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Executive Summary 
 

 We are modeling the heat transfer through walls to 

assess their energy efficiency, as an extension to a project 

from last year. Even with different team members, we were 

able to successfully extend our work. 

 One of our foremost goals was to enhance the 

interactivity of the input of the wall and the display. Any 

wall can be quickly designed, input, and tested, using the 

keyboard. The running program has an easy to read real-

time display of temperatures, time, and outside 

temperature. This also makes it possible to easily change the resolution and size of the area 

modeled. 

 Simulations of long periods of time have much faster run times. We implemented a 

completely new computational method that makes these long simulations possible. This was done 

with an alternating direction implicit method. 

 An experimental model was built to be used to validate our computer model. Even though 

this we were just beginning validation, and there was still some guesswork at this point, there 

were amazing results. The inside temperature from our computational model closely matches the 

temperatures from the experimental model. 

 We have done significant additional work from our previous project. All interactive input 

is new, and the graphics have had considerable changes and improvements. We created an 

experimental model, which wouldn’t have been possible previously. We also added the new 

method and began verification and validation of our model.  

 Quickly design and test any 

wall using interactive 

features 

 Much faster run times for 

long simulations using 

implicit method 

 Experimental model 

comparison for validation 
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Introduction 

Problem Statement 
 

 Energy conservation through building energy 

efficient homes has become an even more important 

issue in recent years.  Both environmental and 

economical concerns have contributed to this interest. 

Space heating and cooling are the principal use of 

residential energy (Figure 1).  Newer houses are being 

built to be more energy efficient as a result of this 

concern (Figure 2). Conserving heat already in a house 

by means of good wall design can cut down energy needs 

significantly, and, in turn, costs and fuel. There are countless wall designs available which have 

been created to be more energy efficient. When selecting a design it important to know how 

effective the design actually is, and how well it performs in individual climates. Our purpose is to 

create a versatile program that is capable of testing walls for efficiency in different environments. 

 This is a continuation of a project from last year. It was still somewhat incomplete at the 

end, and we were still interested in working with the problem more. Whereas last year’s project 

was more focused on a specific wall design, this year was meant to be more flexible. We also took 

the opportunity to do some of the program improvements we had been interested in, such as 

better resolution and longer time steps.  
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Figure 1 Break down of residential energy usage in 
2006 (Revelle & Galland, 2008) 

Figure 2 More recently constructed houses use less energy for space heating 
(Energy Information Administration, 2001) 
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Objective 
 

 Our objective was to extend our previous model to be used for a larger variety of walls and 

allow more extensive testing. Solving this problem computationally gives us the advantage of 

putting in changing conditions such as a thermal swing to simulate night and day. We added an 

‘interactive’ wall design, which takes input from the keyboard to initialize the cell materials; this 

is very functional because we can easily change the wall that is being tested. We completely 

rewrote the code method, changing to Alternating Direction Implicit (ADI) which lets longer 

tests, such as months, be computed in shorter run times. We planned to compare data from our 

program runs, such as explicit versus implicit. We also built an experimental model, which we 

wanted to match in our program and compare results. This is the validation section of our project. 

 

Wall Designs 
 

 There are many different wall designs 

proposed for energy efficiency. Our goal was 

to create a versatile program that was capable 

of testing a large range of walls, but we 

selected a few specific ones to try. Although 

solar gain is significant, especially in New 

Mexico, it requires radiation and the ability of 

glass to trap heat. This is more complex than 

we intended to make our program this year, 

so we did not choose any designs that were 

dependent on solar gain. We did want to try 

designs which take advantage of thermal 

swing, which we model on the outside 

boundary. This is also a good way to take 

advantage of the computer model, because it 

is hard to incorporate changing conditions in 

hand calculations.  
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Figure 3 Standard wall design and materials 
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  Our standard wall uses stucco, the foam sheathing, plywood, wooden studs, fiberglass 

insulation, and sheetrock (Figure 3). Stucco is common in building here in New Mexico. It 

consists of aggregate (sand, gravel, crushed stone or concrete), a binding material that works as a 

glue, and water. It is applied to the next layer, foam sheathing. The innermost layer sheetrock, 

which is a plaster, sometimes mixed with a fiber, and enclosed by heavy paper. Between the foam 

and sheetrock are wooden studs with fiberglass insulation. The studs are the framework and 

provide the structure of a building. The rest of the wall is built off the structure. However, there is 

a lot of heat loss through the studs because heat flows through the wood much more quickly than 

the insulation. The fiberglass insulation is meant to prevent the majority of the heat flow, and 

works best when it’s not compressed.  

 There are many ways to make a wall more energy efficient. One approach is to add more 

mass so the energy travels through the wall more slowly. The wall can become unreasonably large 

though, and one application of our program would be to experiment with effectively adding mass 

without adding too much extra space. The use of water is also very common, because it has a large 

heat capacity. Energy is stored up in the water and emitted later.  These are just a few possible 

design techniques that our program could be used to investigate. Since our goal was to make a 

program capable of testing these kinds of walls, we didn’t spend very much time actually working 

with these designs. 
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Figure 4 Over-insulated foam walls 

Experimental Model 
Building  
 

 We built an experimental model to be used for validation of our code. Our model 

consisted of a standard wall (Figure 4) and over-insulated foam walls for all of the other sides of 

the box (Figure 5). This minimized the influence from the other sides of the box, making it 

possible to test just the standard wall. We chose to use a concrete wall board in the place of 

stucco because it was easier to handle 

and they have similar heat transfer 

properties (Cooling and Heating: Load 

Calculation Manual, 1979).  To build 

the wall, we started with a stud frame 

and screwed on the plywood and 

concrete board. Then we filled in the 

insulation and screwed the sheetrock 

into place. The foam walls were difficult 

to build because we did not want to use 

wood for a structure since it would not 

resist heat flow very well. We used a 

rigid foam for studs, with a thicker piece of soft foam on the 

outside, thinner on the inside, and insulation between. We positioned the pieces and pushed in 

nails so everything would be aligned for us to glue them together. We built each side separately, 

and later put them together. Since the box is front heavy, we put weights in the back to stabilize 

it. We put the box in the shadiest spot that we could find. We did this because we wanted to 

reduce solar radiation as much as possible. After setting the box up, we 

wrapped all the sides except the front in insulation and plastic. This was 

done to further reduce the heat lost from the sides. 

Testing 
 

 After researching different thermometers, we found a USB 

data logger that can be plugged directly into the computer (Figure 6).  

Figure 6 Data logger 
used in experimental 
model 

Figure 5 Experimental test wall 
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The time between samples, number of samples, etcetera can be set. We had created a rack to hold 

a light bulb and data logger inside of the box. The light bulb was put into the box to simulate the 

constant flow of energy in the model. We decided on using a 25 watt light bulb after learning 

from a dry run that a 40 watt bulb was bringing the box up over 100°F even with a very cold 

outside temperature. In between the light bulb and the data logger a piece of foil was placed to 

minimize radiation. The other data logger was taped onto a nearby window to take the outside 

temperature. In the first test the outside data logger was open to the elements; in the second test 

the data logger was wrapped in a plastic bag to reduce the influence of weather, such as wind, on 

the results. We were testing during late January and the very beginning1, so the temperatures were 

fairly cold, but the weather more mild (no storms). Figure 7 shows the setup for our test, with the 

rack, the inside of the box, and the sides completely wrapped up and covered. 

 

Results 
 

 We downloaded the data onto the computer from the data loggers after each test, and 

plotted the inside and outside temperatures together (Figure 8 and Figure 9).The very beginning 

of the plots should be discounted because they show the starting conditions, which are atypical. 

These are things such as placing the data logger or taking it out, and the light bulb warming up. 

The effect of putting the outside data logger in a bag is very clear in the difference between the 

two plots. The wind influenced the temperature readings and caused spikes in the plot, while 

second test has a much smoother line. The thermal swing is evident for the outside graph in both 

tests and is still visible on the inside. The inside remained well above the outside temperature, 

occasionally getting too warm, at 80°F or more.  

                                                      
1
 Specifically, our first test ran from January 24 3:45 pm to January 27 7:53 pm and our second test from 
February 1 2:23 pm to February 4 9:02 am. 

Figure 7 Set up for experimental testing 
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Mathematical Model 
Heat Transfer 
  

 The flow of heat can be represented with three main equations (Kreith, Priciples of Heat 

Transfer, 1973), which make up the primary part of our mathematical model. Heat energy is 

transferred through conduction, convection, and radiation. Conduction is the movement of heat 

within a substance or between substances with a direct physical link. Energy is shifted from 

molecule to molecule. Because it does not require the molecules to move it occurs in all types of 

matter, including solids, and is found everywhere in our model. Convection is not strictly a type 

of heat transfer, but rather conduction combined with the movement of the molecules. Heat 

moves from a warm surface to and adjacent fluid or gas, which then rises. They lose heat to the 

colder molecules around them and sink back down, where they may be heated again, creating a 

circular flow. Convection occurs at the wall surfaces where it meets air. Radiation transfers heat 

without passing through all the molecules in a material. It travels in waves away from a warm 

body and is absorbed by objects it comes into contact with. The properties of each material were 

looked up in tables (Cooling and Heating: Load Calculation Manual, 1979) (Ashrae Handbook 

1977 Fundamentals, 1977). 

The rate of heat flow by conduction is equal to the product of the following values: 

 , the conductivity of the material 

 , the area through which heat is flowing, measured perpendicular to the direction of flow 

 , the temperature gradient, or difference in temperature with respect to the distance 

 and direction of heat flow 

Since heat will always flow from an area of higher temperature to an area of lower temperature, 

the heat flow should be positive when the temperature gradient is negative, and a negative sign is 

included accordingly. This is written as an equation as shown below. 

