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Executive Summary 

The basis of our project is the excitation of normal modes of the human prion 

protein E200K (Protein Data Bank index 1FKC) in order to change its structure.  The 

E200K prion has been linked to Creutzfeldt-Jakob disease, an incurable disease of the 

human brain.  This protein is a mutated from of a protein normally found in the human 

body; the E200K variant transforms the normal state prion into another disease state 

protein and, in the process, causes neural degradation.  This disease-prion relies heavily 

on the distribution of electric charges on its surface to latch onto and transform other 

prions.  It was our hope to find a way to neutralize E200K prions with specific 

frequencies of microwave radiation by changing the molecular structure and thus surface 

charge distibution.  Our program, in conjunction with the molecular modeling package 

TINKER, uses normal mode analysis to find the fundamental frequencies at which the 

E200K prion vibrates.  We then modeled how the structure of the prion protein changed 

when it was bombarded with microwaves at the lower end of the molecule‟s fundamental 

frequency spectrum.  We used both graphical visualizations and mathematical techniques 

to analyze the changes in molecular structure.  We modeled the brief exposure of the 

prion to microwave radiation in both a vacuum and water environment.  We had great 

success manipulating the E200K‟s structure in a vacuum but need to improve our 

techniques for modeling the prion‟s transformation in a more realistic water environment.  

The use of electromagnetic radiation to manipulate molecular structures holds great 

promise for revolutionizing the field of medicine; our project aims to further explore 

these possibilities and raise awareness about the theory and techniques involved with this 

novel utilization of normal mode analysis and vibrational spectroscopy. 
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Prion E200K 

The E200K prion protein causes Creutzfeldt-Jakob
 
disease, an incurable illness, 

by modifying the naturally produced PrP
C 

(prion protein) into the deadly pathogenic 

conformer PrP
sc 

. PrP
C 

is naturally made in the human body.  The disease state variant of 

this protein, PrP
sc 

is created on the same gene codon but in a mutant state.  Both of these 

prion proteins have remarkably similar structures, except in the flexible regions.  The 

major differences are as follows: the PrP
sc 

has more Beta sheets, and the PrP
c 
has more 

alpha helixes, and the PrP
sc

 has a different electrostatic surface potential then the healthy 

form.  This means that the electric charges covering the surface of the protein are 

arranged differently.  Current research suggests that the proteins surface defects allow it 

to seek out and attach to the PrP
c
 variant.   The E200K then acts like an enzyme, 

changing the structure of the substrate prion and making one chemical change at the 200
th

 

codon.  During the mutation process the PrPs
c
 replaces a negatively charged glutamic 

acid with a positive charged lysine. This change results in the rapid transformation from 

PrP
c 
to PrP

sc
.  The loops and helixes of both of these prions are different.  In one loop 

region this is critical because it provides a building site for Protein X, which is thought to 

be a crucial part in the transformation from PrP
c 
to PrP

sc
. 

The PrP
c
 utilizes these changes to covert healthy state prions to the disease state. 

Once the PrP
sc 

is created it transforms other normal PrP
c 
molecules into the disease state.  

This means that the rate of reproduction of the prion begins slow if there are few original 

E200K prions introduced, but accelerates rapidly after a long period of accumulation. 

 The disease can remain dormant for decades, making it even more deadly, for it 

can be passed on by the same person multiple times before that person even realizes that 
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they have the disease, and by then his donated blood has been given to someone else. The 

long incubation period is thought to be caused by the slow accumulation of PrP
sc

.  The 

PrP
sc 

collects in the host‟s brain, slowly decaying it.  Eventually creating holes in the 

brain, and breaking down the nervous system, making Creutzfeldt-Jakob a spongiform 

disease.  The PrP
c
‟s

 
function is not fully understood but is believed to protect the brain 

from dementia and other degenerative problems associated with by old age.  When the 

PrP
c 
is contorted into a PrP

sc
 it further onsets these symptoms in the host. 

Project Goal 

 Our project goal was to find a way to make this dangerous prion, E200K, inert.  

There are currently no treatments for Creutzfeldt-Jakob disease and it is the most 

common prion disease.  In order to render the PrP
sc

 harmless the activation sites, crucial 

for enzyme activity, must be rearranged in such a way that they are not functional.  The 

way we chose to do this was to utilize specific frequencies of microwave radiation to 

cause the prion to vibrate and rearrange itself into a new form, where it cannot naturally 

return to its disease state, by activating the normal modes of the molecule.  The use of 

electromagnetic waves to change the structure of proteins on the capsid of the Tobacco 

necrosis virus by Arizona State University researchers Eric C. Dykeman and Otto F. 

Sankey inspired our project.  Their work is detailed in the essay Low Frequency 

Mechanical Modes of Viral Capsids: An Atomistic Approach.  Their work was much 

more advanced and precise than ours, but utilizes many of the same basic principles.  

What follows is a detailed walkthrough of how the fundamental frequencies of the prion 

are found through normal mode analysis and then applied through vibrational 

spectroscopy. 
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One Dimensional Springs 

Vibrational spectroscopy, with regard to altering the physical structure of the 

disease state form of the human prion protein E200K, is based on excitation of the 

molecule through activation of the normal modes.  The normal modes are frequencies the 

molecule may vibrate at; they depend on both physical structure and forces acting both 

inside the molecular structure and interactions with the molecule‟s surroundings.  The 

normal modes are derived using a combination of regular algebra, basic calculus, and 

linier algebra.  The following section describes a method for creating and solving the 

matrix associated with normal mode analysis as well as an example modeling the simple 

three atom molecule CO2.  

 To understand the derivation of normal modes it is not simplest to start on the 

scale of the individual atom or molecule, but in classical macro-physics.  Picture two 

objects connected by a simple spring (one that obeys Hook‟s Law) with no outside forces 

are acting on the system.  If the objects are left to rest they will stay a fixed distance away 

from each other—the spring will neither be extended past its rest length or contracted at 

all.  This state is called the minimized state of the system; this is because the potential 

energy is at its minimal state.  If an outside force pulls the two objects apart (extending 

the spring) or pushes them together (compressing the spring) a force acts between the two 

objects.  The spring naturally wants to return towards its minimal state of energy and thus 

its natural length.  The force that acts between the objects is described by Hook‟s law: 

F k x  where F is force, k is the spring constant (also called the force constant) of the 

spring adjoining the objects, and x is the change in length of the spring from its natural 

length (if the original length of the spring is x0 and the new length is xn then 
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x x0 xn ).  The negative sign means that the force is always the opposite the 

direction that the spring has been altered—i.e. force has direction.  The force constant, k, 

represents the stiffness of the spring; if k is large the spring is hard to stretch, if k is small 

the spring is easy to stretch.  If the system is mechanically excited, the spring is stretched 

or compressed, and there is no damping from outside forces then it will oscillate between 

stretching and compressing at a fixed frequency until some outside force stops it.  The 

amount of time it takes the system to make one full cycle from the equilibrium point 

(minimum potential energy) to maximum extension (maximum potential energy) to the 

equilibrium point to maximum compression and back to the natural length is called the 

period of the spring and is given byT 2 m
k

.  At all times the center of mass ( x ) of 

the system remains constant.  The frequency, or number of cycles per second, in Hertz 

(Hz) is given as the reciprocal of the period.  The potential energy of the system for any 

amount of stretch is described by: e
1

2 k( x)
2 .  Where 

e
is the potential energy.  

Note that this expression is a quadratic equation with its vertex at the minimum potential 

energy of the system.  The first derivative of potential energy is the expression for force  

e

x
F k x  

The second derivative of potential energy is the opposite of the force constant. 

2

e

x2
k  

This is an important relationship that makes matters simple for the time being, but will 

become more complicated later.  The last point about the nature of the springs involves 

the displacement with respect to time.  As the spring‟s length changes its motion is 
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described by a sine curve.  The displacement of either object from its original position 

before excitation is given by the un-damped sine curve: s(t) Asin(2 vt) , where A is the 

amplitude of motion (it depends on how much the spring was originally stretched and is 

an arbitrary value for these calculations), v is the fundamental frequency of the system, 

and t is time.  For this system there is only one possible value of v but for more complex 

systems there are a great many possible values—the calculation of all the possible values 

of v for our molecule is the ultimate goal of this normal mode analysis.  Taking the first 

derivative of displacement, s(t), gives s '(t) (2 v)Acos(2 vt) .  This represents the 

velocity of the object at any given time. The second derivative of displacement gives the 

acceleration with respect to time: s ''(t) (4 2v2 )( A)sin(2 vt) .  The original expression 

of displacement is substituted into the equation for acceleration to yield: 

s ''(t) (4 2v2 )( s(t)) .  Newton‟s second law of motion states that for any unbalanced 

force on an object force equals mass times acceleration (F ma ).  Multiplying both 

sides of the expression by acceleration gives m[s ''(t)] ma F 4 2v2m[s(t)] .  The 

force created by the extension/compression of the spring is given as the derivative of 

potential energy, e

x
F k x .  Setting the forces equal to each other gives 

k x 4 2v2m[s(t)] .  If the analysis of forces is not done with respect to time then the 

expression s(t) is equivalent to x and the normal mode analysis equation becomes 

k x1 4 2v2m2 x2 .  What this equation really represents is: the resultant 

displacement of object two due to the forces created by moving object one by some 

amount.  The resultant displacement is dependent on the frequency that the object is 

moving at.  Imagine the dual mass, single spring system again.  If one mass is held still 
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while the other is moved and then the system is let go the second mass will be displaced 

by the force from the spring resulting from the movement of the first mass.  In a simple 

one dimensional model like this one, the two displacements are equal and on the same 

line by virtue of Newton‟s third law of motion.  This system becomes much more 

complicated when the objects are allowed to move in three dimensions.   

