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Supercomputing Challenge Vision 

The Vision of the Supercomputing Challenge is to be a nationally recognized program 
that promotes computational thinking in science and engineering so that the next 
generation of high school graduates is better prepared to compete in an information based 
economy. 

Supercomputing Challenge Mission 

The Mission of the Supercomputing Challenge is to teach teams of middle and high 
schools students how to use powerful computers to analyze, model and solve real world 
problems.  

About the Supercomputing Challenge  

The Supercomputing Challenge (the Challenge) is an exciting program that offers a truly 
unique experience to students in our state. The opportunity to work on the most powerful 
computers in the world is currently available to only a very few students in the entire 
United States, but in New Mexico, it is just one of the benefits of living in the "Land of 
Enchantment." 

The Challenge is a program encompassing the school year in which teams of students 
complete science projects using high-performance supercomputers. Each team of up to 
five students and a sponsoring teacher defines and works on a single computational 
project of its own choosing.  Throughout the program, help and support are given to the 
teams by their project advisors and the Challenge organizers and sponsors. 
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The Challenge is open to all interested students in grades 6 through 12 on a nonselective 
basis. The program has no grade point, class enrollment or computer experience 
prerequisites.  Participants come from public, private, parochial and home-based schools 
in all areas of New Mexico. The important requirement for participating is a real desire to 
learn about science and computing. 

Challenge teams tackle a range of interesting problems to solve. The most successful 
projects address a topic that holds great interest for the team. In recent years, ideas for 
projects have come from Astronomy, Geology, Physics, Ecology, Mathematics, 
Economics, Sociology, and Computer Science. It is very important that the problem a 
team chooses is what we call "real world" and not imaginary. A "real world" problem has 
measurable components. We use the term Computational Science to refer to science 
problems that we wish to solve and explain using computer models.  

Those teams who make significant progress on their projects can enter them in the 
competition for awards of cash and scholarships for the individuals and computer 
equipment for the school. Team trophies are also awarded for: Teamwork, Best Written 
Report, Best Professional Presentation, Electronic Search & Browse, Creativity and 
Innovation, Environmental Modeling, High Performance, Science is Fun and the Judges' 
Special Award, just to name a few. 

The Challenge is offered at minimal cost to the participants or the school district. It is 
sponsored by a partnership of federal laboratories, universities, and businesses. They 
provide food and lodging for events such as the kickoff conference during which students 
and teachers are shown how to use supercomputers, learn programming languages, how 
to analyze data, write reports and much more. 

These sponsors also supply time on the supercomputers and lend equipment to schools 
that need it. Employees of the sponsoring groups conduct training sessions at workshops 
and advise teams throughout the year. The Challenge culminates with an Expo and 
Awards Ceremony in the spring at Los Alamos National Laboratory. 

History 

The New Mexico High School Supercomputing Challenge was conceived in 1990 by 
former Los Alamos Director Sig Hecker and Tom Thornhill, president of New Mexico 
Technet Inc., a nonprofit company that in 1985 set up a computer network to link the 
state's national laboratories, universities, state government and some private companies. 
Sen. Pete Domenici, and John Rollwagen, then chairman and chief executive officer of 
Cray Research Inc., added their support.  

In 2001, the Adventures in Supercomputing program formerly housed at Sandia National 
Laboratories and then at the Albuquerque High Performance Computing Center at the 
University of New Mexico merged with the former New Mexico High School 
Supercomputing Challenge to become the New Mexico High School Adventures in 
Supercomputing Challenge.  
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In 2002, the words "High School" were dropped from the name as middle school teams 
had been invited to participate in 2000 and had done well.  

In the summer of 2005, the name was simplified to the Supercomputing Challenge. 

In 2007, the Challenge began collaborating with the middle school Project GUTS, 
(Growing Up Thinking Scientifically), an NSF grant housed at the Santa Fe Institute. 

 

2009—2010 Challenge Awards 

 

Melrose High trio named top team in 20th New Mexico Supercomputing Challenge 

Student research project modeled behavior of wildfire 

LOS ALAMOS, New Mexico, April 27, 2010—A trio of students from Melrose High 
School captured the top prize in the 20th New Mexico Supercomputing Challenge hosted 
by Los Alamos National Laboratory. The report "Control and Spread of Wildfires II" by 
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brothers Richard and Randall Rush and Kyle Jacobs built upon previous research by the 
team and added a new variable, topography, to the computer model as a factor 
contributing to the behavior of wildfire. 

Each student receives a check for $1,000. The team also received the Crowd Favorite 
Award—and $100—as selected by student participants, teachers, and mentors. 

Two Los Alamos High School teams captured second and third place. "The Holy Grail of 
Adam’s Ale" received second place, and "To Kill a Flocking Bird" captured the third-
place prize. 

The Supercomputing Challenge is open to any New Mexico high-school or middle-
school student. More than 250 students representing 70 teams from schools around the 
state spent the school year researching scientific problems, developing sophisticated 
computer programs, and learning about computer science with mentors from the state’s 
national laboratories and other organizations. 

The goal of the yearlong event is to teach teams of middle- and high-school students how 
to use powerful computers to analyze, model, and solve real-world problems. 
Participating students improve their understanding of technology by developing skills in 
scientific inquiry, modeling, computing, communications, and teamwork. 

The Los Alamos High School team of Gabriel Montoya, Rachel Robey, Orli Shlachter, 
and Orion Staples each received $500 for the second-place research project, which used 
geostatistics, a branch of applied statistics, to find aquifers and other groundwater 
sources. Robey and Montoya took third place in last year’s challenge for their project on 
energy efficiency through smart wall design. 

The team also received the Best Technical Poster Award. Their poster will be used on the 
front cover for the 2009-10 final reports book, which will be published this fall during the 
kickoff for the 2010-11 Supercomputing Challenge. The team also received the 
Visualization Award from New Mexico Institute of Mining and Technology. The award 
comes with $150. 

The third-place team consists of students Peter Ahrens, Stephanie Djidjev, Vickie Wang, 
and Mei Lui. Their project explored techniques used to optimize the parameters of 
flocking, a phenomenon frequently exhibited by birds during migration, animals such as 
elephants who flock to protect smaller, weaker members, and in humans. They each 
receive $250. 

The quartet of Los Alamos High students also received the Best Internet Research 
Prize—and a $500 cash award—from the Council for Higher Education 
Computing/Communication Services. They also garnered the New Mexico Network for 
Women in Science and Engineering award for best project with a majority of women 
team members, and shared the Visualization Award with the second-place team from Los 
Alamos High. The award comes with $150. 

http://www.challenge.nm.org/�
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Additional Finalist teams were:  

Team 5, Albuquerque Academy, The Metropolis Algorithm and Nanometer-Scale Pattern 
Formation 
Team Members: Michael Wang, Jack Ingalls 
Sponsor: Jim Mims, Mentor: David Dunlap, Ph.D  

Team 36, Desert Academy, Arbitrary Precision Integers on the Cell Processor 
Team Members: Megan Belzner, Matt Rohr, Bjorn Swenson 
Sponsor/Mentor: Thomas Christie  

Team 37, Desert Academy, The Spread of the Black Death in London 
Team Members: Katie Boot, Sara Hartse 
Sponsors: Thomas Christie, Jocelyn Comstock  

Team 69, Los Alamos High School,  
Enlightenment: Metropolis-Hastings Ray Prediction Model in 3D Space 
Team Members: Kathy Lin, Jake Poston, Ryan Marcus, Dov Shlachter 
Mentor: Lee Goodwin  

Team 84, McCurdy High School, Particle-Atmosphere Interaction 
Team Members: Dennis Trujillo, Oliver Galvan, Brandon Ricci 
Mentors: John Pretz, Brenda Dingus, Philip Sanchez  

All were taking home posters for their school trophy cabinets and a large banner for their 
gym and $50 per student. 
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The Challenge honored Erika DeBenedictis who won the individual Intel Science Talent 
Search with $100,000 scholarship. Erika participated as the youngest finalist judge as part 
of the Challenge's appreciation for her skills. 

The Creativity and Innovation Award, $100, from Sandia National Laboratories went to 
Team 33, Deming High School, Tortuga Trouble: A New Survey Method. Team 
Members were Rocky Navarrete and Gabriela Anguiano. Their teacher sponsor was 
Creighton Edington. 

The Science Rocks award went home with Team 18, Aspen Elementary, The 
Disappearing Honeybees. Team Members were Kim Vo, Rowan Cantua and Kaelan 
Prime. Their sponsor was Zeynep Unal. Their mentor was Duc Vo.  

The best epidemiology project was given to Team 37 from Desert Academy. The title of 
their project was The Spread of the Black Death in London. Team members were Katie 
Boot and Sara Hartse. Their sponsors were Thomas Christie and Jocelyn Comstock. 

Team 79, Los Alamos Middle School, Alien River Cloggers, won the Los Alamos 
National Laboratory Environmental Modeling Award and $100. Team members were 
Jacob Holesinger and Kevin Tao, Teacher sponsor was Clara Vigil. Their Mentor was 
Terry Holesinger. 

Cray, Inc. awarded Team 36, Desert Academy, Arbitrary Precision Integers on the Cell 
Processor the High Performance Computing Award. Team members were Megan 
Belzner, Matt Rohr, Bjorn Swenson. Sponsor and mentor was Thomas Christie. 

The Don't Panic Award goes Team 50, Freedom High School, A Proper Interpretation of 
Panic. Team members were William Barrett, Holly Campbell, Chelsea Kibbee and Amy 
Ronan. Their teacher sponsor was Joe Vertrees. 

Teamwork Award went to 107 from Quemado High and Silver High Their project First 
Impressions earned $100. Team members were Jose Mora and Austin Nightengale. Their 
teachers were Laura Larisch and Peggy Larisch. 

Team 13 from Artesia received $100 for the Best Web Presentation of a Final Report for 
their project Classroom Behavior. Team members were Cristina Villa, Nayeli Ramirez 
and Brenna Arredondo. Teacher sponsor was Amy Mathis. Mentors were Randall Gaylor, 
Nick Bennett and Olivia Rueda. 

The Award for Best Agent Based Modeling goes to team 37 from Desert Academy. The 
team members, Katie Boot and Sara Hartse, worked on the project, The Spread of the 
Black Death in London. The sponsors were Thomas Christie and Jocelyn Comstock. 

Team 102, from Navajo Preparatory School, Alexis Archambault, Ariel Nephew and 
Wilfred Jumbo received the Community Focus Award and $100 for their project The 
Latest Buzz About Bees. Their sponsor was Mavis Yazzie.  
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The Award for Best Professional Presentation Award, given by the Albuquerque Journal, 
went to Team 68 from Los Alamos High School. They were well-prepared, articulate, 
dressed appropriately, and responsive to feedback. The team members were Sam Baty 
and Peter Armijo. Their sponsors were Lee Goodwin and Diane Medford. Mentors were 
Roy Baty and John Armijo. Their project title was Astrophysical N-Body Simulations of 
Star Clusters. 

Team 53 was taking home the Jeff Bingaman Middle School Award. Team Members 
were Ariel Koh and Aline Parliman Their project was Grocery Tracker. Their mentor was 
Dr. Aik-Siong Koh. 

Harry Henderson and JP Gonzales were awarded the Challenge Service Award for 
traveling the state to support teams and being a vital part of the Challenge management 
team. 

Two new awards went to Jerry Esquivel, CEPi1, an Albuquerque charter school and 
Laura Larisch, Quemado High. Laura won the Newcomer Award for being a first year 
teacher sponsor who supported three teams and two scholarship applicants. Jerry won the 
Magellan Award for bringing computer science to his school community and modeling 
lifelong learning. 

The best logo award went to Team 11, for the best graphic for next year's logo which 
goes on the t-shirts and teacher bags. Artesia High School, Sugarscaping On a Beowulf 
Ring. Team Members were Wesley Green, Isaiah Jordan, James McGee, Wen Hai Zheng. 
Their teacher sponsor was Randall Gaylor. Their mentors were Nick Bennett and Jose 
Quiroz. 

The Best Use of Parallelism Award went to Team 69, Los Alamos High School, with 
their project Enlightenment: Metropolis-Hastings Ray Prediction Model in 3D Space. 
Team members were Kathy Lin, Jake Poston, Ryan Marcus and Dov Shlachter. Their 
Teacher sponsor was Lee Goodwin. They received a $300 cash award from the Computer 
Science and Engineering Department at New Mexico Tech. 

A total of $62,700 in individual scholarships—$50,000 from the Laboratory’s Computer, 
Computational, and Statistical Sciences Division—were awarded on Tuesday at Los 
Alamos. An additional $2500 came 
from Intel, $1200 from the Challenge 
for the Willard Smith Scholarships and 
$9,000 was given by in-state colleges 
and universities. Students receiving 
scholarships were: Erika DeBenedictis, 
Albuquerque Academy, Dennis 
Trujillo, McCurdy High, Gabriela 
Anguiano, Deming High, Brenna 
Arredondo, Artesia, Kathy Lin, Los 
Alamos, Oliver Galvan, McCurdy, Jon 
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Romero, Bloomfield High, Cristina Villa, Artesia High, Jack Ingalls, Albuquerque 
Academy, Ryan Marcus, Los Alamos High, Rocky Navarrete, Deming High, Michael 
Wang, Albuquerque Academy, Elysia Berg, Hope Christian High, William Jennings, 
Hope Christian High, Judith Flores, Quemado High, Janessa Larabee, Quemado, Erick 
Chavez, Deming High, Cameron Corley, Bloomfield High, Matt Crockett, Bloomfield 
High, Kaitlyn Dow, Northern New Mexico College, Amanda Edington, Deming High, 
Yolly Gamboa, Hatch High, Jake Poston, Los Alamos High, Brandon Ricci, McCurdy 
High, and Jeremy Salazar, Bloomfield High. 

Consult, the Challenge management team, honored head finalist judge, Michael Trahan, 
Sandia National Labs, veteran teacher, Karen Glennon, Jackson Mid School, 
Albuquerque, and new teacher sponsor, Creighton Eddington, Deming High, for their 
dedication, time and expertise. 

CHECS, the New Mexico Council for Higher Education Computing/Communication 
Service, provided cash for random drawing door prizes and Amy Ronan from Freedom 
High, Michael Wang from Albuquerque Academy, Kelsey Theriot from Jackson Middle 
School, Ryan Cortez and Lewis Taylor from V. Sue Cleveland High and Ryan Marcus 
from Los Alamos High each received $100. 

