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Executive Summary

Elliptic curves are increasingly being used in cryptographic applications, particularly in

public key exchange and in authentication, where the Federal Government has approved the

Elliptic Curve Digital Signature Algorithm. Because of the rising prevalence of elliptic curve

cryptography, an important area of study is how to conduct the necessary elliptic curve

group operations in the most efficient manner possible.

Code was written to handle large integer arithmetic and to perform the basic operations

of elliptic curve point addition and point doubling. Building on this underlying structure,

we investigated the principal operation for elliptic curve calculations–point multiplication

modulo a large prime p. Point multiplication requires the calculation of inverses modulo p,

and, as finding inverses is a major driver for the computational cost of elliptic curve oper-

ations, we gave some extra attention to finding an efficient scheme for these calculations.

To this end, we used a modified Extended Euclidean Algorithm (rather than Lagrange’s

Theorem) to find our inverses, implementing a trick known as the almost inverse algorithm.

In addition to regular affine and projective representations, as the major focus of our project

we implemented and tested for the first time a new technique invented by Rich Schroeppel

that is designed to greatly speed up point multiplication.

With approximately seven inverses, Schroeppel’s method, taken in conjunction with the

almost inverse algorithm, is as fast as projective, which only requires one inverse. Both take

around 33-35 milliseconds to multiply a point by a 256-bit number. We estimate that with

more emphasis on optimizing reciprocal calculations, Schroeppel’s method could be about

20% faster than projective coordinates for point multiplication in our implementation.
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Elliptic Curves Kristin Cordwell & Chen Zhao

Introduction

Background: The Advantages of Elliptic Curves

Public key cryptography, invented in the 1970s, primarily has used two schemes, RSA,

named after Rivest, Shamir, and Adelman, and Diffie-Hellman key exchange. RSA has been

extremely popular, both for encrypting small amounts of data and for generating digital sig-

natures. It is, however, computationally intensive, using lots of modular exponentiations, so,

for efficiency, one would like to keep the parameters small. RSA’s security, however, is based

on the difficulty of factoring large composite numbers, so one would like the parameters to

be large for this reason.

In symmetric key (shared secret key) systems the security is usually measured in the num-

ber of tries for an exhaustive search. A decade ago, cryptographers built a special purpose

computer to break DES (Digital Encryption Standard), which has a key length of 56 bits,

for a “strength” of 256. Each extra bit of key length adds a multiple of two in the difficulty

of breaking the system, so an extra 10 bits of key length gives a multiple of more than 1000

in extra strength against an attacker.

For RSA, however, the complexity of factoring is less difficult than exhaustive search. The

General Number Field Sieve, currently the most efficient method for factoring large, general

numbers, has complexity (roughly, the amount of work required to run an algorithm) of

f(n) = O(ec·[ln(n)]
1
3 [ln(ln(n))]

2
3 ), where n is the number to be factored. A good value for c is

1.923, so we can use the formula to find the increase in security with an increase in the size of

n. People have factored a general 663-bit number (n ≈ 2663), and a 1024-bit number should

show an increase in strength of about f(21024)
f(2663)

≈ 34000. Going from 1024 bits to 2048 bits

gives an increase in strength of about 1.2 billion, or a little more than 230.

The table below shows a reasonably accurate comparison for the security of symmetric key
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block cipher systems, RSA, and elliptic curves over a prime p. The RSA modulus sizes are

ones that are multiples of 1024 and most closely match the security of the symmetric key sizes.

Security (bits) 80 112 128 256
(Triple-DES) (AES-low) (AES-high)

RSA modulus n 1024 2048 3072 15360

Elliptic Curve p 160 224 256 512

DES = Digital Encryption Standard

AES = Advanced Encryption Standard

Although the group operation is somewhat more complicated than exponentiation, the much

smaller key sizes make elliptic curves much more efficient than RSA.

Federal Standards

The National Security Agency (NSA) has approved Suite B cryptography for protecting both

classified and unclassified national security information [15]. (Suite A contains classified

algorithms.) Suite B comprises the following algorithms:

Encryption Advanced Encryption Standard (AES) - FIPS 197

(with key sizes of 128 and 256 bits)

Digital Signature Elliptic Curve Digital Signature Algorithm - FIPS 186-2

(using the curves with 256 and 384-bit prime moduli)

Key Exchange Elliptic Curve Diffie-Hellman - Draft NIST Special Pub. 800-56

(using the curves with 256 and 384-bit prime moduli)

Hashing Secure Hash Algorithm - FIPS 180-2

(using SHA-256 and SHA-384)

In this project, we focus on the NIST FIPS 186-2 elliptic curve with 256-bit prime modulus

[13].
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Basic Elliptic Curves

Equations and Points

An elliptic curve is a graph of an equation that is quadratic in y and cubic in x. The most

general equation that we will consider is of the form y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where a1, . . . , a6 are constants in the underlying field. If the field is not characteristic 2 (es-

sentially, mod 2, see Appendix A), then we can reduce the form of the equation by noticing

that (y+ a1x
2

+ a3

2
)2 = x3 +(a2 + a1

2

4
)x2 +(a4 + a1a3

2
)x+(a3

2

4
+a6). By setting y1 = y+ a1x

2
+ a3

2
,

we can rewrite the original equation as y1
2 = x3 + â2x

2 + â4x + â6, with appropriate choices

of â2, â4, â6. If the characteristic is neither 2 nor 3, we can eliminate the x2 term by letting

x = x1− â2

3
to obtain y1

2 = x1
3 +Ax1 +B, for the appropriate constants A and B. Although

we may consider a field of characteristic 2 later, for the most part we will focus on equations

of this form, which we will simply write as y2 = x3 + Ax + B.

Figures 1 and 2 (below) show typical elliptic curves over the real numbers. When going

from the equation linear in y to the elliptic curve (y2), notice that the negative portion in

y of the linear curve (red) is discarded. Setting the positive portion equal to y2 gives a

reflection about the x-axis of the original positive portion and causes some slight smoothing

of the curve as well.
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Figure 1: y = x3 − 3x + 4 and y2 = x3 − 3x + 4
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Figure 2: y = x3 − 3x and y2 = x3 − 3x

The shape of the elliptic curve is largely determined by the behavior of the cubic in x. Over

the real numbers, the regular cubic equation y = x3+Ax+B always has at least one real root

and could have three real roots, possibly including duplicate roots. The equation y = x3, for

example, has a triple root at x = 0, while y = x3 − 3x + 2 = (x − 1)2(x + 2) has a double

root at x = 1 as well as a single root at x = −2.

We need to be able to take a tangent line at every point of the elliptic curve, which means

that the graph must be smooth everywhere. When we extend the cubic equation to the

elliptic curve equation, for the case of three repeated roots (y2 = x3), we get a cusp at x = 0,

as seen in Figure 3, so no tangent exists at that point. Similarly, in the case of a cubic

with a double root, for example y3 = x3 − 3x + 2, we get a crossing at the double root,

so, again, we cannot find a unique tangent at that point (Figure 4). For this reason, we

require our elliptic curves to have three distinct roots. Equivalently, we can require that the

discriminant ((r1− r2)(r1− r3)(r2− r3))
2 6= 0, where r1, r2, and r3 are the three roots of the

cubic equation. In terms of the coefficients, 4A3 + 27B2 6= 0.
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Figure 3: Three repeated roots
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Figure 4: Two repeated roots

Group Addition Law

Affine Coordinates

A point on an elliptic curve is the ordered pair (x, y), where the coordinates satisfy the

elliptic curve equation. Let P and Q be points on an elliptic curve. Then we can add two

points geometrically by taking the line that joins them, finding where that line intersects the

curve in a third point, and then reflecting that point about the x-axis, which is also on the

curve. To add a point to itself, we take the tangent to the curve at that point, and do the

same process (recall that elliptic curves must have well-defined tangent lines at every point).

It is shown in [11] that the points of an elliptic curve, together with this addition operation,

form a group.
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Arithmetically, if P and Q are distinct points on the curve, where P = (x1, y1) and Q =

(x2, y2), we will want to find P + Q = N . Letting the slope of the line through P and Q be

m = y2−y1

x2−x1
, we find that the equation of the line is y = m(x− x1) + y1. Plugging in for y in

the equation of the curve gives an equation of x for the third point where the line intersects

the curve (it already intersects at P and Q),

(m(x− x1) + y1)
2 = x3 + Ax + B.

Substituting gives 0 = x3 −m2x2 + m2x2
1 + (A + 2m2x1 − 2my1)x + (B + 2mx1y1 − y2

1).

Since we know that two roots of the equation are x1 and x2, we have

(x− x1)(x− x2)(x− xt) = x3 −m2x2 + m2x2
1 + (A + 2m2x1 − 2my1)x + (B + 2mx1y1 − y2

1),

where xt is the third root.

Expanding the left side, and setting the coefficients of the x2 term equal gives x3 = xt =

m2 − x1 − x2, and thus yt = m(x3 − x1) + y1.

Finally, reflecting about the x-axis changes the sign of yt to give P + Q = N = (x3, y3),

where x3 = m2−x1−x2 and y3 = m(x1−x3)−y1. If Q is P reflected about the x-axis, then

-3 -2 -1 1 2 3

-4

-2

2

4

P

Q

P+Q

Figure 5: Point Addition
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the line is vertical, and we say P + Q = O, the point at infinity, which is defined to be the

identity element of the group. This also means that the reflection of P about the x-axis is−P .

We notice that if P and Q are close together, the line through them approaches the tangent

line. Therefore, when P = Q = (x1, y1), we take L to be the tangent line through the point,

and we are finding P + P = 2P . We find the slope m of L through implicit differentiation:

2y dy
dx

= 3x2 + A, so m = dy
dx

= 3x1
2+A

2y1
.

If y1 = 0, then L is vertical, so we set P + P = 2P = O.

For y1 6= 0, we have for the equation of line L,

y = m(x − x1) + y1. From this, we get the cubic equation 0 = x3 −m2x2 + · · · . We know

that x1 is a double root, so, in a similar manner to as before, we can find x3 = m2− 2x1 and

y3 = m(x1 − x3)− y1. This is called point doubling.

-3 -2 -1 1 2 3

-4

-2

2

4

P 2P

Figure 6: Point Doubling
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Finally, for the case in which Q = O, we know that the line joining P and Q is verti-

cal, and it intersects our curve at −P , where −P is the reflection of P across the x-axis.

Thus, P + O = P .

Although affine is the most straightforward way to add and double points, each addition

(or doubling) requires the calculation of an inverse mod p. Just as long division takes far

longer than multiplication or addition, so the calculation of inverses (reciprocals) is much

more computationally expensive than multiplications or additions. Hence, we would expect

that using affine coordinates might take more time than an alternate method that utilizes

fewer reciprocal calculations.

Projective Coordinates

We can also express points in projective coordinates, using x, y, and z to describe the loca-

tion in projective space. Using projective rather than affine coordinates allows us to avoid

finding reciprocals, a computationally expensive operation. Somewhat working against this

is the fact that it requires an additional coordinate, so one must perform extra multiplica-

tions in point additions and doublings.

We express our two points to be added as P = (x1, y1, z1) and Q = (x2, y2, z2), and we call

our elliptic curve y2z = x3 +Axz2 +Bz3. Then we have (x1, y1, z1)+(x2, y2, z2) = (x3, y3, z3),

and we compute x3, y3, and z3 for each of the following cases.

