
Efficient Air Traffic Control

New Mexico
Supercomputing Challenge

Final Report
April 7, 2010

Team 127
Manzano High School

Team Members

Ryan Hensel
Elisabeth Keller

Jelke Adema

Teacher Sponsor
Steve Schum

Table Of Contents

Executive Summary

Introduction

Mathematical Model

Math Variables and Symbols

Physics Acceleration Formulas

Plan For C++ Program

Results and Conclusions

References

Acknowledgements

Appendix:

 C++ Computer Code

Executive Summary

Our team intended to create a program that eliminates the issue of human error from the issue

of air traffic control. Without human error the process of air traffic will be completely automated,

letting the machine and/or program think entirely on its own. If the said issue is automated, then the

program that controls the issue is able to make a logical decision, and the only thing air traffic control

requires is logic. A program that is programmed to not make any interfering decisions is required for air

traffic control; if the program were to cross take off times, it could result in a crash. We are trying to

prevent any mishap to happen on the runway. This is ultimately our goal, to prevent any thing that is

not supposed to happen from happening. We wish to write a computer model to simulate handling

airplane traffic in a midsize airport. We are going to use the C++ programming language.

Phase I: Develop mathematical model to land five commercial jets and take off five commercial

jets on one runway in one hour. Our adviser has taught us the physics equations and we have already

computed the position, speed, and acceleration of one jet while landing. We have computed the

position, speed, acceleration of one jet on takeoff.

Phase II: Develop mathematical model to land five private planes and take off five private planes

on a shorter runway that parallels the jet runway in one hour. We have computed the position, speed,

acceleration of one plane on takeoff on a 2nd shorter runway that parallels the commercial jet runway,

also for a one hour time frame.

Phase III-A: Our team wrote a computer model to simulate handling airplane traffic in midsize

airport based on the mathematical handle to land five small private planes and take off five small private

planes on a 2nd shorter runway that parallels the commercial jet runway, also for a one hour time

frame. We will then develop the C++ computer program to perform all these calculations and output

time, position, speed, and acceleration for all the planes in ten second time intervals to a neatly

formatted data table.

Phase III-B: Then we want to modify the C++ program to include decisions and communications

with the airplanes based on normal air traffic scenarios, as well as to accommodate disruptions in the

traffic pattern such as flat tires, flocks of birds on the runway, accidents, weather conditions, etc.

Introduction

We wish to write a computer model using the C++ programming language to simulate the handling of

commercial airplane traffic in a midsize airport.

Sample Airport Traffic Flow

Mathematical Model
 In Phase I, we developed a mathematical model to compute the position, speed, and acceleration

of one jet on landing and one on takeoff. Then in Phase II, we expanded our mathematical model to

land five commercial jets and send off five commercial jets on one runway in one hour. In Phase III, we

plan to expand our mathematical model to include traffic decisions to be communicated to the aircraft

based on normal and disrupted traffic flow.

Math Variables and Symbols For Acceleration Physics Formulas

 di = initial horizontal position (m), (where di is 5.0 miles before the runway)

 d = horizontal displacement (m)

 vi = initial horizontal velocity (m/s)

 v = horizontal velocity (m/s)

 t = time (s)

 a = acceleration (m/s2)

Physics Acceleration Formulas

 a = (v - v0) / (t - t0)

 v2 = vi
2 + 2 (a) (x- x0)  Then solve for acceleration (a) both before touchdown and after

touchdown when landing and takeoff.

 Then substitute for v0 and a, and solve for x in d = di + (vi)(t) + ½ (a) (t2) for landing

 Then substitute for v0 and a, and solve for v in v = vi+ (a)(t) for landing and takeoff.

 Use these same equations to compute & output position vs time and speed vs time for both
inbound and outbound planes in 6 min intervals.

Plan For C++ Program

We developed a C++ computer program to compute and output the position, speed,

acceleration of one jet on landing and one on takeoff. Expand C++ computer program to output results

of landing 5 commercial jets and sending off five commercial jets on one runway in one hour. Expand

computer model to include traffic decisions to be communicated to the aircraft based on normal and

disrupted traffic flow.