Students presented their research to a team of volunteer judges on Monday at the Lab’s J. 
Robert Oppenheimer Study Center and discussed poster displays of their computing 
projects. They also toured the Laboratory’s supercomputing centers and heard talks and 
saw demonstrations by Laboratory researchers. 

Sponsors 
The Supercomputing Challenge is sponsored by Los Alamos and Sandia national 
laboratories and the state of New Mexico. 

Educational partners include The Center for Connected Learning, CHECS, Eastern New 
Mexico University, High Plains Regional Cooperative, MIT StarLogo, New Mexico 
Computing Applications Center, New Mexico Highlands University, New Mexico 
Institute of Mining and Technology, Northern New Mexico College, New Mexico Public 
Education Department, New Mexico State University, San Juan College, Santa Fe 
Community College, Santa Fe Institute, and the University of New Mexico. 

Lockheed Martin, Los Alamos National Laboratory Foundation, The Math Works, 
Synergy Group, Vandyke Software Inc., and Wolfram Research, Inc. are "Gold" 
commercial partners. "Silver" commercial partners are Abba Technologies, Google RISE, 
Gulfstream Group and bigbyte.cc, Intel Corporation, Los Alamos National Security, 
LLC, One Connect IP, Technology Integration Group, and ZiaNet. 

Bronze partners are Apogentech, Albuquerque Journal, BX Internet, Cray Inc., Lobo 
Internet Services, New Mexico Business Weekly, New Mexico Technology and Council, 
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Redfish Group, Jim Stewart, and Strategic Analytics, are Sun Microsystems “Bronze” 
commercial partners. 

Los Alamos National Laboratory, a multidisciplinary research institution engaged in 
strategic science on behalf of national security, is operated by Los Alamos National 
Security, LLC, a team composed of Bechtel National, the University of California, The 
Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear 
Security Administration. 

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. 
nuclear stockpile, developing technologies to reduce threats from weapons of mass 
destruction, and solving problems related to energy, environment, infrastructure, health, 
and global security concerns. 

More information on the New Mexico Supercomputing Challenge can be found at 
http://www.challenge.nm.org online, while final student reports are available at 
http://www.challenge.nm.org/archive/09-10/finalreports online.  

 
Teams Finishing the Challenge and submitting final reports: 

 
Team 3, Albuquerque Institute for Math and Science, Ant Recruitment 
Team Members: Nico Ponder, Stefan Klosterman, Jordan Medlock, Erik Johnson  
Sponsor: Terrence Lebeck, Mentors: Mark Johnson, Tatiana Paz 
 
Team 5, Albuquerque Academy, The Metropolis Algorithm and Nanometer-Scale 
Pattern Formation 
Team Members: Michael Wang, Jack Ingalls 
Sponsor: Jim Mims, Mentor: David Dunlap, Ph.D 
 
Team 11, Artesia High School, Sugarscaping On a Beowulf Ring 
Team Members: Wesley Green, Isaiah Jordan, James McGee, Wen Hai Zheng 
Sponsor: Randall Gaylor, Mentors: Nick Bennett, Jose Quiroz 
 
Team 13, Artesia High School, Classroom Behavior 
Team Members: Cristina Villa, Nayeli Ramirez, Brenna Arredondo 
Sponsor: Amy Mathis, Mentors: Randall Gaylor, Nick Bennett, Olivia Rueda 
 
Team 15, Aspen Elementary, How Not to Become a Global Pandemic Statistic 
Team Members: Pippa Chadwick, Claire DeCroix, Evan Oro, Claire Ticknor 
Sponsor: Zeynep Unal, Mentors: David DeCroix, David Oro 
 
Team 16, Aspen Elementary, Whose Fault Is It? 
Team Members: Talia Dreicer, Hunter Eaton, David Smith 
Sponsor: Zeynep Unal, Mentors: Jared Dreicer, Kathy Smith 
 

http://www.challenge.nm.org/�
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Team 17, Aspen Elementary, Powering Los Alamos With Solar and Wind Energy 
Team Members: Emma Martens, Rachel Wallstrom 
Sponsor: Zeynep Unal 
 
Team 18, Aspen Elementary, The Disappearing Honeybees 
Team Members: Kim Vo, Rowan Cantua, Kaelan Prime 
Sponsor: Zeynep Unal, Mentors: Duc Vo 
 
Team 20, Bloomfield High School, Adaptive Virus 
Team Members: Cameron Corley, Matthew Crockett, Jon Romero 
Sponsor: Elvira Crockett 
 
Team 21, Bloomfield High School, Evolution of Influenza Over Time 
Team Members: Jonathan Zamora, Simone Valdez, Alex Jim, Evelyn Gutierrez 
Sponsor: Elvira Crockett, Mentor: Elvira Crockett 
 
Team 23, Creative Education Preparatory Institute #1, Firework Hearing Loss 
Team Members: Arlene Pino, Angela Caudle, Chance Lammey 
Sponsors: Jerry Esquivel, James Stewart, Mentors: Mark Murmer, Judith Velarde, Laura 
Rowen 
 
Team 24, Creative Education Preparatory Institute #1, The Virus 
Team Members: Michael Szanto, Devin Hayes, Ryan Fitzgerald 
Sponsors: Jerry Esquivel, James Stewart 
 
Team 25, Creative Education Preparatory Institute #1, Neurology and Epilepsy 
Team Members: Sara “Katelynn” Higgins, Carlos E. Reazin 
Sponsors: Jerry Esquivel, James Stewart, Mentor: Dr. Shiboya 
 
Team 27, Creative Education Preparatory Institute #1, The Last Virus 
Team Members: Robert Lopez, Robert Parnell 
Sponsors: Jerry Esquivel, James Stewart 
 
Team 29, V. Sue Cleveland High School, The Percentage of Disease During a Common 
School Day 
Team Members: Louis Taylor, Ben Fowler 
Sponsor: Debra Loftin, Mentor: Nick Bennett 
 
Team 30, V. Sue Cleveland High School, Accelerated Particles vs. Metastatic Cells 
Team Members: Matthew Bradly, Jeremy Wright, Ryan Cortez, Kevin Clay 
Sponsor: Debra Loftin, Mentor: Nick Bennett 
 
Team 33, Deming High School, Tortuga Trouble: A New Survey Method 
Team Members: Rocky Navarrete, Gabriela Anguiano 
Mentor: Creighton Edington 
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Team 35, Deming High School, Help Me, Doctor! 
Team Members: Amanda Edington, Erick Chávez 
Sponsor: Creighton Edington 
 
Team 36, Desert Academy, Arbitrary Precision Integers on the Cell Processor 
Team Members: Megan Belzner, Matt Rohr, Bjorn Swenson 
Sponsor/Mentor: Thomas Christie 
 
Team 37, DesertAcademy, The Spread of the Black Death in London 
Team Members: Katie Boot, Sara Hartse 
Sponsors: Thomas Christie, Jocelyn Comstock 
 
Team 38, Desert Academy, Socialist Manifesto 
Team Members: Isaac Green, Sean Collin-Ellerin 
Sponsor: Thomas Christie 
 
Team 39, Edgewood Elementary School, Red Hot Chili Peppers 
Team Members: Natasha Cordova, Deyvy Armendariz, Olivia Riblett 
Sponsors: Jennifer Cordova, Carol Thompson, Mentors: Ryan Serrano, David R. Janecky 
 
Team 40, Edgewood Elementary and Middle School, When Pigs Fly 
Team Members: Timothy Thompson, Joshua Berson, Casey Bond, Joseph Shaffier 
Sponsor: Carol Thompson, Mentor: Christopher Hoppe 
 
Team 48, Freedom High School, The Rising Socorro Magma Body 
Team Members: Joel Sandoval, Marika Plugge, Yoshua Reece, Jasmine Jensen 
Sponsor: Joe Vertrees, Mentor: Paula Rimmer 
 
Team 50, Freedom High School, A Proper Interpretation of Panic 
Team Members: William Barrett, Holly Campbell, Chelsea Kibbee, Amy Ronan 
 
Team 51, Hatch Valley High, Prediction of Green Chile 
Team Members: Yoliy Gamboa, Joel Cazares 
Mentor: Creighton Edington 
 
Team 53, Los Alamos Homeschool, Grocery Tracker 
Team Members: Ariel Koh, Aline Parliman 
Mentor: Dr. Aik-Siong Koh 
 
Team 56, Los Alamos Homeschool, Get on the Bus 2 
Team Members: Isaac Koh 
Sponsor/Mentor: Aik-Siong Koh 
 
Team 57, Hope Christian School, Heart Attack 
Team Members: Alexander Alvarez, Angela Wise, Elysia Berg 
Sponsors: Pam Feather, Sue King, Mentor: Pam Feather 
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Team 59, Hope Christian School, Learning in Space 
Team Members: Cameron Harjes, Aaron Gabaldon, Tyler Spahr, Ben Robinson 
Sponsor: Sue King, Mentor: DeLesley Hutchins 
 
Team 60, Hope Christian School, Video Games, the Moral Decline in America 
Team Members: Jonathon Kruse, Alex Jennings, Burke Wilson 
Sponsors: Pam Feather, Sue King 
 
Team 61, Jackson Middle School, Undercover Bruise 
Team Members: Karina Ortega, Kelsey Theriot, Sandra LeNguyen 
Sponsor: Karen Glennon, Mentor: Nick Bennett 
 
Team 62, Jackson Middle School, Jellyfish Domination 
Team Members: Brendyn Toersbijns, Thomas Hughey, Spenser Gomez-Nelson 
Sponsor: Karen Glennon, Mentor: Nick Bennett 
 
Team 64, Jackson Middle School, Water Purification 
Team Members: Christopher Hoebing 
Sponsor: Karen Glennon, Mentors: Nick Bennett, Betsy Frederick 
 
Team 65, Los Alamos High School, The Holy Grail of Adam's Ale 
Team Members: Gabriel Montoya, Rachel Robey, Orli Shlachter, Orion Staples 
Sponsor: Lee Goodwin, Mentors: Robert Robey, Thomas Robey 
 
Team 67, Los Alamos High School, 
Save Energy, Part 1: Numerical Method for Heat Conduction In Systems of Arbitrarily 
Different Materials 
Team Members: Edward Dai, Aidan Bradbury 
Sponsor: Lee Goodwin, Mentor: William Dai 
 
Team 68, Los Alamos High School, Astrophysical N-Body Simulations of Star Clusters 
Team Members: Sam Baty, Peter Armijo 
Sponsors: Lee Goodwin, Diane Medford, Mentors: Roy Baty, John Armijo 
 
Team 69, Los Alamos High School,  
Enlightenment: Metropolis-Hastings Ray Prediction Model in 3D Space 
Team Members: Kathy Lin, Jake Poston, Ryan Marcus, Dov Shlachter 
Mentors: Leroy Goodwin 
 
Team 70, Los Alamos High School, To Kill a Flocking Bird 
Team Members: Peter Ahrens, Stephanie Djidjev, Vicky Wang, Mei Liu 
Sponsor: Lee Goodwin, Mentors: Christine Ahrens, James Ahrens 
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Team 73, Los Alamos Middle School, Artificial Intelligence used in a Battle Simulation 
Team Members: George Barnum, Mohit Dubey, Ben Liu 
Sponsor: Clara Vigil, Mentor: Bob Robey 
 
Team 75, Los Alamos Middle School, Smart Grid 
Team Members: Colin Redman, Michael Englert Erickson, Sudeep Dasari 
Sponsor: Clara Vigil, Mentors: Andrew Erickson, Jim Redman, Venkat Dasari 
 
Team 79, Los Alamos Middle School, Alien River Cloggers 
Team Members: Jacob Holesinger, Kevin Tao 
Sponsor: Clara Vigil, Mentor: Terry Holesinger 
 
Team 81, Manzano High School, Java-Based Wireless Robot 
Team Members: Philip Atencio, Dustin Chavez, Nathan Hassler, Nick Ratzer, David 
Young 
Sponsor/Mentor: Stephen Schum 
 
Team 82, Manzano High School, Remote Combined Solar and Wind Renewable Energy 
Power Grid 
Team Members: Hathaweh Bassett, Hung Nguyen 
Sponsor: Steve Schum 
 
Team 83, McCurdy High School, Bridge Destruction 
Team Members: Carlos Herrera, Louis Jaramillo, Justin Garcia, Ron DeVargas 
Sponsor/Mentor: Robert Dryja 
 
Team 84, McCurdy High School, Particle-Atmosphere Interaction 
Team Members: Dennis Trujillo, Oliver Galvan, Brandon Ricci 
Mentors: John Pretz, Brenda Dingus, Philip Sanchez 
 
Team 85, McCurdy High School, Contributing Factors for Obesity in the U.S. 
Team Members:  Lindsay Redman, Isabel Garcia, Marisa Griego 
Sponsor: Irina Cislaru, Mentors: Jennifer Tichy, Alin Panaitescu 
 
Team 97, Melrose High School, Polar Ecosystem 
Team Members: Quinton Flores, Brian Hemminger, Kira Anderson 
Sponsors: Alan Daugherty, Rebecca Raulie 
 
Team 98, Melrose High School, Surviving the Worst 
Team Members: Brandon Mitchell, Victoria Northrup, Adrianna Saiz, Allicyn Trammell 
Sponsors: Alan Daugherty, Rebecca Raulie 
 
Team 99, Melrose High School, Control and Spread of Wildfires II 
Team Members: Richard Rush, Kyle Jacobs, Randall Rush 
Sponsors: Alan Daugherty, Rebecca Raulie 
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Team 102, Navajo Preparatory School, The Latest Buzz About Bees 
Team Members: Alexis Archambault, Ariel Nephew, Wilfred Jumbo 
Sponsor/Mentor: Mavis Yazzie 
 
Team 103, Navajo Preparatory School, What's Up With the Ozone Layer 
Team Members: Malcolm Bob, Leland Gray, Malcolm Keetso 
Sponsor/Mentor: Mavis Yazzie 
 
Team 104, Northern New Mexico College,  
New Mexico on the Road: Impact of Fuel Consumption and CO2 from NM Cars 
Team Members: Kaitlyn Dow, Annaleah Dow, Jeremy Salazar, Angela Gomez 
Sponsor: Jorge Crichigno 
 
Team 107, Quemado High School & Silver High School, First Impressions 
Team Members: Jose Mora, Austin Nightengale 
Sponsors: Laura Larisch, Peggy Lerisch 
 
Team 108, Quemado High School, Can You Hear Me Now? 
Team Members: Janessa Larrabee, Judith Flores 
Sponsors/Mentors: Laura Larisch, Peggy Larisch 
 
Team 109, Quemado High School, Oil Spills in Oceans 
Team Members:  Justin Miller 
Mentor: Laura Larisch 
 
Team 110, Red Mountain Middle School, Marble Roller Coaster “Thrill Ride” 
Team Members: Bryce Golie 
 
Team 112, Sandia Preparatory School, Analytical Hierarchal Process for Complex 
Decisions 
Team Members: Caitlyn Scharmer 
Sponsor: Neil McBeth, Mentors: Minga Banks, Carol Scharmer 
 
Team 119, Silver High School,  Airplane Epidemiology 
Team Members: Forest Brown 
Sponsor: Peggy Larisch, Mentor: Dr. Camacho 
 
Team 125, Tibbetts Jr High, Recycle This 
Team Members: Jesse Duarte, Jacob Hensley 
Sponsor: Ms. Maurer, Mentor: Bob Robey 
 
Team 127, Manzano High School, Efficient Air Traffic Control 
Team Members: Ryan Hensel, Elisabeth Keller, Jelke Adema 
Sponsor: Steve Schum 
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Judges 
 
Toru Aida, Los Alamos National Laboratory 
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Problem Explanation 

 This year we are expanding upon last year’s project on the control and spread of 

wildfires. Fire has been a very important part of our lives and will continue to be so in the future, 

in both positive and negative ways. Wildfires cause extensive amounts of life and property 

damage; and we wanted to know the best way to extinguish a fire in progress and the best way to 

protect property from an out of control blaze. 