 

In general, convection may be approximated by: 
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where    = the convective heat transfer coefficient 

  = the area through which heat is flowing, measured perpendicularly  

  = the difference between the surface and air temperatures 

Convection is to just increase the rate of conduction, because that is its essential effect. 

The net rate of radiant heat transfer from one blackbody, or ideal radiator, into another is given 

by: 

 

where    (sigma) = the Stefan-Boltzmann constant which is equal to 0.1714 x 10-8 BTU/hr ft2 R4 

  = the surface area 

  = the difference of the temperature of the emitting body to the fourth power 

 and the temperature of the receiving body to the fourth power 

In radiation, a blackbody is emits and absorbs the maximum amount of radiation at all 

wavelengths at any temperature. Real materials do not behave this way, and emit energy at a 

lower rate which is dependent on the properties of the surface. Radiation occurs both from the 

sun to the wall and from the wall into the night sky. 

 The equation of state shows the relationship between the temperature of a material and 

the energy that it contains. We use a fairly simple form of the equation, which is as follows: 

 

where    = energy 

  = constant volume specific heat, or the energy required to raise a unit of mass one 

degree 

  = the temperature of the material 

 Our problem involves only one conservation law, that of energy. There are no changes in 

density, mass, or momentum, so their conservation does not apply. Energy, however, is moved 

and changed in the process of heat transfer. “The law of conservation of energy states that energy 

can be neither created nor destroyed (Faires, 1970).” Since this heat transfer is not being applied 
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to a nuclear process, we may ignore the exception of the conversion of energy into mass or mass 

to energy. This law supports the equations: 

 

 

where   and   are the energy entering and leaving the system respectively 

  is change in the energy stored in the system 

  and  are the initial and final stored energy. 

This law holds true for all of the equations, and any violation indicates an error of some kind. 

Thermal Swing 
 

 We created a sinusoidal wave to be a 

general representation of the thermal swing of 

night and day. The outside boundary follows this 

wave and is a driving force in our program. We 

began with the equation for a general sine wave, 

which is shown as: 

 

A is the amplitude, or distance from the center line 

ω (omega) is the angular frequency, or radians per unit time 

θ (theta) is the phase, or horizontal placement of the wave 

 With given minimum and maximum temperatures, the following formula can be used to create a 

sinusoidal wave. 

 

Where  and  are the minimum and maximum temperatures 

 and  represent the current time and the time of a peak 

 sets how often the peak occurs, 720 is the number of minutes between each peak 

Figure 10 Parts of a sine wave 
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Computational Model 
Alternating Direction Implicit 

 The alternating direction implicit method 

(Peaceman & Rachford, 1955) (ADI) has a major advantage 

over our previous explicit method: the ability to remain 

stable with any size time step. This, in turn, affects the 

number of iterations. Combined with less work per 

iteration, it results in much shorter run times for of longer 

test periods, such as weeks or months. An explicit method 

determines the heat transfer and finds the energy in the 

cell for the next time step using the slope of a line at the 

current time step. If the line has a steep slope, and the time step is too long, the value can become 

negative. The implicit method, however, solves this problem by using the slope from 

the next time step. This assures that the result will always be positive, and while the 

error may be larger, the program will not become unstable or crash. This is a 

particularly good method for our heat transfer problem because the changes are 

gradual and the additional error will be relatively small. 

The equation used to find the heat transfer through conduction is as follows: 

 

where  = the change in energy 

  = the change in time, or time step 

  = the area, height times depth (Figure 12) 

  = the conductivity2 

                                                      
2
 Note that time is indicated in the superscript and space in the subscript throughout the equations in the 

computational method section. For example, n is the current time step, and n+1 the next time step. The 
indices are denoted by i and j; boundaries are “half steps”. 

Figure 12 Cell 
dimensions and 
their variables 

time 

te
m

p
er

at
u

re
 T

n 

T
n+1 

Figure 11 Implicit and 
explicit method line 
interpolations 
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 Since the ADI method uses multiple values from 

the next time step in its computation, and these values 

are unknown, a solver is used to solve for these values 

simultaneously. We are using a tridiagonal solver, which 

handles one row or column at a time, and uses the 

coefficients of , , , and . To find these 

coefficients we derive the equation into the form of: 

 

and find the value of each coefficient, which we then send to the solver: 

 

 

 

 

 The solver will return the solution, which is the temperature at i. In order to find the heat 

transfer through two dimensions, the solution of for each row is stored, and the flux from each 

column added. 

 Notice that  includes the term . This is a source term which adds energy directly to 

the cell. This can be used to represent radiation or a light bulb. 

  

Figure 13 Locations and indices of flux coefficients 
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Tridiagonal Solver 
 A tridiagonal solver (Tridiagonal Matrix Algorithm, 2008) is used to solve tridiagonal 

systems of equations which may be written as3: 

 

or in matrix form, it is written as: 

 

 This three diagonals formed by the  ’s, ’s, and ’s are what gives the solver and equations 

the “tridiagonal” part of their name. The diagonal pattern is a result of a cell’s temperature being 

dependent on only itself, and the fluxes of its boundaries.  and  are not shown because they 

are equal to zero and do not affect the cell’s energy. 

 The first two equations complete a forward sweep which eliminates the ’s; the second 

two perform back substitution, leaving  as the solution4. 

 

 

 

 

 

                                                      
3
 a1 and cn must equal zero. No energy enters through the boundaries of the mesh, so this is true. 

4
 The solution can be obtained in O(n) operations rather than the O(n

3
) used for Gaussian elimination 



16 
 

 

 

 

  

Figure 14 State variable and flux 
of cell with indices 

Explicit Finite Difference 
 
 We used an explicit central finite difference method in 

our code last year. This method also uses cells, and determines 

the energy in the cell in the next time step by using the flux at 

the boundaries. The values used in the calculation are from the 

current time step, which is what makes it, as stated, an explicit 

method. The energy of a cell in the next time step is equal to its 

current energy plus the flux energy entering and leaving on the right, 

left, bottom, and top boundaries. The mathematical equation for this is as shown below: 

 

where  = the state variable, energy 

  = the time step 

  and  = the width and height of a cell 

  = the flux 

The term  is simplified, as result of cancelled units: 

 

Energy is added or subtracted from the state variable value, depending on this flux. In our 

implementation of this method, we were first order in time and second order in space, which 

means we find the flux once every time step, and in two directions.  

 

Boundary Conditions 

 
 The explicit and implicit methods also have different boundaries and boundary 

conditions. The explicit method uses ghost cells, a row of cells around the actual mesh. We give 

these special conditions. The top and bottom boundaries simply reflect the energy to ensure no 

energy is lost or gained through them. The inside boundary is maintained at 70°F, and the energy 

needed to maintain it is calculated. The outside boundary follows the sinusoidal wave for a given 



17 
 

maximum and minimum temperature. These side boundaries are also the driving force of the 

model; they provide a continual change in temperature to drive the heat transfer and prevent all 

the cells from reaching equilibrium. 

 The implicit method does not work the same way, and does not have any ghost cells. The 

cells farthest to the left are set to the outside temperature every iteration. The top, bottom, and 

right cells have no fluctuation on any boundary that is on the edge of the mesh. Heat is provided 

as a constant energy input through source cells, which are interactively set. 

 

Assumptions 
 

 When creating the computer model, we made several assumptions that may not 

accurately emulate the real world. These can cause the output from our program to differ from 

actuality. There are limitations to what our program is capable of if it not capable of taking into 

account certain conditions. Although we added the option of reading data from a file to control 

the outside temperature, the alternative of the sinusoidal wave is a limitation. We assume a 

regular wave that has a maximum at noon and a minimum at midnight, and our approximation is 

acceptable, but differs from our real data by a large margin. We didn’t have time to add radiation 

to our model, and this causes considerable solar gain and night radiation from the wall to be 

ignored. Also, two dimensions restrict the program from things that require the third dimension. 

Some examples are convection, which really moves in 3-D space, and walls, which have different 

layers. Similarly, we don’t take into account air leaks and imperfections in the building and 

materials. Along with our sinusoidal wave, we estimate our convection and do not include 

weather. Realistically, the temperature, weather, and wind vary from day to day and are irregular. 

