
Decision making and Success of Military

Actions

New Mexico

Supercomputing Challenge

Final Report

April 1, 2009

Team 90

Rio Rancho Mid-high

Team members:

 Sean Taylor

Ashwin Chidambaram

Adam Garcia

Teacher:

Mrs. Debra Loftin

Mentor:

Nick Bennett

Executive Summary

 Our program’s goal is to create tasks that will allow the most efficient movement of

individuals in a military situation. This program is important because it will cause the individuals

to make successful decisions. The success of this decision making program can be measured

according to how many opponents a unit can defeat before he, himself, is defeated.

 We are using NetLogo, an agent based modeling program. Initially, we wanted our program

to be very complex, simulating a war game. As we progressed, we realized that keeping the

program simple was the best way to reach our goal of creating a program where the computer

makes decisions. We chose to make a game format so that it was easy to see what the results of

each move would be.

 After doing much programming, testing, and refining of the Artificial Intelligence Program,

we successfully developed a program that can make some decisions by itself. For example, it

now has the knowledge of when it can attack the opponent. Our program relates to a military

situation because it uses tanks as the objects that the humans can directly interact with. The

objects do not move efficiently until it starts to retreat. Then, it only moves units that it knows

can get away thereby not wasting any moves.

Introduction

 A basic question that we had to ask before we could do anything was, “What is artificial

intelligence?” We got our answer at the Stanford question-and-answer website. The website

defined artificial intelligence as, “...the science and engineering of making intelligent machines.”

With that in mind, we came up with a purpose and three basic knowledge items we needed.

Those items were as follows; how game programs work, how NetLogo allows objects to move

on the board and what other decision making programs do to make the computer choose the best

or most successful answers. The original purpose of this program was to model military based

decision making.

 The first important thing to understand is how game programs work. The game we had in

mind at the beginning was called “StarCraft”; a strategy RPG (Role Play Game) involving many

different types of units. But the most important part of this game was how the computer went

about. Meaning it did not have just one way of playing, it had two very different ways. The first

was taking a slow defensive stance, and the second was to take a more fast passed, aggressive

stance. The way the computer would play was chosen at random.

 Second, we absolutely have to know how turtles (or agents/units) move on the screen. We

learned that the turtles could only move in a straight line, not diagonal. That proved to be a

secondary challenge due to the fact that our first draft program could only move forward and no

other way. But we have now overcome these challenges and we have a working program.

 Finally, the third important thing to understand was what the other programs do to make the

computer choose the best or most successful answers. In the article published by the Dilts

Strategy Group on “Success Factor Modeling” they state that, “The SMF process was conceived

and based upon a set of principles and characteristics which are uniquely suited to analyze and

identify crucial patterns of values, behavior and interrelationships at the root successful

individuals, teams and companies.” This lead us to focus on the pattern of behavior that we

wanted our tanks to have, rather than simply on each individual move. The program is a

 guideline for the computer and, once the programs are complete, something for the computer to

learn from.

Problem Definition

 The goal of this program is to create tasks that will allow the most efficient movement of

individuals in a military situation. The program will be important because it will allow us to

write a program that will cause the objects to make successful decisions. The success of this

decision making program can be measured according to how many opponents can be defeat

before he himself is defeated.

How the Program Works

 This program allows the human player to choose if they want to play against the computer. If

the human does choose to play against the computer, they can do many things including passing

a turn and moving in four directions. If the player decides to play against the computer, then the

computer can do the same types of moves as the person. Some examples of what the computer

can ask in order to move include; “Is there an enemy with-in 6 patches of me?”, “Can I move the

turtle that just attacked the enemy away from danger?”, and “How many moves do I have left?”.

 The computer’s units answer, or “report”, the specified information and the computer does a

simple “greater than less than” operation to find what if there are any units close to the enemy

which can move in to attack. Next, the computer asks the unit that just attacked, “Are there more

enemies close to you?". If that unit reports “yes”, the computer moves it as far away as possible

so the enemy has to use more of their moves to capture the unit that had just attacked. The

Program’s design was based on the above questions about unit movement through out the game.

 We also thought that military commanders might use similar principals in their plan of action

for battle. Such questions as; how many kilometers until we get to our enemy? If I send a man in

can he get out before he is very heavily fired on? How much time do we have before sun up/sun

set? All these are relevant questions to the one man’s survival as well as his companies survival.

