
The Effect of Nuclear Waste on the Environment

New Mexico

Super Computing Challenge

Final Report

April 1, 2009

Team # 67

Manzano High School

Team Members:

Steven Benner – Senior

Scott Wilson – Senior

Platon Krasin- Junior

Teacher :

Stephen Schum

Executive summary

The United States is using nuclear energy as a source of power. As a

result of the use of this energy, nuclear waste is constantly being created and is

being transported to locations in which it can be properly contained. Our team’s

problem is to model how the most commonly used radioactive materials and their

particles will spread if not properly contained.

The elements and isotopes that our model must contain are not stable and

are constantly changing according to their own half-life. As a team we have

dedicated a large part of our C++ code in order to find the resulting masses of

well-known, unstable, isotopes after a certain amount of time. We have also used

our code to find the amount of alpha and beta partials that are released during

the specific amount of time. As the particle goes through its half-life it also

creates a daughter product that has its own half-life. The isotope will continue to

half-life until it eventually becomes a stable element. In our code we have

included Uranium 235, 238, Plutonium 239 and their daughter products as our

main elements of study because they are the isotopes that are most commonly

used in nuclear reactors.

We hope to conclude our project by using the results from our C++ code in

order to create a model that can show the spread of the radioactive particles, as

well as the decay of a specific radioactive isotope.

Purpose and Problem

 How nuclear power plants choose store radioactive waste has become a

major issue that is facing the nation. In America we have been using nuclear

power plants as a source of energy. The problem that has occurred as a result of

our use of nuclear power plants is that a large amount of radioactive waste is

being created and needs to be disposed. The nuclear materials that are being

used are able to create health hazards for the surrounding people and

agriculture. Because of these hazards, there are many concerns about the effect

of nuclear waste on our environment. The main concern that we wish to address

is the spread of the nuclear contaminants over time.

 The scope of our problem involves the United States as a whole; however

the potential problem of radiation spreading from nuclear waste is a major

concern for New Mexico. The concern in New Mexico is raised because nuclear

waste is transported through it, Uranium is a natural resource in New Mexico,

and there is potential for a Uranium enrichment plant to be placed in New

Mexico.

Information

All radioactive isotopes go through a specific half-life and emit alpha and

beta particles that are dangerous if exposed to living organisms. After the

element goes through a half-life, it is transformed into a different isotope (called a

daughter product) until it becomes stable. Each isotope that our problem is

dealing with has a predictable chain of daughter products that is called a decay

series. At certain points in the decay series, the isotope may either beta decay or

alpha decay into a different element. However, there is an estimated ratio for

whether the isotopes will Beta or Alpha decay.

Computer Program in C++

In order to eventually achieve our goal of creating a model of the spread of

radioactive material, we have created a code in C++ that calculates the resulting

mass of an isotope and the isotopes in its decay series after going through a half-

life or a specified amount of time. Our code includes the decay series (or

daughter products) of the isotopes because the isotope will decay into different

radioactive elements that have different half-life, until the isotope becomes

stable. The code that we created in C++ also calculates the amount of

radioactive particles (Alpha and Beta) that are released during an amount time

that is specified by an outside user.

We solved our problem by using an adaptation of the half-life formula

(resulting mass = initial amount / 2^(N), where ‘N’ = elapsed time / half-life) on

the initial isotope and the isotope in the decay series. The program requires the

user to input how much time will pass (in days) and which radioactive isotope(s)

will be used. In order to allow the input of a variety of isotopes and elements, we

created the program to allow the user to enter in the atomic number and the

isotope of the substances that are commonly used for nuclear power (eg.

Uranium 238, Uranium 235, Plutonium ect…). We accomplished this task by

creating a library of the main elements, isotopes and half-life that can be called

upon by the user. We have also created our code to allow for two different

isotopes to be entered and calculated in order to save time if there is more than

one isotope present.

 The resulting mass of the isotope is found and is converted into the number of

atoms that decayed. The number of alpha and/ or beta partials that were created

and spread during the process is then found by using the number of atoms that

decayed. The number of atoms that have decayed from the initial isotope and its

daughter products determines how many beta and alpha particles are formed do

to each atom’s transformation/decay into the next isotope or element in the

decay series.

Eventually, the initial mass, isotope, resulting mass, decay series, time

passed and the amount of Alpha and Beta particles will be included into a model

that will be based in NetLogo.