Assumption/Limitation Description 

Sinusoidal wave Adequate approximation, but doesn’t give  very accurate model of 
thermal swing 

Radiation Radiation wasn’t added in, so solar gain is ignored 

2-D Not as important to our model, but some properties of a wall or 
actions need three dimensions 

Uniform materials Won’t take into account imperfections such as air leakage,  faulty 
building, etc. 

Convection estimated Convection acts as an constant increase in conductivity of air, rather 
than irregular wind 

No weather Weather has a huge influence on the outside conditions, and these 
affect the heat transfer 

Figure 15 Description of assumptions and limitations in the program 
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Code 
Program 
 
 We are using our code from last year, which was written off of the structure of the shallow 

water simulation code WAVE (Robey B. , 2007). The language we are using is C. We also 

borrowed code for our tridiagonal solver (Tridiagonal Matrix Algorithm, 2008), and for the 

interactive keys (Robey, Holland, Jacobs, & Shlachter, 2008) and integrated it into the rest of our 

program. For the graphics, we used the MPE library (Multi-Processing Environment) (Web Pages 

for MPI and MPE, 2004). Since WAVE was parallelized, there are still MPI (Message Passing 

Interface) calls in the code, but they have not been updated or run. Our code consists of a “main” 

file, a header, a display file with all of the display subroutines, and a file with the tridiagonal solver 

subroutine. In total, it is about 830 lines. 

 We were fortunate not to have to do too excessive debugging. We did, however, make 

extensive changes to our code and several bugs were caused by pieces of the code that were no 

longer valid. There were also some problems with the conduction after we wrote it with the 

implicit method.  

 

Computation 
 
 In our code, the iteration loop calculates the heat transfer through all the cells for one 

time step. The structure of this loop is illustrated in Figure 16. In the first pass, we find the heat 

flow in the x and y directions.  Both use the tridiagonal solver subroutine, and calculate the 

coefficients using the same ‘old’ array of temperatures. When calculating the coefficients we take 

advantage of  being equal to  and set the   array using the  array. The ‘new’ temperatures 

are stored in a separate array. In the second pass we update the ‘old’ temperature array. Also in 

the second pass, the display is called only called every set number of iterations. 
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Figure 16 Flowchart of iteration loop 
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Interactive 
 

  We revised the program to take key input to 

initialize the matrix. The cells are all set to a default 

outside air, and cells under the cursor in the graphics 

window are changed to other materials by pressing a 

corresponding key. This allows cell size, number, and 

wall type to be easily changed, quickly and more easily 

than by changing the code itself. 

 There are other inputs besides those used to set 

cell materials. The ‘x’ key executes the rest of the 

program when it is pressed, and starts the heat transfer 

simulation through the wall. The ‘l’ key is used to set a source cell, where a yellow X will be 

drawn. Once a cell is assigned as a source cell, it cannot be changed back to normal. The ‘h’ key 

records the indices of the cell. When the program is run, the temperature of that cell will be 

written to a history file. Pressing it again will reset the indices. The ‘r’ key records the wall 

materials in a save file, and ‘d’ draws the most recently saved wall and sets all the materials.  

Graphics 
 
 We spent a fair amount of time on the graphics. We wanted the display to be fairly easy to 

understand, and a visualization of the results. We also added an instruction window to 

guide a user through the steps of drawing a wall, and also to make the commands for each 

key more accessible (Figure 17). 

 The majority of the window shows the mesh of cells, colored to represent their 

current temperature. On the right side of the screen we print a scale of the colors and the 

temperature they correspond to (Figure 18). Below the scale is an updated 

printout of the present time in the simulation and the outside 

temperature on either a sun or moon (Figure 19). We thought that 

this was a good way signify to people what is happening. For example, 

it should be fairly clear that if there is blue in the window, and 

there is a moon, that it is a cold night. 

Figure 19 Sun/moon clock 
and outside temperature 
from display 

Figure 18 Temperature 
scale from display window 

Figure 17 Instruction window from 
program display 
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Results 

 Verification 
 

 “’Verification’ ~ solving the equations right (Roache, 1988).” Verification is proving the 

program solves the equations correctly, and with minimal mathematical error.  As part of 

verification, we solved a problem by hand to show that the conduction works properly, and 

compared the outputs of different time steps and cell sizes. 

  We invented a small test problem to do by hand and used print statements to follow the 

values through each section of code. The input is a 1-by-3 mesh of wood and insulation at 60°F, 

65°F, and 70°F (Figure 20). To begin, we found the values of 

each of the coefficients using the properties of the materials 

(Figure 21). They are listed below in the order they were 

calculated: 

 

 =  
 =  
 =  
 =  
 =  
 =  
 =  
 =  
 =  
 =  
 =  
 =  

 

 After this single time step, the temperatures are: , 65, and 69.994486 

respectively5. Our hand calculated values matched with those output from the program, with the 

exception of small discrepancies caused by round off errors. We set the same problem vertically to 

check the program in the y direction and found the same results. 

 

                                                      
5
 Note that these have the same sum as the original temperatures, and therefore can be shown to follow the 

Law of Conservation of Energy. 

 Wood Insulation 

Conductivity 0.8 0.009636 
Density    32 0.85 
Specific Heat 0.33 0.2 

Figure 21 Table of wood and insulation properties  =  
 =  
 =  
 =  
 =  
 =  
 =  
 =  

Wood 

60°F 

 

Insul. 

65°F 

 

Wood 

70°F 

 
Figure 20 Test problem used 
in verification of the code 
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 Units are necessary to express all 

quantities and to give numbers physical value. 

There are several systems that are used in the 

field of heat transfer, and it is important to 

consistently use units from one system. We are 

working in U.S. engineering units. In hear 

transfer, the fundamental dimensions are time, length, mass, temperature, 

force, and heat. Derived dimensions are expressed in terms of these fundamental dimensions 

(Figure 22).  In the context of our program, cells are measured in inches, and the time step in 

minutes.  

The units for the  and  coefficients are shown below6: 

 

  should end up in the same units: 

 

 is multiplied by the temperature, which leaves it in : 

 

Any source terms added to  must also be in . 

 In order to assess the error created by using longer time steps, 

we ran our implicit program with three different time steps. Each run 

simulated the wall shown in Figure 23 for about seven days, recording 

the temperature at a given cell every ten minutes. We plotted the 

temperature output from the runs for each of the time steps in Figure 26. It shows that the 

shortest time step, 0.01 minutes, has a very defined swing, while the minute long time step is 

                                                      
6
 Conductivity has already been input to the program in Btu/hr in F, so no conversion from feet into inches 

is necessary 

Physical Quantity U.S. Engineering Unit 

Heat flow rate  

Specific heat  

Thermal conductivity  

Heat transfer coefficient  

Density  

Figure 22 Table of units 

Figure 23 Input wall used for 
collecting data for comparisons of 
time steps and cell resolution 



23 
 

0

10

20

30

40

50

0 2000 4000 6000 8000 10000 12000

te
m

p
e

ra
tu

re
 (

°F
)

time (min)

Cell Resolution

0.5 in

1 in

2 in

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000 12000

te
m

p
e

ra
tu

re
(°

F
)

time (min)

Time Steps

1.0min

0.1min

0.01min

indistinct. This is because the bigger the time we are calculating for, the less detail it can pick up. 

The run times, shown in Figure 24, increase by roughly a factor of ten. This makes sense, as the 

time steps are decreasing at the same rate. A longer time step should moderate the fluctuations, 

and be able to come close to the average, which the plot confirms. 

 We also plotted the results of the runs with different cell dimensions (Figure 25). We are 

not sure what caused these results, and whether there was an error in the code. The two inch cells 

recorded generally higher temperatures, and the oscillation seems to decrease with a finer 

resolution. As the size of the cell is cut in half, the run time is about four times as long (Figure 

24). This is reasonable, as it takes four cells to make one of the next size.  

Figure 24 Results from comparisons of time steps and cell size 

 Time Step Cell Size 

 1.0 min 0.1 min 0.01 min 2in 1in 0.5in 
Run Time 2 sec 20 sec 196 sec 5 sec 18 sec 72 sec 

Average Temperature 37.12°F 36.15°F 41.58°F 41.10°F 36.55°F 36.16°F 

Figure 25 Plot of output from cell size comparison 

Figure 26 Plot of output from time step comparison 
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Validation 
 
 “’Validation’ ~ solving the right equations (Peaceman & 

Rachford, 1955).” Validation is the ability of our model to 

produce answers for intended applications that fall within an 

acceptable range of accuracy. 

 We tried to match the conditions in the experimental 

and computer model as closely as possible so we could compare 

the results to determine how closely our model comes to real life 

(Figure 27). We read in the test two experimental outside 

temperatures from a file to control the outside boundary. The 

wall we input to the program as an imitation of our 

experimental wall is shown in Figure 27. When running our 

program, we discovered a problem with the energy cells. An 

input of 25 watts did not heat the interior as we expected. We 

are uncertain whether this is caused by wrong energy input or an 

error in the method, as we did not have time to look into it. 

