energy stored in the system

 and are the initial and final stored energy.

This law holds true for all of the equations, and any violation indicates an error of some kind.

Thermal Swing

 We created a sinusoidal wave to be a

general representation of the thermal swing of

night and day. The outside boundary follows this

wave and is a driving force in our program. We

began with the equation for a general sine wave,

which is shown as:

A is the amplitude, or distance from the center line

ω (omega) is the angular frequency, or radians per unit time

θ (theta) is the phase, or horizontal placement of the wave

 With given minimum and maximum temperatures, the following formula can be used to create a

sinusoidal wave.

Where and are the minimum and maximum temperatures

 and represent the current time and the time of a peak

 sets how often the peak occurs, 720 is the number of minutes between each peak

Figure 10 Parts of a sine wave

13

Computational Model
Alternating Direction Implicit

 The alternating direction implicit method

(Peaceman & Rachford, 1955) (ADI) has a major advantage

over our previous explicit method: the ability to remain

stable with any size time step. This, in turn, affects the

number of iterations. Combined with less work per

iteration, it results in much shorter run times for of longer

test periods, such as weeks or months. An explicit method

determines the heat transfer and finds the energy in the

cell for the next time step using the slope of a line at the

current time step. If the line has a steep slope, and the time step is too long, the value can become

negative. The implicit method, however, solves this problem by using the slope from

the next time step. This assures that the result will always be positive, and while the

error may be larger, the program will not become unstable or crash. This is a

particularly good method for our heat transfer problem because the changes are

gradual and the additional error will be relatively small.

The equation used to find the heat transfer through conduction is as follows:

where = the change in energy

 = the change in time, or time step

 = the area, height times depth (Figure 12)

 = the conductivity2

2
 Note that time is indicated in the superscript and space in the subscript throughout the equations in the

computational method section. For example, n is the current time step, and n+1 the next time step. The
indices are denoted by i and j; boundaries are “half steps”.

Figure 12 Cell
dimensions and
their variables

time

te
m

p
er

at
u

re
 T

n

T
n+1

Figure 11 Implicit and
explicit method line
interpolations

14

 Since the ADI method uses multiple values from

the next time step in its computation, and these values

are unknown, a solver is used to solve for these values

simultaneously. We are using a tridiagonal solver, which

handles one row or column at a time, and uses the

coefficients of , , , and . To find these

coefficients we derive the equation into the form of:

and find the value of each coefficient, which we then send to the solver:

 The solver will return the solution, which is the temperature at i. In order to find the heat

transfer through two dimensions, the solution of for each row is stored, and the flux from each

column added.

 Notice that includes the term . This is a source term which adds energy directly to

the cell. This can be used to represent radiation or a light bulb.

Figure 13 Locations and indices of flux coefficients

15

Tridiagonal Solver
 A tridiagonal solver (Tridiagonal Matrix Algorithm, 2008) is used to solve tridiagonal

systems of equations which may be written as3:

or in matrix form, it is written as:

 This three diagonals formed by the ’s, ’s, and ’s are what gives the solver and equations

the “tridiagonal” part of their name. The diagonal pattern is a result of a cell’s temperature being

dependent on only itself, and the fluxes of its boundaries. and are not shown because they

are equal to zero and do not affect the cell’s energy.

 The first two equations complete a forward sweep which eliminates the ’s; the second

two perform back substitution, leaving as the solution4.

3
 a1 and cn must equal zero. No energy enters through the boundaries of the mesh, so this is true.

4
 The solution can be obtained in O(n) operations rather than the O(n

3
) used for Gaussian elimination

16

Figure 14 State variable and flux
of cell with indices

Explicit Finite Difference

 We used an explicit central finite difference method in

our code last year. This method also uses cells, and determines

the energy in the cell in the next time step by using the flux at

the boundaries. The values used in the calculation are from the

current time step, which is what makes it, as stated, an explicit

method. The energy of a cell in the next time step is equal to its

current energy plus the flux energy entering and leaving on the right,

left, bottom, and top boundaries. The mathematical equation for this is as shown below:

where = the state variable, energy

 = the time step

 and = the width and height of a cell

 = the flux

The term is simplified, as result of cancelled units:

Energy is added or subtracted from the state variable value, depending on this flux. In our

implementation of this method, we were first order in time and second order in space, which

means we find the flux once every time step, and in two directions.

Boundary Conditions

 The explicit and implicit methods also have different boundaries and boundary

conditions. The explicit method uses ghost cells, a row of cells around the actual mesh. We give

these special conditions. The top and bottom boundaries simply reflect the energy to ensure no

energy is lost or gained through them. The inside boundary is maintained at 70°F, and the energy

needed to maintain it is calculated. The outside boundary follows the sinusoidal wave for a given

17

maximum and minimum temperature. These side boundaries are also the driving force of the

model; they provide a continual change in temperature to drive the heat transfer and prevent all

the cells from reaching equilibrium.

 The implicit method does not work the same way, and does not have any ghost cells. The

cells farthest to the left are set to the outside temperature every iteration. The top, bottom, and

right cells have no fluctuation on any boundary that is on the edge of the mesh. Heat is provided

as a constant energy input through source cells, which are interactively set.

Assumptions

 When creating the computer model, we made several assumptions that may not

accurately emulate the real world. These can cause the output from our program to differ from

actuality. There are limitations to what our program is capable of if it not capable of taking into

account certain conditions. Although we added the option of reading data from a file to control

the outside temperature, the alternative of the sinusoidal wave is a limitation. We assume a

regular wave that has a maximum at noon and a minimum at midnight, and our approximation is

acceptable, but differs from our real data by a large margin. We didn’t have time to add radiation

to our model, and this causes considerable solar gain and night radiation from the wall to be

ignored. Also, two dimensions restrict the program from things that require the third dimension.

Some examples are convection, which really moves in 3-D space, and walls, which have different

layers. Similarly, we don’t take into account air leaks and imperfections in the building and

materials. Along with our sinusoidal wave, we estimate our convection and do not include

weather. Realistically, the temperature, weather, and wind vary from day to day and are irregular.

Assumption/Limitation Description

Sinusoidal wave Adequate approximation, but doesn’t give very accurate model of
thermal swing

Radiation Radiation wasn’t added in, so solar gain is ignored

2-D Not as important to our model, but some properties of a wall or
actions need three dimensions

Uniform materials Won’t take into account imperfections such as air leakage, faulty
building, etc.

Convection estimated Convection acts as an constant increase in conductivity of air, rather
than irregular wind

No weather Weather has a huge influence on the outside conditions, and these
affect the heat transfer

Figure 15 Description of assumptions and limitations in the program

18

Code
Program

 We are using our code from last year, which was written off of the structure of the shallow

water simulation code WAVE (Robey B. , 2007). The language we are using is C. We also

borrowed code for our tridiagonal solver (Tridiagonal Matrix Algorithm, 2008), and for the

interactive keys (Robey, Holland, Jacobs, & Shlachter, 2008) and integrated it into the rest of our

program. For the graphics, we used the MPE library (Multi-Processing Environment) (Web Pages

for MPI and MPE, 2004). Since WAVE was parallelized, there are still MPI (Message Passing

Interface) calls in the code, but they have not been updated or run. Our code consists of a “main”

file, a header, a display file with all of the display subroutines, and a file with the tridiagonal solver

subroutine. In total, it is about 830 lines.

 We were fortunate not to have to do too excessive debugging. We did, however, make

extensive changes to our code and several bugs were caused by pieces of the code that were no

longer valid. There were also some problems with the conduction after we wrote it with the

implicit method.