 Last year we created a model of a fire on a flat plain. We included the variables of fuel 

load, wind speed, wind direction, and moisture content. We then took our model to the local fire 

department and were able to accurately model a fire that they recently fought, verifying the 

reliability of our model. 

 This year, we have added a third dimension to our model, topography. On the Llano 

Estacado this variable did not affect our model much, however, in most other parts of the world 

it can be the most prominent factor affecting the fire’s behavior. We then had to develop a 

procedure to cause the wind to react to the topography. Firefighters who try to fight the fire and 

protect a residential area were also incorporated into the model. Then we tested various 

firebreaks to determine which design is the most effective in diverting or slowing a fire’s 

progress. 

Solving the Problem 

 Last year we began our model in “StarLogo TNG,” an agent based model. We did have 

plans to expand our modeling this year into “NetLogo” (a more advanced and versatile modeling 

program), however due to time constraints and limiting our project to goals to those that we 

could achieve in one year, we simply expanded our old model. This was, as we found out, not a 

detriment to this year’s project goals. With StarLogo TNG, we can set up different types of fire 

breaks easier and more quickly than we could with NetLogo, as we understand the language.  

We solve the various problems by introducing an agent in “SpaceLand” (The area where 

the agents will operate) that will consume fuel and multiply and progress in accordance to the 

following variables:  
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Fuel Load—The amount of fuel available per square area of land. This represents different 

vegetation types and densities. This will be represented in our model by a scale of 1-10 in 

shades of green. The darker the green, the greater the fuel load. The fuel load in an area 

can change greatly, on one side of the fence there can be a green wheat field which has an 

extremely low fuel load, and on the other side of the fence, there can be land enrolled in 

CRP (Conservation Reserve Program) which can have a very high fuel load. The fuel 

load in a single pasture can change too, depending on what kind of grass grows from 

place to place and the quality of the soil across a field. The fuel loads that we will use for 

our model will be: 

1) Very, very low—less than 200 pounds of fuel per acre 

2) Very low—from 200-500 pounds of fuel per acre 

3) Moderately low—from 500-800 pounds of fuel per acre 

4) Moderate—from 800-1100 pounds of fuel per acre 

5) Moderately high—from 1100-1500 pounds of fuel per acre 

6) Very high—over 1500 pounds of fuel per acre 

Moisture Content—The amount of moisture in the area. Often the land will be very dry before a 

thunder storm, therefore, lightning can easily start a fire. As the storm progresses it may 

rain, increasing the moisture, retarding the fire’s progress, and possibly even putting the 

fire out. This variable can also represent the growing stage of the vegetation represented. 

Wind Direction—Wind direction plays a vital role in fire behavior and control. If there is a wild 

fire, the fire fighters may have had it under control or could have had a firebreak set up 

ahead of it, but if the fire suddenly changes direction, it may become uncontrolled once 

again.  

Wind Speed—Wind speed is also very important in fires. A fire under a light wind might not 

ordinarily cross a firebreak or obstacle such as a road, but if the wind were blowing 
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enough, the road would barely slow down a raging fire. We will use these numbers to 

represent the different wind speeds: 

0—0-3 mph    3—15-25 mph 

1—3-10 mph    4—over 25 mph 

2—10-15 mph 

Topography—The heat that radiates from a fire tends to rise, therefore a fire will advance much 

more quickly up a hill than down a hill. The wind will also be affected by the terrain. A 

hill can provide a wind break on one side and channel wind down a canyon on the other 

side of the hill, thus changing wind speeds and directions. We control this variable with 

“StarLogo TNG’s” versatile terrain editor. 

 

With control of these variables in our model, we will “start a fire” on the map and let it 

burn until the entire map is consumed or the fire burns itself out. We can then alter the map by 

adding a firebreak and running the model again.  

Our model runs on these basic principles: 

1) Burn 

 a) Test to see if patch color is some shade of green 

 b) If so, then add one shade of white to the patch. 

 c) If not, then test to see if patch is already burned 

i) If so, then have a 66% chance of dying (This gives a fire a chance at 

crossing a firebreak with sparks and tumbleweeds).  

ii) If not, then have a 66% chance of dying.  

(The 66% was determined through trial and error relying on local 

firefighter’s experience of fire behavior.) 
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2) Spread 

a) Test to see if a random number between 0-100 is less than or equal to dryness. 

b) If so, then choose a random number between 0-360 for a direction 

i) Then create a new fire and send it 1 step in the chosen direction. 

  

3) Wind  

a) Select a random number between 0-45 and add it to the wind direction 

b) Then divide wind speed by 2 and add 0.5 and take that many steps in the 

chosen direction.                                                                                                              

4) Hills 

  a) Test if patch height is less than patch height ahead. 

i) If so, then go forward the difference between patch height and patch 

height ahead times 4. 

  ii) Hatch 

b) Test if patch height is greater than patch height ahead. 

i) If so, then go back the difference between the patch height ahead and 

patch height times 1. 

  ii) Have a 50% chance of dying. 

Mathematical Model 

The mathematical formulas that our model follows are stated below.         
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 Setup 

  F1 = first fire agent generated 

F1 is randomly placed on an x y grid according to … 

  x~U[-50.5,50.5) 

  y~U[-50.5,50.5) 

Where U is uniform distribution. 

F1 is randomly placed on a “patch”.  

A “patch” is an area that is centered on an x y grid where x0, y0 ε  

A “patch” includes…  

x ε [x0 -0.5,x0 0.5) 

y ε [y0 -0.5,y0 0.5) 

 

 

Spread 

  fi = fire agent i 

  t = time 

  P = probability  

The probability that a fire sparks another fire is … 

 P(fi produces fj), [t,t+1) 

The location of fj is… 

 xj = xi+cos r+wx 
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 yj = yi+sin r+wy 

Where “ r” is a random angle uniformly distributed on [0,2π) 

Where “w” is a wind vector composed of x and y directions 

 

 

Burn 

  Lk = fuel level in “patch” K 

 The fuel level decreases by the number of “fires” on that “patch” 

  Lkt+1 = max(Lkt – n, 0) 

 Where “n” is the number of fire on “patch K” 

  If Lkt = 0, all agents on “patch K” “die”, in the time interval, (t, t+1] 

Hills 

  If there is a positive grade 

F1 moves forward (marginal difference)(4)  

If there is a negative grade 

F1 moves backwards (marginal difference)(1) 
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Last Year’s Results 

 Last year we were able to accurately model a fire and did a lot of work with roads and 

how the fire reacted to them. We used county roads as our standard. We started with the fire 

approaching a road at a perpendicular angle. We tested this under varying fuel loads and wind 

speeds and directions. The following graph shows the percent chance that the fire has of crossing 

the road under the specific conditions. 
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  We did not give anything a 0% chance or a 100% chance as there is a lot of random 

numbers and anything could happen if the model were run enough times. 

 We also tested the impact of varying fuel loads in drainage ditches that usually run next 

to roads.  They can either have higher fuel, due to being able to receive larger amounts of runoff, 

or they can have a lower fuel load from the state or county mowing it off.  We found that under 

conditions in which a fire didn’t usually cross, the fire was able to cross the road if the ditch 

contained a high fuel load. On the other hand if the ditch had a lower fuel load, it did delay the 

fire’s crossing significantly. 

 Another factor that we tested, was whether or not the fire’s angle of approach to the road 

affected its chance of crossing the road. We found that the lower the fire’s angle in comparison 
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to the road, the less chance it had of crossing over the road. This was due to the fire traveling 

with the road instead of against it. We used this information in the development of our 

firebreaks. 

 

Our Goals  

 This year we decided to use the model that we created last year to find the best ways to 

slow, stop, or divert a fire with firebreaks, as well as to find the most effective way for the 

firemen to work with the firebreak to get the fire under control and extinguished thereby saving 

lives and property. With StarLogo TNG, it is easy to manipulate the terrain for different 

scenarios, and set up different types of firebreaks for testing.   

This Year’s Results 

 Last year we developed a model that accurately portrays how a fire will act under certain 

variables and verified that our model is viable. This year we modeled various situations and fire 

breaks so that we would be able to see how the fire would act under the given situation. We 

tested two fuel loads in the different firebreak designs. We determined firefighter’s ability with 

each fire break design to protect property by counting how many houses were left at the end of 

each test.  We further pursued the fire’s advancing angle to the firebreak. 

Fire Men 

 This year we added firefighters to our model. We set up independent agents to search for 

and put out the fire. Currently we have a few firemen with fire extinguishers killing individual 

fire agents when there can possibly be thousands of fire agents so, our fire fighters can easily be 

overwhelmed. However, this is a great step towards setting up a program that would test 

firefighting methods previously impractical due to safety hazards. This is also getting us closer to 

another important piece of information, how much water will it take to put the fire out? As fire 

trucks can only carry a limited amount of water it would be a great benefit for the fire fighters to 

know how much water or fire fighting agent is needed to extinguish a fire under various 

conditions. 
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 Right now though, our firemen aspect of the model shows how important early fire 

control is and how little effort is needed to put a small fire out before it gets out of control. In this 

model we have a village placed in the way of a fire. The wind is about 10 mph with damp 

conditions and a low fuel load.  

     

 As you can see, the fire was able to build up and envelope the village. In the next model 

we let 10 firemen find the fire and proceed to try to put it out. 

     

 In this model the firemen were able to find the fire and put it out before it had a chance to 

grow. The firemen were able to save the village from the fire. 

 We have also found that if an area is in danger, it works best if the firefighters “stage” in 

front of it, however, they can’t be too close or too far away, because if they are too close they do 

not have time to successfully engage the fire.  However, if they are too far away, the firemen’s 

resources are too dispersed to protect the village if the fire gets by them. 

 

Fire Breaks 

 We tested several different types of firebreaks to learn which one would be the most 

effective in diverting a fire or slowing it. We tested various shapes and fuel loads for the 
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firebreaks, as well as fire direction in relation to the position of the firebreak. We also tested 

whether the break slowed the fire enough for the firemen to extinguish it. We measured the 

firebreak’s effectiveness by placing nine houses in front of the fire to represent a village, and 

recorded how many houses survived the fire. 

 One of the things that we took into account when we designed the firebreaks was 

feasibility and aesthetics. For example, you could create a very effective firebreak for your house 

by plowing up all the vegetation and converting it to mineral soil all around your property for 

one hundred yards in all directions. This would pose a few problems for the people living in that 

residence. It would probably be very dusty and the plowed up area would be subject to wind 

erosion, removing the topsoil from the area. It would not look very good to have a huge brown 

square all around your house either. So, we tried to keep the fire breaks to areas of low fuel or 

small areas of no fuel.  

To analyze our results more accurately we used Microsoft Excel’s statistical functions. 

Since we only ran each model 10 times, we used small sample inference and the Student’s t test 

(which our mentor found appropriate). The equation for Student’s t is as follows: 

 

We used the Student’s t to determine how different our data sets were. In this case how the 

firebreak’s effectiveness compared to a control of no firebreak.  We also used this function to 

determine if one design was significantly better than others. 

We tested the following fire breaks under these conditions. The moisture content was set 

at 40%, the wind speed was at a 1 or between 3 and 10 mph, the wind direction was blowing the 

fire directly at the village, the base fuel load was moderate, the village consisted of nine houses 

arranged in a block, and firefighters were extinguishing the fire. We started with no firebreak and 

then added different designs: two strips of no fuel, two strips of low fuel, a solid strip of low fuel, 

and an arrow or V shape around the village. However, StarLogo TNG does not allow us to draw 

a homogenous diagonal line.  This reduced the effectiveness of our angled breaks.  
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Control, no firebreak  Two Lines, low fuel  Two Lines, no fuel 

   

Single Line, low fuel  V design, low fuel 

 The following graph shows the average number of houses that survived the fire after 

running each model 10 times.  

  

From the information presented in the graph we were able to infer a couple of things. 

First of all, we were surprised to find that not all firebreaks were helpful. Next we found that a 

firebreak that was more effectively designed with low fuel was better than a straight firebreak 

with no fuel. When we noticed the first problem, we ran our model more times and examined the 
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behavior more closely. The reasons the firebreaks seemed to be detrimental was that the 

firebreak was actually doing its job, it was slowing the fire down as indicated by our fire 

population graph, but it was also widening the head of the fire spreading the firefighters 

resources out too thinly to stop the fire’s progression.  

To more accurately determine the differences between the breaks we have run a t-test on 

the above sets of data testing the control against the firebreaks and testing the best firebreak 

against the others. The following table shows the result of the t-test. 

Firebreak control 2 Strips, Low 

Fuel 

2 Strips, No 

Fuel 

Solid Strip, 

Low Fuel 

V Around 

T-test 

(Rounded to 2 

decimal places) 

1 0.13 0.06 0.45 0.02 

0.02 0.00 0.60 0.00 1 

These numbers show that the V around and the two strips of no fuel were significantly 

better than the control. The test also showed us that the V around is not significantly better than 

the two strips of no fuel. There is strong evidence, 87%, that the two strips of low fuel were 

detrimental to the survival of the town. Since we were very surprised by these results, we 

doubled our sample size and nothing changed. 