 

Condition Descriptions/Adjustments 

Internal heat 
source 

We put a light bulb inside t simulate the indoor heating. A steady input 
of 25 watts to generate enough energy to get close to  comfortable 
temperatures 

No solar gain We placed the box in an area which is shady most of the day. 
No internal 
radiation 

The rack held tin foil between the light bulb and data logger to 
minimize direct radiation 

Wind is 
irregular 

Tested both with outside data logger exposed and in a plastic bag. 

One wall The rest of the box is over insulated to reduce the influence as much as 
possible and isolate the test to one test wall 

Air leakage The corners are sealed up with foam on the inside, and duck tape on the 
outside to prevent as much air leakage as possible. 

Figure 28 Adjustments made in order to match computer and experimental model 

Figure 27 Imitation of 
experimental wall used as 
input for validation 
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 We estimated the energy input through our observations of the effects of different 

amounts, and ran the program. The plot of the temperatures from the computer for inside and 

outside7 is compared to the experimental results in Figure 29 below. 

 We were very impressed by these results, as there was a fair amount of guess work done at 

this point. The starting conditions cause the discrepancy in the beginning of the graph, so this 

was ignored for the most part. The inside results match each other remarkably well, both in shape 

and in general temperature range. The outside temperatures are much farther apart, and while 

the computer model has the same general shape, it did not capture some of the more subtle 

changes. 

  

                                                      
7
 A history cell was set about where we estimated the data logger would be and on the outside boundary. 
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Conclusions 
Model Capabilities 
 
 Our model was successful. The verification process found most, if not all, of the bugs in 

the conduction part of our code. When it tested walls its answers were reasonable. There are 

clearly still some bugs though, as we saw while trying to use a source of energy in the validation. 

The outside temperature may also be influenced by factors in the model, and more air space may 

be needed between the wall and boundary during validation runs. In summary, while there is still 

debugging to be done, our model is acceptable. 

 The display and key input improvements we were able to make were far beyond our 

original expectations. The input window works well and refreshes smoothly, and the instruction 

window is a good guide and reference. The display is very readable and provides a real-time 

display of temperatures. 

 

Skills 
 

 As a result of this project, both of us gained many skills that we will continue to find 

useful in the future. This was Gabe’s first year in the Challenge, and he learned a lot about the 

process of computer modeling. He started working with C, and hopes to learn more about 

programming this summer. After first starting to program last year, Rachel greatly expanded her 

understanding of programming, computational models and the process in general.  
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Teamwork 
 

 Our team consisted of two members this year. Rachel had worked on the project last year 

with Jessie. Jessie was unable to participate this year, so Gabe took her place. He has done an 

excellent job of stepping into the middle of the project. 

 It was difficult for us to meet regularly, on account of activities, and Gabe living farther 

away. We were still able to work together on some weekends and occasionally after school. We 

were generally very productive at these meetings, but also did a fairly good job of working on our 

own in between. We were able to talk to each other when at school and keep one another 

updated, or transfer information with a flash drive. 

 Gabe was responsible for most of the 

building and testing of our experimental model. We 

came up with some of the basic concepts together, 

but he did the more detailed design of how to build 

it, and chose and bought the materials. We met at 

his house on a weekend in early January to put 

together the sides of the box. Gabe had broken his 

arm and was somewhat incapacitated. He and his 

dad later finished building it and getting it ready for 

testing. Gabe tested it on their property and 

downloaded all the data for each test. He also did 

most of the photography of the box, which was a 

helpful record of the set-up. 

 Rachel was in charge of the programming, 

including the mathematical and computational 

models. Gabe helped some with the programming, 

but it was a learning experience for him as he had never 

programmed before.  

 We have both worked together on most of the reports and presentations. We would try to 

meet more often when reports were due, and especially to create and practice presentations. 

Overall, we worked well together, and split up the work load efficiently. 

Figure 30 Teamwork Venn diagram 
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Recommendations 
Model 
 

 Our program has an incredible potential, and there are many ways to enhance and 

improve it. There are several in particular we considered would be useful, and would probably 

pursue in any continuing work on this project. Parallelizing our code has always been an option, 

but not realistic because there wasn’t enough work for multiple processors and not worth it. Now, 

however, as we improve our program, there is more work, and it would be beneficial. The 

possibilities to add onto the interactive, display, and user interface part of our model are endless, 

and not the purpose of a supercomputing project. Even so, we are interested in adding rubber 

banding8 to the interactive cell initialization. This would be very practical when trying to assign 

large numbers of small cells. We did make an attempt to do this, but we don’t have any 

experience with x-windows, and even with help had trouble capturing and returning the location 

of the mouse button click’s subsequent release. We also would like to go through and validate 

every part of the code. For example we would check that each material behaved the way it should. 

This would help us to understand the differences between experimental and computational 

models. We would also go through and solve the problems with the “light bulb” energy source. 

Even though we could do a lot more with this program, we did an amazing amount of coding and 

were able to accomplish most of our goals. 

 

Wall Design 
 
 Writing the code and doing experimental tests in order to create a functional and valid 

program required the whole year. We ran out of time for testing energy efficient walls, and so 

were unable to analyze these designs. The next step would most likely be beginning to test these 

walls, and perhaps adding in components such as window, roof, floors, doors, etc. in order to 

expand the walls the program is capable of testing. 

  

                                                      
8
 Moving of object where one end is fixed in position.  In our case this would be selecting a block of cells to 

assign with a click and release of the mouse button. 
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Source Code 
 
#define WAIT_TIME   0    // Slows down run if too fast 

#define DEBUG 0          // Turn on debug statements 

#define DISPLAY_ON 100   // Turns on output and sets iterations between plots 

#define FILE_DATA 1      // Chose sinusoidal wave or data file for outside 

#define max(a, b) ((a) > (b) ? (a) : (b)) 

 
/***************************************** 

 * HEAT -- 2D Heat Transfer Model 

 * Rachel Robey, Los Alamos Middle School 

 * Copyright 2007-2009 

 ****************************************/ 

 

#include <mpi.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <math.h> 

#include <unistd.h> 

#include <time.h> 

#include "heat2.h" 

 

#ifdef DMALLOC 

#include "dmalloc.h" 

#endif 

 

#define Pi 3.14 

 

/* Display routines */ 

void display_init(char *displayname, int matrix_size_x, int matrix_size_y, 

 int iheight); 

void display_instructions(void); 

char get_key(int *i, int *j, int my_offset, int matrix_size_x, int 

 matrix_size_y); 

void display_one_d(int matrix_size_y, int matrix_size_x, double **temp, int 

 my_offset,int mysize, double maxscale, double time, double Temp_max, 

 double Temp_min, int **Material); 

void display_setup(int matrix_size_x, int matrix_size_y, int **Color, int 

 my_offset,int mysize, double time, double Temp_max, double Temp_min, 

 int **Source); 

void display_colors(void); 

void set_label(char *text); 

void display_close(void); 

 

/* Calculation routines */ 

void TridiagonalSolve(const double *a, const double *b, double *c, double *d, 

double *x, unsigned int n); 

double source_data(double time); 

 

/* Memory allocation routines */ 

double *dvector(int n); 
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double **dmatrix(int m, int n); 

int **imatrix(int m, int n); 

 

double **Mass, **Temperature, **Temperature_new, **Source_radiation, 

 **Energy;                 //state variables 

int **Source;                   //source cells – light bulb 

double *a, *b, *c, *d, *x;      //tridiagonal solver coefficients 

int **Material, **Color;;       //cell materials and colors 

 

int main(int argc, char *argv[]) { 

   int rank, size; 

   int next, prev; 

   int i, j, k, l; 

   int matrix_size_x, matrix_size_y; 

   int ntimes; 

   int n; 

   int mysize; 

   int my_offset; 

   char keyComm; 

   double Energy_added; 

   double deltat = 0.1;                    //hardwired timestep - minutes 

   double deltax = 0.5, deltay = 0.5, deltaz = 1;  //size of cell - inches 

   double maxScale;                        //display color scaling 

   double time = 0.0;                      //computer simulation time 

   double time1, time2, temp1, temp2;      //for reading temp info from file 

   double totaltime, starttime;            // to calculate program run time       

   double myTE, TotalEnergy, origTE;       //for checking conserve. of energy 

   int ihistory = -1, jhistory = -1;       //indices of temp log 

   double Temp_max=60, Temp_min=10;        //temp swing max and min 

   FILE *fhistory, *fdata, *fsave;         //declare files 

   char *desc;                             //variable for labels 

   char string[80], numbers[80]; 

   char *displayname = ":0"; 

 

   /* Material properties */ 

   enum material{OUTSIDE_AIR, INSIDE_AIR, STUCCO, FOAM, WOOD, CEMENT, GLASS, 

 INSULATION, SHEETROCK}; 

   double Material_density[9]= { .076, .076, 116., 2.2, 32., 64.65, 80, .85, 

 50. }; 

      //density in pounds/ft cubed 

   double Material_specific_heat[9]= { .24, .24, .22, .29, .33, .22, .22, .2, 

 .26 }; 

      //specific heat in Btu/pound*mass*Farenheit 

   double Material_conductivity[9]= { 6.0, 1.46, .5, .2, .8, .96, .32, 

 .053/5.5, 1.78/.625 }; 