Computation

 In our code, the iteration loop calculates the heat transfer through all the cells for one

time step. The structure of this loop is illustrated in Figure 16. In the first pass, we find the heat

flow in the x and y directions. Both use the tridiagonal solver subroutine, and calculate the

coefficients using the same ‘old’ array of temperatures. When calculating the coefficients we take

advantage of being equal to and set the array using the array. The ‘new’ temperatures

are stored in a separate array. In the second pass we update the ‘old’ temperature array. Also in

the second pass, the display is called only called every set number of iterations.

19

Set outside temperature If FILE_DATA

Read temperatures

from file

Calculate

temperature using

sinusoidal wave

true

false

First pass X direction

Y direction

Calculate coefficients

Tridiagonal

solver stores

solutions in x

Set row of

Temeperature_new to x

Calculate coefficients

using ‘old’ temperature

values

Add flux into row of

Temperature_new

Second pass Update Temperature with

Temperature_new

Iteration number divisible by __

End iteration loop

Iteration number less than total

number of iterations

Begin iteration loop

Display

Write temperature

info to file

true

fa
lse

tr
u
e

fa
lse

send coefficients

return x

return x

send

coefficients

Figure 16 Flowchart of iteration loop

20

Interactive

 We revised the program to take key input to

initialize the matrix. The cells are all set to a default

outside air, and cells under the cursor in the graphics

window are changed to other materials by pressing a

corresponding key. This allows cell size, number, and

wall type to be easily changed, quickly and more easily

than by changing the code itself.

 There are other inputs besides those used to set

cell materials. The ‘x’ key executes the rest of the

program when it is pressed, and starts the heat transfer

simulation through the wall. The ‘l’ key is used to set a source cell, where a yellow X will be

drawn. Once a cell is assigned as a source cell, it cannot be changed back to normal. The ‘h’ key

records the indices of the cell. When the program is run, the temperature of that cell will be

written to a history file. Pressing it again will reset the indices. The ‘r’ key records the wall

materials in a save file, and ‘d’ draws the most recently saved wall and sets all the materials.

Graphics

 We spent a fair amount of time on the graphics. We wanted the display to be fairly easy to

understand, and a visualization of the results. We also added an instruction window to

guide a user through the steps of drawing a wall, and also to make the commands for each

key more accessible (Figure 17).

 The majority of the window shows the mesh of cells, colored to represent their

current temperature. On the right side of the screen we print a scale of the colors and the

temperature they correspond to (Figure 18). Below the scale is an updated

printout of the present time in the simulation and the outside

temperature on either a sun or moon (Figure 19). We thought that

this was a good way signify to people what is happening. For example,

it should be fairly clear that if there is blue in the window, and

there is a moon, that it is a cold night.

Figure 19 Sun/moon clock
and outside temperature
from display

Figure 18 Temperature
scale from display window

Figure 17 Instruction window from
program display

21

Results

 Verification

 “’Verification’ ~ solving the equations right (Roache, 1988).” Verification is proving the

program solves the equations correctly, and with minimal mathematical error. As part of

verification, we solved a problem by hand to show that the conduction works properly, and

compared the outputs of different time steps and cell sizes.

 We invented a small test problem to do by hand and used print statements to follow the

values through each section of code. The input is a 1-by-3 mesh of wood and insulation at 60°F,

65°F, and 70°F (Figure 20). To begin, we found the values of

each of the coefficients using the properties of the materials

(Figure 21). They are listed below in the order they were

calculated:

 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =

 After this single time step, the temperatures are: , 65, and 69.994486

respectively5. Our hand calculated values matched with those output from the program, with the

exception of small discrepancies caused by round off errors. We set the same problem vertically to

check the program in the y direction and found the same results.

5
 Note that these have the same sum as the original temperatures, and therefore can be shown to follow the

Law of Conservation of Energy.

 Wood Insulation

Conductivity 0.8 0.009636
Density 32 0.85
Specific Heat 0.33 0.2

Figure 21 Table of wood and insulation properties =
 =
 =
 =
 =
 =
 =
 =

Wood

60°F

Insul.

65°F

Wood

70°F

Figure 20 Test problem used
in verification of the code

22

 Units are necessary to express all

quantities and to give numbers physical value.

There are several systems that are used in the

field of heat transfer, and it is important to

consistently use units from one system. We are

working in U.S. engineering units. In hear

transfer, the fundamental dimensions are time, length, mass, temperature,

force, and heat. Derived dimensions are expressed in terms of these fundamental dimensions

(Figure 22). In the context of our program, cells are measured in inches, and the time step in

minutes.

The units for the and coefficients are shown below6:

 should end up in the same units:

 is multiplied by the temperature, which leaves it in :

Any source terms added to must also be in .

 In order to assess the error created by using longer time steps,

we ran our implicit program with three different time steps. Each run

simulated the wall shown in Figure 23 for about seven days, recording

the temperature at a given cell every ten minutes. We plotted the

temperature output from the runs for each of the time steps in Figure 26. It shows that the

shortest time step, 0.01 minutes, has a very defined swing, while the minute long time step is

6
 Conductivity has already been input to the program in Btu/hr in F, so no conversion from feet into inches

is necessary

Physical Quantity U.S. Engineering Unit

Heat flow rate

Specific heat

Thermal conductivity

Heat transfer coefficient

Density

Figure 22 Table of units

Figure 23 Input wall used for
collecting data for comparisons of
time steps and cell resolution

23

0

10

20

30

40

50

0 2000 4000 6000 8000 10000 12000

te
m

p
e

ra
tu

re
 (

°F
)

time (min)

Cell Resolution

0.5 in

1 in

2 in

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000 12000

te
m

p
e

ra
tu

re
(°

F
)

time (min)

Time Steps

1.0min

0.1min

0.01min

indistinct. This is because the bigger the time we are calculating for, the less detail it can pick up.

The run times, shown in Figure 24, increase by roughly a factor of ten. This makes sense, as the

time steps are decreasing at the same rate. A longer time step should moderate the fluctuations,

and be able to come close to the average, which the plot confirms.

 We also plotted the results of the runs with different cell dimensions (Figure 25). We are

not sure what caused these results, and whether there was an error in the code. The two inch cells

recorded generally higher temperatures, and the oscillation seems to decrease with a finer

resolution. As the size of the cell is cut in half, the run time is about four times as long (Figure

24). This is reasonable, as it takes four cells to make one of the next size.

Figure 24 Results from comparisons of time steps and cell size

 Time Step Cell Size

 1.0 min 0.1 min 0.01 min 2in 1in 0.5in
Run Time 2 sec 20 sec 196 sec 5 sec 18 sec 72 sec

Average Temperature 37.12°F 36.15°F 41.58°F 41.10°F 36.55°F 36.16°F

Figure 25 Plot of output from cell size comparison

Figure 26 Plot of output from time step comparison

24

Validation

 “’Validation’ ~ solving the right equations (Peaceman &

Rachford, 1955).” Validation is the ability of our model to

produce answers for intended applications that fall within an

acceptable range of accuracy.

 We tried to match the conditions in the experimental

and computer model as closely as possible so we could compare

the results to determine how closely our model comes to real life

(Figure 27). We read in the test two experimental outside

temperatures from a file to control the outside boundary. The

wall we input to the program as an imitation of our

experimental wall is shown in Figure 27. When running our

program, we discovered a problem with the energy cells. An

input of 25 watts did not heat the interior as we expected. We

are uncertain whether this is caused by wrong energy input or an

error in the method, as we did not have time to look into it.