If P 6= ±Q, we have

u = y2z1 − y1z2, v = x2z1 − x1z2, w = u2z1z2 − v3 − 2v2x1z2, and we find that

x3 = vw,

y3 = u(v2x1z2 − w)− v3y1z2,

z3 = v3z1z2.

8
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If P = Q, we obtain t = Az1
2 + 3x1

2, u = y1z1, v = ux1y1, w = t2 − 8v, yielding

x3 = 2uw,

y3 = t(4v − w)− 8y1
2u2,

z3 = 8u3.

Finally, for P = −Q, we have P + Q = O.

Elliptic Curves Over Finite Fields

Structure of the Elliptic Curve

The previous discussion pertained to elliptic curves over the real numbers. So, for example,

all of the x and y coordinates were real numbers, and there were infinitely many solutions to

the elliptic curve equation. Most modern cryptographic applications utilize a finite group,

and we can achieve this with the elliptic curves by letting the underlying field be a finite

field, GF (pn). Typically, people use either GF (p), the integers modulo a large prime p, or

GF (2n). We will primarily focus on GF (p).

Since there are only a finite number of possible x coordinates and y coordinates, the number

of possible solutions to an elliptic curve equation over a finite field is necessarily finite. An

elliptic curve over a finite field, then, is the finite number of points that satisfy the elliptic

curve equation together with the group operation, where we can add points together. The

number of points in the curve E(GF (p)), is always equal to p + 1 − a, where |a| ≤ 2
√

p

[11]. It is straightforward to compute the number of points using various algorithms. The

formulas for point addition and point doubling, in both affine and projective representations,

are exactly the same as before, except that we must substitute multiplying by an inverse

element of the field, rather than division. For example, in affine point doubling, instead of

m =
3x2

1+A

2y1
, we have m = (3x2

1 + A)((2y1)
−1). Inverses in finite fields are readily found using

9
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either the Extended Euclidean Algorithm or Lagrange’s Theorem. Just as long division is

much more computationally expensive than multiplication in regular arithmetic, so finding

inverses in finite fields is far more computationally expensive than multiplications in the

field. Much of our work focusses on reducing the number of calculations of inverses, so as to

minimize the computations involved and speed up the calculations.

Elliptic Curve P − 256

The elliptic curve P − 256 is a NIST-specified curve over a 256-bit prime [13]. It is also

one of two curves specified in NSA’s Suite B algorithms [15]. The equation of the curve is

y2 = x3 − 3x + b (mod p), where

b = 5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b16

p = 115792089210356248762697446949407573530086143415290314195533631308867097853951,

for p the prime modulus of the underlying field.

r = 115792089210356248762697446949407573529996955224135760342422259061068512044369,

for r the number of points on the curve.

The chosen base point G has coordinates (Gx, Gy), where

Gx = 6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c29616

Gy = 4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f516

We use this curve throughout our code.

Point Multiplication on Elliptic Curves

Many of the cryptographic applications of elliptic curves consider a fixed base point, G, of an

elliptic curve, and compute multiples nG of G, where nG is defined to be iterated addition

of n copies of G. Typically, n is approximately the size of the group; or, over GF (p), this

is approximately p. It is impractical for common values of p (a 100 to 300-bit number) to

compute nG by iterated addition. Instead, we use a variant of the Russian Peasant Method

[4] in which the coefficient n is converted to binary and the following algorithm is applied:

10
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For the high bit (necessarily a 1), load the answer register R with G. Point to the next lower

bit.

Loop:

R← 2R;

If the bit is a 1, R← R + G;

If the bit is the last bit, exit loop;

Return R.

For example, consider computing 13G.

1310 = 11012

1101 G = G

1101 2G + G = 3G

1101 2(3G) = 6G

1101 2(6G) + G = 13G

For a typical p-bit number, there will be p
2

zeros and p
2

ones, so there will be about p point

doublings and p
2

point additions. Each of these involves computing a reciprocal (inverse).

Efficient Reciprocal Calculation

Just as long division is far more computationally intensive than multiplication, the cal-

culation of inverses (reciprocals) mod p can often be the most costly single operation in

elliptic curve calculations. Traditional methods of finding inverses mod p involve applying

Lagrange’s Theorem or using the Extended Euclidean Algorithm (EEA). Using Lagrange’s

Theorem requires a very large number of modular squarings and multiplications. Because

this implementation is straightforward, we first utilize this method in our calculations. (See

Appendix A for a description of using Lagrange’s Theorem for finding inverses mod p.) The

EEA has fewer steps but typically requires a number of long divisions. Schroeppel [9] de-

veloped a method that uses only additions, subtractions, and shifts to calculate an ”almost

11
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inverse”, which is then corrected to give the true inverse.

The Almost Inverse Algorithm

If p is a large prime and a is a positive integer less than p, the algorithm produces a value

c and a value k (that depends on a) such that ac = 2k (mod p) (Hence the name, since the

product is a power of 2, rather than 1). It works as follows [9]:

Input: Large integers p, a, with p an odd prime and 0 < a < p

Output: Large integer c and integer k such that ac = 2k (mod p)

Initialize C = 1, D = 0, F = a, G = p

Initialize integer variable k = 0

Loop:

While F is even, do F ← F
2
, D ← 2D, k ← k + 1;

If F = 1, return C and k;

If F < G, swap F , G and swap C, D;

If F = G (mod 4), then {F ← F −G, C ← C −D};

Else {F ← F + G, C ← C + D};

Goto Loop;

Return c = C, k.

For efficiency, we have implemented the swaps as swapping pointers.

Example:

p = 97, a = 5

12
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Operation F G C D k

Initialize 5 97 1 0 0

Swap (F, G), (C, D) 97 5 0 1 0

F = F −G, C = C −D 92 5 -1 1 0

F = F
4
, D = 4D 23 5 -1 4 2

F = F + G, C = C + D 28 5 3 4 2

F = F
4
, D = 4D 7 5 3 16 4

F = F + G, C = C + D 12 5 19 16 4

F = F
4
, D = 4D 3 5 19 64 6

F < G, Swap 5 3 64 19 6

F = F + G, C = C + D 8 3 83 19 6

F = F
8
, D = 8D 1 3 83 152 9

So c = 83 is the almost inverse, solving 5 · 83 = 29 (mod 97). (Check: 27 = 27 (mod 97).)

The mod 4 comparison, and the respective subtraction or addition ensures that each resulting

value of F will be divisible by at least 4, which allows shifting by at least two bits.

The Fixup Algorithm

Once we have solved ac = 2k (mod p), we would like to find (2k)−1 so that we can find

the true inverse of a, which is c(2k)−1. One way to do this would be to precompute all

of the possible values of (2k)−1 (there are about 800 possibilities of k for our choice of p).

Then, we can simply multiply by the proper inverse to recover the true inverse of a (mod p).

Alternately, there is a fairly fast algorithm, the Fixup Algorithm, that allows us to recover

(2k)−1 (mod p) fairly quickly, as follows [9]:

Input: k, p, and c

Output: X such that X = c(2k)−1 (mod p)

Initialize R = −p−1 (mod 232) (This can be precomputed. For our particular p, R = 1.)

13
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Initialize X = c

Loop:

If k = 0, return X;

J = min(k, 32);

V = R ·X (mod 2J);

X = X + V · p;

X = X/2J ;

K = K − J ;

Goto Loop;

Schroeppel’s Method for Point Multiplication

Although the Russian Peasant Method is far more efficient than simply adding G to itself

many times, we can approach the problem differently using a previously unimplemented

method developed by Richard Schroeppel [8]. This method vastly reduces the number of

computationally expensive calculations of reciprocals as compared to affine (to about seven

or eight) while taking some advantage of the smaller number of coordinates used in affine

additions. To accomplish this when computing nG, we express the number n in binary, we

compute all of the powers of two times G up to the bit-length of n, and we add all of the

ones that are non-zero in the binary representation of n.

Computing Successive Doublings of G

Let n be a k-bit number, and we want to compute nG. Begin in projective coordinates

with G having coordinates (x, y, 1). First, we compute 2G, 4G, 8G, . . . , 2k−1G in a way

that minimizes the number of computations of reciprocals. We recall the formulas for point

doubling. If P = (x1, y1, z1) and 2P = (x3, y3, z3), we have:

t = Az1
2 + 3x1

2, u = y1z1, v = ux1y1, w = t2 − 8v

14
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x3 = 2uw

y3 = t(4v − w)− 8y1
2u2

z3 = 8u3

Notice that z1 divides z3. This is true even though we are continually reducing mod p (or

mod the primitive polynomial of GF (2n)) in the sense that z−1
1 = z3

−1 · 8y1
3z1

2. So, if we

save the coordinate values of G, 2G, 4G,. . . , 2k−1G, we can take a final inversion of the last

z-coordinate and work our way back down to recover all of the earlier z-coordinates. It’s then

easy to change back to affine coordinates, by multiplying each of the x and y-coordinates by

their respective z-coordinate (mod p). Although this requires some extra memory, we have

recovered all of the powers of two multiples of G with only one reciprocal computation.

Point Additions

Now that we have expressed all of the powers of two times G, we add the terms that corre-

spond to the ones in the binary representation of n. For example, if n = 13, n = 11012, so we

would add 23G+22G+20G, leaving out the 21G since it corresponds to a zero in the binary

representation of 13. On average, there will be lg(n)
2

one-digits, where lg is the logarithm

base 2, or the number of digits in the binary representation. If we did simple affine point

addition, we would still need to compute a reciprocal for every pair of points. Instead, we

pair the points and defer the calculation of the inverses as follows:

Recall the formula for addition of two points, (x1, y1) and (x2, y2). x3 = m2 − x1 − x2 and

y3 = m(x1 − x3) − y1, where m = (y2 − y1)(x2 − x1)
−1. To compute this, we need to know

the reciprocal (x2−x1)
−1. If we store the values {(x2−x1), (x4−x3)(x2−x1), (x6−x5)(x4−

x3)(x2 − x1), . . . , (x2j − x2j−1) · · · (x2 − x1)}, where, of course, we are reducing mod p when-

ever necessary, if we take the reciprocal of the final entry and multiply that by the previous

entry, we will recover (x2j − x2j−1)
−1. Multiplying our master reciprocal by (x2j − x2j−1)

gives us an overall reciprocal for the previous entry, and we continue in this manner, recov-

ering each term’s reciprocal. When we’re all done, we use this to compute the values of m

15
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for the various pairs and then the affine coordinates of the sums of the pairs. If we count

multiplications, we have reduced the amount of computation from computing j reciprocals

(one per pair) to one reciprocal and 3(j − 1) multiplies.

Adding the points in pairs will produce roughly lg(n)
4

new points, which we can again pair

and repeat the same trick. We can do this repeatedly until we are down to a few points, at

which time we do the final additions.

Computational Advantage

Let k be the number of bits in n.

For the Russian Peasant Method, we must perform k−1 doublings and approximately k
2

ad-

ditions. Each of these requires a reciprocal computation, so there are roughly 3k
2

reciprocals

involved.