      //conductivity in Btu/hour*inch*Farenheit, 15mph wind factored into 

 outside air 

   int Material_color[9]={0, 5, 10, 6, 12, 2, 8, 13, 15}; 

      //white, cyan, orange, blue, brown, red, aqua, pink, grey 

 

   MPI_Init(&argc, &argv); 

   //Determine size and my rank in MPI_COMM_WORLD communicator 

   MPI_Comm_size(MPI_COMM_WORLD, &size); 

   MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

   if (argc > 2 && strcmp(argv[1], "-display") == 0) { 

      displayname = (char *)malloc(strlen(argv[2]) + 1); 

      strcpy(displayname, argv[2]); 
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   } 

 

   if (rank == 0) 

      printf("Copyright 2008\n"); 

   sleep(WAIT_TIME); 

 

   /* Determine the matrix sizes and # of iterations */ 

   if (rank == 0) { 

      /* 

      printf("Matrix Size X : "); 

      scanf("%d",&matrix_size_x); 

      printf("Matrix Size Y : "); 

      scanf("%d",&matrix_size_y); 

      printf("Iterations : ") ; 

      scanf("%d",&ntimes); 

      */ 

      matrix_size_x = 96; 

      matrix_size_y = 96; 

      ntimes = 39000; 

   } 

 

   if (DISPLAY_ON) { 

      display_init(displayname, matrix_size_x, matrix_size_y, 700); 

      display_instructions(); 

   } 

 

   //Broadcast the size and # of itertations to all processes 

   MPI_Bcast(&matrix_size_x, 1, MPI_INT, 0, MPI_COMM_WORLD) ; 

   MPI_Bcast(&matrix_size_y, 1, MPI_INT, 0, MPI_COMM_WORLD) ; 

   MPI_Bcast(&ntimes, 1, MPI_INT, 0, MPI_COMM_WORLD); 

   //Set neighbors 

   if (rank == 0) 

      prev = MPI_PROC_NULL; 

   else 

      prev = rank-1; 

   if (rank == size - 1) 

      next = MPI_PROC_NULL; 

   else 

      next = rank+1; 

   mysize = matrix_size_y/size + ((rank < (matrix_size_y % size)) ? 1 : 0 ); 

   my_offset = rank * (matrix_size_y/size); 

   if (rank > (matrix_size_y % size)) 

      my_offset += (matrix_size_y % size); 

   else 

      my_offset += rank; 

   if (DEBUG) 

      printf("my rank is %d and mysize is %d\n", rank, mysize); 

 

   /* Allocate the memory dynamically for the matrix */ 

   Mass = dmatrix(matrix_size_y, matrix_size_x); 

   Energy = dmatrix(matrix_size_y, matrix_size_x); 

   Temperature_new = dmatrix(matrix_size_y, matrix_size_x); 

   Source_radiation = dmatrix(matrix_size_y, matrix_size_x); 

   Temperature = dmatrix(matrix_size_y, matrix_size_x); 

   Material = imatrix(matrix_size_y, matrix_size_x); 

   Source = imatrix(matrix_size_y, matrix_size_x); 

   Color = imatrix(matrix_size_y, matrix_size_x); 
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   if (rank == 0 && DEBUG) 

      printf("Memory allocated\n"); 

 

   for (j = 0; j < matrix_size_y; j++) { 

      for (i = 0; i < matrix_size_x; i++) { 

         Material[j][i] = OUTSIDE_AIR; 

         Source[j][i] = 0; 

      } 

   } 

 

   /* Initialize matrix */ 

   keyComm = '\0'; 

   while (keyComm != 'x') { 

      keyComm = get_key(&i, &j, my_offset, matrix_size_x, matrix_size_y); 

      if (keyComm != '\0') { 

         sprintf(string, "key %c i %d j %d\n", keyComm, i, j); 

            printf("key %c i %d j %d\n", keyComm, i, j); 

            if (keyComm == 'w') { 

               Material[j][i] = WOOD; 

               Color[j][i]= (Material_color[ Material[j][i] ]); 

            } 

            if (keyComm == 'f') { 

               Material[j][i] = FOAM; 

               Color[j][i] = (Material_color[ Material[j][i] ]); 

            } 

            if (keyComm == 's') { 

               Material[j][i] = SHEETROCK; 

               Color[j][i] = (Material_color[ Material[j][i] ]); 

            } 

            if (keyComm == 'i') { 

               Material[j][i] = INSULATION; 

               Color[j][i] = (Material_color[ Material[j][i] ]); 

            } 

            if (keyComm == 't') { 

               Material[j][i] = STUCCO; 

               Color[j][i] = (Material_color[ Material[j][i] ]); 

            } 

            if (keyComm == 'o') { 

               Material[j][i] = OUTSIDE_AIR; 

               Color[j][i] = (Material_color[ Material[j][i] ]); 

            } 

            if (keyComm == 'a') { 

               Material[j][i] = INSIDE_AIR; 

               Color[j][i] = (Material_color[ Material[j][i] ]); 

            } 

            if (keyComm == 'c') { 

               Material[j][i] = CEMENT; 

               Color[j][i] = (Material_color[ Material[j][i] ]); 

            } 

            if (keyComm == 'g') { 

               Material[j][i] = GLASS; 

               Color[j][i] = (Material_color[ Material[j][i] ]); 

            } 

            if( keyComm == 'e' ){ 

               Source[j][i] = 1; 

            } 

            if( keyComm == 'h' ){ 



35 
 

            ihistory = i; 

               jhistory = j; 

            } 

            if( keyComm == 'r' ){     //save wall 

                if( ( fsave = fopen("wall", "wb") ) == NULL ) { 

                 printf("Error--save file missing\n"); 

                 exit(0); 

                } 

                for(k = 0; k < matrix_size_y; k++){ 

                 if(fwrite(Material[k], sizeof(int), matrix_size_x, 

     fsave)< 1) { 

                  printf("Write error occured.\n"); 

                  exit(0); 

                 } 

                } 

                fclose(fsave); 

            } 

            if( keyComm == 'd' ){      //open saved wall 

               if( ( fsave = fopen("wall", "rb") ) == NULL) { 

                  printf("Error--cannot open save file\n"); 

                  exit(0); 

               } 

               for(k = 0; k < matrix_size_y; k++){ 

                  if( (fread(Material[k], sizeof(int), matrix_size_x, fsave)) 

    < 1){ 

                   printf("Read error occured\n"); 

                   exit(0); 

                  } 

                  for(l = 0; l < matrix_size_x; l++){ 

                   Color[k][l] = (Material_color[ Material[k][l] ]); 

                  } 

               } 

               fclose(fsave); 

            } 

         if (DISPLAY_ON) { 

            set_label(string); 

            display_setup(matrix_size_x, matrix_size_y, Color, my_offset,  

  mysize, time, Temp_max, Temp_min, Source); 

         } 

      } 

   } 

   display_colors(); 

 

   /* Set initial temperatures */ 

   for (j = 0; j < matrix_size_y; j++) { 

      for (i = 0; i <= 0; i++) 

         Temperature[j][i] = 60.0; 

   } 

   for (j = 0; j < matrix_size_y; j++) { 

      for (i = 1; i < matrix_size_x-1; i++) 

         Temperature[j][i] = 65.0; 

   } 

   for (j = 0; j < matrix_size_y; j++) { 

      for (i = matrix_size_x-1; i < matrix_size_x; i++) 

         Temperature[j][i] = 70.0; 

   } 
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   /* Initialize cell properties */ 

   for (j = 0; j < matrix_size_y; j++) { 

      for (i = 0; i < matrix_size_x; i++) { 

         Mass[j][i] = (Material_density[ Material[j][i] ]* deltax * deltay *  

  deltaz) / 1728.0; 

            //multiply by 1 foot/12 inches three times, becomes pounds,mass 

         Energy[j][i] = (Material_specific_heat[ Material[j][i] ]) *   

  Temperature[j][i]; 

         Source_radiation[j][i] = 0.0;  

            //no source term yet -- must be in BTUs 

      } 

   } 

   if (rank == 0 && DEBUG) 

      printf("initial values set\n"); 

 

   myTE = 0.0; 

   for (j = 0; j < matrix_size_y; j++) { 

      for (i = 0; i < matrix_size_x; i++) 

         myTE += Energy[j][i]; 

   } 

 

   MPI_Allreduce(&myTE, &origTE, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); 

   if (rank == 0 && DEBUG) 

      printf("initial values displayed\n"); 

 

   if( ihistory != -1 && jhistory != -1 ) { 

    fhistory = fopen("history", "w");     //open write file 

   } 

 

   if( FILE_DATA ) { 

     if( ( fdata = fopen("input.csv", "r") ) == NULL) { 

      printf("Error -- input file missing"); 

         exit(0); 

     } 

     time2 = -100.0; 

     temp2 = 0; 

   } 

   starttime = clock()/CLOCKS_PER_SEC; 

 