Condition Descriptions/Adjustments

Internal heat
source

We put a light bulb inside t simulate the indoor heating. A steady input
of 25 watts to generate enough energy to get close to comfortable
temperatures

No solar gain We placed the box in an area which is shady most of the day.
No internal
radiation

The rack held tin foil between the light bulb and data logger to
minimize direct radiation

Wind is
irregular

Tested both with outside data logger exposed and in a plastic bag.

One wall The rest of the box is over insulated to reduce the influence as much as
possible and isolate the test to one test wall

Air leakage The corners are sealed up with foam on the inside, and duck tape on the
outside to prevent as much air leakage as possible.

Figure 28 Adjustments made in order to match computer and experimental model

Figure 27 Imitation of
experimental wall used as
input for validation

25

 We estimated the energy input through our observations of the effects of different

amounts, and ran the program. The plot of the temperatures from the computer for inside and

outside7 is compared to the experimental results in Figure 29 below.

 We were very impressed by these results, as there was a fair amount of guess work done at

this point. The starting conditions cause the discrepancy in the beginning of the graph, so this

was ignored for the most part. The inside results match each other remarkably well, both in shape

and in general temperature range. The outside temperatures are much farther apart, and while

the computer model has the same general shape, it did not capture some of the more subtle

changes.

7
 A history cell was set about where we estimated the data logger would be and on the outside boundary.

0

10

20

30

40

50

60

70

80

90

0 1000 2000 3000 4000 5000

T
e

m
p

e
ra

tu
re

(°
F

)

Time (min)

Model Validation

Computer
Inside
Computer
Outside
Experimental
Inside
Experimental
Outside

Figure 29 Validation comparison of experimental and computational results

26

Conclusions
Model Capabilities

 Our model was successful. The verification process found most, if not all, of the bugs in

the conduction part of our code. When it tested walls its answers were reasonable. There are

clearly still some bugs though, as we saw while trying to use a source of energy in the validation.

The outside temperature may also be influenced by factors in the model, and more air space may

be needed between the wall and boundary during validation runs. In summary, while there is still

debugging to be done, our model is acceptable.

 The display and key input improvements we were able to make were far beyond our

original expectations. The input window works well and refreshes smoothly, and the instruction

window is a good guide and reference. The display is very readable and provides a real-time

display of temperatures.

Skills

 As a result of this project, both of us gained many skills that we will continue to find

useful in the future. This was Gabe’s first year in the Challenge, and he learned a lot about the

process of computer modeling. He started working with C, and hopes to learn more about

programming this summer. After first starting to program last year, Rachel greatly expanded her

understanding of programming, computational models and the process in general.

27

 Photography

 Building

 Experimental testing

 Writing

 Presentations

 Research

 Programming

 Mathematical model

 Computational model

R
a

ch
e

l
G

a
b

e

Teamwork

 Our team consisted of two members this year. Rachel had worked on the project last year

with Jessie. Jessie was unable to participate this year, so Gabe took her place. He has done an

excellent job of stepping into the middle of the project.

 It was difficult for us to meet regularly, on account of activities, and Gabe living farther

away. We were still able to work together on some weekends and occasionally after school. We

were generally very productive at these meetings, but also did a fairly good job of working on our

own in between. We were able to talk to each other when at school and keep one another

updated, or transfer information with a flash drive.

 Gabe was responsible for most of the

building and testing of our experimental model. We

came up with some of the basic concepts together,

but he did the more detailed design of how to build

it, and chose and bought the materials. We met at

his house on a weekend in early January to put

together the sides of the box. Gabe had broken his

arm and was somewhat incapacitated. He and his

dad later finished building it and getting it ready for

testing. Gabe tested it on their property and

downloaded all the data for each test. He also did

most of the photography of the box, which was a

helpful record of the set-up.

 Rachel was in charge of the programming,

including the mathematical and computational

models. Gabe helped some with the programming,

but it was a learning experience for him as he had never

programmed before.

 We have both worked together on most of the reports and presentations. We would try to

meet more often when reports were due, and especially to create and practice presentations.

Overall, we worked well together, and split up the work load efficiently.

Figure 30 Teamwork Venn diagram

28

Recommendations
Model

 Our program has an incredible potential, and there are many ways to enhance and

improve it. There are several in particular we considered would be useful, and would probably

pursue in any continuing work on this project. Parallelizing our code has always been an option,

but not realistic because there wasn’t enough work for multiple processors and not worth it. Now,

however, as we improve our program, there is more work, and it would be beneficial. The

possibilities to add onto the interactive, display, and user interface part of our model are endless,

and not the purpose of a supercomputing project. Even so, we are interested in adding rubber

banding8 to the interactive cell initialization. This would be very practical when trying to assign

large numbers of small cells. We did make an attempt to do this, but we don’t have any

experience with x-windows, and even with help had trouble capturing and returning the location

of the mouse button click’s subsequent release. We also would like to go through and validate

every part of the code. For example we would check that each material behaved the way it should.

This would help us to understand the differences between experimental and computational

models. We would also go through and solve the problems with the “light bulb” energy source.

Even though we could do a lot more with this program, we did an amazing amount of coding and

were able to accomplish most of our goals.

Wall Design

 Writing the code and doing experimental tests in order to create a functional and valid

program required the whole year. We ran out of time for testing energy efficient walls, and so

were unable to analyze these designs. The next step would most likely be beginning to test these

walls, and perhaps adding in components such as window, roof, floors, doors, etc. in order to

expand the walls the program is capable of testing.

8
 Moving of object where one end is fixed in position. In our case this would be selecting a block of cells to

assign with a click and release of the mouse button.

29

Appendix

Bibliography
Alme, M., Vold, E., Yilk, T., & Robey, B. (July 9, 2008). Climate Modeling and Global Warming

Simulation. Los Alamos, NM: X/CCS Division Summer Workshop.

Ashrae Handbook 1977 Fundamentals. (1977). New York, New York: American Society of Heating,

Refrigerating, and Air Conditioning Engineers, Inc.

Cooling and Heating: Load Calculation Manual. (1979). New York: American Society of Heating,

Refrigerating, and Air Conditioning Engineers, Inc.

Energy Information Administration. (2001). Space-Heating Energy Consumption in U.S.

Households by Year of Construction. Retrieved March 28, 2009, from

www.eia.doe.gov/emeu/recs/recs2001/ce_pdf/spaceheat/ce2-2c_construction2001.pdf

Faires, V. M. (1970). Thermodynamics (5th ed.). New York, New York: Macmillan Publishing Co.,

Inc.

Iowa State University. (1992, March). Building Energy Efficient New Houses. Retrieved from

University Extension: http://www.forestry.iastate.edu/publications/PM790.pdf

Kreith, F. (1973). Priciples of Heat Transfer (3rd ed.). New York, New York: Intext Educational

Publishers.

Kreith, F., & Kreider, J. F. (1978). Principles of Solar Engineering. USA: Hemisphere Publishing

Corporation.

Lemieux, D. J., & Totten, P. E. (2007, February 1). Building Envelope Design Guide - Wall Systems.

Retrieved from Wiss, Jannev, Elstnew Associates, Inc. Whole Building Design Guide:

http://wbdg.org/design/env_wall.php

Peaceman, D., & Rachford, J. H. (1955, March). The Numerical Solution of Parabolic and Elliptic

Differential Equations. vol. 3 . USA: J. Soc. Indust. Appl. Math.

Revelle, E., & Galland, E. (2008, September). Understanding Energy Consumption. Retrieved

March 28, 2009, from revelle.net/lakeside/lakeside.new/understanding.html

Roache, P. J. (1988). Verification and Validation in Computational Science and Engineering. USA:

Hermosa Publishers.