We can also deduct that an effectively designed and placed firebreak is better than just an 

ordinary straight line. From the graph we can tell that the V design saved, on average, more 

houses than the next best firebreak, the two lines with no fuel. From the statistical analysis, 

however, we see that there is only a 40% chance that it is a significantly better firebreak. These 

chances are not good enough for us to draw an immediate conclusion (for us to do so we will 

have to do a significant amount of more testing), but right now, we will give the upper hand to 

the V break due to erosion problems and aesthetics mentioned earlier.          

Here, we have the fire break that performed the most desirably, the V, or arrow shaped 

pointing in the direction that the fire is coming from, and surrounds the town.  It has moderate 

fuel load, with the break made of very low fuel. 
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 The fire men staged just to the houses side of the fire break, and were able to stop the 

fire, and save all of the houses. We then ran this model by placing the houses on the top of a hill 

and by placing the houses in the bottom of a low spot with and without the V break. In both 

cases we found that a firebreak was better than no firebreak. 

 The firebreak’s angle to the direction of the fire was also tested. However, due to 

limitations in the program, we were not able to model this as accurately as we wished we could 

have. But we did strengthen several beliefs about the fire’s behavior. First of all, the fire has 

more difficulty in crossing a break when it is running at an angle to it or with it. This helps 

explain why diagonally shaped fire breaks work the best at diverting a fire away from the village.  

An area with no fuel is a better break than an area with low fuel. Firefighters are better 

extinguishing agents than simply a firebreak. The firefighters need to effectively stage the fire or 

use the firebreak to their best advantage. Such as, the firebreak is not as helpful if the firefighters 

go out in front of it, because if the fire gets past them, then they are stuck behind the fire.  The 

firebreak is also not as effective if the firefighters are too far behind it, because it has had time to 

increase to its original intensity.  

Distractions 

 While working with our firemen and firebreaks we have discovered a very interesting 

result of having them together. In one model the firemen were to stay behind the firebreak and let 

the firebreak slow the fire down so it was easier to put out. However, when the fire crossed the 

break in one place, all of the firemen ran to put it out. While the firemen “had their backs 

turned,” you could say, the fire would cross the break behind them and would destroy the village 

before the firemen could do anything about it. This usually occurred with a relatively strong fire 

break as well, and we were very surprised to find that it did not work as well with the firefighters 

as we anticipated. We have heard that at some real fires all of the firemen would run up to the 
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largest part of the fire to put it out, while, unbeknownst to them, the fire is threatening a 

residence elsewhere. This shows how it is important to have a chain of command in the field 

with someone directing the firemen and trucks. 

Firefighting Techniques  

 While testing firebreaks we also discovered some firefighting tactics that are effective in 

diverting the fire away from residential areas or other locations of interest. These can change 

according to from which direction the fire is approaching. When the fire is coming straight at a 

village it can be more effective to wait for the fire to get close to the village, then concentrate all 

firefighting resources at one point in front of the fire. This will split the fire in two and allow the 

firefighters to work on the inside flank of the fire and push it around the village. 

 However, if the fire is approaching at an angle to the village, we would suggest that the 

firefighters stage near the village on one flank of the fire; this would push the fire around one 

side of the village. The firefighters could then work on putting the rest of the fire out when the 

village is safe. 

Executive Summary 

 This year, we improved upon last year’s wildfire model by inputting topography, which 

is very important for some areas. We were able to get the wind to react to the topography, 

because wind can funnel through canyons, and hills or mountains can act as wind breaks. This 

was the most difficult to simulate. We also implemented firemen, one of the most crucial 

resources that a community has in protecting lives and property. 

 We used our more advanced model to test different varieties of firebreaks and fire 

fighting tactics.  We found that out of the firebreaks that we tested, a V-shaped firebreak with the 

village inside of it was the most effective. We also found through further testing, that firebreaks 

are more effective if they are placed at an angle to the fire’s advancing direction. The firemen 

perform best if they stage just behind the firebreak, and put it out as it is trying to cross. Not all 

firebreaks are helpful; the firebreak has to influence the fire in such a way as to give the firemen 

a strategic advantage. Firefighters in the field need a chain of command and a common goal to 

help organize them so they will be able to use their resources more effectively.  
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 By expanding our model this year, we have tested the limits of StarLogo TNG. It has 

been a very effective tool in verifying our procedures and models. However, it is now starting to 

limit us. We cannot import real topographical maps from outside sources, we have a limited 

amount of space in SpaceLand, and we cannot build custom procedures.  There is also a limit to 

the number of agents that can be in SpaceLand at once. This may be a moot point since we seem 

to have reached the limits of our PC.  Sometimes so many agents were running so many 

procedures,  that the program would become confused and would either shut off entirely or mix 

up breeds of agents and the procedures that they were supposed to follow. To continue this 

project we need to change our modeling program to enable us to overcome these obstacles and to 

eventually meet the goal of creating a marketable program to be used by fire departments, cities, 

and individuals to develop more effective firefighting techniques or just how to most effectively 

protect their own home by custom designing firebreaks to meet an individual’s needs. 
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Executive Summary

This project sought to develop a windows-based application to perform geostatistics, with a focus

on its application to �nding aquifers and other groundwater sources. Geostatistics is a branch of

applied statistics used to calculate plausible values to �ll the gaps in fragmented data sets. It

depends on the idea of spatial correlation - that values located proximately are more likely to be

similar. The application in hydro-geology was chosen because of New Mexico's dependency on

groundwater; a case study was set up and real world data acquired from local boreholes.

This project encompassed an impressive feat of coding, incorporating C++, wxWidgets, OpenGL,

and OpenCL. C++ is used for the computational and to interface with the user-interface done with

wxWidgets. Visualization was done using OpenGL, and the beginning stages of optimization uti-

lized OpenCL to run on the graphics processor.

While this project is not the �rst computer programming to be accomplished in the �eld of

geostatistics, this project is a foundation for future studies. In the course of the year, several

original algorithms were developed as well as integration of established methods, resulting in a

working application that can reliably perform geostatistics of small problems. The case study on a

real problem was partially successful and provided invaluable insights into future work.
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1 Introduction

1.1 Problem Statement

A lack of complete data is a common problem faced across many �elds of study. The solution is

to estimate these unknowns, but making an accurate approximation becomes much more complex

than simple means. The practice of this approximation is more di�cult than the simplicity of the

theory behind it. Geostatistics is a branch of statistics that can be used to make reliable predictions.

It is based on the theory that data proximately located is more likely to be related. If the data is

related then the unknowns can be approximated because the distance between data points would

tell one how similar they should be.

Geostatistics is an e�ective method of �lling in these �gaps� to logically create plausible data for

the unknown points. This can be important especially in computer modeling where data is needed

for every point, geostatistics can simplify the process.

The application of geostatistics to the discovery of aquifers was chosen because of New Mexico's

shortage of water. Water is a very valuable commodity in the drier and more polluted regions of

the world and the easier discovery of more water sources would help many people. To �nd new

groundwater sources in such large expanses of land by testing every mile or every half mile would

be di�cult and ine�cient. Using geostatistics to �ll in gaps in the landscape will allow geologists

and hydrologists to take far fewer samples and come up with more correct results. This will lessen

the time and expense of �nding groundwater sources, bene�ting both economic and hydrological

issues.

1.2 Objective

The purpose of this project was to write a windows-based program to perform geostatistics. The

program was designed to approximate unknown values and show the detail of the terrain values

in both color and height. There are many possible applications for geostatistics, and thus the

usefulness of the program. The focus is on using a geostatistical model to �nd aquifers without

taking inordinately large numbers of samples for a given area. To accomplish this goal a profusion

of code had to be written for the many di�erent facets of the program. The initial code to estimate

the data using geostatistics was written in C++, the user interface was generated in wxFormbuilder

(creating wxWidgets C++ code), and the graphics were rendered with OpenGL. The team wished to

create a working program utilizing all three di�erent programming languages that would accurately

predict unknown values for a data set. These unknowns pertain to aquifer data so as to �nd more

groundwater sources and alleviate problems in New Mexico and the rest of the world.

The program should reduce the time and money spent on geological surveying by a sizable

margin and can be changed minimally to be applied to other problems.

1.3 Backround

1.3.1 Geostatistics

Geostatistics is a branch of statistics used to predict unknown values at speci�c locations, using the

concept of spatially correlated data. That is, two values physically near each other are more similar
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than two values farther apart. For example, in soil composition, samples taken closer together are

more likely to be made up of similar minerals.

Geostatistics, originating in mining for the discovery of precious stones and metals, was �rst

recognized as a reputable �eld theory in the 1960s in the French work �Theory of Regionalized

Variables� which paved the way for inspirational work in the new discipline. Many changes were

made to the math used in geostatistics and eventually it became applicable to many di�erent �elds

besides mining. Now such employments as picture reconstruction and epidemiology are utilizing

geostatistics[2].

To understand how geostatistics works one must understand the theories at the heart of the

process. The Theory of Regionalized Variables states that it is possible to make a model of the

spatial structure from known data and then use those known values to estimate the unknown ones[6].

The unknowns can be estimated because of the theory that data is spatially correlated. These are

the underlying precepts behind geostatistics; the theories that make all others possible.

These postulates are used to determine the value of a given property in speci�c materials. This

is done by applying the Theory of Regionalized Variables. There are two parts to regionalized

variables:

• a random aspect, the unpredictable variation from point to point

• a structured aspect, the prevalent regional trend

The random aspect is the deviation from the normal that will throw o� an approximation whereas

the structured aspect is the normal trend which allows for the use of geostatistics in the estimations

of unknown values.

Like most �elds, there is some specialized language used in geostatistics. These terms will be

de�ned as they appear, but are also described in the glossary (Appendix B on page 37)

1.3.2 Aquifers

The chosen application was locating aquifers. Backround information was needed to discover what

characteristics to search for as an indication of an aquifer.

An aquifer is an underground layer of water-bearing permeable rock (Figure 1), which can be

tapped by a well. The above diagram shows how the location of the water table is relative to the

surface and to the surrounding geological points. An aquifer is a valuable commodity as a water

source because, by de�nition, it readily transmits water to wells and springs. This means that it

will be not be stagnant and undrinkable. Also because of the location of aquifers underground,

the water cannot evaporate before its use. Unfortunately, aquifers are di�cult to locate and can

be contaminated. Aquifers are more likely to be closer to the surface because of the porous and

permeable rocks there. Porosity refers to a rock's ability to retain water, while permeability is

the capability of a porous rock to permit the �ow of �uids through it[12]. The permeability and

porosity generally decrease for larger distances from the surface since the cracks and �ssures in a

become diminished and close up as a result of the pressure of the rock overhead. However, this is

not always the case and usable aquifers have been found in all surface depths[8].

More valuable results can be garnered from porosity and permeability because they are more

reliable variables to use in a geostatistics model. This is because porosity and permeability more

extensively a�ect the rock's ability to be a potable resource[8].
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Figure 1: Diagram of an aquifer[8].

An aquifer can become contaminated as a result of human interference. Every time the water

in an aquifer is used in a well, the level of the water table goes down and the water will be replaced

with precipitation, known as recharge. The area in which an aquifer can bene�t from the recharge

is called a recharge zone. The larger an aquifer's recharge zone, the more wells can be drilled from

it and the more often people can pump water for them. However, the larger an aquifer's recharge

zone is the more opportunity for the aquifer to be contaminated. If an aquifer is contaminated it

cannot be used thus creating a water shortage problem for its patrons.

Humanity's interference with the water table can also result in an aquifer's water pressure

decreasing at an alarming rate[8]. If one were to pump too much water out of a well without

allowing it its recharge period then surrounding wells could also go dry. This creates a problem

for rural communities that depend on groundwater, making aquifers very sought-after resources[5].

Aquifers are a solution to the dire problem of acquiring water in the drier, more rural regions of the

world. The case study of this project seeks to make them available by predicting their locations.

2 Mathematical Models

Geostatistics can be outlined with two main goals: to identify the spatial properties of the variable

and to estimate gaps in incomplete data from the surrounding samples. These purposes are related,

as characteristics of the spatial structure can be used to estimate unknowns. This is done by

1) constructing a semi-variogram, and 2) interpolating through the use of either inverse distance

weighting or kriging.

2.1 Semi-variogram

The idea of spatial correlation discussed in the introduction to geostatistics is fairly intuitive. It

makes sense that a value close to the unknown will be more similar to it than a value farther away.

The semi-variogram is a way to quantify the variance in the values over space. It is fundamental

to the idea of spatial correlation, and a crucial part of geostatistics.
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The semi-variogram is unique for each material. Looking at many pairs of data at points about

the same distance apart can provide an expected di�erence in value for a given distance. Described

mathematically it is[2]:

γ ∗ (h) =
∑

[y (x)− y (x+ h)]2

2n

where γ (h) is the semi-variogram1 as a function of distance h between the data points,

y (x) and y (x+ h) are the values at locations x, and x plus the distance h,

and n is the number of pairs of samples with distance h separating them.

These points are plotted with distance on the horizontal axis and semi-variogram on the vertical

axis.

There are several speci�c terms associated with the semi-variogram. The distance at which the

graph plateaus is called the range of in�uence, or simply the range. Any points farther apart than

the range are completely uncorrelated, and thus are not helpful in accurately interpolating a value.

The semi-variogram at that point is referred to as the sill. In experimental semi-variograms, it is

possible that there will be a discontinuity at the origin called a nugget. In theory, this should not

happen because the value at a point is equal to its own value; however, measurement errors and a

random in�uence between the points can cause a nugget.

One of the things a semi-variogram can reveal about the data it represents is its isotropy. The

material can be isotropic, meaning the spatial correlation is equal independent of the direction. If

direction is an in�uence, it is anisotropic. Wood is a great example of this. There is a greater range

so the relation extends much farther along the grain than against it.

There are several types of mathematical models which can be matched to the semi-variogram

obtained from the data. A simple semi-variogram can be represented by a single type, but they can

be combined for more complexity. Three of the most commonly used mathematical models are[2]:

Spherical

γ(h) =

C
(

3
2
h

a
− 1

2
h3

a3

)
h ≤ a

C h > a

Exponential

γ(h) = C

[
1− exp

(
−h
a

)]
Gaussian

γ(h) = C

[
1− exp

(
−h

2

a2

)]

2.2 Interpolation

There are several di�erent approaches to interpolating. Generally, this is done with the general

equation for a weighted average shown below:

1The distinction between the variogram, 2γ (h), as opposed to the semi-variogram is important, and not always
clear if semi-variograms are inattentively called just variograms.
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Figure 2: Example of the three common types of mathematical models for the semi-variogram with
the same range/sill.