   /* Begin the iteration loop */ 

   for (n = 0; n < ntimes; n++) { 

    if( FILE_DATA ) { 

      while( time2 < time){ 

       time1 = time2; 

       temp1 = temp2; 

       fgets( numbers, 80, fdata ); 

       sscanf( numbers, "%lf, %lf", &time2, &temp2 ); 

       //printf( "%lf, %lf, %lf\n", time, time2, temp2 ); 

    } 

 } 

      /* 

      MPI_Request req[8]; 

      MPI_Status status[8]; 

      //Send and receive boundary information 

      MPI_Isend(Energy[1], matrix_size_x+2, MPI_DOUBLE, prev, 1, 

 MPI_COMM_WORLD, req  ); 
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      MPI_Irecv(Energy[mysize+1], matrix_size_x+2, MPI_DOUBLE, next, 1, 

 MPI_COMM_WORLD, req+1); 

      MPI_Isend(Energy[mysize], matrix_size_x+2, MPI_DOUBLE, next, 2, 

 MPI_COMM_WORLD, req+2); 

      MPI_Irecv(Energy[0], matrix_size_x+2, MPI_DOUBLE, prev, 2, 

 MPI_COMM_WORLD, req+3); 

      if (rank == 0 && DEBUG) 

         printf("values for energy communicated\n"); 

      MPI_Isend(Temperature[1       ], matrix_size_x+2, MPI_DOUBLE, prev, 5, 

 MPI_COMM_WORLD, req+4); 

      MPI_Irecv(Temperature[mysize+1], matrix_size_x+2, MPI_DOUBLE, next, 5, 

 MPI_COMM_WORLD, req+5); 

      MPI_Isend(Temperature[mysize  ], matrix_size_x+2, MPI_DOUBLE, next, 6, 

 MPI_COMM_WORLD, req+6); 

      MPI_Irecv(Temperature[0       ], matrix_size_x+2, MPI_DOUBLE, prev, 6, 

 MPI_COMM_WORLD, req+7); 

      if (rank == 0 && DEBUG) 

         printf("values for temperature communicated\n"); 

      MPI_Waitall(8, req, status); 

      if (rank == 0 && DEBUG) 

         printf("Communication successful\n"); 

      */ 

 

      /* Set outside temperature */ 

      for (j = 0; j < matrix_size_y; j++) { 

       if( FILE_DATA ) { 

      Temperature[j][0]= temp1 + (temp2-temp1)/(time2-time1)*( time -  

  time1 ); 

       } 

        else { 

         Temperature[j][0] = ( ( (Temp_max + Temp_min)/2) )+( (Temp_max -  

  Temp_min)/2 )*( sin( (time + 360) * Pi/720 ) ); 

       } 

      } 

 

      if (rank == 0 && DEBUG) 

         printf("Boundary conditions set\n"); 

 

      if (rank == 0 && DEBUG) 

         printf("Before 1st pass\n"); 

 

      /* First pass */ 

      /* x direction */ 

      a = (double *) malloc(sizeof(double) * max(matrix_size_x, 

 matrix_size_y)); 

      b = (double *) malloc(sizeof(double) * max(matrix_size_x, 

 matrix_size_y)); 

      c = (double *) malloc(sizeof(double) * max(matrix_size_x, 

 matrix_size_y)); 

      d = (double *) malloc(sizeof(double) * max(matrix_size_x, 

 matrix_size_y)); 

      x = (double *) malloc(sizeof(double) * max(matrix_size_x, 

 matrix_size_y)); 

      for (j = 0; j < matrix_size_y; j++) { 

         a[0] = 0.0;                            //boundary condition 

         c[matrix_size_x-1] = 0.0;              //boundary condition 

         for (i = 1; i < matrix_size_x; i++) { 
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            a[i] = -((Material_conductivity[Material[j][i]] +    

  Material_conductivity[Material[j][i-1]])/2) * deltay * deltaz *  

  deltat / deltax / 60.0; 

               //average of material conductivity multiplied by the area  

  multiplied mulitiplied by time step divided by distance between  

  cells, unit conversion -- 60 sec / hr 

         } 

         for (i = 1; i <= matrix_size_x-1; i++) { 

            c[i-1] = a[i]; 

         } 

 

         for (i = 0; i < matrix_size_x; i++) { 

             if(Source[j][i]==1){ 

              Energy_added = (1.42 / 8.0 * deltat) /     

  Material_specific_heat[ Material[j][i] ]/150; 

                //1.42 BTU/minute = 25 watts, division as needed 

             } 

             else { 

                 Energy_added = 0.0; 

             } 

            b[i] = ( Material_specific_heat[ Material[j][i] ] * deltax *  

  deltay * deltaz * Material_density[ Material[j][i] ] / 1728.0 ) - 

  a[i] - c[i]; 

               //unit conversion -- ft cubed / 1728 in cubed, also below 

            d[i] = ( Material_specific_heat[ Material[j][i] ] * deltax *  

  deltay * deltaz* Material_density[ Material[j][i]] / 1728.0 *  

  Temperature[j][i]) + ( Source_radiation[j][i] * deltat ) +   

  Energy_added; 

               //BTU/F, cancelled when multiplied by temperature 

         } 

         TridiagonalSolve(a, b, c, d, x, matrix_size_x);  //set solution to x 

         for (i = 0; i < matrix_size_x; i++) 

            Temperature_new[j][i] = x[i];   //set row of Temperature_new to x 

      } 

 

      if (rank == 0 && DEBUG) 

         printf("First pass x direction complete\n"); 

 

      /* y direction */ 

      for (i = 0; i < matrix_size_x; i++) { 

         a[0] = 0.0;                        //boundary conditions 

      c[matrix_size_y-1] = 0.0;            //boundary conditions 

         for (j = 1; j < matrix_size_y; j++) { 

            a[j] = -((Material_conductivity[ Material[j][i] ] +    

  Material_conductivity[ Material[j-1][i] ])/2)* deltay * deltaz *  

  deltat / deltax / 60.0; 

               //average of material conductivity multiplied by the area  

     //multiplied mulitiplied by time step divided by distance  

     //between cells, unit conversion -- 60 sec / hr 

         } 

         for (j = 1; j < matrix_size_y; j++) { 

            c[j-1] = a[j]; 

         } 

         for(j = 0; j < matrix_size_y; j++) { 

             if(Source[j][i]==1){ 

              Energy_added = (1.42 / 8.0 * deltat) /     

   Material_specific_heat[ Material[j][i] ]/150; 
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                //1.42 BTU/minute = 25 watts, division as needed 

             } 

             else { 

                 Energy_added = 0.0; 

             } 

            b[j] = ( Material_specific_heat[ Material[j][i] ] * deltax *  

  deltay * deltaz * Material_density[ Material[j][i]] / 1728.0 ) -  

  a[j] - c[j]; 

            d[j] = ( Material_specific_heat[ Material[j][i] ] * deltax *  

  deltay * deltaz * Material_density[ Material[j][i]] / 1728.0 *  

  Temperature[j][i]) + (Source_radiation[j][i] * deltat) +   

  Energy_added; 

               //see x direction 

         } 

         TridiagonalSolve(a, b, c, d, x, matrix_size_y);  //solution in x 

         for(j = 0; j < matrix_size_y; j++) { 

            Temperature_new[j][i] += x[j] - Temperature[j][i];     

  //adding change to Temperature_new 

         } 

      } 

      if (rank == 0 && DEBUG) 

         printf("First pass complete\n"); 

 

      /* Second pass */ 

      if (rank == 0 && DEBUG) 

         printf("Second Pass started\n"); 

 

      for (j = 0; j < matrix_size_y; j++) { 

         for (i = 0; i < matrix_size_x; i++) { 

            Energy[j][i] = Material_specific_heat[ Material[j][i] ] *   

  Temperature_new[j][i]; 

           Temperature[j][i] = Temperature_new[j][i]; 

         } 

      } 

      if (rank == 0 && DEBUG) 

         printf("Second pass complete\n"); 

      if (rank == 0 && DEBUG) 

         printf("Done calculations\n"); 

      time += deltat;         //increase time by time step 

 

      if (DEBUG) { 

         for (j = 0; j < matrix_size_y; j++) { 

            for (i = 0; i < matrix_size_x; i++) { 

               printf("end of cycle %d %d %lf %lf\n", i, j, Energy[j][i],  

     Temperature[j][i]); 

            } 

         } 

      } 

      if (DISPLAY_ON) { 

         maxScale = 85.0; 

         desc = "Temperature"; 

         sprintf(string, "%s     iter %d      time %.2lf", desc, n, time); 

         set_label(string); 

         if (n%DISPLAY_ON == 0) { 

            display_one_d(matrix_size_x, matrix_size_y, Temperature,   

  my_offset, mysize, maxScale, time, Temp_max, Temp_min, Material); 

         } 
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      } 

      if( ihistory != -1 && jhistory != -1 && n % 100 == 0 ) 

       fprintf(fhistory, "%g, %g\n", time, Temperature[jhistory][ihistory]); 

 

      myTE = 0.0; 