Robey, B. (2007, October). Shallow Water Workshop. Retrieved from

www.challenge.nm.org/archive/07-08/kickoff/classes/#experienced

Robey, J., Holland, A., Jacobs, L., & Shlachter, D. (2008). Modeling Spacecraft Reentry.

30

Robey, R., & Bohn, J. (2008). Turn Up the Heat: Energy Efficiency through Smart Wall Design.

Tridiagonal Matrix Algorithm. (2008, November 27). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

Web Pages for MPI and MPE. (2004, August 4). Retrieved from Argonne National Laboratory

Mathematics and Computer Science Divison: www.mcs.anl.gov/research/projects/mpi/www

Acknowledgements
Our mentors, Bob Robey and Derrick Montoya, for their ideas, help, and support to finish

Tom Laub, Larry Kilham, and Kathy Pallis, for reviewing our project at the evaluations

Our teacher, Bob Dryja

Jonathan Robey, for his help with math and programming questions

Victor Kuhns, Dale Henderson, for reviewing our proposal and interim and their suggestions

31

Source Code

#define WAIT_TIME 0 // Slows down run if too fast

#define DEBUG 0 // Turn on debug statements

#define DISPLAY_ON 100 // Turns on output and sets iterations between plots

#define FILE_DATA 1 // Chose sinusoidal wave or data file for outside

#define max(a, b) ((a) > (b) ? (a) : (b))

/***

 * HEAT -- 2D Heat Transfer Model

 * Rachel Robey, Los Alamos Middle School

 * Copyright 2007-2009

 **/

#include <mpi.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <unistd.h>

#include <time.h>

#include "heat2.h"

#ifdef DMALLOC

#include "dmalloc.h"

#endif

#define Pi 3.14

/* Display routines */

void display_init(char *displayname, int matrix_size_x, int matrix_size_y,

 int iheight);

void display_instructions(void);

char get_key(int *i, int *j, int my_offset, int matrix_size_x, int

 matrix_size_y);

void display_one_d(int matrix_size_y, int matrix_size_x, double **temp, int

 my_offset,int mysize, double maxscale, double time, double Temp_max,

 double Temp_min, int **Material);

void display_setup(int matrix_size_x, int matrix_size_y, int **Color, int

 my_offset,int mysize, double time, double Temp_max, double Temp_min,

 int **Source);

void display_colors(void);

void set_label(char *text);

void display_close(void);

/* Calculation routines */

void TridiagonalSolve(const double *a, const double *b, double *c, double *d,

double *x, unsigned int n);

double source_data(double time);

/* Memory allocation routines */

double *dvector(int n);

32

double **dmatrix(int m, int n);

int **imatrix(int m, int n);

double **Mass, **Temperature, **Temperature_new, **Source_radiation,

 **Energy; //state variables

int **Source; //source cells – light bulb

double *a, *b, *c, *d, *x; //tridiagonal solver coefficients

int **Material, **Color;; //cell materials and colors

int main(int argc, char *argv[]) {

 int rank, size;

 int next, prev;

 int i, j, k, l;

 int matrix_size_x, matrix_size_y;

 int ntimes;

 int n;

 int mysize;

 int my_offset;

 char keyComm;

 double Energy_added;

 double deltat = 0.1; //hardwired timestep - minutes

 double deltax = 0.5, deltay = 0.5, deltaz = 1; //size of cell - inches

 double maxScale; //display color scaling

 double time = 0.0; //computer simulation time

 double time1, time2, temp1, temp2; //for reading temp info from file

 double totaltime, starttime; // to calculate program run time

 double myTE, TotalEnergy, origTE; //for checking conserve. of energy

 int ihistory = -1, jhistory = -1; //indices of temp log

 double Temp_max=60, Temp_min=10; //temp swing max and min

 FILE *fhistory, *fdata, *fsave; //declare files

 char *desc; //variable for labels

 char string[80], numbers[80];

 char *displayname = ":0";

 /* Material properties */

 enum material{OUTSIDE_AIR, INSIDE_AIR, STUCCO, FOAM, WOOD, CEMENT, GLASS,

 INSULATION, SHEETROCK};

 double Material_density[9]= { .076, .076, 116., 2.2, 32., 64.65, 80, .85,

 50. };

 //density in pounds/ft cubed

 double Material_specific_heat[9]= { .24, .24, .22, .29, .33, .22, .22, .2,

 .26 };

 //specific heat in Btu/pound*mass*Farenheit

 double Material_conductivity[9]= { 6.0, 1.46, .5, .2, .8, .96, .32,

 .053/5.5, 1.78/.625 };

 //conductivity in Btu/hour*inch*Farenheit, 15mph wind factored into

 outside air

 int Material_color[9]={0, 5, 10, 6, 12, 2, 8, 13, 15};

 //white, cyan, orange, blue, brown, red, aqua, pink, grey

 MPI_Init(&argc, &argv);

 //Determine size and my rank in MPI_COMM_WORLD communicator

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 if (argc > 2 && strcmp(argv[1], "-display") == 0) {

 displayname = (char *)malloc(strlen(argv[2]) + 1);

 strcpy(displayname, argv[2]);

33

 }

 if (rank == 0)

 printf("Copyright 2008\n");

 sleep(WAIT_TIME);

 /* Determine the matrix sizes and # of iterations */

 if (rank == 0) {

 /*

 printf("Matrix Size X : ");

 scanf("%d",&matrix_size_x);

 printf("Matrix Size Y : ");

 scanf("%d",&matrix_size_y);

 printf("Iterations : ") ;

 scanf("%d",&ntimes);

 */

 matrix_size_x = 96;

 matrix_size_y = 96;

 ntimes = 39000;

 }

 if (DISPLAY_ON) {

 display_init(displayname, matrix_size_x, matrix_size_y, 700);

 display_instructions();

 }

 //Broadcast the size and # of itertations to all processes

 MPI_Bcast(&matrix_size_x, 1, MPI_INT, 0, MPI_COMM_WORLD) ;

 MPI_Bcast(&matrix_size_y, 1, MPI_INT, 0, MPI_COMM_WORLD) ;

 MPI_Bcast(&ntimes, 1, MPI_INT, 0, MPI_COMM_WORLD);

 //Set neighbors

 if (rank == 0)

 prev = MPI_PROC_NULL;

 else

 prev = rank-1;

 if (rank == size - 1)

 next = MPI_PROC_NULL;

 else

 next = rank+1;

 mysize = matrix_size_y/size + ((rank < (matrix_size_y % size)) ? 1 : 0);

 my_offset = rank * (matrix_size_y/size);

 if (rank > (matrix_size_y % size))

 my_offset += (matrix_size_y % size);

 else

 my_offset += rank;

 if (DEBUG)

 printf("my rank is %d and mysize is %d\n", rank, mysize);

 /* Allocate the memory dynamically for the matrix */

 Mass = dmatrix(matrix_size_y, matrix_size_x);

 Energy = dmatrix(matrix_size_y, matrix_size_x);

 Temperature_new = dmatrix(matrix_size_y, matrix_size_x);

 Source_radiation = dmatrix(matrix_size_y, matrix_size_x);

 Temperature = dmatrix(matrix_size_y, matrix_size_x);

 Material = imatrix(matrix_size_y, matrix_size_x);

 Source = imatrix(matrix_size_y, matrix_size_x);

 Color = imatrix(matrix_size_y, matrix_size_x);

34

 if (rank == 0 && DEBUG)

 printf("Memory allocated\n");

 for (j = 0; j < matrix_size_y; j++) {

 for (i = 0; i < matrix_size_x; i++) {

 Material[j][i] = OUTSIDE_AIR;

