
Team 11

Sugarscaping On a Beowulf Ring

New Mexico

Supercomputing Challenge

Final Report

April 7, 2010

Team 11

Artesia High School

Team Members:

Wesley Green

Isaiah Jordan

James McGee

Wen Hai Zheng

Teacher(s):

Randall Gaylor

Mentor(s):

Nick Bennett

Jose Quiroz

1

Team 11

TABLE OF CONTENTS

INTRODUCTION…...3

PROGRESS…...4

BEOWULF RING …..5

EXPECTED OUTCOMES…...6

SUGARSCAPE…...7

PYTHON …..8

REFERENCES…..9

APPENDIX A: PYTHON SUGARSCAPE CODE…..11

APPENDIX B: EXPECTED RESULTS…...17

APPENDIX C: GLOSSARY OF TERMS..18

APPENDIX D: PYTHON PSEUDO-CODE…..19

APPENDIX E: NETLOGO PSEUDO-CODE…..21

APPENDIX F: POSSIBLE FUTURE MODIFICATIONS…...22

APPENDIX G: AKNOWLEGEMENTS…..23

2

Team 11

INTRODUCTION

The idea of running Sugarscape in parallel on a Beowulf ring is something that has not

been attempted to our knowledge and based on our research. The idea is not only intriguing but

it is also a very difficult feat to attempt to run the Epstein model of Sugarscape in parallel on a

Beowulf ring. This project is something that the team felt would be a successful project to work

on because it combined our interests in parallel computing and agent-based modeling. What ex-

actly is a Beowulf ring? What exactly is a Sugarscape model? How exactly do these two con-

cepts work together? Team 11, comprised of 4 students has worked out one way to run a Sug-

arscape model parallel with a Beowulf ring. For our team, boundaries for what we know have ex-

tended and expanded.

We have converted the Sugarscape model to Python in order to properly run it in parallel

on the Beowulf ring. This required breaking down the NetLogo version of Sugarscape into a

pseudo-code, [21] then using the pseudo-code, rewriting the program in Python. This activity

made the Sugarscape easier for us to understand, and made the conversion to Python much

easier.

Python was selected after attempting to use Java as the programming language for use on

the Beowulf ring, and discovering (with help from our mentor) that Python would be far less

cumbersome.

3

Team 11

PROGRESS

At this point in time, we have a modified version of the Sugarscape model that is listed in

the Model Library on the NetLogo website. This model, now written in Python, may be viewed

in Appendix A [11] The plan is to run the modified model on the Beowulf ring to establish a base

line for performance. We then intend to further modify the program to allow Sugarscape to per-

form in a more “life-like” [18] manner. [22] We will run the modified (more life-like) program

on the Beowulf ring to determine whether other information can be acquired. [22]

4

Team 11

BEOWULF RING

We have assembled a miniature Beowulf ring [1] composed of 7 Dell PCs with 1Ghz pro-

cessors and 2 IBM Xeon servers, one being a dual-core. There is a total of 10 cores and about

2.5GB of available RAM. The nodes are connected through a 100Mbps mini-network with each

node running ClusterKnoppix v3.6 with OpenMosix[5][6] installed natively. Each node runs Par-

allel Python. Sugarscape imports the Parallel Python[8] library before it runs and distributes the

processing load evenly among the nodes. The idea of the Beowulf ring in this project is to make

it so it is possible to run Sugarscape faster and (in theory) get more results than we could on a

normal computer with one or two processors. The Beowulf ring also makes it possible to run

Sugarscape for more iterations.

5

Team 11

EXPECTED OUTCOMES

As explained earlier the goal of the project is to run a program known as a “Sugarscape”

parallel with a mini super computer comprised of 7 connected computers. We are also optimizing

the Sugarscape model in an attempt to isolate individual societies, one on each node. We anticip-

ate that by running the Sugarscape in parallel on the Beowulf ring, we will get additional results

faster than running the Sugarscape on a single computer. We will be able to:

1. Compare how societies evolve differently from the same simple rules on different

nodes;

2. View the interaction of differently evolved societies as nodes are combined, and per-

haps recombined;

3. Iterate the above to determine common traits within the societies;

4. As well as determine the range of varying traits within the societies.

6

Team 11

SUGARSCAPE

What is Sugarscape? Sugarscape is an artificially agent-based social simulation. The first

introduction to agent-based simulations since the early 1990's was in form of the Game of Life

[13] by Cambridge mathematician John Conway. Conway's work wasn't in agent-based simula-

tion, but in cellular automaton. Conway's work was an early example of what we now call “artifi-

cial life” (though he wasn't the first: John Von Neumann and others did some important work in

that area before Conway.) Conway's invention was enhanced and applied to the arena of social

simulations by Epstein in his book, Growing Artificial Societies. [2] Epstein's implementation

came to be known as the Sugarscape.