F (x, y) =
n∑

i=1

wifi

which basically says that the value of the unknown point is a summation of the values of the

points it is being interpolated from times its weight. The di�erences occur in determining the

weights.

2.2.1 Inverse Distance Weighting

One of the simplest methods is Inverse Distance Weighting (IDW). The weights are purely dependent

on the distance. The inverse of the distance for each of the points within range is found. If a point

is 4 units from the unknown, it would be 1
4 . Then they must be summed and scaled to one. So the

weight of each point is:

wi =
d−1

i∑n
j=1 d

−1
j

where d is the distance for each point i of n points. The distances can be scaled to provide

larger weights in some directions than others as determined in the semi-variogram this is discussed

in more detail in Section 3.3. This method works fairly well for its simple approach and is a good

comparison method to the kriging.

2.2.2 Kriging

Kriging is an interpolation method unique to geostatistics. It works by �nding the �best� estimate.

An explanation of how this is done will be given in terms of an unknown value T at a point A, as

adapted from Practical Geostatistics[2].

If the value at the closest point is used as an estimation of T , it will incur an estimation error

ε which is a measure of the di�erence between T and the estimated value T∗:
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ε =| T − T∗ |

Assuming there is no local trend, as the number of estimations increases towards in�nity, the

average error will approach zero. So, theoretically:

ε = 0

The reliability of an estimator is rated by the spread of the errors. A 'good' estimator has errors

consistently close to zero. If they range more widely, than the estimator is unreliable. The spread

can be measured by the standard deviation of the estimation error - the standard error.

Consider the de�nition of standard deviation σ, the square root of the variance.

σ2 =

∑
(X − µ)2

N
, the average of the squares of the di�erence from the mean. In case of the

variance of errors, it follows that:

= average of (ε− ε)2

= average of ε2, since ε = 0

= average of (T − T∗)2

It is impossible to calculate these values directly since the actual value is unknown. A closer

look at the de�nition provides a solution. The value of the point closest to point A is used for the

estimator, and should vary from the actual value dependent on the distance from A. This expected

di�erence is described by the variogram exactly, the average of the squared di�erences. Thus, the

mathematical semi-variogram chosen to represent the spatial structure can be used to estimate the

di�erence (multiplying by two yielding the variogram). So, �nally, the variance of the errors is:

σ2
ε = 2γ(h)

As the estimate grows more complex with the addition of other points, the variance of errors is

given as a weighted average of the variogram of each of them.

σ2
ε = 2

n∑
i=1

wiγ̄ (Pi, A)

Figure 3: The di�erential of the vari-

ance of error with respect to the

weights. Kriging seeks to minimize this

variance to �nd the 'best' estimator.

γ̄ (Pi, A) is the average semi-variogram, as de�ned by

the mathematical curve, between interpolation point P

and the point being estimated, A. Kriging is unique in

that it directly seeks to �d the 'best' estimate - that hav-

ing the smallest estimation variance. The only values free

to be altered are the weights of the weighted average, so

the estimation variance is being minimized with respect

to the weights. A minimum can be found by setting the

di�erential equal to zero (i.e. the slope is zero as in Figure

3):

∂σ2
ε

∂wi
= 0 i = 1, 2, 3, 4...n
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While this will provide weights for the desired mini-

mum, the sum of the weights must also be explicitly set

to one so the related estimator will be a whole.

∑
wi = 1

This added constraint consequently over-determines the system of equations - n weights, or

variables, and n+ 1 equations. A Lagrangian Multiplier is introduced to balance this out. Rather

than simply the estimation variance to be minimized, it is the term:

σ2
ε − λ

(∑
wi − 1

)
When the sum of the weights is equal to one,

∑
wi − 1 = 0, thus nullifying the λ and taking

the smallest variance as de�ned. The expanded system equations for three points is de�ned as:

w1γ(P1, P1) + w2γ(P1, P2) + w3γ(P1, P3) + λ = γ(P1, A)

w1γ(P2, P1) + w2γ(P2, P2) + w3γ(P2, P3) + λ = γ(P2, A)

w1γ(P3, P1) + w2γ(P3, P2) + w3γ(P3, P3) + λ = γ(P3, A)

w1 + w2 + w3 = 1

On the left side of the equation are the weights times the variance between each point with

each other point, and on the left is the variance between said point and the unknown. The system

of equations follows the same pattern for any number of points used to interpolate. Solving these

equations is a computational problem addressed in Section 3.2.

2.3 Sampling from Gaussian Distribution

If the goal of the interpolation is not to be accurate but to generate a sample set of data to be

used, than it may be desired to address the random aspect of a regionalized variable. To give

the impression of a degree of random variance in each point, a Gaussian Distribution is randomly

sampled.

Figure 4: 'Normal' Gaussian Distribution. The

mean is the interpolated value.

The interpolation gives the mean of the dis-

tribution, or the most likely value, but the value

is free to vary from this. The magnitude of

this variance is based on the variance of the un-

known to the closest point as determined from

the semi-variogram. This is more of a stylistic

choice, and results in unknowns interpolating

from farther a�eld points having a larger ran-

dom element. This sampling is set up as the

mean (µ) - or most likely value - as being the
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interpolated estimator. The standard deviation

(σ) is the square root of the variance found from the closest point. Values closer to the mean are

more likely to be sample because of the bell shape of the curve, and the smaller the variance the

smaller the range of possible values.

3 Computational Model

Since our program is windows based, the computational method is much more segmented. Each

part is driven by user generated events (e.g., clicking buttons, typing).

After the data is input, there is a vector array of the grid points whose values are unknown.

The user can interact with a plot to create a semi-variogram from the known data.

3.1 Semi-variogram

Figure 5: Computationally �nding

experimental semi-variogram.

The program must calculate both experimental and mathe-

matical semi-variograms. The experimental semi-variogram

is somewhat simpli�ed because the data is already broken up

into equally spaced points. It did not take long to develop the

basic method that was used. For convenience, the equation

will be repeated here.

γ (h) =
∑

[y (x)− y (x+ h)]2

2n

Part of the process is actually simpli�ed because the data

is already divided into equally spaced points. Each row or

column begins at the �rst element and �jumps� over h points.

If the values at both points are known, the semi-variogram is

calculated.

This process is continued by incrementing up the row by

one until there are no longer enough elements to skip h. Then h is increased.

Figure 6: Screen capture of the plot section of the window showing an optimal experimental semi-
variogram, created from sample data.
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3.2 Solution of Kriging Equations

The kriging equations involved a more complex solution than IDW, using matrices to solve for all

of the unknowns in the system. The added constraint on the sums makes the system of equa-

tions overdetermined, meaning there are more equations than variables. QR decompositions are a

common solution for least squares problems with over-determined systems of equations[3].

QR factorization of the coe�cient array was used to solve for the weights, and was computed

using Givens rotations. QR factorization of a square matrix A ∈ Rn×n2 is given by A = QR, where

Q is orthogonal and R is upper triangular. The de�nitions of these special types of matrices are as

follows:

A square matrix Q ∈ Rn×n is orthogonal if QTQ = QQT = In, meaning its inverse is also its

transpose3. An upper triangular matrix, also called right triangular, is also square (n×n), with all

the entries below the main diagonal zero:

U =



u1,1 u1,2 u1,3 · · · u1,n

0 u2,2 u2,3 · · · u2,n

0 0
. . .

. . .
...

0 0 0
. . . un−1,n

0 0 0 0 un,n



Givens rotations can be used for selectively zero elements, and calculate the decomposition

of a matrix into its Q and R factors. Multiplication by a rotation matrix4 performs a rotation in

Euclidean space. To visualize a matrix geometrically, consider each column to be a set of coordinates

to de�ne the location of a point. Multiple points create a set of columns, a matrix, with each row the

coordinates in the same dimension. So the matrix

[
cos θ − sin θ
sin θ cos θ

]T

performs a counterclockwise

rotation of an angle θ about the origin of an x-y-plane - or alternatively viewed as the rotation of

the coordinate system axes in the opposite direction. A rotation can be performed on a larger scale

by expanding the previous rotation matrix to:

G(i, j, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · sin θ · · · 0
...

...
. . .

...
...

0 · · · − sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1



which is an identity matrix with the following substitutions: gii = cos θ, gij = sin θ, gji = − sin θ,
gjj = cos θ. The only rows a�ected are i and j, the others will remain the same, and thus may be

2This denotes the vector space of all real n-by-n matrices, essentially saying any matrix with the given dimensions.
3The transpose of a matrix is denoted with a superscript T.
4It should be noted that rotation matrices are orthogonal and have a determinant of one.
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Figure 7: Illustration of concept behind Givens Rotation. The i axis is rotated so as to make point
P lie upon it, zeroing its j′ coordinate.

ignored.

A Givens rotation sets the angle to rotate the axis so the selected point lies on it, zeroing out

the value of the other coordinate. If x ∈ Rn, and y = G(i, j, θ)Tx, then, by matrix multiplication:

yk =


xi cos θ − xj sin θ k = i

xi sin θ + xj cos θ k = j

xk k 6= i, j

yj can be forced to be zero when it lies on the perpendicular axis. Figure 7 illustrates the right

triangle created by the previous axis and the new one that should run through point P (xi, xj).
This creates the desired angle of rotation. By directly using the de�nitions of the trigonometric

functions used in the rotation, calculation of θ can be bypassed entirely. The Pythagorean Theorem

(c2 = a2 + b2)gives the length of the hypotenuse, and the sides of the triangle are known from the

coordinates.

cos θ =
adj

hyp
=

xi√
x2

i + x2
j

sin θ =
opp

hyp
=

−xj√
x2

i + x2
j

Substitute these de�nitions into the expression for yj :

xi sin θ + xj cos θ

−xj√
x2

i + x2
j

xi +
xi√

x2
i + x2

j

xj

−xjxi + xixj√
x2

i + x2
j

= 0

And they result in zero because the �rst term of the numerator has a negative, making them

additive inverses. This only happens in the speci�c case that was intentionally set up.
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These Givens rotations can be used to �nd the QR factorization used to solve a matrix equation

Ax = b. Each element of the coe�cient matrix A where i is greater than j would be zeroed, creating

an upper triangular matrix.

From the de�nitions of sine and cosine and the Pythagorean Theorem, they can be found as:

cos θ =
j

h
=

xi√
x2

i + x2
j

and sin θ =
i

h
=

−xk√
x2

i + x2
j

Now the matrix equation has been put into the form Ux = b, it can be solved using back

substitution. For a 2-by-2 example:[
u1,1 u1,2

0 u2,2

][
x1

x2

]
=

[
b1

b2

]
The bottom row has only one unknown, since the other variable is zeroed, and can be solved

directly. Once that value is known, it can be substituted up into the next row so there is again

only one unknown which can then be found. Starting at the bottom row, the unknown x's can be

solved for sequentially:

u2,2x2b2 is solved algebraically to be x2 = b2/u2,2

u1,1x1 + u1,2x2 = b1is x1 = (b1 − u1,2x2)/u1,1

This back substitution can be represented by[3] :

xi =

b−
n∑

j=i+1

ui,jxj

ui,i

This process provides the values of the weights in the weighted average. The corresponding code

for a coe�cient matrix A, right hand vector B, andmatrix size n, as based o� of the psuedo code

in Matrix Computations[3] is given in Listing 1. The solutoin is stored in vector x.

Listing 1: Matrix Solver using Givens Rotations

void GeoData : : QRGivens ( double ∗∗A, double ∗B, i n t n , double ∗x ) {

double c , s , tau , tau2 ;

i n t i , j , k ;

f o r ( j = 0 ; j < n ; j++) {

f o r ( i = n−1; i > j ; i−−) { // loop to zero a l l e lements in lower t r i a n g l e

/∗ Determine v a r i a b l e s f o r r o t a t i on ∗/
i f (A[ i ] [ j ] == 0 . 0 ) { // a l r eady 0 − don ' t change

c = 1 . 0 ;

s = 0 . 0 ;

}

e l s e i f ( abs (A[ i ] [ j ] ) > abs (A[ j ] [ j ] ) ) {

tau = −A[ j ] [ j ] /A[ i ] [ j ] ;

s = 1 .0/ sq r t (1.0+SQ( tau ) ) ;

c = s ∗ tau ;
}

e l s e {

tau = −A[ i ] [ j ] /A[ j ] [ j ] ;

c = 1 .0/ sq r t (1.0+SQ( tau ) ) ;

s = c∗ tau ;
}
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f o r ( k = 0 ; k < n ; k++) { // perform ro t a t i on on elements in two

a f f e c t e d rows

tau = A[ j ] [ k ] ;

tau2 = A[ i ] [ k ] ;

A[ j ] [ k ] = c∗ tau − s ∗ tau2 ;
A[ i ] [ k ] = s ∗ tau + c∗ tau2 ;

}

/∗ Same ro t a t i on done on r i gh t hand s o l u t i o n vec to r ∗/
tau = B[ j ] ;

tau2 = B[ i ] ;

B[ j ] = c∗ tau − s ∗ tau2 ;
B[ i ] = s ∗ tau + c∗ tau2 ;

}

}

/∗ Back sub s t i t u t i o n s t o r e s s o l u t i o n in x ∗/
f o r ( j = n−1; j >=0; j−−) {

x [ j ] = B[ j ] ;

f o r ( i = n−1; i > j ; i−−) {

x [ j ] −= x [ i ]∗A[ j ] [ i ] ;

}

x [ j ] /= A[ j ] [ j ] ;

}

}

3.3 Anisotropy

Anisotropy is the property of being directionally dependent (as opposed to being isotropic). In

geostatistics, this means having di�erent spatial correlation in di�erent directions. Wood is a good

example of this characteristic. It is evident, even to the human eye, that it has a higher degree of

correlation along the grain than against it. This might not be so apparent in the various qualities of

di�erent substances. Therefore, anisotropy must be identi�ed using the semi-variogram. The plots

of the experimental semi-variograms for the two directions will have di�erent ranges of in�uence.

The solution is to make the ranges appear to be the same. This means adjusting the measure-

ments so that one 'unit' in the semi-variogram may be 5m horizontally and 25m vertically.

The calculations rely on a distance method to calculate how far one point is from another. This

is simple since they use a coordinate system. The distance formula is:

d =
√

(x2 − x1)2 + (y2 − y1)2

If the formula is modi�ed, it can account for the scaling of measurement. If s is the scale factor,

in the form of a decimal percent (i.e. to have half the range, s would be 0.5), then the new formula

can be expressed as:

d =
√

[sx (x2 − x1)]2 + [sy (y2 − y1)]2

The magnitude of the distance in each direction is scaled before the rest of the distance formula

is performed. This scaling e�ect has also been applied to relative distances in the two directions. If

it is one foot from one cell to the next horizontally, but two feet vertically, than the ratio is included
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in the scale to make it a default of isotropic - the point above the unknown really is twice as far

away as the one to the right of it.