 Source[j][i] = 0;

 }

 }

 /* Initialize matrix */

 keyComm = '\0';

 while (keyComm != 'x') {

 keyComm = get_key(&i, &j, my_offset, matrix_size_x, matrix_size_y);

 if (keyComm != '\0') {

 sprintf(string, "key %c i %d j %d\n", keyComm, i, j);

 printf("key %c i %d j %d\n", keyComm, i, j);

 if (keyComm == 'w') {

 Material[j][i] = WOOD;

 Color[j][i]= (Material_color[Material[j][i]]);

 }

 if (keyComm == 'f') {

 Material[j][i] = FOAM;

 Color[j][i] = (Material_color[Material[j][i]]);

 }

 if (keyComm == 's') {

 Material[j][i] = SHEETROCK;

 Color[j][i] = (Material_color[Material[j][i]]);

 }

 if (keyComm == 'i') {

 Material[j][i] = INSULATION;

 Color[j][i] = (Material_color[Material[j][i]]);

 }

 if (keyComm == 't') {

 Material[j][i] = STUCCO;

 Color[j][i] = (Material_color[Material[j][i]]);

 }

 if (keyComm == 'o') {

 Material[j][i] = OUTSIDE_AIR;

 Color[j][i] = (Material_color[Material[j][i]]);

 }

 if (keyComm == 'a') {

 Material[j][i] = INSIDE_AIR;

 Color[j][i] = (Material_color[Material[j][i]]);

 }

 if (keyComm == 'c') {

 Material[j][i] = CEMENT;

 Color[j][i] = (Material_color[Material[j][i]]);

 }

 if (keyComm == 'g') {

 Material[j][i] = GLASS;

 Color[j][i] = (Material_color[Material[j][i]]);

 }

 if(keyComm == 'e'){

 Source[j][i] = 1;

 }

 if(keyComm == 'h'){

35

 ihistory = i;

 jhistory = j;

 }

 if(keyComm == 'r'){ //save wall

 if((fsave = fopen("wall", "wb")) == NULL) {

 printf("Error--save file missing\n");

 exit(0);

 }

 for(k = 0; k < matrix_size_y; k++){

 if(fwrite(Material[k], sizeof(int), matrix_size_x,

 fsave)< 1) {

 printf("Write error occured.\n");

 exit(0);

 }

 }

 fclose(fsave);

 }

 if(keyComm == 'd'){ //open saved wall

 if((fsave = fopen("wall", "rb")) == NULL) {

 printf("Error--cannot open save file\n");

 exit(0);

 }

 for(k = 0; k < matrix_size_y; k++){

 if((fread(Material[k], sizeof(int), matrix_size_x, fsave))

 < 1){

 printf("Read error occured\n");

 exit(0);

 }

 for(l = 0; l < matrix_size_x; l++){

 Color[k][l] = (Material_color[Material[k][l]]);

 }

 }

 fclose(fsave);

 }

 if (DISPLAY_ON) {

 set_label(string);

 display_setup(matrix_size_x, matrix_size_y, Color, my_offset,

 mysize, time, Temp_max, Temp_min, Source);

 }

 }

 }

 display_colors();

 /* Set initial temperatures */

 for (j = 0; j < matrix_size_y; j++) {

 for (i = 0; i <= 0; i++)

 Temperature[j][i] = 60.0;

 }

 for (j = 0; j < matrix_size_y; j++) {

 for (i = 1; i < matrix_size_x-1; i++)

 Temperature[j][i] = 65.0;

 }

 for (j = 0; j < matrix_size_y; j++) {

 for (i = matrix_size_x-1; i < matrix_size_x; i++)

 Temperature[j][i] = 70.0;

 }

36

 /* Initialize cell properties */

 for (j = 0; j < matrix_size_y; j++) {

 for (i = 0; i < matrix_size_x; i++) {

 Mass[j][i] = (Material_density[Material[j][i]]* deltax * deltay *

 deltaz) / 1728.0;

 //multiply by 1 foot/12 inches three times, becomes pounds,mass

 Energy[j][i] = (Material_specific_heat[Material[j][i]]) *

 Temperature[j][i];

 Source_radiation[j][i] = 0.0;

 //no source term yet -- must be in BTUs

 }

 }

 if (rank == 0 && DEBUG)

 printf("initial values set\n");

 myTE = 0.0;

 for (j = 0; j < matrix_size_y; j++) {

 for (i = 0; i < matrix_size_x; i++)

 myTE += Energy[j][i];

 }

 MPI_Allreduce(&myTE, &origTE, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

 if (rank == 0 && DEBUG)

 printf("initial values displayed\n");

 if(ihistory != -1 && jhistory != -1) {

 fhistory = fopen("history", "w"); //open write file

 }

 if(FILE_DATA) {

 if((fdata = fopen("input.csv", "r")) == NULL) {

 printf("Error -- input file missing");

 exit(0);

 }

 time2 = -100.0;

 temp2 = 0;

 }

 starttime = clock()/CLOCKS_PER_SEC;

 /* Begin the iteration loop */

 for (n = 0; n < ntimes; n++) {

 if(FILE_DATA) {

 while(time2 < time){

 time1 = time2;

 temp1 = temp2;

 fgets(numbers, 80, fdata);

 sscanf(numbers, "%lf, %lf", &time2, &temp2);

 //printf("%lf, %lf, %lf\n", time, time2, temp2);

 }

 }

 /*

 MPI_Request req[8];

 MPI_Status status[8];

 //Send and receive boundary information

 MPI_Isend(Energy[1], matrix_size_x+2, MPI_DOUBLE, prev, 1,

 MPI_COMM_WORLD, req);

37

 MPI_Irecv(Energy[mysize+1], matrix_size_x+2, MPI_DOUBLE, next, 1,

 MPI_COMM_WORLD, req+1);

 MPI_Isend(Energy[mysize], matrix_size_x+2, MPI_DOUBLE, next, 2,

 MPI_COMM_WORLD, req+2);

 MPI_Irecv(Energy[0], matrix_size_x+2, MPI_DOUBLE, prev, 2,

 MPI_COMM_WORLD, req+3);

 if (rank == 0 && DEBUG)

 printf("values for energy communicated\n");

 MPI_Isend(Temperature[1], matrix_size_x+2, MPI_DOUBLE, prev, 5,

 MPI_COMM_WORLD, req+4);

 MPI_Irecv(Temperature[mysize+1], matrix_size_x+2, MPI_DOUBLE, next, 5,

 MPI_COMM_WORLD, req+5);

 MPI_Isend(Temperature[mysize], matrix_size_x+2, MPI_DOUBLE, next, 6,

 MPI_COMM_WORLD, req+6);

 MPI_Irecv(Temperature[0], matrix_size_x+2, MPI_DOUBLE, prev, 6,

 MPI_COMM_WORLD, req+7);

 if (rank == 0 && DEBUG)

 printf("values for temperature communicated\n");

 MPI_Waitall(8, req, status);

 if (rank == 0 && DEBUG)

 printf("Communication successful\n");

 */

 /* Set outside temperature */

 for (j = 0; j < matrix_size_y; j++) {

 if(FILE_DATA) {

 Temperature[j][0]= temp1 + (temp2-temp1)/(time2-time1)*(time -

 time1);

 }

 else {

 Temperature[j][0] = (((Temp_max + Temp_min)/2))+((Temp_max -

 Temp_min)/2)*(sin((time + 360) * Pi/720));