Three Dimensional Spring Forces 

Imagine, now, a cube, made up of eight masses at the points and each mass is 

connected to every other mass by a simple spring.  Disregard that, at the center of the 

cube (and in the middle of each of the faces), the diagonal springs intersect each other; 

the important property of the springs is this.  They represent a variable force between 

masses, their physical appearance is trivial.  If any one of the masses is moved in any 

direction the forces created by the springs will cause all the other masses to move in 

various directions by various amounts.  This is where the liner algebra aspect of normal 

mode analysis comes in to play.  First:  the system of masses and springs is a three-

dimensional object in three-dimensional space, so all movement in space is broken down 

into components.  The movement of a mass, mn, from its minimized position (the 

minimized state of the cube is, again, when the potential energy of the system is at its 

lowest) is represented by sn .  Note that s is boldface—this means that it represents a 

vector, which has both direction and magnitude; in the earlier example x had only one 

direction to represent so it was not written in boldface and only referred to magnitude. 

sn  can be broken down into unit vectors, one for each direction in x,y,z space: 

sn xn yn zn .  The unit vectors: xn, yn,  and zn all represent distances along 

the x,y, and z axis, respectfully, from the original position of the mass mn.  Generally, at 
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this stage, all measurements of displacement are done so with the origin at the center of 

mass of the system (internal Cartesian coordinates), which is at the center of the cube in 

this case if all the objects are of equal mass.  The center of mass with respect to any 

outside coordinate system is (x,y, z ) .   

So, if one mass is moved it will affect the position of every other mass, according 

the equation derived earlier: k sb 4 2v2ma sa .  This equation can be expanded 

using knowledge of vectors.   

kxx
ab

xb kxy
ab

yb kxz
ab

zb 4 2v2ma xa

kyx
ab

xb kyy
ab

yb kyz
ab

zb 4 2v2ma ya

kzx
ab

xb kzy
ab

yb kzz
ab

zb 4 2v2ma za

 

This system of equations deals with the movement of two objects—ma and mb in three 

dimensions.  mb is being moved by some outside force, this causes the spring connecting 

it to ma to change length and produce a force, displacing ma by some amount.  The left 

hand side of this equation deals with how mb is being moved in space—in terms of x,y, 

and z.  The right side shows how that force will cause ma to be displaced.  Note that the 

force on the left side has nothing to do with the mass of the object being moved, only the 

distance, whereas the force on the right side involves the mass of the object and the 

frequency of the oscillation.  Going back to the cube, to find all the possible ways that 

one object can be moved, in each direction, the movements of every other object, in every 

direction, must be considered.  If the eight masses are called m1, m2,… mn … m8 where 

1 n 8 and n  .  The system of equations describing the displacement of one atom: 

m1 due to the displacement of any of the other atoms is: 
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kxx
11

x1 kxy
11

y1 kxz
11

z1 kxx
12

x2 kxy
12

y2 kxz
12

z1... kxx
1n

xn kxy
1n

yn kxz
1n

zn 4 2v2m1 x1

kyx
11

x1 kyy
11

y1 kyz
11

z1 kyx
12

x2 kyy
12

y2 kyz
12

z1... kyx
1n

xn kyy
1n

yn kyz
1n

zn 4 2v2m1 y1

kzx
11

x1 kzy
11

y1 kzz
11

z1 kzx
12

x2 kzy
12

y2 kzz
12

z1... kzx
1n

xn kzy
1n

yn kzz
1n

zn 4 2v2m1 z1

Again the right sides of the equations represent the resultant displacement of one object 

in the system, in this case object m1 in any direction.  The left side of the equation 

represents all the possible movements of all the other objects in the system in all 

directions and the forces they induce.  This system of equations can then be expanded 

further, instead of looking at the resultant force and displacement of one object, 

depending on all the objects, the system can represent the resultant force/displacement of 

any object as a result of any movement of any other object, in any three dimensional 

space.  For the eight object, three-dimensional system described earlier where 1 n 8  

and n  the system of equations is: 



kxx
11

x1 kxy
11

y1 kxz
11

z1 kxx
12

x2 kxy
12

y2 kxz
12

z1... kxx
1n

xn kxy
1n

yn kxz
1n

zn 4 2v2m1 x1

kyx
11

x1 kyy
11

y1 kyz
11

z1 kyx
12

x2 kyy
12

y2 kyz
12

z1... kyx
1n

xn kyy
1n

yn kyz
1n

zn 4 2v2m1 y1

kzx
11

x1 kzy
11

y1 kzz
11

z1 kzx
12

x2 kzy
12

y2 kzz
12

z1... kzx
1n

xn kzy
1n

yn kzz
1n

zn 4 2v2m1 z1

kxx
21

x1 kxy
21

y1 kxz
21

z1 kxx
22

x2 kxy
22

y2 kxz
22

z1... kxx
2n

xn kxy
2n

yn kxz
2n

zn 4 2v2m2 x2

kyx
21

x1 kyy
21

y1 kyz
21

z1 kyx
22

x2 kyy
22

y2 kyz
22

z1... kyx
2n

xn kyy
2n

yn kyz
2n

zn 4 2v2m2 y2

kzx
21

x1 kzy
21

y1 kzz
21

z1 kzx
22

x2 kzy
22

y2 kzz
22

z1... kzx
2n

xn kzy
2n

yn kzz
2n

zn 4 2v2m2 z2

                                                                                                                                              

kxx
n1

x1 kxy
n1

y1 kxz
n1

z1 kxx
n2

x2 kxy
n2

y2 kxz
n2

z1... kxx
nn

xn kxy
nn

yn kxz
nn

zn 4 2v2mn xn

kyx
n1

x1 kyy
n1

y1 kyz
n1

z1 kyx
n2

x2 kyy
n2

y2 kyz
n2

z1... kyx
nn

xn kyy
nn

yn kyz
nn

zn 4 2v2mn yn

kzx
n1

x1 kzy
n1

y1 kzz
n1

z1 kzx
n2

x2 kzy
n2

y2 kzz
n2

z1... kzx
nn

xn kzy
nn

yn kzz
nn

zn 4 2v2mn zn

Note that this is a system of 3n equations in 3n variables ( x, y, z  are the components 

of one variable s , or displacement).  Also important is the recursive nature of the 

system—for each solution on the right for a displacement that is then re-substituted into 

the equation for the corresponding displacement on the left.  This system of equations is 

rather unwieldy.  A matrix is formed of all the force constants (i.e. the second derivatives 
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of potential energy).  The original set of all the forces in a matrix is called the Force-

matrix or F-matrix, the matrix of all the second derivatives of
e
 is called the Hessian 

matrix.  By factoring out all of the x, y, z  components the system becomes: 



kxx
11 kxy

11 kxz
11 kxx

12 kxy
12 kxz

12 ... kxx
1n kxy

1n kxz
1n

kyx
11 kyy

11 kyz
11 kyx

12 kyy
12 kyz

12 ... kyx
1n kyy

1n kyz
1n

kzx
11 kzy

11 kzz
11 kzx

12 kzy
12 kzz

12 ... kzx
1n kzy

1n kzz
1n

kxx
21 kxy

21 kxz
21 kxx

22 kxy
22 kxz

22 ... kxx
2n kxy

2n kxz
2n

kyx
21 kyy

21 kyz
21 kyx

22 kyy
22 kyz

22 ... kyx
2n kyy

2n kyz
2n

kzx
21 kzy

21 kzz
21 kzx

22 kzy
22 kzz

22 ... kzx
2n kzy

2n kzz
2n

                                                                    

kxx
n1 kxy

n1 kxz
n1 kxx

n2 kxy
n2 kxz

n2 ... kxx
nn kxy

nn kxz
nn

kyx
n1 kyy

n1 kyz
n1 kyx

n2 kyy
n2 kyz

n2 ... kyx
nn kyy

nn kyz
nn

kzx
n1 kzy

n1 kzz
n1 kzx

n2 kzy
n2 kzz

n2 ... kzx
nn kzy

nn kzz
nn

x1

y1

z1

x2

y2

z2

  

xn

yn

zn

4 2v2

m1 x1

m1 y1

m1 z1

m2 x2

m2 y2

m2 z2

  

mn xn

mn yn

mn zn

 

The components are „factored‟ out into a separate matrix according to the rules of matrix 

multiplication.  If the matrices are multiplied out they form the system of equations in the 

above step. 