Main Half –Life Formula

The main half-life formula that is with the initial isotope, and, if required, the next

isotope in the initial isotope’s decay series:

rmass[e][iso] = mass[e][iso]*pow(0.5,(t/(hl[e][iso][0]*pow(10,hl[e][iso][1]))))

Where:

rmass = resulting mass (in grams) , mass = initial mass, t = time (in days),

e = element, iso = isotope, hl = half-life

Diagram of Alpha and Beta Decay

C++ Code Flowchart:

Example Tables:

Uranium 238 Decay Series Table

Element Half life

Uranium 238- 92 4.5 billion

Thorium 234- 90 24.1 days

Protactinium 234- 91 1 minute

Uranium 234- 92 245, 000 years

Thorium 230- 90 76,000 years

Radium 226- 88 1,600 years

Radon 222- 86 3.8 days

Polonium 218- 84 3.0 minutes

Lead 214- 82 27 minutes

Bismuth 214- 83 20 minutes

Polonium 214- 84 or Thallium 210- 81 130 microseconds

Lead 210- 82 22 years

Bismuth 210- 83 5 days

Polonium 210- 84 138

(Blue text = initial isotope)

Uranium 235 Decay Series Table

Element Half life

Uranium 235- 92 704 million

Thorium 231- 90 25.5 hours

Protactinium 231-91 32500 years

Actinium 227- 89 21.6 years

Thorium 227- 90 or Francium 223- 87 18.7 days or 22 minutes

Radium 223- 88 11.4 days

Radon 219- 86 3.92-second

Polonium 215- 84 138.376 days

Lead 211- 82 36.1 minutes

Bismuth 211- 83 2.16 min

Polonium 211-84 or Thallium 207- 81 0.52 second or 4.8 min

Lead 207-82 Stable

 (Blue text = initial isotope)

Results

There are many possible results from our code, so we created an example by

using the results of running our program with the isotope U-238 with an initial

mass of 1000 grams and a time period of 100 days.

element isotope resulting mass

92 238 1000

90 234 2.37648e-09

91 234 0

92 234 3.97953e-08

90 230 3.08248e-14

88 226 7.6961e-20

86 222 0

84 218 0

82 214 0

83 214 0

84 214 0

81 210 0

82 210 9.05035e-24

83 210 0

84 210 4.74476e-26

82 206 0

94 239 0

92 235 0

90 231 0

91 231 0

89 227 0

90 227 0

87 223 0

88 223 0

86 219 0

84 215 0

82 211 0

83 211 0

84 211 0

81 207 0

82 207 0

Alpha decay

1.06705e+14 particles

Beta decay

2.04827e+14 particles

Conclusion

By analyzing the results from our C++ simulation of how an isotope

decays over time, it can be concluded that uncontained nuclear waste, even in a

short period of time, will emit a large amount Alpha and Beta particles. It can be

seen that because of the large quantity of particles, nuclear waste that is

improperly contained has the potential to cause a great amount of harm to the

surrounding environment and people if the Alpha and Beta particles spread.

What we will accomplish in the future

 We will actually create the visual model of the spread of the radioactive

particles in NetLogo. We will incorporate the results that we have gained from our

C++ code in order to accomplish a visual representation of the creation and

spread of the alpha and beta partials. We will also include a representation of the

resulting mass from the decaying initial isotope as well as the new isotopes that

are created through the decay chain.

References

Elliott, T. G., Haase, Kathleen A. Harper, Herzog, Nelson, Friedrich Schiller,
Paul W. Zitzewitz, and Zorn. Physics: Principles and Problems. Columbus,
OH: Mcgraw-Hill/Glencoe, 2004.

"NRC: Radioactive Waste." NRC: Home Page. 19 Dec. 2008
<http://www.nrc.gov/waste.html>.

"Radioactive waste - Wikipedia, the free encyclopedia." Wikipedia, the free
encyclopedia. 19 Dec. 2008 <http://en.wikipedia.org/wiki/Nuclear_waste>.

"Yucca Mountian Update." www.state.nv.us. 20 Feb. 2009
<www.state.nv.us/nucwaste/yucca/ymupdate/WIPP.jpg>.

"What is Nuclear Waste?." wiseGEEK: clear answers for common questions.
19 Dec. 2008 <http://www.wisegeek.com/what-is-nuclear-waste.htm>.

Wilbraham, Antony C.. Chemistry. New York City: Addison-Wesley Pub (Sd),
1987.