3.4 Sampling from Gaussian Distribution

The Gaussian Distribution was fairly simple to set up with the use of a method from Numerical

Recipes in C [9]. Once the interpolated value is set, the nearest point is found by searching through

the list of points in range and the variance computed for the distance. The random sample returned

from the method can be applied to the speci�c case.

double a , b ;

a = est imate . getValue ( ) ;

b = GetVariogram ( est imate , GetClosestPoint ( e s t imate ) ) ;

r e turn a + gaussRandom ( ) ∗b ;

The method gaussRandom() returns a sample from a Gaussian Distribution with a zero mean

and unit variance. Multiplication by b stretches the curve horizontally and adding a shifts it

horizontally.

Since this sampling was not important to the focus of this project, it has not been tied completely

into the user interface: there is not an option in the window for it. The code needed to compute

it is completed, but the method to apply it to each of the unknowns by choice of a user was not

updated with the other code changes.

3.5 Multiple Points and Runs

Thus far, the discussion has been limited to the interpolation of a single point. To �nd all of the

unknowns, they are ordered randomly to be calculated. This sequence is important because the

points are interdependent - once an estimated value is found it is used in the interpolation of others.

Figure 8: Algorithm developed to randomly

iterate through unknowns. Elements are

swapped to the back part of the array as they

are randomly selected from the front part.

Because of the random element of order, the an-

swers will vary between runs, making it necessary to

run multiple times. This repetition and integration

of results, in the form of a mean, has been auto-

mated.

An algorithm had to be developed to randomly

iterate through an array of the unknown points.

Each element is a structure which contains the index

of the unknown and a sum of the answers - which can

then be divided by the number of runs to �nd the

mean.

This is all done in a single array. A random index

between zero and the maximum size of the array is

chosen. Once the interpolation has taken place and

added to the sum, the element is switched with the

last element. The next random index is chosen, but

this time excluding the �nal element which has al-

ready been found - that is between zero and one less
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than the array size. This next element is switched

with the second to last element, creating a segment at the end of the array of the elements that

have already been used. The next random element is searched for between zero and the maximum

minus the number of completed elements.

This algorithm works �ne until the problem of failures to calculate the points arises. If there

are no points within the range of the current unknown, it has nothing to interpolate from. It must

be skipped until later when more points have been calculated.

3.6 Optimization

Large scale problems are the norm in practical computing, calling for faster calculations to curb

the lengthy run-times. Due to the sectionalized nature of the code, these beginning stages of

optimization have been done within the separate methods. Later work may attempt to make this

more streamlined in order to further improve the speed.

3.6.1 Variation on Random Iteration Algorithm

Figure 9: Variation on the random iteration algo-

rithm, grouping 'failed' elements in the front to

be retried after all the others have been iterated

over.

Though it is not necessarily characteristic of

large problems, sparse data can become com-

putationally expensive in the random iteration

through the unknown points. In the original

method outlined on Section 3.5, if a point fails

- that is there are no points in range from which

to interpolate - the unknown is left where it is

in the array and the count of �nished elements

does not increase. This works when there is

ample data and these types of points are rare.

Another point is picked and eventually it will

be successfully calculated as the points around

it are found.

In a set of sparse data, however, there are

so many points with nothing in range that the

random index could continually hit these points

and no progress would be made. An alterna-

tive algorithm was created, which, while it does

not ensure equal chances in determining the

random path, prevents already failed elements

from being selected again before more points

are �lled in. This prevents repetitive sampling

which may waste computation time.

This was accomplished by setting o� ele-

ments at the beginning of the array, similar to

the one on the end. If the calculation of the unknown at a random index is successful - that is there

were points in range to interpolate from - it is swapped into the back section of the array. If it fails,
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it is swapped into the front. Random indices are always selected from between the two boundaries

of the separated sections by �nding a random number for the range and o�setting it from the front:

index = rand() % (size−i−front) + front;

Once the boundaries converge, leaving no unknowns in the middle which have not been iterated

over, the front boundary is reset to the beginning of the array. This puts all the previously failed

elements in the middle to be retried. This continues until all the elements have been successfully

completed and moved to the back - or if the boundaries converge with no new successfully com-

pleted unknowns, indicating the elements that are left are impossible to calculate with the current

parameters.

The variation on the algorithm is implemented in the following fashion:

Listing 2: General Use Implementation of Variation of Random Iteration Algorithm

su c c e s s = 0 ;

f r on t = 0 ;

s i z e = array . s i z e ( ) ;

for ( i = 0 ; i < s i z e ; i++) { // i t e r a t o r to determine when a l l elements are completed

i f ( f r on t == s i z e − i ) { //check i f the boundaries have converged

i f ( su c c e s s < 1) // i f there have been no successes here , the r e s t are imposs ib l e

send e r r o r

f r on t = 0 // re se t boundary and success count

su c c e s s = 0

}

index = rand ( ) % ( s i z e−i−f r on t ) + f r on t // in C++, f ind random index between

boundaries

i f ( c a l c u l a t i o n r e tu rn s s u c c e s s f u l ) {

swap array [ index ] with array [ s i z e−i −1]
su c c e s s++

}

else { // i f the ca l cu l a t i on f a i l e d

swap array [ index ] with array [ f r on t ]

i−− //compensate for automatic increment of i , i t wasn ' t suc ce s s f u l

f r on t++ //move up boundary of f ront sec t ion

}

}

Since there are potential consequences in the order of the random path, this alternative is only

used with the selection of a sparse data option in the application window.

3.6.2 Transferring Matrix Solver to the GPU

The Givens Rotation QR decomposition was parallelized using OpenCL to send it to the Graphic

Processor Unit (GPU). Large problems continued to use inordinate amounts of time without reach-

ing completion. A smaller sized test problem was run to identify which methods were most com-

putationally expensive. A signi�cant 55.56% of the total time was spent in the QRGivens method

(the solver for the kriging equations), which was also much larger than the next largest at 7.41%.

This made the matrix solver a clear target for optimization.

The speed-up gained by operating on a GPU is mainly due to to the parallel computation - the

same process is done on multiple data elements simultaneously[7]. The speed of calclulations on the

GPU make loading data the primary concern. The coe�cient and right hand vector of the matrix

equation are passed in globally. For every rotation, only two rows are a�ected, as discussed in the

description of Givens Rotations (Section 3.2) . Thus the rows can be loaded into local memory by
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pairs, providing faster access.

Figure 10: Break down of Givens Rotation to be done in parellel on the GPU where rows 1 and 2
are those a�ected by the current rotation.

Parallelization can only be used where the values are independent of eachother. Once the

coe�cients of the rotation are found, they can be applied to each of the elements individually - that

is in parallel. This break down is shown in Figure 10. The current kernel implementation is shown

in Listing 3.

Listing 3: OpenCL Givens Rotation Kernel

#de f i n e A( j , i ) Coe f f [ j ∗npadded+i ] . s0

#de f i n e SQ( a ) ( ( a ) ∗( a ) )
__kernel void QRGivensGPU_kern(

const i n t npadded ,

const i n t n ,

__global f l o a t 2 ∗ BX,

__global f l o a t 2 ∗ Coeff ,

__local f l o a t ∗ row1 ,

__local f l o a t ∗ row2 ,

__local f l o a t ∗ B)

{

i n t giX = get_global_id (0 ) ;

i n t tiX = get_local_id (0 ) ;

i n t ngX = get_globa l_s ize (0 ) ;

i n t ntX = get_loca l_s i z e (0 ) ;

f l o a t c , s , tau , tau2 ;

i n t i , j , k ;

i f ( giX < n) { //Only f o r p r o c e s s o r s that were not added f o r padding

B[ giX ] = BX[ giX ] . s0 ;

f o r ( j = 0 ; j < n ; j++) {

row1 [ giX ] = A( j , giX ) ; //Each proc e s s o r s e t s va lue in row1 from

corre spond ing A

f o r ( i = n−1; i > j ; i−−) {
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row2 [ giX ] = A( i , giX ) ;

b a r r i e r (CLK_GLOBAL_MEM_FENCE) ; //Force wait u n t i l a l l p r o c e s s o r s

are done

/∗ Set r o t a t i on va lue s ∗/
i f ( row2 [ j ] == 0 .0 f ) {

c = 1 .0 f ;

s = 0 .0 f ;

}

e l s e i f ( f abs ( row2 [ j ] ) > fabs ( row1 [ j ] ) ) {

tau = −row1 [ j ] / row2 [ j ] ;
s = 1 .0 f / sq r t ( 1 . 0 f+SQ( tau ) ) ;

c = s ∗ tau ;
}

e l s e {

tau = −row2 [ j ] / row1 [ j ] ;
c = 1 .0 f / sq r t ( 1 . 0 f+SQ( tau ) ) ;

s = c∗ tau ;
}

/∗ Perform ro t a t i on on each element − p a r a l l e l ∗/
tau = row1 [ giX ] ;

tau2 = row2 [ giX ] ;

row1 [ giX ] = c∗ tau − s ∗ tau2 ;
row2 [ giX ] = s ∗ tau + c∗ tau2 ;
/∗ Perform ro t a t i on on appropr ia t e e lements o f s o l u t i o n vec to r ∗/
i f ( giX == i | | giX == j ) {

tau = B[ j ] ;

tau2 = B[ i ] ;

}

b a r r i e r (CLK_GLOBAL_MEM_FENCE) ;

i f ( giX==j ) B[ j ] = c∗ tau − s ∗ tau2 ;
i f ( giX==i ) B[ i ] = s ∗ tau + c∗ tau2 ;

A( i , giX ) = row2 [ giX ] ; //Put updated va lues to the c o e f f i c e n t array

}

A( j , giX ) = row1 [ giX ] ;

}

/∗ Back subs t i tu t e , putt ing answer in to second vec to r component o f BX ∗/
b a r r i e r (CLK_GLOBAL_MEM_FENCE) ;

f o r ( j = n−1; j >=0; j−−) {

f o r ( i = n−1; i > j ; i−−) {

B[ j ] −= B[ i ]∗A( j , i ) ;
}

B[ j ] /= A( j , j ) ;

}

BX[ giX ] . s1 = B[ giX ] ;

}

}
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4 Code

4.1 Overview and Structure

This is a large project and, especially with the GUI, there is a signi�cant amount of code with

a complex structure. There are several key parts that will be discussed in more detail in the

next sections. This project was written primarily in C++, but also incorperated several di�erent

packages: wxWidgets (and its add-ons), OpenGL, and OpenCL.

The wxWidgets code which creates the windowing is generated using wxFormBuilder, but it is

not used directly. In fact, the programmer should not hand edit it at all. Instead, a child class

is created, inheriting the frame design and objects within in. It is in this class that the methods

called on each event are implemented. The role of each class will be clari�ed with a description of

their place in the structure and their methods.

AdamsAleAppGui is the �le generated by wxFormBuilder, and actually contains several classes

for the frame and each of the dialogs. Each one creates the window with the layout as designed

in wxFormBuilder, but nothing is functional.

AdamsAleApp is the �main� class in the application. It calls the constructor of the frame displays

it, and sets up the continuous rendering. Though these are its only tasks, they are important

because external code (from the windowing) is needed to initialize the application.

AdamsAleAppFrame is the class inherited from the frame produced by the generated code.

While the parent class has the layout, it is this class's job to �ll in designated spaces such as

the GLCanvasPane. It makes the original design functional by animating the controls, that

is, de�ning what should be done for di�erent user inputs. The frame has access to all of the

objects within it, so it can retrieve data from inputs, display values, and call the methods

of more complex objects (GLCanvasPane, PlotCtrlPane). The �command events� generated

by clicking buttons, selecting menu items, etc., are directed to here. In wxFormBuilder,

corresponding methods for each event can be set. These methods are de�ned here, generally

calling on more speci�c methods in other classes. Otherwise, it calls dialogs and has all the

�le I/O.

GeoData was developed later to hold all of the variables and methods on the computational

side of the application. It is purely computational, with no references to any of the user

interface. When a new model is created or a �le opened, an instance of the class is created

and values passed in. The frame can then call any of the methods: from the semi-variogram

to interpolating points.

GLCanvasPane is the pane in the window reserved for the visualization. An instance of this class

is created as part of the constructor of the frame. The pointer to the data class is passed into

this class after the unknowns have been interpolated so it has access to the values of each

point.

PlotCtrlPane comes from the wxWidgetsAddition wxPlotCtrl with additional methods for its

speci�c use in plotting semi-variograms.
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The sizes of these classes may be estimated by the number of lines in each of their �les5:

File Line Count

AdamsAleApp 93

AdamsAleAppFrame 432

AdamsAleAppGui 763

DataPoint 65

GeoData 460

GLCanvasPane 301

PlotCtrlPane 184

Total 2311

There is an immense amount of code, and it cannot be recorded here in its entirety; major

sections are included in pertinent sections. It is all online in the repository used during its de-

velopment and can be viewed at: http://code.google.com/p/adams-ale/source/browse/#svn/

trunk/AdamsAle.

4.2 WxWidget Windowing

The windowing and user interaction were a signi�cant part of the program. Since there are so many

di�erent options in geostatistics, this format allows a user to choose the method that best �ts the

speci�c problem. The majority of the wxWidget C++ code was generated with wxFormBuilder,

saving the time needed to write out the simple code by hand. The rest of the code has been

integrated into this main application window as functions.

Figure 11 is a screen capture of the workspace in which the user interface is created. On the

left is the hierarchy in which the elements of the page can be easily arrangedwithout disturbing

the rest of the window. In the middle is a preview of the window the programmer is creating. On

the far right is the �properties and events� window. The �properties� tab allows the programmer

to set the size, labels, and properties of the object that was just created, while the �events� tab

lets the programmer set the methods for the object. For example, the programmer can write

�OnMouseClick� enable that object to be used when it is clicked on by a mouse by adding matching

code later on. This object can now be used because it has a function. WxWidgets is used for

creating the windowing in which a the program can operate. This tool allows the programmer to

create a window with relative ease. It creates most of the 'cosmetic' code, while it only requires the

programmer to write the code to animate the controls. This eliminates a lot of lines a programmer

must write by hand. wxWidgets is also very useful for programmers using more than one platform

as it is virtually the same on a PC and Mac - though this has not been attempted with this project

. Tabbed windows allow more information to be seen on the same page. Using wxWidgets along

with wxFormBuilder was a good choice because of the relative ease. because of the relative ease of

using it. In wxFormBuilder, the programmer starts with a frame, which is a basic window. Then a

sizer is added. Sizers organize the window and lay out the graphs and similar objects. After a sizer

there are virtually endless possibilities from which the programmer can choose: toolbars, graphs,

data tables, and graphics panes to be �lled by other programmers.