 Here are just some of the “rules” the computer must follow:

to computer-rules…

 … let threatened-turtles (my-turtles with [(any? opponents-in-

range) and (retreat-patch != nobody)])

 ifelse (any? threatened-turtles) [

 let selected-turtle min-one-of threatened-turtles [distance-

to-closest-in-range]

 ask selected-turtle [

 move-to retreat-patch

 set moves-left (moves-left - 1)

]

] [

 let selected-turtle one-of (turtles with [(color = turn) and

can-move-safely?])

 if (selected-turtle != nobody) [

 ask selected-turtle [

 let destinations safe-neighbors

 let preferred-destination (patch-at 1 0)

 let target ifelse-value (member? preferred-destination

destinations) [preferred-destination] [one-of destinations]

 move-to target

 set moves-left (moves-left - 1)

]

]

]

]

]

 set current-player-has-moved? true

end

 This piece of code relates directly to two of the questions the computer must ask about

movement to retreat. After the computer has finished attacking, it needs its unit back, it first asks

what units are in danger, and of those, which have the best chance to get away or make the

enemy use the most moves to get the retreating computer unit. Then, it asks of those units that fit

that profile if they can move more to the side they came from (the left one, generally) via a “safe-

neighbor”. It executes and deducts one move. After all five moves are gone it changes the turn to

the human opponent.

Program Verification

 The way our program relates to the real world is that it shows a demonstration of artificial

intelligence. The opponent turtles (a.k.a. the computer) act on their own using AI and try to

defeat their opponent. The computer currently attacks its opponent when it is within five spaces

of you (if it has five moves left). The computer also knows when it can be attacked and it doesn’t

have enough moves to attack and tries to get out of range. If the computer is not in range of its

opponent, it will choose a unit to move forward randomly. This is like artificial intelligence

because it has the computer making decisions on its own.

Conclusion

In conclusion, our project was supposed to simulate basic military action but it ended up

simulating some artificial actions instead. Making artificial decisions was still a main goal in the

beginning of the program. However, we also wanted to make a learning program that gets

progressively harder to beat, which we hope to do at a later date. We were not able to achieve

this goal because NetLogo lacked the types of commands necessary to make the computer learn.

Alternatively, we found that we could give the computer the ability to move not only in a straight

line, but also in a L-shape that appears diagonal on the computer screen. Our best achievement

was that we got the computer to play by it self and make its own decisions.

Bibliography

1) "Basic Questions." Formal Reasoning Group. Stanford. 31 Mar. 2009 <http://www-

formal.stanford.edu/jmc/whatisai/node1.html>.

2) http://www.acm.org/crossroads/xrds2-2/ethics.html -“Wiley InterScience”

3) http://www3.interscience.wiley.com/journal/119212583/abstract?CRETRY=1&SRETRY=0 -

“Computer Based Decisions-Making: Three Maxims”, by Jeff Robbins

4) "Tic-Tac-Toe Strategy." Ostermiller.org. Ed. Stephen Ostermiller. 17 Mar. 2009

<http://ostermiller.org/tictactoeexpert.html>.

5) Harris, Robert. "Introduction to Decision Making." VirtualSalt. 2 July 1998. 17 Mar. 2009

<http://www.virtualsalt.com/crebook5.htm>.

Appendix A

globals [

 current-turtle

 current-player-has-moved?

 move-limit-per-turn

 moves-this-turn

]

turtles-own [

 health

 opponents-in-range

]

patches-own [

 threats

]

to setup

 clear-all

 create-turtles 10 [

 set color red set shape "soldier"

 set heading 90

 setxy -10 (who - 5)

]

 create-turtles 10 [

 set color green set shape "tank 1"

 set heading 270

 setxy 10 (who - 15)

]

 set current-player-has-moved? true

 set current-turtle nobody

 set move-limit-per-turn 5

 setup-grid

end

to move

 if ((not any? turtles with [color = red]) or (not any? turtles

with [color = green])) [

 stop

 reset-current-turtle

]

 if (current-player-has-moved?) [

 set current-player-has-moved? false

 reset-current-turtle

 set moves-this-turn 0

 ifelse (turn = red) [

 set turn green

] [

 set turn red

]

]

 ifelse ((turn = green) or (not computer-plays?))