In Schroeppel’s method, while computing successive doublings of G, we save not only t,

u, v, w, x3, y3, and z3, but also 8y1u
2, which is an intermediate step in computing y3. We

then notice that z−1
1 = z−1

3 · 8y1u
2. This means that when we compute the successive dou-

blings, deferring finding any reciprocals until the end, we end up with a final value of z,

which we invert and then multiply by the previously stored value of 8y1u
2, which gives us

the previous z’s inverse. We multiply this one by the previously stored value of 8y1u
2 to get

the z inverse for the next previous term, and continue to iterate until we do the last inverse

for the point 2G. This method requires 1 reciprocal and (k − 1) multiplications, compared

to (k − 1) reciprocals by computing the successive doublings normally.

For the affine additions, notice that we are beginning with approximately k
2

points to add,

which we do in consecutive blocks of pairs. The first block comprises approximately k
4

pairs.

To compute the reciprocals using our trick, we have the approximate cost:

16
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(1 reciprocal + 3(k
4
− 1) multiplications)+(1 reciprocal + 3(k

8
− 1) multiplications)+(1 re-

ciprocal + 3( k
16
− 1) multiplications)+ · · ·+(1 reciprocal + 3( k

2lg k − 1) multiplications)

Summing the series for large k yields a final answer of (lg k − 1) reciprocals + (3k
2
− 3 lg k)

multiplications.

So our final amount of work, combining the doublings and the affine additions, is lg k recipro-

cals and (5k
2
−3 lg k−1) multiplications, which is substantially better than the 3k

2
reciprocals

required by the Russian Peasant Method.

Results

Checking the Values

Since the sizes of the numbers are so large, it was important to verify that the code was

producing the correct values. Although the program Mathematica does not have elliptic

curve operations, it does have modular arithmetic and modular inverses for large numbers.

Mathematica was used extensively in debugging and verifying the code.

For point multiplication, since three different methods were used, they provided a consistency

check for each other.

Computer Specifications

Processor: AMD Athlon(tm) 64 X2 Dual-Core Processor TK-55

1.80 GHz

Memory (RAM): 2.00 GB

System type: 32-bit Operating System

17
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Experimental Conditions

Each of the three methods for point multiplication, Affine, Projective, and Schroeppel, was

combined with the two methods for reciprocal calculation, Lagrange’s Theorem and the Al-

most Inverse Algorithm, for a total of six cases of interest. Ten trials were performed, each

trial using a different, randomly-generated large number (about 256-bits) , and for each trial,

all six cases operated on the same random number. During each trial, each of the six cases

was run 100 times to obtain a more accurate average number for each case.

To minimize the effect of background processes, the priority of the code execution was set

to “high”.

Timing Results

The results for the timing tests are as follows:

(Of note is Trial 3, in which Schroeppel’s method is about 1
3

faster for the almost inverse

algorithm than in the other trials. This is an outlier.)

CPU Times (Release)

#1 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 972 164 35 33 53 34
2 981 165 35 33 53 34
3 966 165 35 33 53 34
4 967 164 35 34 53 34
5 967 164 35 33 53 34

Avg 971 164 35 33 53 34

#2 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 944 161 34 33 50 33
2 950 161 34 33 50 33
3 946 161 34 33 50 34
4 950 161 34 33 50 34
5 947 161 34 33 50 33

Avg 947 161 34 33 50 33

#3 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 1001 170 37 34 53 22
2 1000 170 36 34 55 24
3 1002 169 36 35 53 25
4 999 169 36 34 53 20
5 994 169 36 35 53 24

Avg 999 169 36 34 53 23

#4 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 924 159 34 32 49 33
2 927 158 34 32 50 33
3 924 157 34 32 50 33
4 922 158 35 32 49 33
5 922 158 34 32 50 33

Avg 924 158 34 32 50 33

#5 Time (ms)
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CPU Times (Release)

#1 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 972 164 35 33 53 34
2 981 165 35 33 53 34
3 966 165 35 33 53 34
4 967 164 35 34 53 34
5 967 164 35 33 53 34

Avg 971 164 35 33 53 34

#2 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 944 161 34 33 50 33
2 950 161 34 33 50 33
3 946 161 34 33 50 34
4 950 161 34 33 50 34
5 947 161 34 33 50 33

Avg 947 161 34 33 50 33

#3 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 1001 170 37 34 53 22
2 1000 170 36 34 55 24
3 1002 169 36 35 53 25
4 999 169 36 34 53 20
5 994 169 36 35 53 24

Avg 999 169 36 34 53 23

#4 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 924 159 34 32 49 33
2 927 158 34 32 50 33
3 924 157 34 32 50 33
4 922 158 35 32 49 33
5 922 158 34 32 50 33

Avg 924 158 34 32 50 33

#5 Time (ms)

CPU Times (Release)

#1 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 972 164 35 33 53 34
2 981 165 35 33 53 34
3 966 165 35 33 53 34
4 967 164 35 34 53 34
5 967 164 35 33 53 34

Avg 971 164 35 33 53 34

#2 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 944 161 34 33 50 33
2 950 161 34 33 50 33
3 946 161 34 33 50 34
4 950 161 34 33 50 34
5 947 161 34 33 50 33

Avg 947 161 34 33 50 33

#3 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 1001 170 37 34 53 22
2 1000 170 36 34 55 24
3 1002 169 36 35 53 25
4 999 169 36 34 53 20
5 994 169 36 35 53 24

Avg 999 169 36 34 53 23

#4 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 924 159 34 32 49 33
2 927 158 34 32 50 33
3 924 157 34 32 50 33
4 922 158 35 32 49 33
5 922 158 34 32 50 33

Avg 924 158 34 32 50 33

#5 Time (ms)

CPU Times (Release)

#1 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 972 164 35 33 53 34
2 981 165 35 33 53 34
3 966 165 35 33 53 34
4 967 164 35 34 53 34
5 967 164 35 33 53 34

Avg 971 164 35 33 53 34

#2 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 944 161 34 33 50 33
2 950 161 34 33 50 33
3 946 161 34 33 50 34
4 950 161 34 33 50 34
5 947 161 34 33 50 33

Avg 947 161 34 33 50 33

#3 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 1001 170 37 34 53 22
2 1000 170 36 34 55 24
3 1002 169 36 35 53 25
4 999 169 36 34 53 20
5 994 169 36 35 53 24

Avg 999 169 36 34 53 23

#4 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 924 159 34 32 49 33
2 927 158 34 32 50 33
3 924 157 34 32 50 33
4 922 158 35 32 49 33
5 922 158 34 32 50 33

Avg 924 158 34 32 50 33

#5 Time (ms)
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#5 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 967 166 35 33 52 34
2 968 165 35 33 53 34
3 973 165 36 34 54 34
4 968 166 35 33 53 34
5 967 164 35 33 53 34

Avg 969 165 35 33 53 34

#9 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 976 166 36 34 53 34
2 973 167 35 34 53 34
3 976 166 38 34 53 34
4 981 167 34 34 53 34
5 974 166 36 34 53 34

Avg 976 166 36 34 53 34

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 967 166 35 33 52 34
2 968 165 35 33 53 34
3 973 165 36 34 54 34
4 968 166 35 33 53 34
5 967 164 35 33 53 34

Avg 969 165 35 33 53 34

#6 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 954 161 35 33 51 34
2 950 161 35 33 50 33
3 950 161 35 33 50 34
4 950 163 35 33 50 34
5 956 162 35 33 50 34

Avg 952 162 35 33 50 34

#7 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 953 163 36 33 50 34
2 952 163 35 33 51 33
3 953 163 35 33 50 33
4 953 162 35 33 50 34
5 962 164 35 33 50 34

Avg 955 163 35 33 50 34

#8 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 996 167 36 35 53 35
2 987 167 36 34 54 35
3 985 168 36 34 53 35
4 990 168 36 36 54 34
5 986 168 36 34 53 35

Avg 989 168 36 35 53 35

#9 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 976 166 36 34 53 34
2 973 167 35 34 53 34
3 976 166 38 34 53 34

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 967 166 35 33 52 34
2 968 165 35 33 53 34
3 973 165 36 34 54 34
4 968 166 35 33 53 34
5 967 164 35 33 53 34

Avg 969 165 35 33 53 34

#6 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 954 161 35 33 51 34
2 950 161 35 33 50 33
3 950 161 35 33 50 34
4 950 163 35 33 50 34
5 956 162 35 33 50 34

Avg 952 162 35 33 50 34

#7 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 953 163 36 33 50 34
2 952 163 35 33 51 33
3 953 163 35 33 50 33
4 953 162 35 33 50 34
5 962 164 35 33 50 34

Avg 955 163 35 33 50 34

#8 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 996 167 36 35 53 35
2 987 167 36 34 54 35
3 985 168 36 34 53 35
4 990 168 36 36 54 34
5 986 168 36 34 53 35

Avg 989 168 36 35 53 35

#9 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 976 166 36 34 53 34
2 973 167 35 34 53 34
3 976 166 38 34 53 34
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Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 967 166 35 33 52 34
2 968 165 35 33 53 34
3 973 165 36 34 54 34
4 968 166 35 33 53 34
5 967 164 35 33 53 34

Avg 969 165 35 33 53 34

#6 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 954 161 35 33 51 34
2 950 161 35 33 50 33
3 950 161 35 33 50 34
4 950 163 35 33 50 34
5 956 162 35 33 50 34

Avg 952 162 35 33 50 34

#7 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 953 163 36 33 50 34
2 952 163 35 33 51 33
3 953 163 35 33 50 33
4 953 162 35 33 50 34
5 962 164 35 33 50 34

Avg 955 163 35 33 50 34

#8 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 996 167 36 35 53 35
2 987 167 36 34 54 35
3 985 168 36 34 53 35
4 990 168 36 36 54 34
5 986 168 36 34 53 35

Avg 989 168 36 35 53 35

#9 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 976 166 36 34 53 34
2 973 167 35 34 53 34
3 976 166 38 34 53 34

#5 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 967 166 35 33 52 34
2 968 165 35 33 53 34
3 973 165 36 34 54 34
4 968 166 35 33 53 34
5 967 164 35 33 53 34

Avg 969 165 35 33 53 34

#9 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 976 166 36 34 53 34
2 973 167 35 34 53 34
3 976 166 38 34 53 34
4 981 167 34 34 53 34
5 974 166 36 34 53 34

Avg 976 166 36 34 53 34

4 981 167 34 34 53 34
5 974 166 36 34 53 34

Avg 976 166 36 34 53 34

#10 Time (ms)

Trial Affine Projective Schroeppel
Lagrange Almost Lagrange Almost Lagrange Almost

1 969 165 35 33 53 34
2 961 170 35 34 53 34
3 962 164 35 33 53 34
4 964 165 35 33 53 34
5 961 164 35 33 53 34

Avg 963 166 35 33 53 34
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For the affine, the almost inverse algorithm gives a very large improvement (of about a fac-

tor of 6) over Lagrange’s Theorem. This is because the affine makes heavy use of inverse

calculations.

There is a very slight improvement using the almost inverse algorithm for projective, be-

cause the projective only requires the computation of one inverse.

In Schroeppel’s method, there are roughly seven inverses used; hence, the almost inverse

algorithm makes an improvement of about 1
3
.

Using the almost inverse algorithm for reciprocal calculation, projective and Schroeppel’s

method are both in the 33-35 ms range, and both are close to five times faster than the

affine.