5Line counts are from a single point in time and will vary a little as changes are made. Header �les are included
in the count.
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Figure 11: wxFormBuilder workspace

There are four di�erent types of sizers: box, staticboxes, grids, and �exgrids. BoxSizers are the

most common and ideal choice for a basic window. They space out the objects that are added to

it equally, placing them either vertically or horizontally. A box sizer was used for the left hand

side of the window. Static boxsizers are the basic variations. GridSizers are important because

they are contain graphs and charts. The bottom and top parts of the window have gridsizers.

All of the rows and collumns must be the same size. FlexGridSizer sizers are grid sizers with the

exception that the programmer can manipulate the dimensions. In this application a FlexGridSizer

is used to display the information on the right hand side of the window. Another important aspect

utilized was sashed windows. Sashed windows allow the window to be stretched making it larger or

smaller. For example, if there are seperate pieces of information such as a graph and dataset, the

sash enables the user to enlarge one of the the two to see more of the other. wxFormBuilder alows

the programmer to create buttons and windows with ease. The program writes all of the 'cosmetic'

code while the programmer creates the little working code.

The user interface was designed to be very intuitive. The process starts with importing data

from a speci�ed borehole. This data is placed in a chart at the top of the screen. It is placed with

two columns on opposite sides of the chart. This data could be porosity, amount of radiation, or

resistivity, depending on the data from the borehole. Once the data has been imported into the

chart, the user chooses the method of interpolation. After the method is chosen, the semi-variogram

is plotted on the PlotCtrlPane graph below the chart. There is a key on the right side of the graph.

In the right vertical portion of the window are many options for formatting the graph. The user can

select from three di�erent mathematical models: gaussian, spherical, and exponential. Once the

user chooses his model the program will generate the plausible points. The user can also choose the

range and sill as well as the scale in the x and y direction. He can also choose the number of times

the program will run. There is a tab for a label named �visual.� In that window a graph created in

OpenGL will appear. The graphic will correspond with di�erent numbers. For example, red would

represent a higher number while blue would represent a lower number. A small user guide has been
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compiled to show this (Appendix C).

4.3 Computational

The overall structure of the code was dominated by the windowing, so the numerical code was

worked in as methods. Rather than mixing it in with the GUI, all of these methods were collected

into their own class. An instance of this data class is created upon the opening of a new project,

opening �le, or data import. Accessors are primarily used in setting the initial values from user

input or �le I/O, but are then mainly internal because they are only used in computations which are

inside the data class. Computations, such as interpolation, are instigated by a call of the method

in the frame class, and then the values can be accessed for display.

This approach of isolating the computational code is much cleaner and makes changes in the

user interface easier since only method calls must be moved rather than blocks of code. Storing the

data in a data class also allows it to be passed to other parts of the frame. The graphic pane needs

the data to display, and C++ inclusion/dependency makes it di�cult to get the values if they are

an intergal part of the frame.

Details on the implementation on key methods in the computational section of the code is

detailed in Section 3.

4.4 OpenGL Graphics

The data set has been represented visually using OpenGL, an interface to graphics hardware.

OpenGL is complex and powerful, and is used for rendering interactive color images of three di-

mensional objects. There were two di�erent types of views created: a height map and a three-

dimensional terrain. Due to the inexperience of the team members with OpenGL, the programming

guide and tutorials were heavily relied upon[4, 10]. OpenGL creates smooth, aesthetically pleasing

images by automatically blending the programmed colors in the window. It also makes the sizing of

the screen simpler. The distance between a coordinate point on the graph and the origin will stay

in proportion during a change in size of the overall image. This allows the screen to be shrunken,

grown, or put into full screen while keeping the picture the same, which is especially important in

an application setting. There are many other options set in OpenGL: lighting, surface materials,

fog, movement, etc. which are beyond what this project requires.

Figure 12: The x-z plane for the 2D grid.

The y coordinates are set based upon the

value at each point.

In order to access the data to be visualized, the

pointer to the data class which stores that informa-

tion is passed to the GLCanvasPane after the inter-

polation is completed. This prevents anything from

being rendered until after the interpolation is �n-

ished, or if everything is �lled, the �Go� button is

pressed. The dimensions of the grid in number of

cells and maximum and minimum values are also

needed for rendering.

A terrain is a three dimensional surface with

varying heights. It is created by having a two-

dimensional mesh in the x-z plane and storing

26



heights (y coordinates) for each point. Speci�c to

this project, this means taking the two dimensional

slice that is being modeled, and using the values in each cell to set the height. A method is de�ned

to return a height for a given set of two-dimensional coordinates:

f l o a t GetHeight ( i n t x , i n t z ) { re turn ( ( data−>GetValue (x , z )−min) /(max − min) − 0 .5 f

) ; }

This takes the value relative to the minimum - which is the lowest point - and �nds where it lies

in the range. This returns a decimal, so subtracting 0.5 centers the object vertically. These heights

are put out in the format of decimals so the programmer must convert them into values.

Figure 13: An RGB Cube - a graph of the colors with

the red, green, and blue components on each axis.

Besides setting the height, the color

of the vertices are also set dependent on

the value of each point. This was more

complicated to do. First a color array is

set up, ranging from blue to red. A red-

green-blue (RGB) cube illustrates how

the color changes from blue to green to

red as di�erent components are added

and subtracted. The color array has

structures for elements to store the red,

green, and blue components of the col-

ors. By setting the length of the color

array proportional to the range of val-

ues, the index of a color can be calculated for a given value.

index

#colors
=

value

max−min

index =
(value)(#colors)
max−min

A method similar to the one for height is de�ned to return that index:

i n t GetColorIndex ( i n t x , i n t z )

{ re turn ( ( data−>GetValue (x , z )−min) ∗NCOLORS/(max−min) ) ; }

The next step is to draw the actual surface. This is done with a triangle strip. A triangle strip

takes given vertices and draws triangles for consecutive sets such as{1,2,3},{2,3,4},{3,4,5}. This is

fast because there are fewer three-dimensional vertices that have to be sent to the graphics card.

The method from the terrain tutorial was used for looping through the grid and setting the correct

vertices. The routine used to render the terrain is as follows, with a sample result in Figure 14.

i n t z , x , index ;

i n t s i z i n g = 2 . 2 5 ;

f l o a t s c a l e = 2 .0 f / MAX(width − 1 , l ength − 1) ;

g l S c a l e f ( s ca l e , s ca l e , s c a l e ) ;

g lT r an s l a t e f (−( f l o a t ) ( width−1)/2 , −0.5 f , −( f l o a t ) ( length −1)/2) ;

f o r ( z = 0 ; z < length − 1 ; z++) {

glBeg in (GL_TRIANGLE_STRIP) ;
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f o r ( x = 0 ; x < width ; x++) {

index = GetColorIndex (x , z ) ;

g lCo l o r 3 f (Rainbow [ index ] . Red , Rainbow [ index ] . Green , Rainbow [ index ] . Blue ) ;

g lVe r t ex3 f (x , s i z i n g ∗GetHeight (x , z ) , z ) ;

index = GetColorIndex (x , z+1) ;

g lCo l o r 3 f (Rainbow [ index ] . Red , Rainbow [ index ] . Green , Rainbow [ index ] . Blue ) ;

g lVe r t ex3 f (x , s i z i n g ∗GetHeight (x , z+1) , z+1) ;

}

glEnd ( ) ;

}

Figure 14: A cropped screen capture of a 3D ter-

rain generated for sample data.

The other type of image was taken from the

idea of a heightmap. A heightmap is an im-

age used to store three-dimensional data. It

is essentially the two-dimensional plane with a

range of grayscale to represent height. It is eas-

ier to see the range of data in this heightmap, so

it has been included as a viewing option. The x-

y plane is used in this case, and only the colors

are set, not depth. This allowed the estimations

of the unknown geological values to be shown

in a window for easier intelligence. The values

of the makeup of the land were given speci�c

colors and then graphed in a window to create a two-dimensional model of the landscape.

Figure 15: An example of the heightmap rendered

for the same sample data as the terrain.

These graphics can be interpreted as red

spots being the higher numbers with the other

values colored accordingly. The preferable val-

ues and colors for �nding an aquifer will dif-

fer between the graphs of di�erent variables.

In a graph of the porosity of the bore hole a

higher number would be preferable to a lower

because water will be retained in the rock more

if the porosity is higher. However in a graph of

gamma radiation a lower number would be bet-

ter. This explains the lack of a key in the user

interface window: making sense of the values is

really up to the user.

4.5 wxPlotCtrl Graphing

Even though there are several plotting packages available to use with wxWidgets, wxPlotCtrl is

the one supported by wxFormBuilder. It is an interactive xy plot with options such as zooming,

selection of points, and data processing. Many of these functions were hard to access and use owing

to the lack of documentation. Despite this di�culty, an operational graph was created for the

semi-variogram.

PlotCtrlPane is an object within the application frame. Once the semi-variogram is calculated,
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the data is passed down to be plotted. The x and y directions are separate and distinguished by color

in a key. The experimental semi-variogram is then interactively matched by the user. There are

several options on the left sidebar. The data sets can be scaled to account for anisotropy by entering

a percentage. This calls the function in the PlotCtrl which both performs the scale and saves the

inverse. The next percentage that is entered will �rst use the inverse to revert back to the original

size before applying the new scale. The sill/range of the semi-variogram is set by double clicking

on the graph, which is interpreted by the library as coordinates. These are recorded in variables

and used to calculate the mathematical models which are then added to the plot. These curves

are created by setting the points every whole number, which can cause some misrepresentations

for small horizontal sections. The sill and range can also be set originally from the sidebar. After

they are set � either in the sidebar or with the mouse � the current values are displayed in the

sidebar, updated in the idle loop, which prevents them from being set there again. Other methods

of updating were attempted, but interclass communication and propagation of events has not been

successful so far.

The wxPlotCtrl library also has some automatic functions that were useful. A click and drag of

the mouse will zoom in on the selected section of the plot and can scroll along the axes. The title

and labels can be edited, though they will always be reset.

5 Results

5.1 Case Study

This case study returns to the original application to aquifers: using data from boreholes to deter-

mine if water-bearing rock might be located in the ground between the holes. It is an ideal choice

in some ways, since geostatistics was used in hydro-geology early on in its development. In most

cases, it would be prudent to verify spatial dependence before interpolating, but for the limited

scope of this project it has been assumed. This assumption is supported by the traditionalism of

the �eld.

Regrettably, the two boreholes left to be used after one had to be dismissed were the farthest

apart and proved too challenging for the present version of the program. In spite of these problems,

progress has been made in completing the study and it has provided invaluble insights into what

future work is required.

5.1.1 Data

Data from boreholes in the Los Alamos area were generously provided for use in this project (Section

A.3). There are many di�erent types of information collected from the boreholes; this project deals

with depth, porosity, water �ow, and radiation emission. While porosity or a di�erent variable

can provide valuable information about the locations of aquifers, it really is the combination of

favorable qualities that will indicate a possible aquifer. This is because the perfect geological site

for an aquifer is determined by many di�erent variables acting together for the ideal surroundings.

This

There was data for three boreholes in the Mortandad Canyon area (R-1, R-7, and R-33 located

in Figure 17), but unfortunately, as it was prepared to be imported, it was realized that one did
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not overlap with the other two depth wise and could not be used at this point. Borehole R-1 was

eliminated and the other two were imported to test the program.

The same section of depth was observed by taking the elevations and depths for the boreholes.

Even though the holes are not at the same elevation, it was possible to �nd an absolute measurement

above sea level by decreasing the gound elevation by the depth of the hole at each point. This lined

up sets of data, making it possible to take a consistant cross-section (Figure 16).

Five di�erent sets of data were provided so that it would be relatively easy to write an import

function to bring the sets into the program. The �rst set of measurements is standard Gamma

Rays in API units. Gamma rays are used to �nd water and the di�erent �uctuations in the rock

patterns. The meters measure incoming gamma rays from radioactive elements in the surrounding

rock. For example, if potassium or uranium are in a rock the water is most likely not there because

they have a large nuclear signature. Since these elements are highly radioactive they will create

quite a large signature and water will not be there because of lack of porosity. Even if there were

porosity, it would be �lled with the radioactive elements. The next type of data received was Deep-

Reading Resistivity in ohm-meters. This basically reads the conductivity and resistivity of the rock

at interval depths. The conductivity and resistivity of the di�erent depths can be used to determine

whether or not the rock holds any potential for water. The third set is a total porosity set which

measures the total amount of pore space in the probed aquifer. This is a less e�ective way to �nd

data because of its using all of the pore space no matter how small. More meaningful is the fourth

data set, e�ective porosity. E�ective porosity allows the probe to only �nd certain sized pores that

allow e�ective �ow of ground water measured by nuclear magnetic resonance (NMR). Last is the

Logarithmic mean of T2. The Logarithmic mean is the average pore size of the probed area and

can be used to tell how useful the aquifer is - the pores must be open enough to be interconnencted.

An import method was then written to bring the data into the application and was then used

as a sample set to test the program with real world data.

Figure 16: Two dimensional cross-section of boreholes with di�erent elevations.
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Figure 17: Location of the boreholes from the case study.

5.1.2 Semi-variogram

The semi-variogram for the various types of data was successfully plotted. The x direction has only

one point because there is only the single distance from one borehole to the other. The y direction

produced interesting plots which are inluded here in Figure 18. Note the large values of variance

that probably arise when the data covers multiple rock structures. The large di�erences between

them would increase the average variance.
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Figure 18: Semi-variogram of each of the data sets for the two boreholes. These are focused on the
y direction as there is only one known point in the x direction.

5.1.3 Mixed Success of Interpolated Fields

There were mixed results between inverse distance weighting and kriging. The IDW was able to

complete the interpolation, while kriging returned completely unreasonable numbers. These runs

used the anisotropy and sparse data options and only run for each since the problem is so large.
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The height maps produced for each data set using IDW are shown in Figure 19.

Figure 19: Height maps produced for inverse distance weighting interpolation between boreholes.
From top to bottom they are: resistivity, total porosity, SGR, and e�ective porosity.

Since these results were only obtained at the end of the project, no attempt at numerical analysis

has been made.

Figure 20: Visual results of small section of bore-

hole interpolated with kriging.