Working With the Hessian 

Next the system is mass weighted to produce a more symmetric matrix.  The 

process seems to complicate the equation in the short term.  It ultimately makes the 

eigenvector/eigenvalue process simpler.  The mass weighted coordinate system is based 

on the identity:
sn mn sn .  This form is achieved by dividing all the displacement 

entries of the matrix on the right-hand side of the equation by the square-root of the 

corresponding mass term.  When this is done to both sides of the equation, in order for 

both sides to remain equal, each k value is divided by two square-root mass terms—the 
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affecting and affected objects.  So 

kxx
ab kxx

ab

ma mb
.  This entire matrix, in the case of 

the cube and 3(8)x3(8) or 24x24, can be written in the form of:  

H kij  and 



k

kxx
ij

mi m j

kxy
ij

mi m j

kxz
ij

mi m j

kyx
ij

mi m j

kyy
ij

mi m j

kyz
ij

mi m j

kzx
ij

mi m j

kzy
ij

mi m j

kzz
ij

mi m j

 



H

kxx
ij

mi m j

kxy
ij

mi m j

kxz
ij

mi m j

kyx
ij

mi m j

kyy
ij

mi m j

kyz
ij

mi m j

kzx
ij

mi m j

kzy
ij

mi m j

kzz
ij

mi m j

ij

 



S

x1

y1

z1



xn
yn
zn

   


HS 4 2v2 S   1 i n 1 j n  

This then becomes the final form of the equation used for normal mode calculation.  To 

actually solve the secular equation and get the possible values of the fundamental 

frequencies, or normal modes, a process called diagonalization is then used to derive the 

eigenvalues and eigenvectors.  This system is actually more complex then it appears, 

further information is needed to fully comprehend it. 

Simple Springs, Angular Springs, Torsion Springs 

 The whole basis of this system of equations and matrix relies on some 

assumptions about the meaning of “k.”  Earlier it was defined as the spring constant of a 

simple, linear spring—or the second derivative of the potential energy stored in a spring.  

This is fine for a very small and predominantly linear system; as the complexity of the 

system increases, however, some other parts of the constant k must be considered.  Take, 
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for instance, the cube discussed earlier.  Every point is connected to every other object 

with a spring that can compress and stretch in a linear fashion.  Call the spring constant 

associated with this stretch k .  As the masses move around there is also some bending 

of the angles between the springs.  The angles will naturally want to return to their 

equilibrium points.  In the case of the cube all angles equal 90 degrees.  Another form of 

Hook‟s law applies to this situation.  Instead of considering the „stretching energy‟ of the 

spring, the „bending energy‟ is considered.  If 0 is the angle of the springs in the 

system‟s minimized position and  is the new angle, after displacement of an object, then 

the bending energy involved is given by: 1

2
k ( 0 )2 .  The second derivative of 

this expression is:   

2

2
k  

This yields another constant to be factored into the Hessian matrix.  The values of k 

represented in the matrix H  are the sum of all the spring constants and partial derivatives 

of all the forces acting between the objects.  As far as springs go there is only one more 

physical process to be explored: torsion.  Not only can the lengths and angles between 

objects change, but they can also rotate about an axis.  Take, for example, one of the 

faces of the cube.  Call the square abcd . abc bcd  and ab bc cd .  If the mass, 

a, is moved to the new position a’, but a bc abc bcd  ( ba d bad ) and 

a b ab bc cd  then the angle a ba is the angle of rotation, or the angle of twist.  

This idea works for any four object shape, if the angle between two planes, defined by 

triangles made of three points on the perimeter of the shape, changes from its minimized 

state then the system is considered to be a torsion spring.  If the angle 0 is the original 
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position and  is then new angle then the torsion energy stored is given as: 

1

2
k ( 0 )2

. The second derivative of torsional potential energy is -k .  So far, 

k ij k k k .  For the most part, these are the only ways that macroscopic structures 

can move around: stretch, bend, and twist.  The ultimate goal, however, involves analysis 

of forces on a microscopic scale. 

Covalent and Ionic Bonds 

 Next, it is necessary to explore forces and force constants on the intermolecular 

scale.  In this case the objects are no longer just floating masses, but nuclei of atoms.  

There are no springs attaching the nuclei to each other, instead there are electromagnetic 

forces acting between all of them.  Atoms can be attached to one another in one of two 

ways; they can be bonded together due to interactions of electron clouds or they can 

interact through non-bonded forces.  

 The two main groups of chemical bonds relevant to the human prion protein, 

E200K, are covalent bonds and ionic bonds.  Covalent bonds occur when two atoms 

share a valence, or outer orbital, electron between them.  The electron cloud spreads 

between the two atoms and this holds them together.  This sharing of electrons may be 

even (pure covalent bonding) or uneven (polar covalent bonding).  If the electron is 

pulled so much by one atom away from another that it is considered to have „left‟ its 

original nucleus then the bond is ionic.  Covalent and ionic bonds are the strongest forces 

that generally exist between two atoms in a molecule.  Though the equations governing 

the force between the two atoms are complex they are approximated with the three 

macroscopic phenomena listed earlier.  Within very short distances from the minimized 

state of the molecule the bond forces are approximated very well with Hook‟s Law 
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(although the approximation breaks down over greater distances).  So covalent, polar 

covalent, and ionic bond interactions between atoms in the protein are dealt with by 

summing the spring constants of stretching, bending, and twisting.   

Non-Bonded Force Interactions 

The nature of the atom, a positive charged nucleus surrounded by numbers of 

negatively charged electrons, gives rise to additional internal molecular forces that must 

be considered.  These non-bonded interactions link every atom in the protein to every 

other atom, as well as to any and all atoms in the environment, by way of longer-range 

force fields.  These forces are generally termed “van der Waals” forces after the Dutch 

scientist Johannes Diderik van der Waals.  This set of forces describes the interactions 

between ions and neutral molecules (or segments of molecules).  It contains both an 

attractive (at long distances) and repulsive part (at shorter distances).  The attractive 

component of the van der Waals force field has three main components.  The first, and 

strongest, involves the interactions of two permanent multipoles.  When two atoms are 

bonded together and one has a higher electronegativity then the other the electron cloud is 

unevenly distributed—creating a section of the molecule with a net positive ( ) charge 

and a section with a net negative charge ( ).  This is called a dipole moment.  A 

molecular section that has multiple dipole moments has a multipole.  The unlike charged 

sections of the molecule attract and the like charges repel (intramolecular force).  These 

multiple moments in a molecule, like a prion, also interact with the molecules 

surrounding it (intermolecular force).  The polarity of the sections of the molecule are 

determined by the polar-covalent or ionic bonds acting.  This is called a fixed dipole-

dipole van der Waals-Keesom force, sometimes referred to as a Hydrogen bond (or 
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sometimes a electrostatic dipole-dipole interaction).  Hydrogen bonding is the strongest 

of the van der Waals forces, but is not considered in the same category as covalent or 

ionic bonding for molecular modeling.  The second source of attraction in the van der 

Waals forces is due to induction or polarization.  Because the electron cloud‟s position 

around the nucleus is variable, other surrounding charges can cause changes in the 

polarity of a molecule.  A permanent dipole or multipole  can induce another section of 

the molecule (or a separate molecule) to become polarized.  The resulting interaction 

produces a force between the two charges (again this can be intermolecular or 

intramolecular).  These forces are generally not as strong as hydrogen bonds. The final 

part of the van der Waals force is called the London dispersion force.  It arises from 

interactions of two or more temporary dipole moments.  These may stem from transient 

polar moments and/or induced moments.  Neither case involves a fixed multipole 

moment created by a chemical bond.  Quantum mechanics dictates that the distribution of 

charge around a nucleus is constantly in flux (due to the uncertainty in position of the 

electron, governed by the Heisenberg Uncertainty Principle:  x p   or uncertainty in 

position times uncertainty in momentum is greater then or equal to Plank‟s constant over 

two).  The electron density of the cloud moves around the atom probabilistically, so at 

any given point in time a temporary (or transient) dipole moment can exist in a neutral 

molecule.  Generally this dipole moment will only last for 10
-15

 to 10
-14

 seconds before 

dissipating.  This momentary redistribution of charge in one atom can then induce 

polarization in other atoms.  This will then repolarize the original atom after its random 

electron motion disrupts the force field—causing the atoms to polarize each other 

(oscillating off and on) and create a continuous force.  This force occurs between all 
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molecules and atoms, but is so week in comparison to the other van der Waals and 

bonding forces that it is noticeable only when seen alone (generally over longer 

distances).   The interaction between two, or more, temporarily polarized molecules is 

dubbed the London dispersion force.   

Lennard-Jones Potential and the Electrostatic Term 

All three of the above mentioned forces are more complicated then the bond 

forces (where the force equations can be approximated by a direct relationship of force to 

distance).  The van der Waals forces are all relate force to distance via elaborate 

exponential functions that are too complex to be useful in this normal mode analysis.  