 [detect-click]

 [computer-rules]

end

to pass

 set current-player-has-moved? true

end

to detect-click

 if (mouse-down?) [

 while [mouse-down?] []

 if (mouse-inside?) [

 let test-turtle (one-of turtles-on (patch mouse-xcor

mouse-ycor))

 if (test-turtle != nobody) [

 if (([color] of test-turtle) = turn) [

 reset-current-turtle

 set current-turtle test-turtle

 ask test-turtle [

 set size 2

]

]

]

]

]

end

to move-turtle [direction]

 if (current-turtle != nobody) [

 ask current-turtle [

 let current-heading heading

 set heading direction

 if (can-move? 1) [

 let turtle-ahead (one-of turtles-on patch-ahead 1)

 ifelse (turtle-ahead != nobody) [

 ifelse (([color] of turtle-ahead) != color) [

 ask turtle-ahead [

 die

]

 forward 1

 set moves-this-turn (moves-this-turn + 1)

] [

 set heading current-heading

]

] [

 forward 1

 set moves-this-turn (moves-this-turn + 1)

]

]

]

 if (moves-this-turn >= move-limit-per-turn) [

 set current-player-has-moved? true

]

]

end

to reset-current-turtle

 if (current-turtle != nobody) [

 ask current-turtle [

 set size 1

]

 set current-turtle nobody

]

end

to setup-grid

 ask patches [

 ifelse (((pxcor + pycor)mod 2) = 0)

 [set pcolor white] [

 set pcolor black

]

]

end

to computer-rules

 let moves-left 5

 let my-turtles (turtles with [color = turn])

 while [moves-left > 0] [

 ask my-turtles [

 set opponents-in-range in-range (ifelse-value (color = red)

[green] [red]) moves-left

]

 ifelse (any? my-turtles with [any? opponents-in-range]) [

 let selected-turtle min-one-of my-turtles [distance-to-

closest-in-range]

 ask selected-turtle [

 let distance-moved distance-to-closest-in-range

 let target min-one-of opponents-in-range

 [manhattan-distance myself]

 move-to target

 ask target [

 die

]

 set moves-left (moves-left - distance-moved)

]

] [

 ask my-turtles [

 set opponents-in-range in-range (ifelse-value (color = red)

[green] [red]) 5

]

 let threatened-turtles (my-turtles with [(any? opponents-in-

range) and (retreat-patch != nobody)])

 ifelse (any? threatened-turtles) [

 let selected-turtle min-one-of threatened-turtles [distance-

to-closest-in-range]

 ask selected-turtle [

 move-to retreat-patch

 set moves-left (moves-left - 1)

]

] [

 let selected-turtle one-of (turtles with [(color = turn) and

can-move-safely?])

 if (selected-turtle != nobody) [

 ask selected-turtle [

 let destinations safe-neighbors

 let preferred-destination (patch-at 1 0)

 let target ifelse-value (member? preferred-destination

destinations) [preferred-destination] [one-of destinations]

 move-to target

 set moves-left (moves-left - 1)

]

]

]

]

]

 set current-player-has-moved? true

end

to-report in-range [target-color steps-left]

 report (turtles with [(color = target-color)

 and ((manhattan-distance myself) <= steps-left)])

end

to-report distance-to-closest-in-range

 let result 999999

 if (any? opponents-in-range) [

 set result min [manhattan-distance myself] of opponents-in-

range

]

 report result

end

to-report manhattan-distance [target]

 report (abs (pxcor - [pxcor] of target)) + (abs (pycor -

[pycor] of target))

end

to-report retreat-patch

 let target nobody

 let avalabul-neighbors neighbors4 with [not any? turtles-here]

 if (any? avalabul-neighbors) [

 ask avalabul-neighbors [

 set threats [opponents-in-range] of myself

]

 let destinations avalabul-neighbors with [(min [manhattan-

distance myself] of threats) > [distance-to-closest-in-range] of

myself]

 if (any? destinations) [

 set target one-of destinations

]

]

 report target

end

to-report can-move-ahead?

 let turtles-ahead (turtles-on patch-ahead 1)

 let turtle-ahead (ifelse-value (any? turtles-ahead) [one-of

turtles-ahead] [nobody])

 report (turtle-ahead = nobody) or (([color] of turtle-ahead) !=

color)

end

to-report can-move-safely?

 report (any? safe-neighbors)

end

to-report safe-neighbors

 report (neighbors4 with [(not any? turtles-here) and (not any?

in-range (ifelse-value (([color] of myself) = red) [green]

[red]) 5)])

end

Appendix B

This is what a on going battle between the computer and a human could look like.

Green (the human) as a tight formation, which will be their down fall…

Red (the computer) has beat green showing that the program can make decisions.

Acknowledgments

We would like to thank Mrs. Debbra Loften for helping us from the beginning to the end. Second we want to

thank Nick Bennitt for helping us to learn the NetLogo language. Last but not least we want to than our

family and friends for their support.