Sugarscape refers to the silicon-based society that Epstein created. It included the agents

which are the inhabitants, the environment and the rules governing the interaction of the agents

with each other and the environment. This project is an adoption of their ideas with some modi-

fications. The Sugarscape provides accurate data to Social Science researchers through its model

of an artificial society. Agents or citizens move about the environment gathering food, mating

with suitable partners, bearing offspring, dying, and leaving an inheritance for their survivors.

Researchers can use the simulation as a test for basic social rules. The patterns resulting from the

execution of the simulation can be used to confirm or revise their claims.

7

Team 11

PYTHON

Python is one of the more successful programming language since it was created in 1991.

It helped our team write the code for our project. Since Python is open-source, people within the

Python community can write add-on libraries for it, allowing greater flexibility in programming

and coding. One example of this is the Parallel Python [8] library our project uses. We had ori-

ginally planned on using Java, but Python was selected after discovering (with help from our

mentor) that Python would be far less cumbersome because Java couldn't be run in parallel very

easily.

8

Team 11

REFERENCES

[1] "Beowulf (computing) -." Wikipedia, the free encyclopedia. Web. 15 Sept. 2009.

<http://en.wikipedia.org/wiki/Beowulf_(computing)>.

[2] Epstein, Joshua M. Growing artificial societies: Social science from the bottom up. Washing-

ton, D.C: Brookings Institution, 1996. Print.

[3] The Linux Documentation Project. Web. 15 Sept. 2009.

<http://tldp.org/HOWTO/openMosix-HOWTO/>.

[4] "NetLogo User Community Models: Sugarscape." The Center for Connected Learning and

Computer-Based Modeling. Web. 15 Sept. 2009.

<http://ccl.northwestern.edu/netlogo/models/community/Sugarscape>.

[5] "OpenMosix -." Wikipedia, the free encyclopedia. Web. 15 Sept. 2009.

<http://en.wikipedia.org/wiki/OpenMosix>.

[6] OpenMosix, an Open Source Linux Cluster Project. Web. 15 Sept. 2009.

<http://openmosix.sourceforge.net/>.

[7] "The openMosix Stress-Test." OpenMosixview cluster-management GUI. Web. 15 Sept.

2009. <http://www.openmosixview.com/omtest/>.

[8] Parallel Python. N.p., n.d. Web. 5 Apr 2010. <http://www.parallelpython.com/>.

[9] Random stuff from the past. Web. 17 Oct. 2009.

<http://wspinell.altervista.org/index.php?section=20_sugarscape>.

9

http://tldp.org/HOWTO/openMosix-

Team 11

[10] "StarLogo Sample Projects - Sugarscape." Web. 20 Sept. 2009.

<http://education.mit.edu/starlogo/samples/sugarscape.htm>.

[11] Sugarscape - Growing Agent-based Artificial Societies. Web. 18 Sept. 2009.

<http://sugarscape.sourceforge.net/>.

[12] "SugarScape." Ressources naturelles et simulations multi-agents. Web. 22 Sept. 2009.

<http://cormas.cirad.fr/en/applica/sugarScape.htm>

[13] Gardner, M. "Mathematical Games - The fantastic combinations of John Con-

way's new solitaire game "life" - M. Gardner – 1970." Mathematical Games. Sci-

entific American, Oct 1970. Web. 5 Apr 2010. <http://ddi.cs.uni-potsdam.de/Hy-

FISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm>.

10

Team 11

APPENDIX A: PYTHON SUGARSCAPE CODE

11

Sugarscape1

sugarscape: (two-peak sugarscape, rule: Ginf)

agents: (moving sequence: random, view: four directions, rule: M)

agents are characterized by their 'ifAlive', 'vision', 'metabolism', 'wealth'

Change: modified how agents are identified, and neighbor fn

 so agents are able to share a location

from numpy import *

import matplotlib.pyplot as plt

import pp

Initialize two-peak sugarscape and display

def initsugarscape(nruns, size, maxsugar):