Very commonly the potential energy created by the van der Waals forces is approximated 

by a mathematical model called the Lennard-Jones potential.  Lennard-Jones (L-J) 

potential approximates the combinations of potential energy equations for the attractive 

forces of: Hydrogen bonding (van der Waals-Keesom interaction), dipole-induced dipole 

interactions, and London Dispersion forces; as well as the short range repulsive part of 

the force due to Pauli repulsion (the orbits of negatively charged electrons resisting being 

in proximity to one another).  The equation looks like: 

v 4
d

12

d

6

 

 Where v is potential energy,  is the minimum potential energy of the system (called the 

van der Waals minimum, the distance at which the attractive and repulsive forces cancel 

each other out),  is the distance between the two atoms when the potential energy is at a 

minimum, and d is the distance between the two atoms. v
 
is a function of d where  and 

 are constants.  Notice that this function‟s second derivative does not resolve to a 
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constant, k, like the various spring approximations did.  At distances very close to the 

minimized state the equation for L-J potential is sometimes approximated by a quadratic 

(that does resolve to a constant) equation—In our program the entire second derivative is 

used in the Hessian matrix. 

 The final component in the term, k ij , is derived by treating each atom as a simple 

point charge.  If the whole atom is regarded as one ball that has a net charge of q, then the 

force between two atoms is given by Coulomb‟s Law: 

F
q1q2

4 0d
2

 

where q1 and q2 are the net charges, 0 is the electric permittivity of free space, and d is 

the distance between the two atoms.  The potential energy utilized by the two atoms in 

proximity to one another is the integral of the force equation with respect to d.  The 

potential energy is called Coulomb potential and the equation describing it, “the 

electrostatic term.” 

c

q1q2

4 0d
 

The Final Form of “k” 

 Now the final meaning of the entries, k ij , in the Hessian matrix is apparent.  The 

values for k
ij are the sum, in component form, of all the second derivatives of potential 

energy equations.  Though the true physical processes are even more complex, this 

equation is what the program we are using, parameters set AMBER99, uses to compute 

the Hessian Matrix.  The net potential energy between a set of two atoms is the sum of all 
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the sources of potential energy: stretching bonds, bending angles, twisting structures, L-J 

potential, and Coulomb potential (electrostatic term): 

net

1

2
k (d d0 )2 k ( 0 )2 1

2
k ( 0 )2 4

d

12

d

6
qiq j

4 0d
 

Then the angles are rewritten using trigonometric functions to put them in terms of d.  

The k function is then the second derivative of potential energy with respect to distance 

(or position). 

k ij
2

net

d2
 

Then the distances are written in terms of vector displacements ( s ), and broken down 

into component form ( x, y, z ).  Then they are substituted into the H  matrix.  The 

result is the Hessian matrix and the normal mode analysis equation.  The parameters set 

AMBER99 (or Assisted Model Building and Energy Refinement, 1999) provides all 

necessary values for constants for any chemical bond or other force acting. 

When this system of equations is solved to produce the eigenvalues and 

eigenvectors we get the fundamental frequencies of the molecule.  There are a total of 

3n 6 frequencies for any non-linear molecule (six of the frequencies produced cause the 

center of mass to move and are thus not valid for our purpose).  In the case of the prion 

E200K, 1734 atoms, this produces 5196 frequencies.  Of these frequencies we then pick 

one of the lowest frequencies for use in normal mode for excitation.  Generally the lower 

frequencies allow for greater displacements of large sections of the molecule while 

smaller scale structures remain mostly intact and individual atoms do not move around as 

much.  There is a program in the molecular dynamics package, TINKER, that selects the 
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most efficient frequency based on desired displacements.  Once the frequency is chosen 

we use it to produce movement in the molecule through the property of resonance.  

Resonance and Problems With the Model 

Resonance is quite well known in its mechanical sense; a sound wave from one 

tuning fork will cause a second tuning fork of the same fundamental frequency to vibrate.  

Resonance, the idea that an object vibrating at its natural frequency will force another 

object of the same natural frequency to vibrate, works not only with sound waves, but 

with all kinds of waves—including electromagnetic waves.  If the E200K protein is 

bombarded with electromagnetic waves that are very close to one of its normal modes it 

will be forced to vibrate at that frequency and thus its atoms will move in accordance 

with the displacement vectors associated with that frequency.  The frequency of the EM 

wave we are hitting the modeled protein with is in the range of microwaves.  If we 

introduce enough energy into the prion quickly enough the amplitude of vibration will be 

great; actually causing the molecule to refold in a different structure with a different 

minimized state.  If enough movement of large structures in the prion is achieved then the 

imaginary springs connecting the atoms are stretched out enough so that they will reform 

in a different configuration.  Then the excess energy will be re-radiated or lost to heat—

allowing the molecule to stay in this new arrangement.  This could potentially change the 

structure of a damaging protein into something harmless by rearranging the positions of 

the activation sites. 

The main problems with this process are due to absorption, anharmonicity, and 

instantaneous modes.  If the calculated frequency is not close enough to the true 

frequency, the molecule will not absorb the energy very well, and a much higher 
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amplitude (higher intensity) wave is required to excite the molecule.  Any solvent 

surrounding the molecule will also likely absorb a great deal of the energy before it 

reaches the prion. Anharmonicity is a problem created by overtones.  If you imagine a 

guitar string, the string does not only vibrate at one frequency; its rich sound quality is 

made up of multiple notes (frequencies) emanating from one vibration.  The majority of 

the vibration is at the fundamental frequency with decreasing amounts of vibrational 

energy being transferred into integer multiples of that frequency.  If this happens in the 

molecular vibration it can disrupt the movement of the atoms.  We get around this 

problem by not allowing the molecule to vibrate for very long, we use one burst of 

radiation for an extremely short period of time—so anharmonicity does not develop.  The 

final problem comes down to flaws in approximation.  The normal mode frequencies are 

only valid fundamental frequencies when the molecule is in, or very close to, its 

minimized state; as soon as the molecule starts to move the frequencies change to 

something called an instantaneous mode.  The instantaneous mode is the fundamental 

frequency in a non-minimized state, using more accurate models and factoring in the 

kinetic energy of the moving atoms.  This requires use of a G-Matrix rather the F-Matrix, 

a much more complicated problem.  We, again, are working around this problem by 

applying all the energy to the prion very quickly, before it can move enough to 

significantly change the fundamental frequency and reduce the absorption of the EM 

waves.  

The Carbon Dioxide Example 

The last part of this section, devoted to background research and theoretical 

understanding, gives an example of the process involved in finding normal modes with a 
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much-simplified model of a carbon dioxide atom.  If we focus only on the stretch of the 

bonds in one direction (the x component) and use only the simple spring approximation 

(ignoring Lennard-Jones Potential and Coulomb forces) it greatly reduces the complexity 

of the problem.  The carbon dioxide molecule is linear, an oxygen double bonded to a 

carbon in the center with another oxygen on the opposite side.  Atom 1 is the left hand 

oxygen, atom 2 is the center carbon, and atom 3 is the right hand oxygen.  The mass 

weighted Hessian matrix for this problem is: 
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Next we use Newton‟s third law of motion to equate some of the terms; this is not often 

possible due to the complexity of the L-J potential and electrostatic term. kxx
12 kxx

21  and 

kxx
32 kxx

23 because of Newton‟s third law of motion.  We assume kxx
13 kxx

31 0  because 

they are not directly bonded together and the non-bonded interaction forces are not 

considered.  The masses of each atom are inserted, in atomic mass units (carbon is 12amu 

and oxygen is 16amu).  Finally the values of k are inserted.  Because kxx
12 is attached to kxx

11  

by a bond, the spring constant between the two is the same, but the direction opposite so 

kxx
11 kxx

12 .  The same logic can be applied to kxx
11  and kxx

21  as well as kxx
33 : kxx

23  and kxx
33 kxx

32 .  

The approximate force constant for kxx
11  is picked to be 1600Nm

-1
, which, because of 

symmetry is assumed to be the same as kxx
33 (they are both double bonds between oxygen 

and carbon). kxx
22  is approximately 3200Nm

-1
.  Applying the above identities produces: 
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This reduces to: 



100 115.47 0

115.47 266.67 115.47

0 115.47 100

x1

x2

x3

4 2v2

x1

x2

x3

 

Taking the eigenvalues and eigenvectors produces only two valid solutions. 

Eigenvalue1=-100, Eigenvectors1=-0.707107, 0, 0.707107 and Eignevalues2=-366.669, 

Eigenvectors2=-0.369272, 0.852805, -0.369272. Converting the units on the eigenvalues 

and then turning them into wavenumbers (a wavenumber is the reciprocal of wavelength, 

and v f  so wavenumber equals frequency divided by velocity) produces E1=1303cm
-1

 

and E2=2495cm
-1

.  The actual wavenumbers for the corresponding frequencies are 

E1=340cm
-1

 and E2=2349cm
-1

.  There is a lot of error, but a lot of assumptions and 

simplifications were made.  The first eigenvalue is quite inaccurate, and the second set of 

eigenvectors show the center mass moving directly through the rightmost mass—which 

cannot happen in a real world situation.  Looking at the eigenvectors, the first set shows 

symmetric stretch (both masses moving the same amount in opposite directions) and the 

second set represents asymmetric stretch (the two outer masses moving in the same 

direction and the center mass opposite—the center of mass remains constant, however, 

because the single light mass moves much farther then the two heavier ones). 
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The Computer Model: Tinker  
 Tinker is both a molecular dynamics and molecular mechanics modeling 

packages. This package uses the 1999  version of amber force constants to model the 

interactions between atoms.  