      TotalEnergy = 0.0; 

      for (j = 0; j < matrix_size_y; j++) { 

         for (i = 0; i < matrix_size_x; i++) { 

            if (isnan(Energy[j][i])) { 

               printf("Error -- Energy[%d][%d]=%f\n", i, j, Energy[j][i]); 

            } 

         myTE += Energy[j][i] * deltax * deltay * deltaz; 

         } 

      } 

      MPI_Allreduce(&myTE, &TotalEnergy, 1, MPI_DOUBLE, MPI_SUM, 

 MPI_COMM_WORLD); 

 

      /* Print iteration information */ 

      if (DISPLAY_ON && n%DISPLAY_ON == 0) { 

         if (rank == 0) { 

            printf ( "Iteration:%5.5d, Time:%f\n", n, time); 

         } 

      } 

   }    

/* End of iteration loop */ 

 

   totaltime = clock()/CLOCKS_PER_SEC - starttime; 

   printf ("[%d] Flow finished in %lf seconds\n", rank, 

 totaltime/(double)size); 

 

   if( ihistory != -1 && jhistory != -1) 

    fclose(fhistory); 

   if (DISPLAY_ON) 

      display_close(); 

   MPI_Finalize(); 

   //dmalloc_shutdown(); 

   exit(0); 

} 
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DISPLAY 
#define MPE_INTERNAL 

#define MPE_GRAPHICS 

#include <mpi.h> 

#include "mpe.h" 

#include <X11/Xlib.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <math.h> 

#include <termios.h> 

#include <time.h> 

#include "heat2.h" 

 

#define Pi 3.14 

 

char Iget_key_press(int *xpos, int *ypos); 

char get_key(int *i, int *j, int my_offset, int matrix_size_x, int 

 matrix_size_y); 

void display_scale(double maxscale, double x1, double xsize, double y1, 

 double ysize); 

void display_strings( char **strings, int size, int xloc, int yloc, MPE_Color 

 color ); 

void colored_strings( char **strings, int size, int xloc, int yloc, MPE_Color 

 *color ); 

int width = 750; 

int height = 750; 

struct tm time_structure; 

time_t epochtime;           //seconds 

MPE_XGraph graph; 

MPE_XGraph graph2; 

MPE_Color *color_array; 

int ncolors = 256; 

char *label; 

char string[20]; 

int first = 1; 

int i; 

 

void display_init(char *displayname, int matrix_size_x, int matrix_size_y, 

int iheight) { 

   int rank; 

   int ncolors2; 

 

   /* Open the graphics display */ 

   width = matrix_size_x * ( iheight / matrix_size_y); 

   height = iheight - iheight % matrix_size_y;    //evenly divided 

 

   MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

   MPE_Open_graphics( &graph, MPI_COMM_WORLD, displayname, -1, -1, width+80, 

 height+18, 0 ); 

   MPE_Num_colors( graph, &ncolors2 ); 

   MPE_Draw_string( graph, 10, 20, MPE_BLACK, "Draw your wall here." ); 

   MPE_Open_graphics( &graph2, MPI_COMM_WORLD, displayname, -1, -1, 415, 445, 

 0); 

   MPE_Num_colors( graph2, &ncolors2 ); 

 

   /* time_structure to begin at ___ */ 
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   time_structure.tm_year = 2009 - 1900; 

   time_structure.tm_mon = 1; 

   time_structure.tm_mday = 1; 

   time_structure.tm_hour = 14; 

   time_structure.tm_min = 23; 

   time_structure.tm_sec = 0; 

   time_structure.tm_isdst = 0; 

   epochtime = mktime(&time_structure); 

} 

void display_instructions(void) { 

   /* Print instruction window */ 

   char *string[5] = {"Create a wall to test using the wall materials and 

 keys below. You", "must click on the window before to begin. Then, 

 place your cursor", "and press the key, clicking is NOT necessary. The 

 default white is”, “outside air. Keep in mind that \"outside\" is on 

 the left.”, “When your wall is done, press 'x' to run the program."}; 

   char *material[9] = {"cement", "foam", "glass", "inside air", 

 "insulation", "outside air","sheetrock", "stucco", "wood" }; 

   char *letter[9] = {"c", "f", "g", "a", "i", "o", "s", "t", "w" }; 

   char *command[5] = {"h", "e", "d", "r", "x"}; 

   char *action[5] = {"set as history cell", "set as energy source cell", 

 "display/draw most recent saved wall","record in save file", "execute 

 the rest of the program"}; 

   MPE_Color colors[9] = {MPE_RED, MPE_BLUE, MPE_AQUAMARINE, MPE_CYAN, 

 MPE_PINK, MPE_BLACK,MPE_GRAY, MPE_ORANGE, MPE_BROWN}; 

   char *color[9] = {"red", "blue", "aqua", "cyan", "pink", "white", "grey", 

 "orange", "brown"}; 

   int place = 45; 

 

   for(i = 0; i < sizeof material/sizeof(char *)-1; i++) 

    MPE_Draw_line( graph2, place, (i*20)+135, place+160, (i*20)+135, 

 MPE_BLACK); 

   MPE_Draw_line( graph2, place+80, 125, place+80, 290, MPE_BLACK ); 

   MPE_Draw_line( graph2, place+120, 125, place+120, 290, MPE_BLACK ); 

   display_strings( string, sizeof string/sizeof(char *), 10, 20, MPE_BLACK); 

   display_strings( material, sizeof material/sizeof(char *), place, 130, 

 MPE_BLACK); 

   display_strings( letter, sizeof letter/sizeof(char *), place+=100, 130, 

 MPE_BLACK); 

   colored_strings( color, sizeof color/sizeof(char *), place+=35, 130, 

 colors); 

 

   MPE_Draw_string( graph2, 10, 320, MPE_BLACK, "Other action keys" ); 

   display_strings( command, sizeof command/sizeof(char *), place=45, 340, 

 MPE_BLACK); 

   for(i = 0; i <sizeof command/sizeof(char *)-1; i++) 

   display_strings( action, sizeof action/sizeof(char *), place+=35, 340, 

 MPE_BLACK); 

 

   MPE_Update(graph2); 

} 

void display_strings( char **strings, int size, int xloc, int yloc, MPE_Color 

color ) { 

 int y; 

 for( i = 0; i < size; i++ ) { 

  y = yloc + (20 * i); 

  MPE_Draw_string(graph2, xloc, y, color, strings[i]); 
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 } 

 MPE_Update(graph2); 

} 

void colored_strings( char **strings, int size, int xloc, int yloc, MPE_Color 

*color ) { 

 //color array must be same size or > than string array 

 int y; 

 for( i = 0; i < size; i++ ) { 

  y = yloc + (20 * i); 

  MPE_Draw_string(graph2, xloc, y, color[i], strings[i]); 

 } 

 MPE_Update(graph2); 

} 

void display_setup(int matrix_size_x, int matrix_size_y, int **Color, int 

 my_offset, int mysize,double time, double Temp_max, double Temp_min, 

 int **Source) { 

   int i, j; 

   unsigned int plot_value; 

   int xloc, yloc, xwid, ywid; 

 

   for (j = 0; j < matrix_size_y; j++) { 

      for (i = 0; i < matrix_size_x; i++) { 

         xloc = ( i * (width) )/ matrix_size_x; 

         yloc = ( j * (height) )/ matrix_size_y; 

         xwid = ((width)/matrix_size_x); 

         ywid = ((height)/matrix_size_y); 

         if (plot_value < 2) 

            plot_value = 2; 

         if (plot_value > ncolors) 

           plot_value = ncolors; 

         MPE_Draw_line(graph, width, 0, width, height, MPE_BLACK); 

  //right boundary 

         MPE_Draw_line(graph, 0, height, width, height, MPE_BLACK); 

  //lower boundary 

         MPE_Draw_line(graph, 0, 0, width, 0, MPE_BLACK); 

  //upper boundary 

         MPE_Draw_line(graph, 0, 0, 0, height, MPE_BLACK); 

  //left boundary 

         MPE_Fill_rectangle(graph, xloc, yloc, xwid, ywid, Color[j][i]); 

 

         if (j >= 0 && i >= 1) { 

            if ( Color[j][i] != Color[j][i-1] || Color[j][i] == 0 ) 

           MPE_Draw_line( graph, xloc, yloc, xloc, ywid+yloc, MPE_BLACK 

); 

         } 

         if (j >= 1 && i >= 0) { 

            if ( Color[j][i] != Color[j-1][i] || Color[j][i] == 0 ) 

             MPE_Draw_line( graph, xloc, yloc, xwid+xloc, yloc,  

    MPE_BLACK ); 

         } 

         if( Source[j][i]  > 0 ){ 

          MPE_Draw_line( graph, xloc, yloc, xwid+xloc, ywid+yloc,   

   MPE_YELLOW ); 

          MPE_Draw_line( graph, xwid+xloc, yloc, xloc, ywid+yloc,   

   MPE_YELLOW ); 

         } 

      } 
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   } 

 

   MPE_Fill_rectangle(graph, 0, height+4, width, height+4, MPE_WHITE); 

   if (my_offset == 0) MPE_Draw_string( graph, 0, height+16, MPE_BLACK, 

 label); 