Conclusions

We have implemented for the first time Rich Schroeppel’s new method for point multiplica-

tion on elliptic curves. This algorithm simultaneously takes advantage of the fewer multipli-

cations and operations intrinsic to affine point addition and reduces the number of reciprocal

calculations, which are the most computationally expensive operations. With approximately

seven inverses, Schroeppel’s method, taken in conjunction with a trick to speed up reciprocal

calculations, is as fast as projective, which only requires one inverse. We estimate that with

more emphasis on optimizing reciprocal calculations, Schroeppel’s method could be about

20% faster than projective coordinates for point multiplication in our implementation.
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Appendix A

Groups

A group is a set of elements G and an operation ∗ with the following properties:

If g and h are elements of G, then g ∗ h is in G (closure)

There exists an identity element e in G such that, for every g in G, e ∗ g = g

For every element g in G, there exists an inverse element g−1 such that g−1 ∗ g = e

If g, h, and k are in G, then g ∗ (h ∗ k) = (g ∗ h) ∗ k (associativity)

It is important to notice that the operation ∗ could be regular multiplication, but it could

also be addition, or any other operation that satisfies the group properties.

Some familiar groups are:

the integers (. . .− 2,−1, 0, 1, 2, . . .) under addition

the non-zero rational numbers under multiplication

Zn: the integers modulo n (the remainder after dividing by n) under addition

Zp
∗: the non-zero integers modulo a prime p under multiplication (we leave out zero because

it has no multiplicative inverse; that is, we cannot divide by zero, and the modulus must be

a prime, because otherwise not every element has a multiplicative inverse)

For a group G with a finite number of elements, the order of the group is defined to be

the number of elements, written as O(G) or |G|.

A commutative group G is one where a ∗ b = b ∗ a for all a, b in G. Note that the addition

operation in elliptic curves is inherently commutative, due to the underlying geometrical

construction.
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Fields

A field is a set of elements and two operations, called addition and multiplication, which is

a commutative group under addition, a commutative group under multiplication (excluding

0 for having an inverse), and distributive. Some well-known fields are the rational numbers,

the real numbers, the complex numbers, and Zp (the integers modulo a prime, p). Of these

four examples, the first three have an infinite number of elements, and the last one has a

finite number of elements, p. This last is thus an example of a finite field. As with groups,

the order of a finite field is the number of elements in it.

The characteristic of a field is the smallest positive number n such that n · 1 = 0. For

finite fields, this is the underlying prime number, p, on which the field is based. Since p is

essentially the same as 0 for these fields, one cannot divide by it. For fields such as the real

numbers or the rationals, the characteristic is defined to be zero.

Finite Fields

Finite fields are based on an underlying finite field, Zp, where p is a prime. From this, we can

build up a more general field, called a Galois Field (GF ), of order pn, where n is a positive

integer. We do this by first making an n-dimensional vector space. For example, we can

choose n = 8, over the underlying field Z2. Thus, we can represent any element of GF (28)

by its coordinates, for example, (1, 0, 0, 1, 0, 1, 1, 1). What makes this a field and not just a

vector space is the fact that we define a multiplication operation. Usually this is done as

follows:

Consider the equivalent representation in terms of a polynomial. Each coordinate corre-

sponds to a different power of x. For example, (1, 0, 0, 1, 0, 1, 1, 1) would correspond to

g(x) = 1 · x7 + 0 · x6 + 0 · x5 + 1 · x4 + 0 · x3 + 1 · x2 + 1 · x + 1. We then pick an irreducible

polynomial, which is the equivalent of a prime number for integers: a polynomial is irre-

ducible if it has no non-trivial polynomial factors. For example, for GF (28), we may pick
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x8 + x4 + x3 + x + 1 as our irreducible polynomial. Now, for example, we can multiply g(x)

by itself to get g(x)2 = 1 · x14 + 1 · x8 + 1 · x4 + 1 · x2 + 1, where we have left out all the zero

terms. Notice that, when we square a polynomial, we just square the individual terms; this

is because the cross-terms all have coefficient 2, which is 0 in Z2. We then need to reduce

by the irreducible polynomial, which means we find the remainder after doing polynomial

long division. The result is x7 + x4 + x2, which we could also write in coordinate form as

(1, 0, 0, 1, 0, 1, 0, 0).

In defining the finite field, typically, there are several irreducible polynomials of the nec-

essary degree; we can use any one of them, because they all give the same basic field.

Note that the multiplicative group associated with a finite field is all of the elements ex-

cept the zero element, so the group has one fewer element than the field. We write the

multiplicative group as GF (pn)∗.

For our particular case, the elliptic curve will be defined over the finite field Zp, where

p is the prime defined in the NIST curve P -256.

Lagrange’s Theorem for Finding Inverses

Lagrange’s Theorem states that, for a prime p and non-zero integer x such that GCD(x, p)=

1, xp−1 ≡ 1 (mod p). This implies that xp−2 = x−1 (mod p). Therefore, we can calculate

the inverse of x (mod p) simply by raising it to a large power; namely, p− 2. Although this

avoids any long divisions, there are a lot of modular squarings and multiplications, so the

overall computational cost can be large.
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Appendix B: Elliptic Curve Cryptography

Key Exchange

Elliptic curve Diffie-Hellman key exchange (included in NSA’s Suite B) works as follows:

Alice and Bob agree on a base point G on the curve. Alice selects a large random integer

a and computes aG and sends the value to Bob. Bob selects a large random number b

and computes bG and sends the value to Alice. The integers a and b are kept secret by

Alice and Bob, respectively. Because of the difficulty of computing the discrete log, it is

considered infeasible for an eavesdropper to recover a from aG or b from bG. Alice takes the

received value bG and multiplies it by a to obtain abG. Bob similarly computes baG. Since

abG = baG, Alice and Bob now share a common secret key (which could be, for example,

the x-coordinate of abG).

Digital Signature Algorithm

Initial Setup

[14] To form a digital signature from an elliptic curve, we first generate a public/private

key pair. Let G be a known base point on the curve, and choose a secret key, d, a random

positive integer less than n, the order (number of points) of the elliptic curve. The point

Q = dG is the public key, and is made known.

Signature Generation

To generate a digital signature of a message m, we first compute h(m), the hash of m. In the

early standard, the hash function SHA-1 was the required hash function. We then compute

two integers, r and s which (combined) are the signature. This is done as follows.

First, choose a message-specific one-time random number k that is less than n, and compute

kG = (x1, y1), where, again, G is our starting point on the elliptic curve. To compute r, we

convert x1 from a field element to an integer, x. To do this, we look at the field Fq in which
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x1 is contained. If q is an odd prime, then we can simply set x1 = x. However, if q is of the

form 2m, then x1 may be interpreted as bit string of length m bits, which we convert to an

integer directly. Then we can set r equal to x (mod n).

To compute s, we let s = k−1(h(m) + dr) (mod n), where h(m) is the hash value of our

message and d is the digital signature private key. If either r or s should happen to be zero,

we begin again with a different random k.

Signature Verification

To verify a signature, we begin with the received message, m′ (represented as a bit string),

the received signature for our message (represented as integers r′ and s′), the elliptic curve

parameters, and the public key, Q.

We begin by computing the hash value h(m′), using the specifiied hash function.

We compute c = s′−1 (mod n) and u1 = h(m′) · c (mod n), and u2 = r′ · c (mod n).

We then compute the elliptic curve point (x1, y1) = u1 ·G+u2 ·Q. If u1G+u2Q is the point

at infinity, the signature is rejected.

Finally, we convert the field element x1 to an integer x, compute v = x (mod n), and compare

v with r′. If r′ = v, the signature is verified with a high level of confidence. If r′ 6= v, the

signature is rejected, indicating that either the message was modified, the message was

incorrectly signed, or the message was sent by an imposter.

The reason that the verification works is that, for the correctly transmitted values,

(x1, y1) = h(m) · s−1G + r · s−1d ·G = s−1(h(m) + r · d)G,

where we have used Q = dG. However,

s−1 = k · (h(m) + d · r)−1,

so (x1, y1) = kG, and r is, indeed, the x1 value of this point.
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Appendix C: Attacks on Elliptic Curve Cryptography

Elliptic curve cryptography takes advantage of the elliptic curve discrete logarithm problem:

namely, given points P of order n and Q ε 〈P 〉 on a elliptic curve E, finding an integer l

between 0 and n − 1 such that Q = lP , or l = logP (Q), is very difficult. There are several

possible attacks on the encryption, although they are Monte Carlo attacks (success is not

guaranteed).

The Pohlig-Hellman Attack

This attack works by computing discrete logarithms in the prime order subgroups of 〈P 〉,

thus simplifying the problem of computing l = log P Q. First, n is factored into primes

pe1
1 pe2

2 · · · per
r . For each pex

x , lx = l (mod pex
x ). Then the Chinese Remainder Theorem can be

used to compute l such that l ≡ li (mod pei
i ) for all 1 ≤ i ≤ r. To compute li, it is written base

pi as li = z0+z1pi+· · ·+zei−1p
ei−1
i . Then, we define P0 = n

pi
P and Q0 = n

pi
Q, and each zr can

be computed by solving zr = logP0Qr, where Qr = n
pr+1

i

(Q− z0P − z1piP − · · · − zr−1p
r−1
i P ).

Thus, the best strategy for guarding against the Pohlig-Hellman attack is to make n divisible

by a large prime.

Pollard’s Rho Attack

This attack is useful when P has a prime order n, thus rendering the Pohlig-Hellman attack

useless. In Pollard’s rho algorithm, two distinct pairs of integers modulo n, say (a, b) and

(a′, b′), are found such that aP + bQ = a′P + b′Q. Gathering terms and substituting Q = lP

gives (a − a′)P = (b − b′)Q = (b − b′)lP , so (a − a′) ≡ (b − b′)l (mod n). Thus, l = logP Q

can be computed by l = (a− a′)(b− b′)−1 (mod n).

To find pairs (a, b) and (a′, b′), an iterating function is used.

One starts by partitioning the elements of the multiples of G into three (or more) roughly

equal parts, S1, S2, and S3 in a random way, for example, one could hash the x coordinate of
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kG, and compute the hash’s value mod 3, and assign it to one of the three parts according

to that value. Starting with Y = P , one iterates the point Y as follows:

Yi+1 = F(Yi) =


Yi + P Yi ∈ S1

2Yi Yi ∈ S2

Yi + Q Yi ∈ S3

And one keeps track of the values a and b, where each Y is of the form aP + bQ.

Graphically, the successive points may be visualized as moving along a “tail” until they

fall into a cycle (a circle) where they must eventually repeat. A representation is shown

below, and it also explains the source of the name of the attack.

The expected number of steps 〈X〉 until a collision (two values that match) is found can

Y0

Y2

Y1

Yr

Yr-1

Yr-2

Y3 Yr+8

Yr+3
Yr+2

Yr+1

Yr+7

Yr+6

Yr+5

Yr+t-3
Yr+9

Yr+t

Yr+t-1

Yr+t-2

Figure 7: Pollard rho

be derived as follows. Suppose that there is a set of n possible values, and that samples are

chosen at random, with replacement. The probability that there will not be a collision in k

samplings is

P [X > k] = 1 · (1− 1
n
) · (1− 2

n
) · · · (1− k−1

n
).
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This is equal to the probability that there will be more than k samples required before a col-

lision occurs. Note that there must be a collision in n (or more) samplings, both intuitively

and by the formula (P [X > n] = 0). The probability that exactly k trials will be required

to get a collision is then

P [X > (k − 1)]− P [X > k].