"NRC: Radioactive Waste." NRC: Home Page. 19 Dec. 2008
<http://www.nrc.gov/waste.html>.

Code in C++

#include <iostream>

#include <cmath>

using namespace std;

class material

{

 public:

 double mass[95][239];

 double rmass[95][239];

 double dmass[95][239];

 double hl[95][239][2];

 int dseq[31][2];

 double adecay;

 double bdecay;

 double t;

 void setup(void);

 void input(void);

 void compute(void);

 void output(void);

 void hllib(void);

 void dseqset(void);

};

int main()

{

 material m1;

 m1.t = 0;

 m1.setup();

 m1.input();

 m1.hllib();

 m1.dseqset();

 m1.compute();

 m1.output();

 system("PAUSE");

 return 0;

}

void material::setup()

{

 adecay = 0;

 bdecay = 0;

 for(int i=0;i<=94;i++)

 {

 for(int x=0;x<=238;x++)

 {

 mass[i][x]= 0;

 rmass[i][x]= 0;

 dmass[i][x]= 0;

 }

 }

}

void material::input()

{

 int element = 0;

 int iso = 0;

 int d;

 int x = 1;

 while(x == 1)

 {

 cout << "What is the element?" << endl;

 cin >> element;

 cout << "What isotope of the material?" << endl;

 cin >> iso;

 cout << "What is the mass of the material?" << endl;

 cin >> mass[element][iso];

 cout << "Do you want to input the mass of any"

 << " other elements?" << endl;

 cin >> d;

 if(d == 0)

 {

 x = 0;

 }

 }

 cout << "\nHow much time do you want to pass?" << endl;

 cin >> t;

 if(t==0)

 {

 cout << "\nError: improper input." << endl;

 }

}

void material::compute()

{

 int e;

 int iso;

 for (int y = 0; y<=30; y++)

 {

 e = dseq[y][0];

 iso = dseq[y][1];

 rmass[e][iso] =

mass[e][iso]*pow(0.5,(t/(hl[e][iso][0]*pow(10,hl[e][iso][1]))));

 dmass[e][iso] = mass[e][iso] - rmass[e][iso];

 if (y == 1 || y == 2 || y == 8 || y == 11 || y == 12 || y == 13 ||

 y == 18 || y == 22 || y == 26 || y == 29)

 {

 bdecay += dmass[e][iso] / iso * (6.022*pow(10.0,23));

 }

 else

 {

 adecay += dmass[e][iso] / iso * (6.022*pow(10.0,23));

 }

 if (y == 9)

 {

 mass[dseq[y+1][0]][dseq[y+1][1]] += dmass[e][iso]*0.9998;

 mass[dseq[y+2][0]][dseq[y+2][1]] += dmass[e][iso]*0.0002;

 }

 else if (y == 20)

 {

 mass[dseq[y+1][0]][dseq[y+1][1]] += dmass[e][iso]*0.986;

 mass[dseq[y+2][0]][dseq[y+2][1]] += dmass[e][iso]*0.014;

 }

 else if (y == 27)

 {

 mass[dseq[y+1][0]][dseq[y+1][1]] += dmass[e][iso]*0.0028;

 mass[dseq[y+2][0]][dseq[y+2][1]] += dmass[e][iso]*0.9972;

 }

 else if (y == 21 || y == 28 || y == 10)

 {

 mass[dseq[y+2][0]][dseq[y+2][1]] += dmass[e][iso];

 }

 else if (y == 30 || y == 15)

 {}

 else

 {

 mass[dseq[y+1][0]][dseq[y+1][1]] += dmass[e][iso];

 }

 }

}

void material::output()

{

 cout << "element" << "\t" << "isotope" << "\t" << "resulting mass" <<

endl;

 for(int y = 0; y<=30; y++)

 {

 cout << dseq[y][0] << "\t" << dseq[y][1] << "\t"

 << rmass[dseq[y][0]][dseq[y][1]] << endl;

 }

 cout << "alpha decay" << endl << adecay << endl << endl;

 cout << "beta decay" << endl << bdecay << endl;

}

void material::hllib(void)