   MPE_Update(graph); 

   sleep(WAIT_TIME); 

} 

 

void display_colors() { 

   int ierr; 

   int rank; 

   color_array = (MPE_Color *) malloc(sizeof(MPE_Color) * ncolors); 

 

   ierr = MPE_Make_color_array(graph, ncolors, color_array); 

   MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

   if (ierr && rank == 0) printf("Error(Make_color_array): ierr is %d\n", 

 ierr); 

} 

 

void display_one_d(int matrix_size_x, int matrix_size_y, double **temp, int 

 my_offset, int mysize, double maxscale, double time, double Temp_max, 

 double Temp_min, int **Material) { 

   int i, j; 

   unsigned int plot_value; 

   int xloc, yloc, xwid, ywid; 

   char string[60], outside_temp[12]; 

   time_t currenttime; 

 

   /* Fill cells to display temperature */ 

   for (j = 0; j < matrix_size_y; j++) { 

      for (i = 0; i < matrix_size_x; i++) { 

      xloc = (i * width)/matrix_size_x; 

      yloc = (j * height)/matrix_size_y; 

      xwid = (width/matrix_size_x); 

      ywid = (height/matrix_size_y); 

      plot_value = ncolors - ((double)ncolors * temp[j][i] / maxscale); 

      if (plot_value < 2) plot_value = 2; 

      if (plot_value >= ncolors) plot_value = ncolors-1; 

      if( isnan( temp[j][i] ) ) 

       MPE_Fill_rectangle( graph, xloc, yloc, xwid, ywid, MPE_WHITE ); 

      else if( temp[j][i] < 0 ) 

       MPE_Fill_rectangle( graph, xloc, yloc, xwid, ywid, MPE_WHITE ); 

      else if( temp[j][i] > maxscale ) 

       MPE_Fill_rectangle( graph, xloc, yloc, xwid, ywid, MPE_BLACK ); 

      else 

             MPE_Fill_rectangle( graph, xloc, yloc, xwid, ywid,    

  color_array[plot_value] ); 

      } 

   } 

   for (j = 1; j < matrix_size_y; j++) { 

      for (i = 1; i < matrix_size_x; i++) { 

      xloc = (i * width)/matrix_size_x; 

      yloc = (j * height)/matrix_size_y; 

      xwid = xloc+(width/matrix_size_x); 

      ywid = yloc+(height/matrix_size_y); 

      if( Material[j][i] != Material[j][i-1] ) 
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       MPE_Draw_line(graph, xloc, yloc, xloc, ywid, MPE_BLACK); 

      if( Material[j][i] != Material[j-1][i] ) 

       MPE_Draw_line(graph, xloc, yloc, xwid, yloc, MPE_BLACK); 

      } 

   } 

   if(DEBUG) 

      printf("Color display complete\n"); 

 

   if(first) {       //draw the scale on first call 

    display_scale( maxscale, width+15.0, 45.0, 15.0, 500.0 ); 

    first = 0; 

   } 

 

   /* Draw sun/moon clock and outside temp */ 

   currenttime = epochtime + (int)time * 60; 

   localtime_r(&currenttime, &time_structure); 

 //advance epochtime by simulation time 

   if(DEBUG) 

      printf("time = %s\n", asctime(&time_structure)); 

 

   if(time_structure.tm_hour >= 18 || time_structure.tm_hour < 6) { 

      MPE_Fill_circle(graph, width + 40, .93*height, 35, MPE_BLACK); 

   MPE_Fill_circle(graph, width + 48, .93*height, 30, MPE_WHITE); 

   } 

   else 

      MPE_Fill_circle(graph, width + 40, .93*height, 35, 60); 

 

   if (time_structure.tm_hour == 12)                      //noon 

      sprintf(string, "12:%02d pm", time_structure.tm_min); 

   else if (time_structure.tm_hour == 0)                  //midnight 

      sprintf(string, "12:%02d am", time_structure.tm_min); 

   else if (time_structure.tm_hour > 12) 

      sprintf(string,"%d:%02d pm", time_structure.tm_hour%12, 

 time_structure.tm_min); 

   else 

      sprintf(string,"%d:%02d am", time_structure.tm_hour, 

 time_structure.tm_min); 

 

   MPE_Draw_string(graph, width + 28, .93*height, MPE_BLACK, string); 

   sprintf(outside_temp, "%.2lf%cF", temp[0][0], 0x00B0); 

   MPE_Draw_string(graph, width + 28, .95*height, MPE_BLACK, outside_temp); 

   sleep(WAIT_TIME); 

} 

void display_scale(double maxscale, double x1, double xsize, double y1, 

double ysize) { 

   //xsize should be greater than 15, ysize greater than 8 

   int plot_value; 

   double step, place; 

   sprintf(string, "Scale %cF", 0x00B0); 

   MPE_Draw_string(graph, x1+5, y1, MPE_BLACK, string); 

   y1 += 8; 

   ysize -= 8; 

   ysize -= (int)ysize % (int)maxscale; 

   step = ysize/maxscale; 

   for( i = maxscale; i >= 0; i-- ) { 

      plot_value = ncolors - ((double)ncolors * i / maxscale); 

      place = y1+ysize-(step * i); 
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      MPE_Fill_rectangle( graph, x1+15, place, xsize-15, step, 

 color_array[plot_value] ); 

   if( i % 10 == 0) { 

         sprintf( string, "%d", i); 

   MPE_Draw_string(graph, x1, place+5, MPE_BLACK, string); 

      } 

   } 

} 

 

char Iget_key_press(int*xpos, int*ypos) {  //from Sapient 

   XEvent event; 

   char keys[20], toReturn; 

   int numChar; 

   KeySym keysym; 

   XComposeStatus compose; 

   if (graph->Cookie != MPE_G_COOKIE) { 

      fprintf(stderr, "Handle argument is incorrect or corrupted\n"); 

      return '\0'; 

   } 

   XSelectInput(graph->xwin->disp,graph->xwin->win, 

 MPE_XEVT_IDLE_MASK|ButtonPressMask|KeyPressMask); 

   //add mouse press to events monitored 

   if (XCheckWindowEvent(graph->xwin->disp,graph->xwin->win, KeyPressMask, 

&event) == False) { 

      return '\0'; 

   } 

   //check once if mouse has been pressed 

   numChar = XLookupString(&event, keys, 20, &keysym, &compose); 

   toReturn = '\0'; 

   *xpos=event.xkey.x; 

   *ypos=event.xkey.y; 

   if ((((keysym>=XK_KP_Space) && (keysym<=XK_KP_9)) || ( (keysym>XK_space) 

&& (keysym<XK_asciitilde)))) { 

      toReturn = keys[0]; 

   } 

   XSelectInput(graph->xwin->disp, graph->xwin->win, MPE_XEVT_IDLE_MASK); 

   /*turn off all events*/ 

   return toReturn; 

} 

 

void display_close(void) { 

   MPE_Close_graphics(&graph); 

   MPE_Close_graphics(&graph2); 

} 

 

void set_label(char *text) { 

   label = text; 

} 

 

char get_key(int *i, int *j, int my_offset, int matrix_size_x, int 

matrix_size_y) { 

   char ch; 

   int xcor, ycor; 

 

   ch = Iget_key_press(&xcor, &ycor); 

   if (ch != '\0') { 

      *i = (xcor - 2) * matrix_size_x / width; 
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      *j = (ycor - 2) * matrix_size_y / height - my_offset; 

      if (*i < 0) 

         *i = 0; 

      if (*j < 0) 

         *j = 0; 

      if (*i > matrix_size_x) 

         *i = matrix_size_x; 

      if (*j > matrix_size_y) 

         *j = matrix_size_y; 

   } 

   MPI_Bcast(&ch, 1, MPI_CHAR, 0, MPI_COMM_WORLD); 

   MPI_Bcast(i, 1, MPI_INT, 0, MPI_COMM_WORLD); 

   MPI_Bcast(j, 1, MPI_INT, 0, MPI_COMM_WORLD); 

   return ch; 

} 

 

TRIDIAGONAL SOLVER 
/* From Wikipedia */ 

/* Fills solution into x */ 

void TridiagonalSolve(const double *a, const double *b, double *c, double *d, 

double *x, unsigned int n) { 

 int i; 

 

   double eps = 1.0e-20; 

   /* Modify the coefficients - forward sweep */ 

   if ( b[0] != 0.0) { 

      c[0] /= b[0]; 

   d[0] /= b[0]; 

   } 

   else { 

      c[0] /= (b[0] + eps); 

      d[0] /= (b[0]+eps); 

   } 

   for (i = 1; i < n; i++) { 

      double id = (b[i] - c[i-1] * a[i]); //Division by zero risk 

      c[i] /= id;          //Last value found is redundant 

      d[i] = (d[i] - d[i-1] * a[i])/id; 

   } 

 

   /* Substitute - backward sweep */ 

   x[n - 1] = d[n - 1]; 

   for(i = n - 2; i >= 0; i--){ 

      x[i] = d[i] - c[i] * x[i + 1]; 

   } 

} 