This allows us to write the formula for the expected number of samplings for a collision to

occur,

〈X〉 =
n∑

k=1

k · (P [X > (k − 1)]− P [X > k]).

Expanding the sum, we have

〈X〉 = (P [X > 0]− P [X > 1]) + 2(P [X > 1]− P [X > 2]) +

3(P [X > 2]− P [X > 3]) + · · ·+ n(P [X > (n− 1)]− P [X > n]).

Since P [X > 0] = 1 = P [X > 1], and P [X > n] = 0, terms combine to give

〈X〉 = P [X > 0] + P [X > 1] + P [X > 2] + · · ·+ P [X > (n− 1)], or

〈X〉 =
n∑

k=0

P [X > k].

At this point, we approximate P [X > j] = 1 · (1 − 1
n
) · (1 − 2

n
) · · · (1 − j−1

n
) by saying that

(1− 1
n
) ≈ e−1, (1− 2

n
) ≈ e−2, ... , (1− j−1

n
) ≈ e−(j−1), to get

P [X > j] = 1 · (1− 1
n
) · (1− 2

n
) · · · (1− j−1

n
) ≈ e−1e−2 · · · e−(j−1) = e−(1+2+···+(k−1)) = e−

k(k−1)
2n .

Now, if k << n, we have e−
k(k−1)

2n ≈ e−
k2

2n (1− O( k
n
)) ≈ e−

k2

2n , while, if k is on the order of n

(or larger), e−
k(k−1)

2n is insignificantly small. In fact, we may freely extend our sum for 〈X〉

to infinity, and obtain

〈X〉 ≈
∞∑

k=0

e−
k2

2n ≈
∞∫
0

e−
x2

2n dx =
√

πn
2

.

In summary, the Pollard rho attack is a “square root” attack–it is proportional to the square

root of the group size. This is not particularly efficient compared with attacks on factoring

numbers, and it helps explain why elliptic curve cryptologic systems are considered to be

secure with relatively small key sizes.
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/************************************
Affine, Projective, Schroeppel
Lagrange, Almost Inverse
Kristin Cordwell, Chen Zhao
Last updated: 3-31-2009

*************************************/

#include <iostream>
#include <fstream>
#include <cmath>
#include <ctime>
#include <cstdlib>
using namespace std;

const int NBIT=32; // number of bits in a unsigned long int
const int NC=8; // number of coefficients in a smallNum (defined below)
const int NP=256; // number of points (for schroeppel's method)

// define cut = 2^32-1
const unsigned long long int cut = 0x00000000ffffffff;

// define structs
typedef struct {

unsigned long int coeff[2*NC];
int deg;
int sign;

} bigNum; // up to 2^512-1

typedef struct {
unsigned long int coeff[NC];
int deg;
int sign;

} smallNum; // up to 2^256-1

typedef struct {
smallNum x, y, z;

} pcoord;

typedef struct {
smallNum x, y;

} acoord;

// -------- global variables ---------- //
smallNum p, pb; // p + pb = 2^256
smallNum zero, one, two, three;
bigNum big_one;
int inv_method;
unsigned long int table[NBIT+1];

// -------- function prototypes --------- //
void initialize();
int call_mult();
void call_inv();
void build_table();
void read(smallNum*, smallNum*, smallNum*);
smallNum multiply(smallNum*, smallNum*);
bigNum multiply_noreduce(smallNum*, smallNum*);
smallNum reduce(bigNum*);
void reduce_mod_p(smallNum*);
smallNum add_and_reduce(smallNum*, smallNum*);
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smallNum sub_and_reduce(smallNum*, smallNum*);
bigNum add_big(bigNum*, bigNum*);
bigNum sub_big(bigNum*, bigNum*);
smallNum lagrange(smallNum*);
smallNum m_add(smallNum*, smallNum*, smallNum*, smallNum*);
smallNum x_add(smallNum*, smallNum*, smallNum*);
smallNum y_add(smallNum*, smallNum*, smallNum*, smallNum*);
smallNum m_double(smallNum*, smallNum*);
smallNum x_double(smallNum*, smallNum*);
smallNum y_double(smallNum*, smallNum*, smallNum*, smallNum*);
void point_add(smallNum*, smallNum*, smallNum*, smallNum*);
void point_double(smallNum*, smallNum*);
void affine_mult(smallNum*, smallNum*, smallNum*);
void projective_add(smallNum*, smallNum*, smallNum*, smallNum*, smallNum*, \

smallNum*, smallNum*, smallNum*, smallNum*);
void projective_double(smallNum*, smallNum*, smallNum*, smallNum*, \

smallNum*, smallNum*, smallNum*);
void mixed_add(smallNum*, smallNum*, smallNum*, smallNum*, smallNum*, \

smallNum*, smallNum*, smallNum*);
void projective_mult(smallNum*, smallNum*, smallNum*);
bool compare(smallNum*, smallNum*);
bool compare(bigNum*, bigNum*);
bool isOne(bigNum*);
int firstbig(smallNum*, smallNum*);
int firstbig(bigNum*, bigNum*);
void convert(smallNum*, smallNum*, smallNum*, smallNum*, smallNum*);
int find_degree(smallNum*);
int find_degree(bigNum*);
void outputSML_nospace(smallNum*);
void output_for_input(smallNum*);
void outputBIG_nospace(bigNum*);
smallNum affine_addx(smallNum*, smallNum*, smallNum*);
smallNum affine_addy(smallNum*, smallNum*, smallNum*, smallNum*);
void schroeppel(smallNum*, smallNum*, smallNum*);
smallNum almost(smallNum*);

int main()
{

smallNum x1, y1, k; // x, y coord of g and random factor
clock_t time1, time2; // start and stop times
int n, i;

initialize(); // initialize p, pb, and others
build_table();
read(&x1, &y1, &k);

n = call_mult(); // point multiplication method
call_inv(); // smallNum inversion method

time1 = clock();
cout << "Working . . ." << endl;

// SWITCHES
if(n == 1) for(i=1; i<=100; i++) affine_mult(&x1, &y1, &k);
else if (n == 2) for(i=1; i<=100; i++) projective_mult(&x1, &y1, &k);
else if (n == 3) for(i=1; i<=100; i++) schroeppel(&x1, &y1, &k);

time2 = clock();
cout << "CPU time : " << time2-time1 << " milliseconds" << endl;

outputSML_nospace(&x1); // write answer to file to //
outputSML_nospace(&y1); // check using Mathematica //
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return 0; // end
}

int call_mult()
{

int n;
cout << "Point Mult Method:" << endl;
cout << "1: Affine" << endl;
cout << "2: Projective" << endl;
cout << "3: Schroeppel" << endl;
cin >> n;

if(n!=1 && n!=2 && n!=3) {
cout << "fail" << endl;
exit(0);

}
cout << endl;
return n;

}

void call_inv()
{

cout << "1: Lagrange" << endl;
cout << "2: Almost Inverse" << endl;
cin >> inv_method;

if(inv_method!=1 && inv_method!=2) {
cout << "fail" << endl;
exit(0);

}
cout << endl;

}

// initialization of smallNum p, pb, zero, one, three
void initialize()
{

smallNum f;

for(int i=0; i<NC; i++) {
f.coeff[i]=0xffffffff;
if(i<=2) p.coeff[i]=0xffffffff;
else if(i<=5) p.coeff[i]=0;
else if(i==6) p.coeff[i]=1;
else p.coeff[i]=0xffffffff;
pb.coeff[i]=f.coeff[i]-p.coeff[i];

zero.coeff[i]=0;
one.coeff[i]=0;
two.coeff[i]=0;
three.coeff[i]=0;

}
pb.coeff[0] = 1;

one.coeff[0] = 1;
two.coeff[0] = 2;
three.coeff[0] = 3;

zero.deg = 0;
one.deg = 0;
two.deg = 1;
three.deg = 1;
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for(int i=1; i<15; i++)
big_one.coeff[i] = 0;

big_one.coeff[0] = 1;
}

void build_table()
{

for(int i=0; i<NBIT; i++)
table[i] = (1 << i) - 1;

table[NBIT] = 0xffffffff;
}

void read(smallNum *a, smallNum *b, smallNum *c)
{

int hi_byt, hi_bit;
short bit;
fstream fin;
smallNum *temp;
char aline[256], ch;

// initialize a, b, and c to zero
a->deg = 0;
b->deg = 0;
c->deg = 0;
for(int i=0; i<NC; i++) {

a->coeff[i] = 0;
b->coeff[i] = 0;
c->coeff[i] = 0;

}

// open input data file
fin.open("datafiles/gmult_in.dat");
for(int i=0; i<3; i++) {

if(i==0) temp = a;
else if(i==1) temp = b;
else if(i==2) temp = c;

ch = fin.peek();
while(ch < '0' || ch > '9') {

fin.getline(aline, 256);
ch = fin.peek();

}

fin >> temp->deg;

hi_byt=temp->deg/NBIT;
hi_bit=temp->deg%NBIT;

temp->coeff[hi_byt]=0x00000000; // initialize partial long int

// partial long int
for(int i=hi_bit; i>=0; i--) {

fin >> bit;
if(bit==1) temp->coeff[hi_byt]^=(0x00000001<<i);

}

// full long ints
for(int i=hi_byt-1; i>=0; i--) {

temp->coeff[i]=0x00000000; // initialize full long ints
for(int j=NBIT-1; j>=0; j--) {

fin >> bit;
if(bit==1) temp->coeff[i]^=(0x00000001<<j);
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}
}
fin.ignore();

}
}

smallNum multiply(smallNum *a, smallNum *b)
{

bigNum c;
smallNum c_final;
unsigned long long int at, bt, ct;
unsigned long long int temp;
int carry[2*NC+1];

// initialization
for(int i=0; i<2*NC; i++) {

c.coeff[i]=0;
carry[i]=0;

}

for(int i=0; i<NC; i++) {
for(int j=0; j<NC; j++) {

at=a->coeff[i];
bt=b->coeff[j];
ct=at*bt;

/*calculate c.coeff[i+j]*/
temp=ct&cut;
temp=temp+c.coeff[i+j]+carry[i+j];
carry[i+j]=0;
if(temp>cut) {

carry[i+j+1] += 1;
temp -= (cut+1);

}
c.coeff[i+j] = temp;

/*calculate c.coeff[i+j+1]*/
temp=ct>>32;
temp=temp+c.coeff[i+j+1]+carry[i+j+1];
carry[i+j+1]=0;
if(temp>cut) {

carry[i+j+2] += 1;
temp -= (cut+1);

}
c.coeff[i+j+1] = temp;

}
}

c_final = reduce(&c);
c_final.deg=find_degree(&c_final);
return c_final;

}

smallNum add_and_reduce(smallNum *a, smallNum *b)
{

smallNum c;
unsigned long long int at, bt, temp;
int carry[9];

c.sign = a->sign;

// initialization of carry and c
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for(int i=0; i<8; i++) {
c.coeff[i]=0;
carry[i]=0;