We felt it to be an ideal choice because it is open source and written in Fortran, a 

language well suited for large mathematical models that we are capable of understanding 

and modifying. Most importantly, however, it contained necessary programs that could 

run that could run the necessary functions required for our project.   

Program Flow 
 The project may be broken down into many components. First we obtained the 

structural data for the E200K variant Prion through the protein data bank which contains 

data, obtained through x-ray crystallography in addition to other methods, on may 

different proteins. After obtaining the structural data we minimized the protein for reason 

described early. Next we ran the tinker program  vibrate.x, which we slightly modified so 

it would automatically print all the vibrational modes of the molecule. Next we ran our 

program MDCompare which evaluated the modes and ranked them in order of interest to 

our goal of deforming the Prion.  Next, we ran another of our programs to set up a file to 

run a Microcanonical Ensemble simulation that modeled the trajectories of the atoms 

assuming that the Prion was activated with a specific frequency of electromagnetic 

radiation and absorbed a certain amount of energy. 
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Minimizing the Protein 
 Tinker‟s program to find the vibrational modes of a molecule is limited to 

molecules in a minimized state where the molecule‟s potential energy exists in a local 

minima meaning that if the molecule was slightly perturbed in any fashion it would gain 

potential energy. Although the theory behind calculating fundamental frequencies or 

normal modes of molecules that are not minimized and that have kinetic energy, an 

implementation of this algorithm is unknown to our team and the complexity of the 

theory and time needed to incorporate such a model made this expansion unfeasible for 

our team.   

 For the simulations run inside of a vacuum this is a good approximation for what 

the structure would look like were it inside of a vacuum. In addition, the original protein 

structure we received from the protein data bank had been minimized   according to their 

force field. Since the exact nature of intermolecular force fields remains unknown to the 



 28 

scientific community, there are many different programs that approximate intermolecular 

forces and they all are slightly different.  

 However, for the simulations inside of a water box, which more closely resembles 

a blood sample,  this method fails to take into account the change in structure induced by 

the water as well as the increase in kinetic energy due to the ambient heat of the blood. 

Thus, if this method was to be considered for application, a more accurate method of 

finding the vibrational modes is suggested.  

Finding Ideal Vibrational Modes 

 In choosing vibrational modes to activate we felt that it would be most effective to 

find the ones that appeared they would most effectively change the conditions we 

consider in the analysis of the final, modified, Prion. Thus, we searched for Modes that 

most effectively change the electrostatic surface potential and  that would specifically 

target our two identified activation sites where it is believed the E200K Prion attaches 

onto other in order to get the host to conform to its structure and become a pathogenic 

Prion.  

 In considering which modes would change the electrostatic surface potential the 

most we determined that a change in atomic structure of the Prion would directly equate 

to a change in the surface potential. In addition we found that water, which is a major 

component of blood, absorbs less energy near the visible spectrum. We believe that the 

more energy the Prion absorbs the more it will deform; thus a high frequency mode that 

is close to the visible region is the ideal choice for this criterion.  

 In addition we specifically observed the activation sites of the Prion which were 

located at atoms 697-769 and 1138-1207. We found modes where all or most of the 
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absorbed energy translated into the movement of these groups of atoms. In quantifying 

this displacement we used the composite of the Mean Square Displacement Theorem one 

each site. 

     

 

 We found these two selection criterion to be complementary to each other. 

Absorption in the form of molecular vibrations generally occurs with wavelength smaller 

than that of Infra-red radiation. In addition normal modes that are localized to particular 

regions tend to be higher frequency where as the lower frequency modes create more 

global movements of the atoms in the protein. Thus the criteria we observed lead us to 

choose a higher frequency vibration mode.   

Prion Vacuum Simulation 

The fist series of trials deforming the E200k variant of the human Prion are 

conducted in a vacuum. These simulations involved the activation of normal modes of the 

Prion assuming 0 to ____ J of energy is absorbed from an electromagnetic wave. This 

instantaneous mode activation is translated into velocities of each atom in the Prion.  

This data is inserted into the molecular dynamics Microcanonical(NVE)  

ensemble simulation included with the Tinker molecular modeling package. This 

computer model determines the trajectories of each atom while conserving the amount of 

atoms, volume in which they are contained, and the energy of the system. They are run 

for a period 20 picoseconds with a time step of 1 femtosecond, which is the default for 

tinker. It was observed that after 10ps many of the proteins in the NVE simulation 

2
)0()( rtrMSD
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stopped deforming thus it was decided that a run length of 20 ps would allow sufficient 

time for the Prion to reach a different local minima. 

The scope of the project is to render inert the E200k mutant Prion in blood 

donations, which makes this simulation inside of a vacuum unrealistic. By failing to take 

into account a solvent, the ability to deform is greatly increased because as the atoms of 

the Prion move, they do not interact with other molecules in the environment. 

Prion Water Box Simulation 

Water is chosen as a solvent to submerse the Prion for the molecular dynamic 

simulations because it accounts for about 83% of human blood. In addition, the 

polarization of water is related to the protein folding in such a way that the hydrophilic 

parts align themselves towered the exterior while the hydrophobic portions dwell in the 

interior of the Prion protein.  

This simulation consisted of a hybrid of both the Microcanonical ensemble and 

canonical ensemble. We recognized that blood samples are not stored at absolute zero, so 

we assumed a temperature 298k for the blood samples to be stored at. After heating up 

the water along with the protein a vibrational mode for each simulation was activated in a 

Microcanonical ensemble, which conserves energy as compared to temperature. We 

believe that during the activation of the normal mode, energy conservation is more 

important because the electromagnetic wave is providing energy that will heat up a 

sample of blood making temperature no longer a conserved quantity.  

The tinker molecular modeling package did not come well suited for the creation 

and use of a water solvent. Initially the water type hydrogen of the 1999 version of amber 

parameters lacked a Van-Der-Waals radius causing any simulation involving water 
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molecules to become unstable and crash due to the occurrence of infinite energies created 

by the hydrogen atoms overlapping other atoms. Thus, we decided to create insert our 

own parameters into the 1999 amber parameter set. We used structural data of the water 

molecule from London South Bank University. Additionally, we used force constants 

from the CHARMM force field parameter set. This information allowed for the 

formulation of a fairly stable water box.      

The water box is created using the molecular mass and specific gravity. It is found 

that the specific gravity of water is 995.65 Kg/m
3 

at around 300 degrees Kelvin. Thus:   

 

Then by using the molecular mass of water, 18.01508, the number of molecules per gram 

is found:     

 

Knowing these two values it is then possible to determine the number of molecules per 

Angstrom cubed in a sample of water: 

 

This information may then be used in a computer model to create a box of water to 

submerse the Prion protein.  

The water box used in the simulations has sides of 40 angstroms. Using the 

xyzedit tool from tinker the E200K mutant Prion is submersed into the water. Initially it 

was believed that the 40 angstrom cube would be small enough to keep a relatively short 

runtime while large enough to completely submerse the protein. However, later 

observations proved that the cube was not large enough to house the protein which 
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caused an increase of the box size and the dispersion of the water molecules during the 

simulation as shown in the visual representations below.  

 

Figure 1 before Activation of Normal Mode. Notice the Prion, the blue and turquoise atoms, is not completely 
contained within the red and white water molecules 

 

Figure 2 After a NVE simulation of a activated mode 
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 Although the box stayed fairly together the results obtained uncountable are 

affected by the error. Obviously the portions outside of the smaller box are freer to move 

and reach different local minima than that of the initial. In addition, the ability of the 

water molecules to escape resulted in a decrease in density of the water molecules around 

the Prion thus allowing the entire Prion to deform more easily.  

 A larger water box that has sides 75 angstroms in length has already been initially 

developed. However, due to the addition of new atoms the preparation time has increased 

substantially, which has been compounded by the limitation that the minimization 

program provided by tinker is not parallelized, limiting the preparation to a single 

processor. In addition, the larger water box contains ten times as many atoms as the 

original did so the model runtime which was already at twelve hours using 32 processors 

is expected to dramatically increase.    

Analysis Methods 

 Although we may only discover if a Prion has been sufficiently deformed to be 

rendered inert through testing, there are physical aspects that may be observed to 

hypothesize if it is still functional. It is believed that the loops consisting of residues 697 

through 769 and 1138 through 1207 are key activation sites that enable the Prion to latch 

on to other health and convert them to the pathogenic form of the Prion. In addition, it is 

believed that the electrostatic surface potential also plays a vital role in  the ability of the 

E200K mutant Prion to make other conform to the unhealthy state.  

 To evaluate the effectiveness of the deformation based on these observations we 

used the Mean Square Displacement Theorem: 
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We evaluated the function for three intervals: Once for each of the two loops and once 

over the entire protein since electrostatic surface potential is the direct result of the 

positioning of the atoms of the protein.  