 # Generate sugarscape with one south west peak

 x = range(-int(math.ceil(0.75*size)), size - int(math.ceil(0.75*size)))

 y = range(-int(math.ceil(0.25*size)), size - int(math.ceil(0.25*size)))

 s1 = zeros((size,size))

 for i in range(size) :

 for j in range(size) :

 if x[i] == 0 and y[j] == 0:

 s1[i,j] = maxsugar

 else:

 s1[i,j] = maxsugar/(abs(x[i]) + abs(y[j]))

Team 11

12

 # Generate two-peak sugarscape (south west and north east peak)

 sugarscape = s1 + s1.T

 # Print maximum effective sugar level

 print('Maximum effective sugar level: ', sugarscape.max())

 return(sugarscape)

Initialize agents population including age range

def initAgents(size, sugarscape, visionv, metabolismv) :

 agent = {}

 numAgents = int(ceil(random.rand()*0.2*size**2))

 location = random.randint(size, size=(numAgents, 2)) # generate the random locations for agents

 numAgentSpot = zeros((size, size))

 for i in range(size):

 for j in range(size):

 dupRow = nonzero(location[:,0] == i)

 dupCol = nonzero(location[:,1] == j)

 for k in dupRow[0]:

 if k in dupCol[0]: numAgentSpot[i,j] += 1

Team 11

13

for i in range(numAgents):

 agent[i,'location'] = location[i,:] # set the agent i's location

 agent[i,'ifAlive'] = 1 # agent is alive

 agent[i,'metabolism'] = int(math.ceil(random.rand() * metabolismv))

 agent[i,'vision'] = int(math.ceil(random.rand() * visionv))

 agent[i,'wealth'] = sugarscape[location[i,0],location[i,1]]/numAgentSpot[location[i,0], location[i,1]] #
agents share sugar if they share a spot

 return(agent, numAgents, numAgentSpot)

Transform field "agent" from data structure into matrix and display agents locations

def dispAgentLoc(numAgentSpot, numAgents,size, nruns, runs):

 a = zeros((size, size))

 av, am = a, a

 plt.figure(2)

 plt.subplot(math.ceil((nruns+1)/3), 3, runs)

 plt.spy(numAgentSpot)

 plt.title('# of Agents = ' + str(numAgents))

 print('Number of runs', runs)

 print('Average Vision:', sum(sum(av))/sum(sum(a)))

 print('Average Metabolism:', sum(sum(am))/sum(sum(a)))

Team 11

14

Initialize model parameters

nruns = 10

size = 50 # even number

metabolismv = 4

visionv = 6 # set always smaller than size

maxsugar = 20.0

keys = ['location', 'ifAlive', 'vision', 'metabolism', 'wealth'] # global key index

Initialize sugarscape and display

sugarscape = initsugarscape(nruns, size, maxsugar)

Initialize agents population

agent, numAgents, numAgentSpot = initAgents(size, sugarscape, visionv, metabolismv)

Main loop (runs)

for runs in range(nruns):

 # Display agents locations

 #dispAgentLoc(numAgentSpot, numAgents, size, nruns, runs + 1)

 # Select agents in a random order and move around the sugarscape following rule M

Team 11

15

 #for i in range(1):

 for i in random.permutation(numAgents):

 if agent[i, 'ifAlive']: # is the agent alive?

 vision = agent[i, 'vision']

 loc = agent[i, 'location']

 NS = range(max(loc[0]-vision, 0),min(loc[0]+vision+1, size)) # North-South location index vector

 WE = range(max(loc[1]-vision,0), min(loc[1]+vision+1, size)) # West-East location index vector

 NSwealth = sugarscape[NS, loc[1]]/(numAgentSpot[NS, loc[1]]+1) # calculate the expected sugar: NS dir-
ection

 WEwealth = sugarscape[loc[0], WE]/(numAgentSpot[loc[0], WE]+1) # calculate the expected sugar: WE
direction

 bestsugar = max(max(NSwealth), max(WEwealth)) # get the best location

print('number of runs', runs)

print('before loc', loc)

 if bestsugar > sugarscape[loc[0], loc[1]]/(numAgentSpot[loc[0], loc[1]]): # if sugar outlook is better in the
new location:

 # update the agent's location:

 if NSwealth[nonzero(NSwealth == bestsugar)].shape[0]:

 agent[i, 'location'][0] += max(nonzero(NSwealth == bestsugar)[0]) - vision

 else:

 agent[i, 'location'][1] += max(nonzero(WEwealth == bestsugar)[0]) - vision

Team 11

16

print('after loc', loc)

 newLoc = agent[i, 'location'] # can be the same as the original location

 numAgentSpot[loc[0], loc[1]] -= 1 # reduce the number of agents in the original location

 numAgentSpot[newLoc[0], newLoc[1]] += 1 # increase the number of agents in the new location

 spotSugar = sugarscape[newLoc[0], newLoc[1]]/(numAgentSpot[newLoc[0], newLoc[1]])

 agent[i, 'wealth'] = agent[i, 'wealth'] + spotSugar - agent[i, 'metabolism']