Phase I

Compute and output position vs. time, speed vs. time for one inbound plane beginning 5.0 miles

from runway and ending at end of runway in < 4.0 minutes. Compute and output position vs. time,

speed vs. time for one outbound plane beginning at start of runway and ending 5.0 miles beyond end of

runway.

Phase II

Write “for loop” to alternate above calculations for inbound and outbound air traffic starting

inbound landing at 0, 12, 24, 36, 48 minutes and starting outbound traffic at 6, 18, 30, 42, 54 minutes.

Phase III

We will add the communications to every inbound and outbound plane at key time intervals for

normal traffic flow. We will add the communications to every inbound and outbound plane for “alerts”,

“holding patterns” and “alternate landing and takeoff times” during disrupted traffic flow. For normal

traffic flow, write code to communicate traffic instructions to inbound and outbound air traffic --

starting inbound landing at 0, 12, 24, 36, 48 minutes and starting outbound traffic at 6, 18, 30, 42, 54

minutes. For disrupted traffic flow, write code to communicate to planes the “alerts”, “holding

patterns” and “alternate landing and takeoff times” for both inbound and outbound air traffic.

Results and Conclusions

In Phase I, our C++ model computes and outputs position vs. time and speed vs. time for one

inbound commercial jet in a 6 min interval. We are in the final stages of debugging this program and

generating tables of output, both to the display and to a spreadsheet formatted file. We still need to

complete the Phase I code to compute and output position vs. time and speed vs. time for one

outbound commercial jet.

Then we need to expand the C++ code for Phase II to run five twelve minute cycles per hour for

alternating inbound and outbound commercial jets. Finally we need to expand the program for Phase III

to include communications to all jets during normal traffic flow and communications and alerts to all jets

during disrupted traffic flow/events. We hope to complete the computer code and formatted output

for Phases I, II, and III by April 26 to present at the NMSCC 2010 Expo.

References

Adams, et al (1998) C++ An Introduction to Computing, 2nd Ed, Prentice Hall

Albuquerque Academy-Team 7 (2008) "Modernizing the U.S. Air Traffic Control System", NMSCC

Jamsa, Kris (1996), Rescued by C++; 2nd Ed, Jamsa Press

Scott, Jeff (2002), "Airliner Takeoff Speeds", URL:

 http://www.aerospaceweb.org/question/performance/q0088.shtml

Zitzewitz, et al (2005), Physics Principles and Problems, Glencoe

Acknowledgements

 Team 127 would like to acknowledge the NM Supercomputing Challenge Program for 2009-

2010. We also wish to thank Mr. Stephen Schum for teaching the Pre-Engineering Electronics program

here at Manzano High School and for being our teacher sponsor throughout the duration of our NMSCC

project. We would also like to give a special thanks to the MHS Administration for supporting the Pre-

Engineering Electronics class and the NM Supercomputing Challenge Program. Finally we wish to

acknowledge the Kyle Kortkamp Memorial Fund for donating $800 to the Manzano High School Pre-

Engineering Electronics and NM Supercomputing Challenge programs.

Appendix

C++ Code

/* filename: landplane1.cpp Apr-6-2010

 Team 127 in 2009-10 NMSCC

 Phase I of this program will show the position & velocity every 10 seconds

 of planeslanding and taking off for 1.0 hour at a mid-sized airport.

 First landplane1.cpp asks the user for initial velocity of an incoming plane

 starting 5.0 miles from the start of the runway.

 Then landplane1.cpp asks the user for touch down velocity of an incoming plane

 starting 0.5 miles on to the runway.

 Then landplane1.cpp will compute the position and velocity every 10 sec during

 the landing of the plane.

 Then landplane1.cpp will use similar formulas to compute the position and velocity

 every 10 sec during take-off of an out-going plane until it reaches the

 outer 5.0 mile mark.

*/

// C++ brings other programs to your program via #include <filename> syntax

#include <iostream.h> // Allows input and output to screen and/or file.