Results 

 From our current data it appears as if the lower frequency modes which result in 

more global deformations of the Prion deformed the entire Prion and the loop regions 

more than the mode that specifically targeted the loop region. In additon, the simulations 

of the Prion in the vacume seem to reflect the results of the simulations in the water box 

except in a  much more exagerated manner.  

Frequency 0.11cm
-1 

in Vacume 

 

Figure 3: Series1 - Full protein Mean Square Displacement; Series 2 - First Loop Mean Square Displacement; Series3 
- Second Loop Mean Square Displacement 
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Frequency 0.11cm
-1 

in Water Box 

 
Figure 4: Series1 - Full protein Mean Square Displacement; Series 2 - First Loop Mean Square Displacement; Series3 
- Second Loop Mean Square Displacement 

 

 

Frequency 2999cm
-1 

in Vacume 

 
 
Figure 5: Series1 - Full protein Mean Square Displacement; Series 2 - First Loop Mean Square Displacement; Series3 
- Second Loop Mean Square Displacement 
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Frequency 2999cm
-1 

in Water Box 

 
Figure 6: Series1 - Full protein Mean Square Displacement; Series 2 - First Loop Mean Square Displacement; Series3 
- Second Loop Mean Square Displacement 

 

Conclusion 

 We demonstrated that in a vacuum it is possible to significantly deform the Prion 

to the point where we can consider it probably inert. However, when applying the same 

method to the protein in the water box much more energy is needed to create the same 

deformation in the Prion. In addition, the water box we built in tinker still had issues with 

stability that prevented us from exploring activating these modes with the higher amounts 

of energy needed. Consequently, as a future expansion, it would be beneficial if we used 

a different molecular modeling package better suited for modeling water.     
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Thanks! 
We all send our thanks to Mr. McBeth for sponsoring us and making this all happen and 

to Mark Fleharty, an excellent mentor who helped us through some difficult science, 

math, and programming.  Also, to all those who work behind the scenes to make the NM 

Supercomputing Challenge happen—it has been a phenomenal experience!  
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Parallelized Code 
#include <cstdlib> 
#include "mpi.h" 
#include <iostream> 
#include <sstream> 
#include <string> 
 
using namespace std; 
 
int main(int argc, char *argv[]) 
{ 
    string baseName = "1FKCWM"; 
    //numprocs - number of processors 
    //mynum - current processor's number 
    int numprocs, mynum; 
     
    //prepare comunication between nodes 
    MPI_Init(&argc, &argv); 
 
    //get the number of processors 
    MPI_Comm_size(MPI_COMM_WORLD, &numprocs); 
 
    //get processor number 
 MPI_Comm_rank(MPI_COMM_WORLD, &mynum); 
  
    float start = atof(argv[1]); 
    float end = atof(argv[2]); 
    float res = atof(argv[3]); 
     
    int size = ( end - start ) / res; 
     
    //number of simulations for each precessor.... +1 is to make sure program does more runs if sze/numprocs != whole # 
    int blkSize = size / numprocs + 1; 
     
    //create Dyn Files 
    stringstream command; 
    command << "./mode 1FKC.xyz vibrate.log " << blkSize * mynum * res  + start << " " << blkSize * ( mynum + 1 ) * res + start << " " 
<< res; 
    system(command.str().c_str()); 
     
    //runDynamic 
    for ( int i = 0; i < blkSize; i++ ) 
    { 
        float curAmp = start + (float)mynum * blkSize * res + (float)i * res; 
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        //set Files for dynamic 
        stringstream command2; 
        command2 << "cp " << baseName << ".xyz " << baseName << "_" << curAmp << ".xyz"; 
        system(command2.str().c_str()); 
        //run Dynamic 
        stringstream command3; 
        command3 << "/users/jfenc/tinker/bin/dynamic.x " << baseName << "_" << curAmp << " 20000 1 .1 1"; 
        system(command3.str().c_str()); 
        //clean up 
        stringstream command4; 
        command4 << "cat " << baseName << "_" << curAmp << ".[0-9][0-9][0-9] > " << baseName << "_" << curAmp << ".arc"; 
        system(command4.str().c_str()); 
        stringstream command5; 
        command5 << "cp " << baseName << "_" << curAmp << ".200 ../data"; 
        system(command5.str().c_str()); 
        stringstream command6; 
        command6 << "cp " << baseName << "_" << curAmp << ".arc ../data"; 
        system(command6.str().c_str()); 
 stringsream command7; 
 command7 << "mkdir " << curAmp; 
 system(command7.str()); 
 stringstream command8; 
 command8 << "mv " << baseName << "_" << curAmp << "* " << curAmp; 
 system(command8.str()); 
    } 
 //close all connecntions 
 MPI_Finalize(); 
 
    system("PAUSE"); 
    return EXIT_SUCCESS; 
} 
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Dynamic File Creator 
 
 
/****************************************************** 
//Title:               DYNMAKE 
// 
//Description:    Create dynamic Files for a NVE simulation 
// 
// 
//Arguments:      1) Log File Name 
//                2) XYZ File 
//                3) Start  
//                4) End  
//                5) Resolution 
//                6) Mode  
*******************************************************/ 
 
 
 
#include <cstdlib> 
#include <iostream> 
#include <string> 
#include <sstream> 
#include <vector> 
#include <fstream> 
 
#include "VibrateMode.h" 
#include "AtomSet.h" 
 
using namespace std; 
 
 
int main(int argc, char *argv[]) 
{ 
    
    float start = atof(argv[3]); 
    float stop = atof(argv[4]); 
    float res = atof(argv[5]); 
    int mode = atoi(argv[6]); 
     
    string fName = argv[1]; 
    string log = argv[2]; 
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    AtomSet set(fName); 
    set.GetD_(log, mode); 
     
    for ( float i = start; i < stop; i += res ) 
    { 
        ofstream dyn; 
     dyn.open ( "i" ); 
        stringstream name; 
        name << "data/" << mode << "_" << i; 
        set.writeDyns( name.str(), i ); 
         
    } 
    system("PAUSE"); 
    return EXIT_SUCCESS; 
} 
 
 
 

Table Creator 
 
 
 
 
/****************************************************** 
//Title:               Table 
// 
//Description:    Reads the output of the NVE water Box  
                  simulations and creates a graph 
//                a graph showing MSD of selected atoms 
// 
//Arguments:      1) XYZ Original File 
                  2) baseName 
//                3) start 
//                4) stop  
*******************************************************/ 
 
 
 
#include <cstdlib> 
#include <iostream> 
#include <string> 
#include <sstream> 
#include <vector> 
#include <fstream> 
 
#include "VibrateMode.h" 
#include "AtomSet.h" 
 
using namespace std; 
 
 
int main(int argc, char *argv[]) 
{ 
    
    float start = 0; 
    float stop = 1000; 
    float res = 10; 
    int mode = 4881; 
     
    string baseName = "1FKCWM"; 
    string original = "1FKC.xyz"; 
    string vibratelog = "vibrate.log"; 
     
    ofstream table; 
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 table.open ( "MSDTable" ); 
    for ( float i = start; i < stop; i += res ) 
    { 
        stringstream file; 
        file << baseName << "_" << i << ".200"; 
        //check to see if file is there  
        ifstream tFile; 
     tFile.open( file.str().c_str() ); 
     if ( tFile ) 
     { 
           tFile.close(); 
           AtomSet set(file.str()); 
           AtomSet set2(file.str()); 
           set2.ReadParam("SAmber"); 
           set2.GetD_( vibratelog, mode ); 
           set2.RemoveWater(); 
           table << i << "\t" << set2.energy(i) << "\t" << set.MSD(original, 0, 1734) << "\t" << set.MSD(original,  697, 769) << "\t" << 
set.MSD(original,  1138, 1207)  << endl; 
        } 
         
    } 
    table.close(); 
    system("PAUSE"); 
    return EXIT_SUCCESS; 
} 
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Mode Comparison 
 
/****************************************************** 
//Title:               MDCompare 
// 
//Description:    Compares the different modes and creates 
//                a graph showing MSD of selected atoms 
// 
//Arguments:      1) Log File Name 
                  2) XYZ File 
//                3) Start Atom 
//                4) End Atom  
*******************************************************/ 
 
 
 
#include <cstdlib> 
#include <iostream> 
#include <string> 
#include <sstream> 
#include <vector> 
#include <fstream> 
 
#include "VibrateMode.h" 
#include "AtomSet.h" 
 
using namespace std; 
 
 
int main(int argc, char *argv[]) 
{ 
    if ( argc != 5 ) { cerr << "INCORRECT ARGS" << endl; exit(1); } 
     
     
    stringstream temp;  
    temp << argv[1];    
    string logFile; 
    temp >> logFile; 
     
    stringstream temp1; 
    temp1 << argv[2];    
    string xyzFile; 
    temp1 >> xyzFile; 
        
    stringstream temp2; 
    temp2 << argv[3];    
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    int start; 
    temp2 >> start; 
     
    stringstream temp3; 
    temp3 << argv[4]; 
    int end = 1207; 
    temp3 >> end; 
  