}
carry[8]=0;

for(int i=0; i<8; i++) {
at = a->coeff[i];
bt = b->coeff[i];
temp = at + bt + carry[i];
if(temp>cut) { // temp should always be less than cut

temp = temp - cut - 1;
carry[i+1] = 1; // carry over to the next coefficient

}
c.coeff[i] = temp;

}

// check if sum (c) is larger than smallNum \
// can hold, if yes, reduce by p.
// "reduce by p" is equavilent to "add pb" \
// and "drop the carryover" (already dropped).
if(carry[8] == 1) {

for(int i=0; i<=8; i++) carry[i] = 0; // re-initialization
for(int i=0; i<8; i++) {

at = c.coeff[i];
bt = pb.coeff[i];
temp = at + bt + carry[i];
if(temp>cut) {

temp = temp - cut - 1;
carry[i+1] = 1; // carry over to next coefficient

}
c.coeff[i] = temp;

}
}

// it is possible to need to reduce c by p one last time
if(carry[8] == 1) {

for(int i=0; i<=8; i++) carry[i] = 0; // re-initialization
for(int i=0; i<8; i++) {

at = c.coeff[i];
bt = pb.coeff[i];
temp = at + bt + carry[i];
if(temp>cut) {

temp = temp - cut - 1;
carry[i+1] = 1; // carry over to next coefficient

}
c.coeff[i] = temp; // temp > 2^256

}
}

return c;
}

smallNum sub_and_reduce(smallNum *a, smallNum *b)
{

smallNum c;
unsigned long long int temp;
int borrow[9];

c.sign = a->sign;

// initialization of borrow and c
for(int i=0; i<8; i++) {
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c.coeff[i]=0;
borrow[i]=0;

}
borrow[8]=0;

for(int i=0; i<8; i++) {
// to avoid 0-1 = 2^32-1 w/o borrowing
if(a->coeff[i]==0 && borrow[i]==1) {

a->coeff[i] = cut + 1;
borrow[i+1] = 1;

}
if(a->coeff[i] - borrow[i] >= b->coeff[i]) {

c.coeff[i] = a->coeff[i] - borrow[i] - b->coeff[i];
} else {

temp = a->coeff[i] + cut + 1;
c.coeff[i] = temp - b->coeff[i] - borrow[i];
borrow[i+1] = 1;

}
}

// a < b, borrowed 2^256, need to add p,
// which is to subtract pb from c.
while(borrow[8]==1) {

for(int i=0; i<=8; i++) borrow[i]=0;
for(int i=0; i<8; i++) {

// to avoid 0-1 = 2^32-1 w/o borrowing
if(c.coeff[i]==0 && borrow[i]==1) {

c.coeff[i] = cut + 1;
borrow[i+1] = 1;

}
if(c.coeff[i] - borrow[i] >= pb.coeff[i]) {

c.coeff[i] = c.coeff[i] - borrow[i] - pb.coeff[i];
} else {

temp = c.coeff[i] + cut + 1;
c.coeff[i] = temp - pb.coeff[i] - borrow[i];
borrow[i+1] = 1;

}
}

}
return c;

}

// find the degree of smallNum with NC coefficients
int find_degree(smallNum *a)
{

int degree;
for(int i=NC-1; i>=0; i--) {

if(a->coeff[i]>0) {
for(int j=31; j>=0; j--) {

if(a->coeff[i]>>j == 1) {
degree = 32*i+j;
return degree;

}
}

}
}
return 0;

}

// find the degree of bigNum with 2*NC coefficients
int find_degree(bigNum *a)
{
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int degree;
for(int i=2*NC-1; i>=0; i--) {

if(a->coeff[i]>0) {
for(int j=31; j>=0; j--) {

if(a->coeff[i]>>j == 1) {
degree = 32*i+j;
return degree;

}
}

}
}
return 0;

}

bool compare(smallNum *a, smallNum *b)
{

for(int i=7; i>=0; i--) {
if(a->coeff[i] != b->coeff[i]) return false;

}

return true;
}

void reduce_mod_p(smallNum *a)
{

int abigger=0;

for(int i=7; i>=0; i--) {
if(a->coeff[i] < p.coeff[i]) {

abigger = -1;
break;

} else if(a->coeff[i] > p.coeff[i]) {
abigger = 1;
break;

}
}
if(abigger==0) {

for(int i=0; i<8; i++) a->coeff[i]=0;
} else if(abigger==1) {

*a=sub_and_reduce(a, &p);
}

}

void outputSML_nospace(smallNum *B)
{

unsigned long int num;
int hi_byt, hi_bit;
int i, j;
static ofstream fout;

if(!fout.is_open()) fout.open("datafiles/smlout_nospace.dat");

B->deg = find_degree(B);
fout << B->deg << endl;
hi_byt=B->deg/32;
hi_bit=B->deg%32;

// partial long long int
for(i=hi_bit; i>=0; i--) {

num = (B->coeff[hi_byt]>>i)&(0x00000001);
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fout << num;
}

// full long ints
for(i=hi_byt-1; i>=0; i--) {

for(j=31; j>=0; j--) {
num = (B->coeff[i]>>j)&(0x00000001);
fout << num;

}
}
fout << endl;

}

void outputBIG_nospace(bigNum *B)
{

unsigned long int num;
int hi_byt, hi_bit;
int i, j;
static ofstream fout;

if(!fout.is_open()) fout.open("datafiles/bigout_nospace.dat");

B->deg = find_degree(B);
fout << B->deg << endl;

hi_byt=B->deg/32;
hi_bit=B->deg%32;

// partial long long int
for(i=hi_bit; i>=0; i--) {

num = (B->coeff[hi_byt]>>i)&(0x00000001);
fout << num;

}

// full long ints
for(i=hi_byt-1; i>=0; i--) {

for(j=31; j>=0; j--) {
num = (B->coeff[i]>>j)&(0x00000001);
fout << num;

}
}
fout << endl;

}

smallNum lagrange(smallNum *a)
{

smallNum order, b;

// initialize b = 1 and order = p - 2;
for(int i=NC-1; i>0; i--) {

b.coeff[i] = 0;
order.coeff[i]=p.coeff[i];

}
b.coeff[0] = 1; // b = 1
order.coeff[0] = p.coeff[0] - 2; // order = p - 2

// calculate inverse of a mod p using
// lagrange's theorem with russian peasant technique

for(int i=NC-1; i>=0; i--) {
for(int j=NBIT-1; j>=0; j--) {

if((((order.coeff[i]) >> j) & 1) == 1) {
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// if binary digit is 1, square then multiply by a
b = multiply(&b, &b); // square
b = multiply(a, &b); // multiply

} else { // if binary is 0, just square
b = multiply(&b, &b); // square

}
}

}
return b;

}

//********************** Affine Algorithm *********************** //
smallNum m_add(smallNum *px, smallNum *py, smallNum *qx, smallNum *qy)
{

smallNum dx, dy, dx_inv, m;

// find dx (denominator of m)
dx = sub_and_reduce(qx, px); // dx = qx - px
if(inv_method == 1) dx_inv = lagrange(&dx); // this is dx^(-1)
else if(inv_method == 2) dx_inv = almost(&dx);

// find dy (numerator of m)
dy = sub_and_reduce(qy, py); // dy = qy - py

// find m = dy * dx^(-1)
m = multiply(&dy, &dx_inv);
return m;

}

// rx = m^2 - px - qx
smallNum x_add(smallNum *m, smallNum *px, smallNum *qx)
{

smallNum rx;

rx = multiply(m, m);
rx = sub_and_reduce(&rx, px);
rx = sub_and_reduce(&rx, qx);

return rx;
}

// ry = m*(qx-rx) - qy
smallNum y_add(smallNum *m, smallNum *rx, smallNum *qx, smallNum *qy)
{

smallNum ry;

ry = sub_and_reduce(qx, rx);
ry = multiply(&ry, m);
ry = sub_and_reduce(&ry, qy);
return ry;

}

void point_add(smallNum *px, smallNum *py, smallNum *qx, smallNum *qy)
{

// add p and q
smallNum m, rx, ry;
m = m_add(px, py, qx, qy); // find m (slope mod p)
rx = x_add(&m, px, qx); // rx = m^2 - px - qx
ry = y_add(&m, &rx, qx, qy); // ry = m(qx-rx) - qy
// answers are rx and ry, which are to be copied back to px and py
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*px = rx;
*py = ry;

}

smallNum m_double(smallNum *gx, smallNum *gy)
{

smallNum dx, dy, dx_inv, m;

// find dx (denominator of m)
dx = add_and_reduce(gy, gy);
if(inv_method == 1) dx_inv = lagrange(&dx); // find dx^(-1)
else if(inv_method == 2) dx_inv = almost(&dx);

// find dy (numerator of m)
dy = multiply(gx, gx); // gx^2
dy = multiply(&dy, &three);
dy = sub_and_reduce(&dy, &three); // dy = 3*gx^2 - 3

// find m = dy * dx^(-1)
m = multiply(&dy, &dx_inv);
return m;

}

smallNum x_double(smallNum *m, smallNum *px)
{

smallNum rx;

rx = multiply(m, m); // get m^2 mod p
rx = sub_and_reduce(&rx, px); // subtract 2*px
rx = sub_and_reduce(&rx, px);

return rx;
}

smallNum y_double(smallNum *m, smallNum *px, smallNum *py, smallNum *rx)
{

smallNum ry;

ry = sub_and_reduce(px, rx);
ry = multiply(m, &ry);
ry = sub_and_reduce(&ry, py);

return ry;
}

void point_double(smallNum *gx, smallNum *gy)
{

smallNum m, hx, hy;
m = m_double(gx, gy); // find m (slope mod p)
hx = x_double(&m, gx); // hx = m^2 - 2*gx
hy = y_double(&m, gx, gy, &hx); // hy = m(gx-hx) - gy
// answers are hx and hy, which are to be copied back to gx and gy
*gx = hx;
*gy = hy;

}

// russian peasant method for multiplication
void affine_mult(smallNum *gx, smallNum *gy, smallNum *factor)
{
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// need declaration of temporary identifiers
smallNum xtemp, ytemp;
int s, highest;

xtemp=*gx;
ytemp=*gy;

highest = (factor->deg)/NBIT; // the highest array with coefficients
// russian peasant starts with first 1 in k
for(int i=highest; i>=0; i--) {

if(i==highest) s=factor->deg%NBIT;
else s=NBIT;

for(int j=s-1; j>=0; j--) {
if((((factor->coeff[i]) >> j) & 1) == 1) {

// if digit is 1, double then add g
point_double(&xtemp, &ytemp);
point_add(&xtemp, &ytemp, gx, gy);

} else { // if digit is 0, just double
point_double(&xtemp, &ytemp);

}
}

}

// copy answers back to gx and gy
*gx = xtemp;
*gy = ytemp;

}

// ****************** Projective Algorithm ******************** //
void projective_add(smallNum *x1, smallNum *y1, smallNum *z1,\

smallNum *x2, smallNum *y2, smallNum *z2,\
smallNum *x3, smallNum *y3, smallNum *z3)

// (x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3)
{

// declaration of variables/identifiers
smallNum u1, u2, v1, v2;
smallNum u, v, w, a;
smallNum t1, t2, t3;
smallNum vsquared, vcubed, vsquaredv2;

u1 = multiply(y2, z1); // u1 = y2*z1
u2 = multiply(y1, z2); // u2 = y1*z2
v1 = multiply(x2, z1); // v1 = x2*z1
v2 = multiply(x1, z2); // v2 = x1*z2

u = sub_and_reduce(&u1, &u2); // u = u1 - u2
v = sub_and_reduce(&v1, &v2); // v = v1 - v2