 }

 }

 if (rank == 0 && DEBUG)

 printf("Boundary conditions set\n");

 if (rank == 0 && DEBUG)

 printf("Before 1st pass\n");

 /* First pass */

 /* x direction */

 a = (double *) malloc(sizeof(double) * max(matrix_size_x,

 matrix_size_y));

 b = (double *) malloc(sizeof(double) * max(matrix_size_x,

 matrix_size_y));

 c = (double *) malloc(sizeof(double) * max(matrix_size_x,

 matrix_size_y));

 d = (double *) malloc(sizeof(double) * max(matrix_size_x,

 matrix_size_y));

 x = (double *) malloc(sizeof(double) * max(matrix_size_x,

 matrix_size_y));

 for (j = 0; j < matrix_size_y; j++) {

 a[0] = 0.0; //boundary condition

 c[matrix_size_x-1] = 0.0; //boundary condition

 for (i = 1; i < matrix_size_x; i++) {

38

 a[i] = -((Material_conductivity[Material[j][i]] +

 Material_conductivity[Material[j][i-1]])/2) * deltay * deltaz *

 deltat / deltax / 60.0;

 //average of material conductivity multiplied by the area

 multiplied mulitiplied by time step divided by distance between

 cells, unit conversion -- 60 sec / hr

 }

 for (i = 1; i <= matrix_size_x-1; i++) {

 c[i-1] = a[i];

 }

 for (i = 0; i < matrix_size_x; i++) {

 if(Source[j][i]==1){

 Energy_added = (1.42 / 8.0 * deltat) /

 Material_specific_heat[Material[j][i]]/150;

 //1.42 BTU/minute = 25 watts, division as needed

 }

 else {

 Energy_added = 0.0;

 }

 b[i] = (Material_specific_heat[Material[j][i]] * deltax *

 deltay * deltaz * Material_density[Material[j][i]] / 1728.0) -

 a[i] - c[i];

 //unit conversion -- ft cubed / 1728 in cubed, also below

 d[i] = (Material_specific_heat[Material[j][i]] * deltax *

 deltay * deltaz* Material_density[Material[j][i]] / 1728.0 *

 Temperature[j][i]) + (Source_radiation[j][i] * deltat) +

 Energy_added;

 //BTU/F, cancelled when multiplied by temperature

 }

 TridiagonalSolve(a, b, c, d, x, matrix_size_x); //set solution to x

 for (i = 0; i < matrix_size_x; i++)

 Temperature_new[j][i] = x[i]; //set row of Temperature_new to x

 }

 if (rank == 0 && DEBUG)

 printf("First pass x direction complete\n");

 /* y direction */

 for (i = 0; i < matrix_size_x; i++) {

 a[0] = 0.0; //boundary conditions

 c[matrix_size_y-1] = 0.0; //boundary conditions

 for (j = 1; j < matrix_size_y; j++) {

 a[j] = -((Material_conductivity[Material[j][i]] +

 Material_conductivity[Material[j-1][i]])/2)* deltay * deltaz *

 deltat / deltax / 60.0;

 //average of material conductivity multiplied by the area

 //multiplied mulitiplied by time step divided by distance

 //between cells, unit conversion -- 60 sec / hr

 }

 for (j = 1; j < matrix_size_y; j++) {

 c[j-1] = a[j];

 }

 for(j = 0; j < matrix_size_y; j++) {

 if(Source[j][i]==1){

 Energy_added = (1.42 / 8.0 * deltat) /

 Material_specific_heat[Material[j][i]]/150;

39

 //1.42 BTU/minute = 25 watts, division as needed

 }

 else {

 Energy_added = 0.0;

 }

 b[j] = (Material_specific_heat[Material[j][i]] * deltax *

 deltay * deltaz * Material_density[Material[j][i]] / 1728.0) -

 a[j] - c[j];

 d[j] = (Material_specific_heat[Material[j][i]] * deltax *

 deltay * deltaz * Material_density[Material[j][i]] / 1728.0 *

 Temperature[j][i]) + (Source_radiation[j][i] * deltat) +

 Energy_added;

 //see x direction

 }

 TridiagonalSolve(a, b, c, d, x, matrix_size_y); //solution in x

 for(j = 0; j < matrix_size_y; j++) {

 Temperature_new[j][i] += x[j] - Temperature[j][i];

 //adding change to Temperature_new

 }

 }

 if (rank == 0 && DEBUG)

 printf("First pass complete\n");

 /* Second pass */

 if (rank == 0 && DEBUG)

 printf("Second Pass started\n");

 for (j = 0; j < matrix_size_y; j++) {

 for (i = 0; i < matrix_size_x; i++) {

 Energy[j][i] = Material_specific_heat[Material[j][i]] *

 Temperature_new[j][i];

 Temperature[j][i] = Temperature_new[j][i];

 }

 }

 if (rank == 0 && DEBUG)

 printf("Second pass complete\n");

 if (rank == 0 && DEBUG)

 printf("Done calculations\n");

 time += deltat; //increase time by time step

 if (DEBUG) {

 for (j = 0; j < matrix_size_y; j++) {

 for (i = 0; i < matrix_size_x; i++) {

 printf("end of cycle %d %d %lf %lf\n", i, j, Energy[j][i],

 Temperature[j][i]);

 }

 }

 }

 if (DISPLAY_ON) {

 maxScale = 85.0;

 desc = "Temperature";

 sprintf(string, "%s iter %d time %.2lf", desc, n, time);

 set_label(string);

 if (n%DISPLAY_ON == 0) {

 display_one_d(matrix_size_x, matrix_size_y, Temperature,

 my_offset, mysize, maxScale, time, Temp_max, Temp_min, Material);

 }

40

 }

 if(ihistory != -1 && jhistory != -1 && n % 100 == 0)

 fprintf(fhistory, "%g, %g\n", time, Temperature[jhistory][ihistory]);

 myTE = 0.0;

 TotalEnergy = 0.0;

 for (j = 0; j < matrix_size_y; j++) {

 for (i = 0; i < matrix_size_x; i++) {

 if (isnan(Energy[j][i])) {

 printf("Error -- Energy[%d][%d]=%f\n", i, j, Energy[j][i]);

 }

 myTE += Energy[j][i] * deltax * deltay * deltaz;

 }

 }

 MPI_Allreduce(&myTE, &TotalEnergy, 1, MPI_DOUBLE, MPI_SUM,

 MPI_COMM_WORLD);

 /* Print iteration information */

 if (DISPLAY_ON && n%DISPLAY_ON == 0) {

 if (rank == 0) {

 printf ("Iteration:%5.5d, Time:%f\n", n, time);

 }

 }

 }

/* End of iteration loop */

 totaltime = clock()/CLOCKS_PER_SEC - starttime;

 printf ("[%d] Flow finished in %lf seconds\n", rank,

 totaltime/(double)size);

 if(ihistory != -1 && jhistory != -1)

 fclose(fhistory);

 if (DISPLAY_ON)

 display_close();

 MPI_Finalize();

 //dmalloc_shutdown();

 exit(0);

}

41

DISPLAY
#define MPE_INTERNAL

#define MPE_GRAPHICS

#include <mpi.h>

#include "mpe.h"

#include <X11/Xlib.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <math.h>

#include <termios.h>

#include <time.h>

#include "heat2.h"

#define Pi 3.14

char Iget_key_press(int *xpos, int *ypos);

char get_key(int *i, int *j, int my_offset, int matrix_size_x, int

 matrix_size_y);

void display_scale(double maxscale, double x1, double xsize, double y1,

 double ysize);

void display_strings(char **strings, int size, int xloc, int yloc, MPE_Color

 color);

void colored_strings(char **strings, int size, int xloc, int yloc, MPE_Color

 *color);

int width = 750;

int height = 750;

struct tm time_structure;

time_t epochtime; //seconds

MPE_XGraph graph;