 # If wealth is less than zero set location to unoccupied

 if agent[i, 'wealth'] <= 0:

 agent[i, 'ifAlive'] = 0

 print (runs)

Team 11

APPENDIX B: EXPECTED RESULTS

We expect that by running Sugarscape in parallel on the Beowulf Ring that the outcome

will output results faster than running Sugarscape on a single computer which is only a single- or

dual-processor. The Beowulf ring distributes the processing load evenly across each node, allow-

ing the program to run faster than it normally would.

17

Team 11

APPENDIX C: GLOSSARY OF TERMS

1. Life-like – Agents will behaving more like modern humans; forming societies, trading,

etc.

2. Iteration – One run of the program.

3. Node – One computer on the Beowulf ring

4. Agents – The name for the “people” in the model

5. Sugar – The program name for the agents.

6. Increment Time – Increments a time-step

7. Libraries – Libraries that add additional functions to Python

18

Team 11

APPENDIX D: PYTHON PSEUDO-CODE

1. # Sugarscape

2. # sugarscape: (two-peak sugarscape, rule: Ginf)

3. # agents: (moving sequence: random, view: four directions, rule: M)

4. # agents are characterized by their 'ifAlive', 'vision', 'metabolism', 'wealth'

5. # Change: modified how agents are identified,

 and neighbor fn so agents are able to share a location.

6. Import the Numpy library to do complex mathematical equations.

7. Import the Math Plot library as the “plt” request (for sake of simplicity)

• Allows us to plot graphs

8. Import Parallel Python to run Sugarscape on the Beowulf ring in parallel.

9. # Initialize two-peak Sugarscape and display

10. Define the “initsugarscape” command and variables.

11. # Generate sugarscape with one south west peak

12. # Generate two-peak sugarscape (south west and north east peak)

13. # Initialize agents population including age range

19

Team 11

14. # Transform field "agent" from data structure into matrix and display agents

locations

15. (Commented out) Create a graph

16. Show number of runs

17. # Initialize model parameters

18. # Initialize Sugarscape and display

19. # Initialize agents population

20. # Main loop (runs)

• Loop command for Sugarscape.

21. (Commented out) # Display agents locations

22. # Select agents in a random order and move around Sugarscape following rule M

20

Team 11

APPENDIX E: NETLOGO PSEUDO-CODE

to go:

1. If any agents are in the world, stop.

2. Turtles move

-check rules/algorithm

-if there is no sugar or agents are older than the preset age, agents die

-check rules/algorithm

-set color based on rules

3. set color

4. set reproduction rate

5. increment time

6. update graphs

21

Team 11

APPENDIX F: POSSIBLE FUTURE MODIFICATIONS

Since this project first began, our ultimate goal has been to eventually add the “spice”

function into our Sugarscape model and make it so the Sugarscape could span multiple societies

across multiple nodes and slowly merge them together or “tear down the walls,” if you will. This

would allow multiple societies to grow and eventually “trade” with one another. To our know-

ledge, this also has not been accomplished.

22

Team 11

APPENDIX G: AKNOWLEGEMENTS

First of all, we would like to thank Nicholas Bennett for making the trip to Artesia on

multiple occasions throughout the year to help us with our project and code in person and for al-

ways being just an email away when we needed help with anything.

Next, we would like to thank Randall Gaylor. He has been an invaluable asset throughout

this Challenge year. He has kept us on our toes this entire year, and for that we are grateful.

23

	TABLE OF CONTENTS
	INTRODUCTION
	PROGRESS
	BEOWULF RING
	EXPECTED OUTCOMES
	SUGARSCAPE
	PYTHON	
	REFERENCES
	APPENDIX A: PYTHON SUGARSCAPE CODE
	APPENDIX B: EXPECTED RESULTS
	APPENDIX C: GLOSSARY OF TERMS
	APPENDIX D: PYTHON PSEUDO-CODE
	APPENDIX E: NETLOGO PSEUDO-CODE
	APPENDIX F: POSSIBLE FUTURE MODIFICATIONS
	APPENDIX G: AKNOWLEGEMENTS