    AtomSet::AtomSet protein( xyzFile ); 
    int atCt = protein.count(); 
    int fCt = 5201;//VibrateMode::ct( logFile, atCt); 
     
    stringstream compName; 
    compName << "mdComp_" << start << "_" << end << ".txt"; 
    ofstream outdata; 
 outdata.open( compName.str().c_str() ); 
 if ( !outdata ) { cerr << "FAILED" << endl; } 
 vector<float> total(5201); 
    for ( int i = 1; i < fCt + 1; i++ ) 
    { 
        VibrateMode::VibrateMode mode( atCt, logFile, i ); 
        float sec1 = mode.MSD( 697, 769 ); 
        float sec2 = mode.MSD( 1138, 1207 ); 
        total[i - 1] = sec1 + sec2; 
        outdata << i << "\t" << sec1 << "\t" << sec2 << "\t" << mode.getF() << endl;     
    }  
    ofstream top; 
    top.open("top.txt"); 
    for ( int i = 0; i < 15; i++ ) 
    { 
        int topLoc = 0; 
        for ( int j = 0; j < fCt; j++ ) 
        { 
            if ( total[j] > total[topLoc] ) 
               topLoc = j; 
                
            top << topLoc + 1 << "\t" << total[topLoc] << endl; 
         }   
    } 
    top.close(); 
    system("PAUSE"); 
    return EXIT_SUCCESS; 
} 
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AtomSet.h 
 
#ifndef ATOMSET_H 
#define ATOMSET_H 
 
#include <iostream> 
#include <fstream> 
#include <vector> 
#include <string> 
#include <cstdlib> 
#include <cmath> 
#include <sstream> 
#include "DataStructures.h" 
#include "VibrateMode.h" 
 
using namespace std; 
 
class AtomSet 
{ 
private:   
    vector<Atom> *atoms; 
    vector<float> *f; 
    vector<float> *m; 
 int atCt; 
  
public: 
    AtomSet( string xyzFile ); 
    ~AtomSet(); 
    void GetD_( string vibFile, int mode ); 
    void writeArc( string arcFile, int res );    
    void writeDyns( string dynFile, float mag); 
    void ToPDB( string PDBFile, string name ); 
    float MSD( string xyzOriginal, int start, int stop ); 
    float energy( float Amplitude ); 
    void ReadParam(string SAParam ); 
    void RemoveWater(); 
    float GetF(); 
    int count();  
private: 
    void GetP_( string xyzFile ); 
    string fileLine( float x, float y, float z, Atom atom, int number ); 
    string cordIntro( int atomCt, string name ); 
    float getPosition( float cord, float totalChange, float t ); 
 
    float mag( Point p1, Point p2 ); 
}; 
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#endif 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AtomSet.cpp 
 
 
#include "AtomSet.h" 
 
#define MAXBONDS  5  
#define ATOMDIGITS  4 
#define PI    3.14159265 
 
using namespace std; 
 
AtomSet::AtomSet( string xyzFile ) 
{ 
     atoms = new vector<Atom>(0); 
     f = new vector<float>(0); 
      
     GetP_( xyzFile );    
}; 
AtomSet::~AtomSet() 
{ 
    delete atoms; 
    delete f; 
}; 
void AtomSet::GetP_( string xyzFile ) 
{ 
 ifstream indata; 
 indata.open( xyzFile.c_str() ); 
 if ( !indata ) 
 { 
  cout << "FAILED" << endl; 
 } 
 indata >> atCt;  
  
    //skip line 
 char line[256]; 
 indata.getline(line, 256); 
  
 for ( int i = 0; i < atCt; i++ ) 
 { 
  int linenum = 0; 
  indata >> linenum;  
  Atom na; 
  //indata.getline(line, 256); 
  indata >> na.name; 
  indata >> na.p_.x; 
  indata >> na.p_.y; 
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  indata >> na.p_.z; 
        atoms->push_back(na); 
  indata.getline(line, 256); 
  stringstream ln(stringstream::in | stringstream::out); 
  ln << line; 
 
  for ( int j = 0; j < MAXBONDS; j++ ) 
            ln >> (*atoms)[ i ].bonds[ j ]; 
 }  
}; 
void AtomSet::GetD_( string fileName, int modenum ) 
{  
     VibrateMode mode(atCt, fileName, modenum); 
     (*f)[ 0 ] = mode.getF(); 
     for ( int i = 0; i < atCt; i++ )    
          (*atoms)[ i ].d_ = (*mode.d_)[ i ]; 
           
}; 
 
void AtomSet::writeArc(string arcFile, int res ) 
{ 
 int c = f->size(); 
 int p = atoms->size(); 
 
 ofstream arc; 
 stringstream file; 
 file << arcFile << "_" << (*f)[0] << ".arc"; 
 arc.open (file.str().c_str()); 
 for ( int j = 0; j < res; j++ ) 
 { 
  arc << cordIntro(atCt, arcFile) << endl; 
 
  for ( int k = 0; k < atCt; k++ ) 
  { 
   float x = getPosition( (*atoms)[ k ].p_.x, (*atoms)[ k ].d_.x, 2 * PI * (float)j / (float)res ); 
   float y = getPosition( (*atoms)[ k ].p_.y, (*atoms)[ k ].d_.y, 2 * PI * (float)j / (float)res ); 
   float z = getPosition( (*atoms)[ k ].p_.z, (*atoms)[ k ].d_.z, 2 * PI * (float)j / (float)res ); 
   arc << fileLine(x, y, z, (*atoms)[ k ], k + 1 ) << endl; 
   if ( k > 0 ) 
    int x = 3; 
  } 
 } 
 arc.close(); 
}; 
void AtomSet::ToPDB ( string PDBFile, string name ) 
{ 
    ifstream indata; 
 indata.open( PDBFile.c_str() ); 
 if ( !indata ) { cerr << "FAILED" << endl; } 
  
    ofstream outdata; 
 outdata.open( name.c_str() ); 
 if ( !outdata ) { cerr << "FAILED" << endl; } 
  
 bool isText = true; 
 while ( isText ) 
 { 
         isText = false; 
          
         char line[256]; 
         indata.getline(line, 256); 
         stringstream lstream; 
         lstream << line;  
         string fword; 
         lstream >> fword; 
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         if ( fword.length() > 0 ) 
            isText = true; 
             
         int atNum = 0; 
          
         if ( fword == "ATOM" ) 
         {               
              stringstream nLine; 
              nLine << "Atom \t"; 
              for ( int i = 0; i < 5; i++ ) 
              { 
                  string word; 
                  lstream >> word; 
                  nLine << word << "\t"; 
              } 
               
              nLine << (*atoms)[ atNum ].p_.x << "\t"; 
              nLine << (*atoms)[ atNum ].p_.y << "\t"; 
              nLine << (*atoms)[ atNum ].p_.z << "\t";    
               
              for ( int i = 0; i < 3; i++ ) 
              { 
                  string word; 
                  lstream >> word; 
                  nLine << word << "\t"; 
              }    
                     
              atNum++; 
         } 
         else 
             outdata << line; 
    }  
} 
float AtomSet::GetF() 
{ 
      return (*f)[ 0 ]; 
}    
int AtomSet::count() 
{ 
    return atCt; 
}  
string AtomSet::cordIntro( int atomCt, string name ) 
{ 
 stringstream ln(stringstream::in | stringstream::out); 
 ln << "     " << atomCt << "     " << name ; 
 return ln.str(); 
}; 
 
string AtomSet::fileLine( float x, float y, float z, Atom atom, int number ) 
{ 
 stringstream ln(stringstream::in | stringstream::out); 
 ln << "     " << number << "     " << atom.name << "     " << x << "     " << y \ 
  << "     " << z << "     "; 
 for ( int i = 0; i < MAXBONDS; i++  ) 
 { 
  ln << "     "; 
  ln << atom.bonds[i]; 
 } 
 return ln.str(); 
}; 
 
float AtomSet::getPosition( float cord, float totalChange, float t) 
{ 
 return 3 * totalChange * sin(t) + cord;  
}; 
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void AtomSet::writeDyns(string dynFile, float mag) 
{ 
 cout << "writeing dns" << endl; 
 ofstream dyn; 
 dyn.open ( dynFile.c_str() ); 
 dyn << "Number of Atoms and Title :" << endl; 
 dyn << "     " << atoms->size() << "     " << dynFile << endl; 
 dyn << "Periodic Box Dimensions :" << endl; 
 dyn << "   " << "90" << "    " <<  "90" << "    " << "90" << endl; 
 dyn << "   " << "90" << "    " <<  "90" << "    " << "90" << endl; 
 dyn << "Current Atomic Positions : " << endl; 
 for ( int j = 0; j < atoms->size(); j++ ) 
 { 
  dyn << " " << (*atoms)[ j ].p_.x << " " << (*atoms)[ j ].p_.y << " " << (*atoms)[ j ].p_.z << endl; 
 } 
 dyn << "Current Atomic Velocities :" << endl; 
 for ( int j = 0; j < atoms->size(); j++ ) 
 { 
  dyn << " " << mag * (*atoms)[j].d_.x << " " << mag * (*atoms)[j].d_.y << " " << mag * (*atoms)[j].d_.z << 
endl; 
 } 
 dyn << "Current Atomic Accelerations :" << endl; 
 for ( int j = 0; j < atoms->size(); j++ ) 
 { 
  dyn << " " << 0 << " " << 0 << " " << 0 << endl; 
 } 
 dyn << "Previous Atomic Accelerations :" << endl; 
 for ( int j = 0; j < atoms->size(); j++ ) 
 { 
  dyn << " " << 0 << " " << 0 << " " << 0 << endl; 
 } 
 dyn.close();   
}; 
 