// use memory to store values and minimize # of multiplications
vsquared = multiply(&v, &v); // find v^2
vcubed = multiply(&vsquared, &v); // find v^3
vsquaredv2 = multiply(&vsquared, &v2); // find v^2*v2

w = multiply(z1, z2);

// find a
t1 = multiply(&u, &u); // t1 = u^2*w
t1 = multiply(&t1, &w);
t2 = vcubed; // t2 = v^3
t3 = add_and_reduce(&vsquaredv2, &vsquaredv2); // t3 = 2*v^2*v2

a = sub_and_reduce(&t1, &t2);
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a = sub_and_reduce(&a, &t3);

// needed for y3
t1 = sub_and_reduce(&vsquaredv2, &a);
t1 = multiply(&t1, &u); // t1 = u*(v^2*v2 - a)
t2 = multiply(&vcubed, &u2); // t2 = v^3*u2

// answers:
*x3 = multiply(&v, &a); // x3 = v*a
*y3 = sub_and_reduce(&t1, &t2);
*z3 = multiply(&vcubed, &w); // z3 = v^3*w

x3->deg=find_degree(x3);
y3->deg=find_degree(y3);
z3->deg=find_degree(z3);
// 15 multiplications total

}

void projective_double(smallNum *x1, smallNum *y1, smallNum *z1,\
smallNum *x2, smallNum *y2, smallNum *z2,\
smallNum *zfactor)

// double (x1, y1, z1) and get (x2, y2, z2)
{

// declarations;
smallNum w, s, b, h;
smallNum b2, b4, b8;
smallNum t1, t2;
smallNum ssquared, scubed;

// if(y1 == 0) point at infinity

t1 = multiply(x1, x1);
t2 = multiply(z1, z1);
t1 = sub_and_reduce(&t1, &t2);
t2 = add_and_reduce(&t1, &t1);
w = add_and_reduce(&t2, &t1);

s = multiply(y1, z1);
ssquared = multiply(&s, &s);
scubed = multiply(&s, &ssquared);

b = multiply(x1, y1);
b = multiply(&b, &s);

b2 = add_and_reduce(&b, &b);
b4 = add_and_reduce(&b2, &b2);
b8 = add_and_reduce(&b4, &b4);

h = multiply(&w, &w);
h = sub_and_reduce(&h, &b8);

*x2 = multiply(&h, &s);
*x2 = add_and_reduce(x2, x2);

t1 = sub_and_reduce(&b4, &h);
t1 = multiply(&t1, &w);

//  t2 = y1 * (8 y1 ssquared) or y1 * zfactor
t2 = multiply(y1, &ssquared);
t2 = add_and_reduce(&t2, &t2);
t2 = add_and_reduce(&t2, &t2);
t2 = add_and_reduce(&t2, &t2);
*zfactor = t2;
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t2 = multiply(y1, &t2);

*y2 = sub_and_reduce(&t1, &t2);

*z2 = add_and_reduce(&scubed, &scubed);
*z2 = add_and_reduce(z2, z2);
*z2 = add_and_reduce(z2, z2);

// 12 multiplications total
}

void mixed_add(smallNum *x1, smallNum *y1, smallNum *z1,\
smallNum *x2, smallNum *y2,\
smallNum *x3, smallNum *y3, smallNum *z3)

{
// declaration of variables/identifiers
smallNum u1, u2, v1, v2;
smallNum u, v, w, a;
smallNum t1, t2, t3;
smallNum vsquared, vcubed, vsquaredv2;

u1 = multiply(y2, z1); // u1 = y2*z1
u2 = *y1; // u2 = y1*z2 = y1
v1 = multiply(x2, z1); // v1 = x2*z1
v2 = *x1; // v2 = x1*z2 = x1

u = sub_and_reduce(&u1, &u2); // u = u1 - u2
v = sub_and_reduce(&v1, &v2); // v = v1 - v2

// use memory to store values and minimize # of multiplications
vsquared = multiply(&v, &v); // find v^2
vcubed = multiply(&vsquared, &v); // find v^3
vsquaredv2 = multiply(&vsquared, &v2); // find v^2*v2

w = *z1; // w = z1*z2 = z1

// find a
t1 = multiply(&u, &u); // t1 = u^2*w
t1 = multiply(&t1, &w);
t2 = vcubed; // t2 = v^3
t3 = multiply(&vsquared, &v2);
t3 = add_and_reduce(&t3, &t3); // t3 = 2*v^2*v2

a = sub_and_reduce(&t1, &t2);
a = sub_and_reduce(&a, &t3);

// needed for y3
t1 = sub_and_reduce(&vsquaredv2, &a);
t1 = multiply(&t1, &u); // t1 = u*(v^2*v2 - a)
t2 = multiply(&vcubed, &u2); // t2 =

// answers:
*x3 = multiply(&v, &a); // x3 = v*a
*y3 = sub_and_reduce(&t1, &t2); // y3 = u*(v^2*v2 - a) - v^3*u2
*z3 = multiply(&vcubed, &w); // z3 = v^3*w

x3->deg=find_degree(x3);
y3->deg=find_degree(y3);
z3->deg=find_degree(z3);
// 12 multiplications total

}
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void projective_mult(smallNum *x, smallNum *y, smallNum *k)
{

smallNum z, xtemp, ytemp, ztemp, zfactor;
int s, bit, highest;

z = one;

xtemp=*x;
ytemp=*y;
ztemp=z;

highest = (k->deg)/NBIT; // the highest array with coefficients

for(int i=highest; i>=0; i--) {
// russian peasant starts with first 1 in k
if(i==highest) s=k->deg%NBIT;
else s=NBIT;

for(int j=s-1; j>=0; j--) {
bit = (((k->coeff[i]) >> j) & 1);
// always double
projective_double(&xtemp, &ytemp, &ztemp, &xtemp, &ytemp, &ztemp, \

&zfactor);

if(bit==1) // add if bit is 1
projective_add(&xtemp, &ytemp, &ztemp, x, y, &z, \

&xtemp, &ytemp, &ztemp);
}

}

// copy answers back to gx and gy
*x = xtemp;
*y = ytemp;
z = ztemp;

convert(x, y, &z, x, y); // convert back to affine using lagrange
}

// convert from projective to affine
void convert(smallNum *px, smallNum *py, smallNum *pz, smallNum *ax, smallNum *ay)
{

smallNum inv;

if(inv_method == 1) inv = lagrange(pz);
else if(inv_method == 2) inv = almost(pz);

*ax = multiply(px, &inv);
*ay = multiply(py, &inv);

}

void output_for_input(smallNum *B)
{

unsigned long int num;
int hi_byt, hi_bit;
int i, j;
static ofstream fout;

if(!fout.is_open()) fout.open("datafiles/smlout_input.dat");

B->deg = find_degree(B);
fout << B->deg << endl;
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hi_byt=B->deg/32;
hi_bit=B->deg%32;

// partial long long int
for(i=hi_bit; i>=0; i--) {

num = (B->coeff[hi_byt]>>i)&(0x00000001);
fout << num << " ";

}
fout << endl;

// full long ints
for(i=hi_byt-1; i>=0; i--) {

for(j=31; j>=0; j--) {
num = (B->coeff[i]>>j)&(0x00000001);
fout << num << " ";

}
fout << endl;

}
}

smallNum reduce(bigNum *A)
{

int i;
smallNum T, S1, S2, S3, S4, D1, D2, D3, D4;
smallNum B;

for(i=0; i<NC; i++) {
T.coeff[i]=A->coeff[i];

if(i<=2) S1.coeff[i]=0;
else S1.coeff[i]=A->coeff[i+8];

if(i<=6 && i>=3) S2.coeff[i]=A->coeff[i+9];
else S2.coeff[i]=0;

if(i<=5 && i>=3) S3.coeff[i]=0;
else S3.coeff[i]=A->coeff[i+8];

if(i<=2) S4.coeff[i]=A->coeff[i+9];
else if(i<=5) S4.coeff[i]=A->coeff[i+10];
else if(i==6) S4.coeff[i]=A->coeff[13];
else S4.coeff[i]=A->coeff[8];

if(i<=2) D1.coeff[i]=A->coeff[i+11];
else if(i<=5) D1.coeff[i]=0;
else if(i==6) D1.coeff[i]=A->coeff[8];
else D1.coeff[i]=A->coeff[10];

if(i<=3) D2.coeff[i]=A->coeff[i+12];
else if(i<=5) D2.coeff[i]=0;
else if(i==6) D2.coeff[i]=A->coeff[9];
else D2.coeff[i]=A->coeff[11];

if(i<=2) D3.coeff[i]=A->coeff[i+13];
else if(i<=5) D3.coeff[i]=A->coeff[i+5];
else if(i==6) D3.coeff[i]=0;
else D3.coeff[i]=A->coeff[12];

if(i<=1) D4.coeff[i]=A->coeff[i+14];
else if(i==2) D4.coeff[i]=0;
else if(i<=5) D4.coeff[i]=A->coeff[i+6];
else if(i==6) D4.coeff[i]=0;
else D4.coeff[i]=A->coeff[13];
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}

B=add_and_reduce(&T, &S1);
B=add_and_reduce(&B, &S1);
B=add_and_reduce(&B, &S2);
B=add_and_reduce(&B, &S2);
B=add_and_reduce(&B, &S3);
B=add_and_reduce(&B, &S4);

B=sub_and_reduce(&B, &D1);
B=sub_and_reduce(&B, &D2);
B=sub_and_reduce(&B, &D3);
B=sub_and_reduce(&B, &D4);

reduce_mod_p(&B);

B.deg=find_degree(&B);

return B;
}

// ************** new function for affine addition **************
smallNum affine_addx(smallNum *qx, smallNum *px, smallNum *m)
{

smallNum msquared, rx;

msquared = multiply(m, m);
rx = sub_and_reduce(&msquared, qx);
rx = sub_and_reduce(&rx, px);

return rx;
}

// ry = m(qx-rx) - qy
smallNum affine_addy(smallNum *rx, smallNum *qx, smallNum *qy, smallNum *m)
{

smallNum ry;

ry = sub_and_reduce(qx, rx);
ry = multiply(&ry, m);
ry = sub_and_reduce(&ry, qy);

return ry;
}

void schroeppel(smallNum *x, smallNum *y, smallNum *k)
{

pcoord power[NP];
int i, j, nd, index;
int count = 0; // for counting number of 1's in gfactor
smallNum z_inv[NP], zfactor[NP];
acoord needed[NP]; // very unlikely for needed to use all NP slots
smallNum d[NP/2]; // delta x's
smallNum e[NP/2]; // delta y's
smallNum m[NP/2]; // m is the slope, which equals (delta y) / (delta x)
smallNum *d_inv = NULL;
smallNum *d_group = NULL;
smallNum *d_group2 = NULL;
smallNum D_inv, temp;

power[0].x = *x;
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power[0].y = *y;
power[0].z = one;