#include <math.h> // Allows math functions (power, sine, cos, tan, etc)

#include <iomanip.h> // Allows program to manipulate data.

int main(void) // Starts main program. int = Return an integer

{ // Put {} around code segments. {} must match.

 int i; // int = integer variable type (+9,0,-133)

 int ttotalA=120, ttotalB=240; // ; ends statements.

 float aA=-0.761, aB=-2.00; // aA=accel before touchdown

 // aB=accel after touchdown

 // Variables for landing a plane Part A and Part B

 float time, ttemp; /*float = real number variable type with 8 chars max 1234567.

 1.000001 0.000009 including the decimal point */

 float vai; // vai = initial velocity part A at 5.0 miles before

 float va; // va = velocity in part A every 10 seconds

 float vbi; // vbi = initial velocity part B at 0.5 miles into runway

 float vb; // va = velocity in part B every 10 seconds

 float dai; // vai = initial position part A at 5.0 miles before

 float da; // va = position in part A every 10 seconds

 float dbi; // vbi = initial position part B at 0.5 miles into runway

 float db; // vb = position in part B every 10 seconds

 // Variables for an outbound plane Part C and Part D

 float vci; // vci = initial velocity part A at 5.0 miles before

 float vc; // vc = velocity in part A every 10 seconds

 float vdi; // vdi = initial velocity part B at 0.5 miles into runway

 float vd; // vd = velocity in part B every 10 seconds

 float dci; // vci = initial position part A at 5.0 miles before

 float dc; // vc = position in part A every 10 seconds

 float ddi; // vdi = initial position part B at 0.5 miles into runway

 float dd; // vd = position in part B every 10 seconds

 //const float x=value; Declare a constant for a given scope of the program.

 cout.precision(3); // 3 = 3 digits past the decimal point

 cout.setf(ios::showpoint | ios::fixed);

/*

cout << "Phase I of this program will show the position & velocity every 10 seconds" << endl

 " of planeslanding and taking off for 1.0 hour at a mid-sized airport." << endl

 "First landplane1.cpp asks the user for initial velocity of an" << endl

 "incoming plane starting 5.0 miles from the start of the runway." << endl

 "Then landplane1.cpp asks the user for touch down velocity of an" << endl

 "incoming plane starting 0.5 miles into the runway." << endl

 " Then landplane1.cpp will compute the position and velocity" << endl

 "every 10 sec during the landing of the plane." << endl

 "Then landplane1.cpp will use similar formulas to compute the" << endl

 "position and velocity every 10 sec during take-off of an" << endl

 "out-going plane until it reaches the outer 5.0 mile mark."<< endl;

*/

 cout << "Enter the initial velocity of an incoming plane 5 miles away:";

 cin >> vai; // We entered 300 mph

 vai = vai * 1609 / 3600; // Converts mph to m/s

 cout << "" << endl;

 cout << "Enter touchdown velocity of an incoming plane." << endl;

 cin >> vbi; // We entered 150 mph

 vbi = vbi * 1609 / 3600; // Converts mph to m/s

cout << "the starting distance from runway is 5.00 miles away." << endl;

 dai = 0.0; // We set dai = 0 = initial position

 cout << setw(12) << "Time" << setw(12) << "Distance" << setw(12) << "Velocity" << endl

 << setw(12) << "(seconds)" << setw(12) << "(miles)" << setw(12) << "(mph)" << endl;

 for(i=0; i<=ttotalA; i++) // i++ means i = i + 1

 {

 ttemp=float(i) * 10; // Trick: type cast int i to a real number as float.

 da=dai + vai * ttemp *.5 * aA * pow(ttemp,2); // pow = power 2 = 2nd order power

 da = da / 1609; // Converts meters to miles

 va=vai+aA*ttemp;

 va = va * 3600 / 1609; // converts back from m/s to mph

 cout << setw(12) << ttemp << setw(12) << da << setw(12) << va << endl;

 }

 return 0;

}