float AtomSet::MSD(string originalFile, int start, int stop) 
{ 
    AtomSet orig(originalFile); 
     
 float sum = 0; 
 for  ( int i = start; i < stop; i++ ) 
 { 
 
 sum += sqrt(pow((*atoms)[i].p_.x - (*orig.atoms)[i].p_.x,2)+pow((*atoms)[i].p_.y - 
(*orig.atoms)[i].p_.y,2)+pow((*atoms)[i].p_.z - (*orig.atoms)[i].p_.z,2)); 
 } 
 sum /= stop - start; 
 return sum; 
}; 
float AtomSet::energy( float Amplitude) 
{ 
      //1/2MV^2 on each atom 
      double E = 0; 
 
      for ( int i = 0; i < atCt; i++ ) 
      { 
          Point z; 
          z.x = 0; 
          z.y = 0; 
          z.z = 0; 
          float v = Amplitude * mag((*atoms)[i].d_, z) * 100; 
          float mass = (*m)[ atoi((*atoms)[ i ].bonds[ 0 ].c_str()) - 1]; 
          // KE = 1/2mv^2; u -> kg; angstroms/picosecond -> meters/sec; J -> eV 
          E +=  mass *  pow(v, 2) / 2 * 1.66053 * 6.2415 * 1e-9;   
      } 
 cout << E << endl; 
      return E; 
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} 
//gets the mass of all atoms as identified by their number which is the location in the array + 1 
void AtomSet::ReadParam ( string SAParam ) 
{ 
     m = new vector<float>(1252); 
    ifstream indata; 
 indata.open( SAParam.c_str() ); 
 if ( !indata ) { cout << "FAILED" << endl; } 
  
 for ( int i = 0; i < 1252; i++ ) 
 { 
 indata >> (*m)[i]; 
    } 
} 
void AtomSet::RemoveWater() 
{ 
     vector<Atom> newSet(0); 
     for ( int i = 0; i < atCt; i++ ) 
     { 
         int ID = atoi((*atoms)[ i ].bonds[ 0 ].c_str()); 
         if ( ID > 1254 ) 
         { 
              atoms->erase(atoms->begin() + i); 
              atCt--; 
              i--; 
         } 
     } 
      
} 
float AtomSet::mag( Point p1, Point p2 ) 
{ 
 return sqrt(pow(p1.x - p2.x,2)+pow(p1.y - p2.y,2)+pow(p1.z - p2.x,2)); 
}; 
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VibrateMode.h 
 

 
 
#ifndef VIBRATEMODE_H 
#define VIBRATEMODE_H 
 
#include <iostream> 
#include <fstream> 
#include <vector> 
#include <string> 
#include <sstream> 
#include <cstdlib> 
#include <cmath> 
#include <sstream> 
#include "DataStructures.h"    
 
using namespace std; 
 
class VibrateMode 
{ 
friend class AtomSet; 
 
private: 
     vector<Point> *d_; 
     float f; 
     string logFile; 
     int *atCt; 
public:    
     VibrateMode( int atCt, string logFile, int mode );            
     ~VibrateMode(); 
     float MSD( int first, int last); 
     static int ct( string log, int atomCt ); 
     float getF(); 
     void print(); 
private: 
     void ReadMode( int mode ); 
     void ReadLine( float *x, float *y, float *z, ifstream& file );  
     void GoToMode( ifstream& fileStrm );  
     static void SkipLines( ifstream& fileStrm, int lines ); 
     float mag( Point p1 ); 
}; 
 
#endif 
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VibrateMode.cpp 
 
 
 
#include "VibrateMode.h" 
   
using namespace std; 
      
VibrateMode::VibrateMode ( int atCt, string logFile, int mode ) 
{ 
    d_ = new vector<Point>(0); 
    int temp = atCt; 
    this->atCt = new int(temp); // memory stompping issues 
    this->logFile = logFile; 
    ReadMode ( mode ); 
}; 
VibrateMode::~VibrateMode() 
{ 
    delete d_; 
}; 
void VibrateMode::ReadMode ( int mode ) 
{ 
     //Open File 
 ifstream indata; 
 indata.open(logFile.c_str()); 
 if (!indata) { cout << "FAILED" << endl; } 
 
    GoToMode(indata); 
         
 string modeHdr = "Vibrational Normal Mode"; 
 bool isMode = true; 
    d_->resize( *atCt ); 
    int fCt = 0; 
 while( isMode ) //Read Displacements 
 { 
  //seek down 2 lines 
        char modeHeader [ 256 ]; 
  indata.getline(modeHeader, 256); 
  string hdr = modeHeader; 
          
  if ( hdr != "" ) 
  { 
          if ( 0 == modeHdr.compare( hdr.substr(1,23) ) ) 
          { 
          isMode = true; 
          SkipLines(indata, 3); 
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          fCt++; 
          cout << fCt << endl; 
          if (fCt == mode ) 
                { 
              d_->resize( *atCt ); 
              stringstream head; 
              head << hdr; 
                 //seek to right word of title    
                 string fstr; 
                    for ( int i = 0; i < 7; i++ )  
                  head >> fstr; 
                 f = atof(fstr.c_str()); 
             
         
              //save data 
              for ( int i = 0; i < *atCt; i++ ) 
                        ReadLine( &(*d_)[ i ].x, &(*d_)[ i ].y, &(*d_)[ i ].z, indata ); 
                    break; 
                    break; 
                } 
                else 
                { 
                    isMode = true; 
                } 
            }   
  }       
    }  
 indata.close(); 
}; 
 
float VibrateMode::MSD ( int first, int last ) 
{ 
    int temp = *atCt; 
    float sum = 0; 
 for  ( int i = first; i < last + 1; i++ ) 
 { 
  sum += pow(mag((*d_)[i]), 2); 
 } 
 sum /= (float)*atCt; 
 return sum; 
}; 
void VibrateMode::print() 
{ 
     for ( int i = 0; i < 1734; i++ ) 
         cout << (*d_)[i].x << "     " << (*d_)[i].y << "       " << (*d_)[i].z << endl; 
} 
     
int VibrateMode::ct ( string log, int atomCt ) 
{ 
    //Open File 
 ifstream indata; 
 indata.open(log.c_str()); 
 if (!indata) { cout << "FAILED" << endl; } 
 
    int lines = 23 + ( 3 * atomCt / 5 ) * 2 ;  
    SkipLines(indata, lines);  
     
 string modeHdr = "Vibrational Normal Mode"; 
 bool isMode = true; 
    int fCt = 0; 
 while( isMode ) //Read Displacements 
 { 
  isMode = false; 
  //seek down 2 lines 
        SkipLines(indata,1); 
        char hdr [ 256 ]; 
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  indata.getline(hdr, 256); 
  string hdrs = hdr;    
  if ( 0 == modeHdr.compare( hdrs.substr(1,23) ) ) 
   fCt++; 
 } 
 indata.close(); 
 return fCt; 
} 
float VibrateMode::getF () 
{ 
      return f; 
} 
void VibrateMode::ReadLine ( float *x, float *y, float *z, ifstream& file ) 
{ 
     char line[256]; 
     file.getline(line,256); 
     stringstream ln; 
     ln << line; 
     int atom; 
     ln >> atom; 
     ln >> *x; 
     ln >> *y; 
     ln >> *z; 
      
}; 
  
//Go to first line of atom displacements 
void VibrateMode::GoToMode ( ifstream& fileStrm ) 
{ 
 int lines = 24 + ( 3 * *atCt / 5 ) * 2 ;  
    SkipLines(fileStrm, lines);  
};  
void VibrateMode::SkipLines ( ifstream& fileStrm, int lines ) 
{ 
    char line[256]; 
    for ( int j = 0; j < lines; j++ ) 
        fileStrm.getline(line,256); 
} 
float VibrateMode::mag(Point p1) 
{ 
 return sqrt(pow(p1.x, 2)+pow(p1.y, 2)+pow(p1.z, 2)); 
}; 
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DataStructures.h 
 

#ifndef DATASTRUCTURES_H 
#define DATASTRUCTURES_H 
 
 
 
 
#include <vector> 
#include <string> 
 
#define MAXBONDS  5  
 
using namespace std; 
 
struct Point 
{ 
    float x; 
    float y; 
    float z;    
}; 
 
struct Atom 
{ 
    Point p_;  
 Point d_; 
 
 string name; 
 string bonds[MAXBONDS]; 
}; 
#endif 
 
 
 
 

 