{

 hl[92][238][0] = 1.643625;

 hl[92][238][1] = 12;

 hl[90][234][0] = 2.41;

 hl[90][234][1] = 1;

 hl[91][234][0] = 6.944444;

 hl[91][234][1] = -4;

 hl[92][234][0] = 8.948625;

 hl[92][234][1] = 7;

 hl[90][230][0] = 2.7759;

 hl[90][230][1] = 7;

 hl[88][226][0] = 5.844;

 hl[88][226][1] = 5;

 hl[86][222][0] = 2.638889;

 hl[86][222][1] = -3;

 hl[84][218][0] = 2.083333;

 hl[84][218][1] = -3;

 hl[82][214][0] = 1.875;

 hl[82][214][1] = -2;

 hl[83][214][0] = 1.388888;

 hl[83][214][1] = -2;

 hl[84][214][0] = 1.504629;

 hl[84][214][1] = -9;

 hl[82][210][0] = 8.0355;

 hl[82][210][1] = 3;

 hl[83][210][0] = 3.472222;

 hl[83][210][1] = -3;

 hl[84][210][0] = 1.38;

 hl[84][210][1] = 2;

 hl[82][206][0] = 0;

 hl[82][206][1] = 0;

 hl[94][239][0] = 2.411;

 hl[94][239][1] = 4;

 hl[92][235][0] = 2.57136;

 hl[92][235][1] = 11;

 hl[90][231][0] = 1.0625;

 hl[90][231][1] = 0;

 hl[91][231][0] = 1.1870625;

 hl[91][231][1] = 7;

 hl[89][227][0] = 7.8894;

 hl[89][227][1] = 3;

 hl[90][227][0] = 18.7;

 hl[90][227][1] = 1;

 hl[87][223][0] = 1.527777;

 hl[87][223][1] = -2;

 hl[88][223][0] = 11.4;

 hl[88][223][1] = 1;

 hl[86][219][0] = 4.537037;

 hl[86][219][1] = -5;

 hl[84][215][0] = 1.38376;

 hl[84][215][1] = 2;

 hl[82][211][0] = 2.506944;

 hl[82][211][1] = -2;

 hl[83][211][0] = 15;

 hl[83][211][1] = -3;

 hl[84][211][0] = 6.018518;

 hl[84][211][1] = -6;

 hl[81][207][0] = 3.333333;

 hl[81][207][1] = -3;

 hl[82][207][0] = 0;

 hl[82][207][1] = 0;

}

void material::dseqset(void)

{

 dseq[0][0] = 92;

 dseq[0][1] = 238;

 dseq[1][0] = 90;

 dseq[1][1] = 234;

 dseq[2][0] = 91;

 dseq[2][1] = 234;

 dseq[3][0] = 92;

 dseq[3][1] = 234;

 dseq[4][0] = 90;

 dseq[4][1] = 230;

 dseq[5][0] = 88;

 dseq[5][1] = 226;

 dseq[6][0] = 86;

 dseq[6][1] = 222;

 dseq[7][0] = 84;

 dseq[7][1] = 218;

 dseq[8][0] = 82;

 dseq[8][1] = 214;

 dseq[9][0] = 83;

 dseq[9][1] = 214;

 dseq[10][0] = 84;

 dseq[10][1] = 214;

 dseq[11][0] = 81;

 dseq[11][1] = 210;

 dseq[12][0] = 82;

 dseq[12][1] = 210;

 dseq[13][0] = 83;

 dseq[13][1] = 210;

 dseq[14][0] = 84;

 dseq[14][1] = 210;

 dseq[15][0] = 82;

 dseq[15][1] = 206;

 dseq[16][0] = 94;

 dseq[16][1] = 239;

 dseq[17][0] = 92;

 dseq[17][1] = 235;

 dseq[18][0] = 90;

 dseq[18][1] = 231;

 dseq[19][0] = 91;

 dseq[19][1] = 231;

 dseq[20][0] = 89;

 dseq[20][1] = 227;

 dseq[21][0] = 90;

 dseq[21][1] = 227;

 dseq[22][0] = 87;

 dseq[22][1] = 223;

 dseq[23][0] = 88;

 dseq[23][1] = 223;

 dseq[24][0] = 86;

 dseq[24][1] = 219;

 dseq[25][0] = 84;

 dseq[25][1] = 215;

 dseq[26][0] = 82;

 dseq[26][1] = 211;

 dseq[27][0] = 83;

 dseq[27][1] = 211;

 dseq[28][0] = 84;

 dseq[28][1] = 211;

 dseq[29][0] = 81;

 dseq[29][1] = 207;

 dseq[30][0] = 82;

 dseq[30][1] = 207;

}