MPE_XGraph graph2;

MPE_Color *color_array;

int ncolors = 256;

char *label;

char string[20];

int first = 1;

int i;

void display_init(char *displayname, int matrix_size_x, int matrix_size_y,

int iheight) {

 int rank;

 int ncolors2;

 /* Open the graphics display */

 width = matrix_size_x * (iheight / matrix_size_y);

 height = iheight - iheight % matrix_size_y; //evenly divided

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPE_Open_graphics(&graph, MPI_COMM_WORLD, displayname, -1, -1, width+80,

 height+18, 0);

 MPE_Num_colors(graph, &ncolors2);

 MPE_Draw_string(graph, 10, 20, MPE_BLACK, "Draw your wall here.");

 MPE_Open_graphics(&graph2, MPI_COMM_WORLD, displayname, -1, -1, 415, 445,

 0);

 MPE_Num_colors(graph2, &ncolors2);

 /* time_structure to begin at ___ */

42

 time_structure.tm_year = 2009 - 1900;

 time_structure.tm_mon = 1;

 time_structure.tm_mday = 1;

 time_structure.tm_hour = 14;

 time_structure.tm_min = 23;

 time_structure.tm_sec = 0;

 time_structure.tm_isdst = 0;

 epochtime = mktime(&time_structure);

}

void display_instructions(void) {

 /* Print instruction window */

 char *string[5] = {"Create a wall to test using the wall materials and

 keys below. You", "must click on the window before to begin. Then,

 place your cursor", "and press the key, clicking is NOT necessary. The

 default white is”, “outside air. Keep in mind that \"outside\" is on

 the left.”, “When your wall is done, press 'x' to run the program."};

 char *material[9] = {"cement", "foam", "glass", "inside air",

 "insulation", "outside air","sheetrock", "stucco", "wood" };

 char *letter[9] = {"c", "f", "g", "a", "i", "o", "s", "t", "w" };

 char *command[5] = {"h", "e", "d", "r", "x"};

 char *action[5] = {"set as history cell", "set as energy source cell",

 "display/draw most recent saved wall","record in save file", "execute

 the rest of the program"};

 MPE_Color colors[9] = {MPE_RED, MPE_BLUE, MPE_AQUAMARINE, MPE_CYAN,

 MPE_PINK, MPE_BLACK,MPE_GRAY, MPE_ORANGE, MPE_BROWN};

 char *color[9] = {"red", "blue", "aqua", "cyan", "pink", "white", "grey",

 "orange", "brown"};

 int place = 45;

 for(i = 0; i < sizeof material/sizeof(char *)-1; i++)

 MPE_Draw_line(graph2, place, (i*20)+135, place+160, (i*20)+135,

 MPE_BLACK);

 MPE_Draw_line(graph2, place+80, 125, place+80, 290, MPE_BLACK);

 MPE_Draw_line(graph2, place+120, 125, place+120, 290, MPE_BLACK);

 display_strings(string, sizeof string/sizeof(char *), 10, 20, MPE_BLACK);

 display_strings(material, sizeof material/sizeof(char *), place, 130,

 MPE_BLACK);

 display_strings(letter, sizeof letter/sizeof(char *), place+=100, 130,

 MPE_BLACK);

 colored_strings(color, sizeof color/sizeof(char *), place+=35, 130,

 colors);

 MPE_Draw_string(graph2, 10, 320, MPE_BLACK, "Other action keys");

 display_strings(command, sizeof command/sizeof(char *), place=45, 340,

 MPE_BLACK);

 for(i = 0; i <sizeof command/sizeof(char *)-1; i++)

 display_strings(action, sizeof action/sizeof(char *), place+=35, 340,

 MPE_BLACK);

 MPE_Update(graph2);

}

void display_strings(char **strings, int size, int xloc, int yloc, MPE_Color

color) {

 int y;

 for(i = 0; i < size; i++) {

 y = yloc + (20 * i);

 MPE_Draw_string(graph2, xloc, y, color, strings[i]);

43

 }

 MPE_Update(graph2);

}

void colored_strings(char **strings, int size, int xloc, int yloc, MPE_Color

*color) {

 //color array must be same size or > than string array

 int y;

 for(i = 0; i < size; i++) {

 y = yloc + (20 * i);

 MPE_Draw_string(graph2, xloc, y, color[i], strings[i]);

 }

 MPE_Update(graph2);

}

void display_setup(int matrix_size_x, int matrix_size_y, int **Color, int

 my_offset, int mysize,double time, double Temp_max, double Temp_min,

 int **Source) {

 int i, j;

 unsigned int plot_value;

 int xloc, yloc, xwid, ywid;

 for (j = 0; j < matrix_size_y; j++) {

 for (i = 0; i < matrix_size_x; i++) {

 xloc = (i * (width))/ matrix_size_x;

 yloc = (j * (height))/ matrix_size_y;

 xwid = ((width)/matrix_size_x);

 ywid = ((height)/matrix_size_y);

 if (plot_value < 2)

 plot_value = 2;

 if (plot_value > ncolors)

 plot_value = ncolors;

 MPE_Draw_line(graph, width, 0, width, height, MPE_BLACK);

 //right boundary

 MPE_Draw_line(graph, 0, height, width, height, MPE_BLACK);

 //lower boundary

 MPE_Draw_line(graph, 0, 0, width, 0, MPE_BLACK);

 //upper boundary

 MPE_Draw_line(graph, 0, 0, 0, height, MPE_BLACK);

 //left boundary

 MPE_Fill_rectangle(graph, xloc, yloc, xwid, ywid, Color[j][i]);

 if (j >= 0 && i >= 1) {

 if (Color[j][i] != Color[j][i-1] || Color[j][i] == 0)

 MPE_Draw_line(graph, xloc, yloc, xloc, ywid+yloc, MPE_BLACK

);

 }

 if (j >= 1 && i >= 0) {

 if (Color[j][i] != Color[j-1][i] || Color[j][i] == 0)

 MPE_Draw_line(graph, xloc, yloc, xwid+xloc, yloc,

 MPE_BLACK);

 }

 if(Source[j][i] > 0){

 MPE_Draw_line(graph, xloc, yloc, xwid+xloc, ywid+yloc,

 MPE_YELLOW);

 MPE_Draw_line(graph, xwid+xloc, yloc, xloc, ywid+yloc,

 MPE_YELLOW);

 }

 }

44

 }

 MPE_Fill_rectangle(graph, 0, height+4, width, height+4, MPE_WHITE);

 if (my_offset == 0) MPE_Draw_string(graph, 0, height+16, MPE_BLACK,

 label);

 MPE_Update(graph);

 sleep(WAIT_TIME);

}

void display_colors() {

 int ierr;

 int rank;

 color_array = (MPE_Color *) malloc(sizeof(MPE_Color) * ncolors);

 ierr = MPE_Make_color_array(graph, ncolors, color_array);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 if (ierr && rank == 0) printf("Error(Make_color_array): ierr is %d\n",

 ierr);

}

void display_one_d(int matrix_size_x, int matrix_size_y, double **temp, int

 my_offset, int mysize, double maxscale, double time, double Temp_max,

 double Temp_min, int **Material) {

 int i, j;

 unsigned int plot_value;

 int xloc, yloc, xwid, ywid;

 char string[60], outside_temp[12];

 time_t currenttime;