// --------------------------- Part I -----------------------------
// generate G's: power[0] = G, power[1] = 2G, ..., power[i] = (2^i)G
for(i=0; i<NP-1; i++) { // NP = 256

projective_double(&power[i].x, &power[i].y, &power[i].z, \
&power[i+1].x, &power[i+1].y, &power[i+1].z, &zfactor[i]);

}

if(inv_method == 1) z_inv[NP-1] = lagrange(&power[NP-1].z);
else if(inv_method == 2) z_inv[NP-1] = almost(&power[NP-1].z);

for(i=NP-2; i>=0; i--) { // first i = 254, last i=0
z_inv[i] = multiply(&z_inv[i+1], &zfactor[i]);

}

// convert all needed coordinates to affine by multiplying
for(i=0; i<NC; i++) { // NC = 8

for(j=0; j<NBIT; j++) { // NBIT = 32
if((((k->coeff[i]) >> j) & 1) == 1) {

index = NBIT*i+j;
needed[count].x = multiply(&z_inv[index], &power[index].x);
needed[count].y = multiply(&z_inv[index], &power[index].y);
count += 1;

}
}

}

// ------------------------- Part II --------------------------

while(count!=1) {
for(i=0; i<count; i+=2) {

d[i/2]=sub_and_reduce(&needed[i+1].x, &needed[i].x);
e[i/2]=sub_and_reduce(&needed[i+1].y, &needed[i].y);

} // generate d's (delta x's) and e's (delta y's)

d_group = new smallNum[count];// multiplied groups of d

nd = count/2; // number of d's
d_group[0] = d[0];

// generate d_group
for(i=1; i<nd; i++) {

d_group[i] = multiply(&d_group[i-1], &d[i]);
} // d_group[0] = d[0], d_group[1]=d[0]d[1], ...,

smallNum D = d_group[nd-1];
if(inv_method == 1) D_inv = lagrange(&D);
else if(inv_method == 2) D_inv = almost(&D);

// ---------------------------- Part III ---------------------------
d_group2 = new smallNum[nd];

d_group2[nd-1] = D_inv;

for(i=nd-2; i>=0; i--) { // generate d_group2;
d_group2[i] = multiply(&d_group2[i+1], &d[i+1]);

} // d_group2[nd-1] = D_inv, d_group2[nd-2] = D_inv*d[nd-1]
// d_group2[1] = D_inv*d[nd-1]*d[nd-2]*...*d[1]

d_inv = new smallNum[nd];
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// d_group[0] = d[0], d_group[1]=d[0]d[1], ...,
// d_group[nd-1] = d[0]d[1]...d[nd-1]

for(i=nd-1; i>=1; i--) { // find inverses of all d's
d_inv[i] = multiply(&d_group2[i], &d_group[i-1]);

}
d_inv[0] = d_group2[0];

for(i=0; i<nd; i++) { //
m[i] = multiply(&e[i], &d_inv[i]);

}

for(i=0; i<=count-2; i+=2) {
temp = affine_addx(&needed[i].x, &needed[i+1].x, &m[i/2]);
needed[i/2].y = affine_addy(&temp, &needed[i].x, &needed[i].y, &m[i/2]);
needed[i/2].x = temp;

}

if(count%2 == 1) {
needed[count/2].x = needed[count-1].x;
needed[count/2].y = needed[count-1].y;
count = count/2 + 1;
nd = nd/2 + 1;

} else {
count = count/2;
nd = nd/2;

}

delete d_group;
delete d_inv;

}

*x = needed[0].x;
*y = needed[0].y;

}

smallNum almost(smallNum *a)
{

smallNum v, inv, c, d, stemp;
bigNum f, g, btemp, x, ans, ans2;
unsigned long int cftemp; // for coeff

int i, j, k;

// initialization
for(i=1; i<NC; i++) {

c.coeff[i]=0;
d.coeff[i]=0;

}
c.coeff[0] = 1;
d.coeff[0] = 0;

for(i=0; i<2*NC; i++) {
btemp.coeff[i] = 0; // initialize first
if(i<NC) {

f.coeff[i] = a->coeff[i];
g.coeff[i] = p.coeff[i];

} else {
f.coeff[i] = 0;
g.coeff[i] = 0;

}
}

Dad
Typewritten Text
51




k = 0;
int shiftcount; //initialize
// might need to be shifted
// we shall assume that f != 0

while(isOne(&f) == false) {
//Now consider the normal case, where we want to shift a few bits
cftemp = f.coeff[0];
shiftcount = 0;
while ((cftemp&1) == 0) { //count the bits of evenness, up to 31

shiftcount += 1;
if(shiftcount == 31) break; // can't shift more than 31
cftemp = cftemp >> 1;

}
if (shiftcount >= 1) { //the typical case

for(i=0; i<NC+1; i++) { // f = f / 2^shiftcount, f is bigNum but <= 2p
f.coeff[i] = f.coeff[i] >> shiftcount;
if(i != NC) f.coeff[i] |= (f.coeff[i+1] << (NBIT - shiftcount));

}
k = k + shiftcount;

if( isOne(&f) == true) break; //We can break here without
//changing d, since that does not affect c or k at this point
//Now we want to shift and reduce d, if f != 0X01, and k>0

btemp.coeff[NC] = 0; // clear up btemp.coeff[NC] every time
for(i=NC-1; i>=0; i--) { // d = d << shiftcount

btemp.coeff[i] = d.coeff[i] << shiftcount;
btemp.coeff[i+1] |= (d.coeff[i] >> (NBIT - shiftcount));

}
// if btemp is greater than smallNum, then reduce mod p
if(btemp.coeff[NC]!=0) {

d = reduce(&btemp);
} else { // if btemp is not greater than smallNum

for(i=0; i<NC; i++) d.coeff[i] = btemp.coeff[i];
}

} //end if shiftcount >= 1

// if f < g
if(firstbig(&f, &g) == -1) {

btemp = f; f = g; g = btemp; // exchange f,g
stemp = c; c = d; d = stemp; // exchange c,d

}

// if f = g (mod 4)
if(((f.coeff[0] ^ g.coeff[0]) & 3) == 0) {

f = sub_big(&f, &g); // f = f - g
c = sub_and_reduce(&c, &d); // c = c – d

} else { // if f != g (mod 4)
f = add_big(&f, &g); // f = f + g
c = add_and_reduce(&c, &d); // c = c + d

} //end if mod 4 (and else)
} //end while, outer loop

// p*p = 1 mod 2^32, so r = 1;

// ****** fixup algorithm *******
for(i=0; i<NC; i++) {

x.coeff[i] = c.coeff[i]; // x = c
v.coeff[i] = 0; // initialize v
ans.coeff[i] = 0;
ans2.coeff[i] = 0;
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}
for(i=NC; i<2*NC; i++) {

x.coeff[i] = 0;
ans.coeff[i] = 0;
ans2.coeff[i] = 0;

}

while(k != 0) {
if(k<32) j = k;
else j = 32;

v.coeff[0] = x.coeff[0] & table[j];

ans.coeff[NC] = v.coeff[0];
ans.coeff[NC-2] = v.coeff[0];
ans.coeff[3] = v.coeff[0];
ans2.coeff[NC-1] = v.coeff[0];
ans2.coeff[0] = v.coeff[0];

btemp = sub_big(&ans, &ans2);

x = add_big(&btemp, &x);

if(j == 32) { // get rid of x.coeff[0] and shift bytes down
for(i=0; i<=NC; i++) {

x.coeff[i] = x.coeff[i+1];
}

} else {
for(i=0; i<2*NC-1; i++) {

x.coeff[i] >>= j;
x.coeff[i] |= (x.coeff[i+1] << (32-j));

}
}
k = k - j;

}

for(i=0; i<NC; i++) inv.coeff[i] = x.coeff[i];

return inv; // x is the inverse of a (mod p)
}

int firstbig(smallNum *a, smallNum *b)
{

for(int i=NC-1; i>=0; i--) {
if(a->coeff[i] > b->coeff[i]) return 1;
if(a->coeff[i] < b->coeff[i]) return -1;

}
return 0;

}

int firstbig(bigNum *a, bigNum *b)
{

for(int i=2*NC-1; i>=0; i--) {
if(a->coeff[i] > b->coeff[i]) return 1;
if(a->coeff[i] < b->coeff[i]) return -1;

}
return 0;

}

// return c=a+b, all are bigNum
bigNum add_big(bigNum *a, bigNum *b)
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{
bigNum c;
unsigned long long int at, bt, temp;
int carry[2*NC+1];

// initialization of carry and c
for(int i=0; i<2*NC; i++) {

c.coeff[i]=0;
carry[i]=0;

}
carry[2*NC]=0;

for(int i=0; i<2*NC; i++) {
at = a->coeff[i];
bt = b->coeff[i];
temp = at + bt + carry[i];
if(temp>cut) { // temp should always be less than cut

temp = temp - cut - 1;
carry[i+1] = 1; // carry over to the next coefficient

}
c.coeff[i] = temp;

}

return c;
}

// test whether a > b
bool compare(bigNum *a, bigNum *b)
{

for(int i=2*NC-1; i>=0; i--) {
if(a->coeff[i] != b->coeff[i]) return false;

}

return true;
}

// test whether a = 1
bool isOne(bigNum *a)
{

for(int i=2*NC-1; i>0; i--) {
if(a->coeff[i] != 0) return false;

}
if(a->coeff[0] == 1) return true;
return false;

}

// return a-b
bigNum sub_big(bigNum *a, bigNum *b)
{

bigNum c;
unsigned long long int temp;
int borrow[2*NC+1];

// initialization of borrow and c
for(int i=0; i<2*NC; i++) {

c.coeff[i]=0;
borrow[i]=0;

}
borrow[2*NC]=0;
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for(int i=0; i<2*NC; i++) {
// to avoid 0-1 = 2^32-1 w/o borrowing
if(a->coeff[i]==0 && borrow[i]==1) {

a->coeff[i] = cut + 1;
borrow[i+1] = 1;

}
if(a->coeff[i] - borrow[i] >= b->coeff[i]) {

c.coeff[i] = a->coeff[i] - borrow[i] - b->coeff[i];
} else {

temp = a->coeff[i] + cut + 1;
c.coeff[i] = temp - b->coeff[i] - borrow[i];
borrow[i+1] = 1;

}
}

return c;
}

// multiply but not reduce mod p
bigNum multiply_noreduce(smallNum *a, smallNum *b)
{

bigNum c;
unsigned long long int at, bt, ct;
unsigned long long int temp;
int carry[2*NC+1];

// initialization
for(int i=0; i<2*NC; i++) {

c.coeff[i]=0;
carry[i]=0;

}

for(int i=0; i<NC; i++) {
for(int j=0; j<NC; j++) {

at=a->coeff[i];
bt=b->coeff[j];
ct=at*bt;

/*calculate c.coeff[i+j]*/
temp=ct&cut;
temp=temp+c.coeff[i+j]+carry[i+j];
carry[i+j]=0;
if(temp>cut) {

carry[i+j+1] += 1;
temp -= (cut+1);

}
c.coeff[i+j] = temp;

/*calculate c.coeff[i+j+1]*/
temp=ct>>32;
temp=temp+c.coeff[i+j+1]+carry[i+j+1];
carry[i+j+1]=0;
if(temp>cut) {

carry[i+j+2] += 1;
temp -= (cut+1);

}
c.coeff[i+j+1] = temp;

}
}
c.deg=find_degree(&c);

return c;
}
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