 /* Fill cells to display temperature */

 for (j = 0; j < matrix_size_y; j++) {

 for (i = 0; i < matrix_size_x; i++) {

 xloc = (i * width)/matrix_size_x;

 yloc = (j * height)/matrix_size_y;

 xwid = (width/matrix_size_x);

 ywid = (height/matrix_size_y);

 plot_value = ncolors - ((double)ncolors * temp[j][i] / maxscale);

 if (plot_value < 2) plot_value = 2;

 if (plot_value >= ncolors) plot_value = ncolors-1;

 if(isnan(temp[j][i]))

 MPE_Fill_rectangle(graph, xloc, yloc, xwid, ywid, MPE_WHITE);

 else if(temp[j][i] < 0)

 MPE_Fill_rectangle(graph, xloc, yloc, xwid, ywid, MPE_WHITE);

 else if(temp[j][i] > maxscale)

 MPE_Fill_rectangle(graph, xloc, yloc, xwid, ywid, MPE_BLACK);

 else

 MPE_Fill_rectangle(graph, xloc, yloc, xwid, ywid,

 color_array[plot_value]);

 }

 }

 for (j = 1; j < matrix_size_y; j++) {

 for (i = 1; i < matrix_size_x; i++) {

 xloc = (i * width)/matrix_size_x;

 yloc = (j * height)/matrix_size_y;

 xwid = xloc+(width/matrix_size_x);

 ywid = yloc+(height/matrix_size_y);

 if(Material[j][i] != Material[j][i-1])

45

 MPE_Draw_line(graph, xloc, yloc, xloc, ywid, MPE_BLACK);

 if(Material[j][i] != Material[j-1][i])

 MPE_Draw_line(graph, xloc, yloc, xwid, yloc, MPE_BLACK);

 }

 }

 if(DEBUG)

 printf("Color display complete\n");

 if(first) { //draw the scale on first call

 display_scale(maxscale, width+15.0, 45.0, 15.0, 500.0);

 first = 0;

 }

 /* Draw sun/moon clock and outside temp */

 currenttime = epochtime + (int)time * 60;

 localtime_r(¤ttime, &time_structure);

 //advance epochtime by simulation time

 if(DEBUG)

 printf("time = %s\n", asctime(&time_structure));

 if(time_structure.tm_hour >= 18 || time_structure.tm_hour < 6) {

 MPE_Fill_circle(graph, width + 40, .93*height, 35, MPE_BLACK);

 MPE_Fill_circle(graph, width + 48, .93*height, 30, MPE_WHITE);

 }

 else

 MPE_Fill_circle(graph, width + 40, .93*height, 35, 60);

 if (time_structure.tm_hour == 12) //noon

 sprintf(string, "12:%02d pm", time_structure.tm_min);

 else if (time_structure.tm_hour == 0) //midnight

 sprintf(string, "12:%02d am", time_structure.tm_min);

 else if (time_structure.tm_hour > 12)

 sprintf(string,"%d:%02d pm", time_structure.tm_hour%12,

 time_structure.tm_min);

 else

 sprintf(string,"%d:%02d am", time_structure.tm_hour,

 time_structure.tm_min);

 MPE_Draw_string(graph, width + 28, .93*height, MPE_BLACK, string);

 sprintf(outside_temp, "%.2lf%cF", temp[0][0], 0x00B0);

 MPE_Draw_string(graph, width + 28, .95*height, MPE_BLACK, outside_temp);

 sleep(WAIT_TIME);

}

void display_scale(double maxscale, double x1, double xsize, double y1,

double ysize) {

 //xsize should be greater than 15, ysize greater than 8

 int plot_value;

 double step, place;

 sprintf(string, "Scale %cF", 0x00B0);

 MPE_Draw_string(graph, x1+5, y1, MPE_BLACK, string);

 y1 += 8;

 ysize -= 8;

 ysize -= (int)ysize % (int)maxscale;

 step = ysize/maxscale;

 for(i = maxscale; i >= 0; i--) {

 plot_value = ncolors - ((double)ncolors * i / maxscale);

 place = y1+ysize-(step * i);

46

 MPE_Fill_rectangle(graph, x1+15, place, xsize-15, step,

 color_array[plot_value]);

 if(i % 10 == 0) {

 sprintf(string, "%d", i);

 MPE_Draw_string(graph, x1, place+5, MPE_BLACK, string);

 }

 }

}

char Iget_key_press(int*xpos, int*ypos) { //from Sapient

 XEvent event;

 char keys[20], toReturn;

 int numChar;

 KeySym keysym;

 XComposeStatus compose;

 if (graph->Cookie != MPE_G_COOKIE) {

 fprintf(stderr, "Handle argument is incorrect or corrupted\n");

 return '\0';

 }

 XSelectInput(graph->xwin->disp,graph->xwin->win,

 MPE_XEVT_IDLE_MASK|ButtonPressMask|KeyPressMask);

 //add mouse press to events monitored

 if (XCheckWindowEvent(graph->xwin->disp,graph->xwin->win, KeyPressMask,

&event) == False) {

 return '\0';

 }

 //check once if mouse has been pressed

 numChar = XLookupString(&event, keys, 20, &keysym, &compose);

 toReturn = '\0';

 *xpos=event.xkey.x;

 *ypos=event.xkey.y;

 if ((((keysym>=XK_KP_Space) && (keysym<=XK_KP_9)) || ((keysym>XK_space)

&& (keysym<XK_asciitilde)))) {

 toReturn = keys[0];

 }

 XSelectInput(graph->xwin->disp, graph->xwin->win, MPE_XEVT_IDLE_MASK);

 /*turn off all events*/

 return toReturn;

}

void display_close(void) {

 MPE_Close_graphics(&graph);

 MPE_Close_graphics(&graph2);

}

void set_label(char *text) {

 label = text;

}

char get_key(int *i, int *j, int my_offset, int matrix_size_x, int

matrix_size_y) {

 char ch;

 int xcor, ycor;

 ch = Iget_key_press(&xcor, &ycor);

 if (ch != '\0') {

 *i = (xcor - 2) * matrix_size_x / width;

47

 *j = (ycor - 2) * matrix_size_y / height - my_offset;

 if (*i < 0)

 *i = 0;

 if (*j < 0)

 *j = 0;

 if (*i > matrix_size_x)

 *i = matrix_size_x;

 if (*j > matrix_size_y)

 *j = matrix_size_y;

 }

 MPI_Bcast(&ch, 1, MPI_CHAR, 0, MPI_COMM_WORLD);

 MPI_Bcast(i, 1, MPI_INT, 0, MPI_COMM_WORLD);

 MPI_Bcast(j, 1, MPI_INT, 0, MPI_COMM_WORLD);

 return ch;

}

TRIDIAGONAL SOLVER
/* From Wikipedia */

/* Fills solution into x */

void TridiagonalSolve(const double *a, const double *b, double *c, double *d,

double *x, unsigned int n) {

 int i;

 double eps = 1.0e-20;

 /* Modify the coefficients - forward sweep */

 if (b[0] != 0.0) {

 c[0] /= b[0];

 d[0] /= b[0];

 }

 else {

 c[0] /= (b[0] + eps);

 d[0] /= (b[0]+eps);

 }

 for (i = 1; i < n; i++) {

 double id = (b[i] - c[i-1] * a[i]); //Division by zero risk

 c[i] /= id; //Last value found is redundant

 d[i] = (d[i] - d[i-1] * a[i])/id;

 }

 /* Substitute - backward sweep */

 x[n - 1] = d[n - 1];

 for(i = n - 2; i >= 0; i--){

 x[i] = d[i] - c[i] * x[i + 1];

 }

}