Attempts to run the borehole problems us-

ing kriging continued to be fruitless. Even

though it was �nally capable of �nishing, the

numbers were ridiculously large. In interpola-

tion, results should fall within the range of the

original data, further invalidating those values.

It was theorized that the large variances used

in matching the semi-variogram, coupled with

the scale of the problem, simply overloaded the

methods and caused it to return nonsense. Ul-

timately, a small section of the boreholes was to use instead, and itwas successfully completed when

an much smaller variance was used (Figure 20).

6 Conclusions

There was a lot accomplished in the course of this project, but geostatistics is a complex �eld, so

only the fundamental levels were covered in the available time. The science that was managed to

be incorporated into the project is potentially useful in the a search for aquifers, as shown by the

preliminary results, and was a signi�cant learning experience for all involved.

The results of the case study demonstrated that there are still several adjustments to be made
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for the program to be a viable tool in large scale problems. For smaller problems, it works well.

This includes several options set by the user for desired e�ects. The user interface still has some

pitfalls if it is not used the way it was designed, but turned out impressively.

Intersting characteristics of the two interpolation methods became apparant through the test

runs. Kriging provides a smoother interpolation in contrast to the 'bull's eye' e�ect of inverse

distance weighting. There are advantages of IDW which were demonstrated in the case study.

Kriging is much more sensitive to the high variances and anisotropy, which likely caused the faulty

results when it was used for the borehole data. IDW can complete this problem, returning results

for similar situations that are not possible with kriging.

More than the cursory attention given to the results from the case study would be required

to determine exactly how accuratly the program predicted possible aquifers. Unfortunately, these

were not completed until the very end of the project, so this analysis was not possible. In and of

itself, simply getting plausible results out of the program is an achievement.

6.1 Current Status

Despite hard work and good ideas there were many problems in the making of a working program.

There was a memory leak that made the system crash if overly extensive data sets were attempted

to be run. The memory leak was �xed, but large data sets still do not work, returning very large,

faulty answers. Smaller data sets do run through the program and yield successful results. The case

study involving the borehole data was imported into the program and helped to determine whether

the process worked. To hasten the slow computation of the computer program an optimization of

tasks was attempted. It was partially successful and made the program somewhat more e�cient.

The graphics presented many di�culties and much time was spent in �xing them. Getting them

to interface with the C++ was problematic and did not work for a long time. Making the graphic

map three dimensional was a trial. Initially the graphics were being written in OpenGL as rows of

colored boxes that would be colored by their speci�ed values, however that could not be contrived

to work correctly and was discarded in favor of triangle stripping. This worked much better and

the graphics �nally interfaced satisfyingly with the other code.

Fortunately, almost all of the problems encountered in the progress of �Adam's Ale� were dealt

with and eliminated to create a program that does what it was designed for. Hopefully, it will be

able to solve real world problems.

7 Teamwork

When a team has a small number of members, the con�nes of the duties are less well de�ned,

as more work has to be done by fewer people. Team 65 had four members of whom each had a

very speci�cally designated task. This system was designed for e�ciency and e�ectiveness and was

implemented with success. As well as giving each job to the most suitable team member, Team 65

attempted to involve each of their colleagues in their own allocated areas so as to provide instruction

for everyone. The team members not already versed in programming learned the basics of OpenGL,

wxFormbuilder, C and C++. Because of the program's application in geostatistics pertaining to

aquifers, everyone mastered the information on aquifers needed to make this project a success.
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One of the many ways Team 65 improved on communication was through the utilization of

Google Code, Google Documents, and Google Calendar. Google Code granted the members of the

team working on programming a repository for their specialized parts of the whole. The repository

made the merging of the parts a quick and easy process. Google Documents was a repository for

the members of the team working on the various reports so that the many di�erent parts of the

writing could be done more easily and the other teammates could immediately have the most current

versions of the reports. The individuals of Team 65 are not especially noted for their organizational

skills, however Google Calendar recti�es this matter. It could be said that having their schedule

of events available for regular perusal impressed upon them the responsibilities of remembering

a meeting. Not only would the other teammates be disappointed in the individual if he missed

but would exclude him from the amusing antics Team 65 would routinely engage in while working

diligently.

Overall, Team 65 functioned under very superior working conditions for the entirety of their

project and were extremely pleased in the end result of all their hard work.

8 Recommendations

This project created a solid basis for future studies in the extensive and growing �eld of geostatistics.

The discontinuity of success from small to large problems should be addressed, perhaps in the form

of dividing the problem up into the separate structures. Additions of safe-guards to catch errors

that may occur for incorrect user operations would prevent unexplained crashes. The user should

be supplied with helpful messages to guide them to �x the problem in the input.

E�ciency in a computer program is always to be desired and optimization is the key to a faster

running program and should de�nitely be undertaken to better the program. The operation on

the GPU is still visibly slower than the CPU and requires more work to get any speed-up. This

should be done by parallelizing more sections of the method and balancing the gain of the parallel

processing with the cost of loading the data.

The case study involved in the program introduced the issue of creating an accurate semi-

variogram as only one value could be calculated in the x direction - at the distance between the

boreholes. It seems that this is still a dilemma of the �eld and that the graphing of semi-variograms

from sparse data has yet to be performed in the �eld of geostatistics. If this project managed to

achieve this milestone then many more could follow.

These improvements could take this project to a more complex and hopefully more useful level

of practice.
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A.2 Software/Tools

Several programming tools and other applications were used in the development of this project:
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B Glossary

Anisotropy property of directional dependence; in geostatistics this means that the data has

di�erent spatial correlation in the x and y directions. For example, wood will be more related

along the grain than against it.

Geostatistics a branch of applied statistics that uses the interdependence of spatially correlated

data to interpolate unknown values.

Isotropy property of consistency for all directions, in geostatistics the spatial correlation is inde-

pendent of direction.

Kriging a common method of interpolation in geostatistics that uses a mathematical model of the

semi-variogram.

Nugget (of semi-variogram) magnitude of discontinuity at the origin, usually a result of measur-

ing/sampling errors.

Range (of semi-variogram) distance at which the semi-variogram plateaus and range at which

points are correlated to some degree.

Semi-Variogram the formula and graph of the variation of data over distance, quantifying spatial

correlation.

Sill (of semi-variogram) variance value for distances beyond the range or the value of the plateau

Spatial Correlation the idea of data being related as a function of its location

C User Guide

This program was created to be very user friendly. The window is a very simple design in which

there are three large sections. The �rst section is a tabbed window in which the user can switch

between the visual and the raw data. Below that is the semi-variogram. That is the area in which

the data is graphed. On the right side is a vertical window in which the user can change the

appearance of the semi-variogram. For example, the user can choose the range, sill, a model, the

method of interpolation and the size at which the X and Y values are scaled.

-To start the process, either go to File->Open... or select File->New. Then select the set of

data that is to be implanted or created.

-It will open a window that has the uploaded data; select the set of data.

Figure 21: Data inserted
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-Once that data set has been opened the chart at top of the window that reads �Raw Data� will

�ll with the selected set of data.

-Plot->Semivariogram, the graph will appear in the bottom section.

-Double click on the knee of the graph. Three more lines will appear, they are the three di�erent

mathematical models.

Figure 22: Semivariogram plotted, mathematical models chosen

-Select one of the models at the right in the �Model Type� scroll box. The model which has

been selected will now be the only one on the graph.

-Choose your method of interpolation, the scale for each X and Y direction, and the number of

runs.

Figure 23: Model type, range and sill, scales, interpolation method, number of runs selected

-Hit �Go!�.

-There are many paths the user can take from this point.

-It is possible to view the data in which the semivariogram has �come up with�.
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Figure 24: Final screen with a terrain map

-Also, the user can view two di�erent versions of the visual with the �Visual� drop down menu.

Choose between �Height Map� and �Terrain�.

Figure 25: Left->Height Map, Right->Terrain
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1.0 Executive Summary  
 
This project explores which search techniques work best to optimize the parameters of a flocking 

model.  Flocking is a natural phenomenon of many independent agents (birds) making decisions 

that lead to the group acting as a whole. The parameters used to control flocking are the angle at 

which a bird turns to get closer to his neighbors, the angle at which a bird turns to align itself 

with the rest of the flock and the angle at which a bird turns to get away from his neighbors if he 

is too close.  NetLogo was used to develop an algorithm to judge qualities of a flock, implement 

the search techniques, run the search techniques and gather the data for comparison. The search 

techniques used were brute force (a test of all the possible combinations of parameters), genetic 

algorithms (a random search variant modeling natural selection), bracketing (dividing the search 

space iteratively), and steepest descent (searching locally and proceeding in the most promising 

direction to the solution from a random starting point in the search space). To evaluate a flock, a 

goodness function was created from the following functions: average distance to center, average 

difference in birds’ distance to center, the average difference in the spacing of each bird to its 

nearest neighbor, and the average difference the birds’ headings. A visual analysis of the brute 

force parameter study showed a diagonal gradient through the search space. The other search 

methods were tested, and compared based on the quality of the flocks produced, the reliability of 

the search, and the time efficiency. The results showed that the steepest descent technique had 

good performance and produced the best result.   
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2.0 Statement of the problem  
 
 
Flocking is a natural phenomenon of many independent agents making decisions that lead to the 

group acting as a whole.  Some examples of flocking behavior happen frequently in nature and 

they serve different purposes.  Fish may exhibit flocking behavior to make themselves look 

bigger and ward off predators.  Birds exhibit flocking behavior when they migrate.  They rotate 

out of the front position in the flock and thus conserve energy breaking the wind.   Elephants also 

exhibit flocking behavior for a different purpose.  The larger elephants form a ring around the 

smaller, weaker elephants in an attempt to keep them safe from predators.  Their flocks do not 

move much.   

 

Flocking occurs in the manmade world as well.  Flocking can be seen in strategic military 

formations and it can also be seen in traffic patterns (people tend to follow one another on large 

freeways).  The principles of flocking can be applied to collision detection in robotic domains.  

Robots are usually programmed to avoid other robots or obstacles (unless they are battle bots).  

Flocking principles can also be applied to military applications with computer driven vehicles. 

 

 

An interesting thing about flocking is that a computer can model it.  Each decision-making 

entity, an “agent”, begins in a random position, then using the location of its neighbors, makes 

decisions as to where to move itself.   These decisions are usually called cohesion, alignment 

and separation.   To cohere, an agent will move itself closer towards its neighbors.  To align, an 

agent will align its heading with that of its neighbors.  To separate, an agent will move itself 

away from its neighbors if it is too close.  If these decisions are carefully balanced, the agents in 

the model will form a flock after a number of time steps.  Balancing these decisions is a 

challenge and the flock quality is directly dependent upon the balance.   Measuring the quality of 

the flock is a subjective process.  Not everyone will agree that the quality of a flock is the same.  

 

Usually the flocking decisions cohere, align, and separate are the parameters of the flocking 

model. How would you find the best parameters?  The only certain way to do this would be to 
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test them all in all their combinations (thousands), and evaluate the resulting flocks using a 

function that tells you the quality of the flock or if it is a flock.  This is a brute-force method of 

optimizing the parameters.  This is computationally intensive and inefficient in its use of time, 

but it is the most accurate way of finding the best parameters.   

 

Many common search techniques used widely in computer science can be used for finding 

parameters, however not all of them are best suited towards flocking.  Flocking can be 

unpredictable and time-intensive to search through and thus not all search techniques will 

perform the same.  This project aims to find out which common search techniques will perform 

the best, be the most accurate and be most reliable in finding the optimal parameters to a flocking 

model.   Others who are building or using flocking models can use this research. 

3.0 Description of the Method Used to Solve the Problem 
 

The method used to solve the problem of finding the best parameter search method started with a 

simple flocking model.  This model was modified the model to evaluate the “goodness” of the 

flock by using goodness functions created by the team.  After testing the goodness function 

visually, a brute-force method was used to understand the search space.  Three search methods 

were then developed and tested, to find which produced the best parameter combination.   The 

brute-force and other search methods were compared using statistics. 

 

3.1 The NetLogo Flocking Model 
 

A NetLogo model of flocking was found in the sample models included with NetLogo. 

NetLogo® was chosen because it is perfectly suited to flocking models. NetLogo® is an agent-

based program and it is iterative. There is a graphical user interface and a display that shows the 

agents flocking and the time steps so far.  The original code did not include any plots and all the 

parameters were controlled by sliders (the user).    There were no flock quality evaluation 

functions included.   In this model, the agents look like birds and flocked in a direction (they are 

moving as they flock), which is similar to the way that birds flock.  The agents will be referred to 

as birds hereafter. 
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Picture 1: On the left, a flocking behavior is seen, on the right, there is no flocking. 

 

The parameters used to control the decisions the birds made in this model are max-cohere-turn, 

max-align-turn, max-separate-turn and minimum-separation.  Max-cohere-turn designates 

the maximum angle a bird can turn to cohere.  It is the same with max-align-turn and max-

separate-turn; they are also the maximum angle a bird can turn to make a flocking decision (align 

or separate).   Minimum-separation is the distance between birds that signals that they need to 

turn away from each other. Originally, minimum separation was thought a parameter to be 

optimized, but was then understood to be a preference, as it designates how big a flock will be, 

which does not affect flock quality. 

 

3.2 Evaluation and Goodness Functions 
 

The first step was to develop a way to evaluate the flock.  The goal was to have one goodness 

function that would tell how good the flock was.  The goodness function used turned out to be an 

average of several evaluation functions.  The evaluation functions developed were mean 

distance to center, mean deviation of agents’ distance to center, the mean deviation in the 

spacing of each agent to its nearest neighbor, and the mean deviation of the agents’ 

headings. 
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In order to evaluate the goodness of the flock, it was necessary to calculate the center of the 

flock.  Although it was initially difficult to calculate the center of the birds in a boundless 

domain, a center of mass algorithm [7] was used. Using this algorithm, a center bird was 

created.  It is enlarged for better visibility.  Since it is the biggest bird of them all, it is colored 

yellow in honor of Big Bird.  The center bird represents the center of the flock and its heading is 

the average heading of the flock. 

 

The first evaluation function we developed was quite simple.  It was the mean distance to center, 

which is exactly what the name implies.  It is the average of all the distances from each bird to 

the center bird.  

 

 

mean distance to center =
(xn − xc)2 + (yn − yc)2( )

n= 0

pf

∑
pf  

Equation 1: Where pf is the population of the flock, xn is the x-coordinate of the nth bird, xc is 

the x-coordinate of the center, yn is the y-coordinate of the nth bird, and yc is the y-coordinate of 

the center. 

 

It indicates how clustered the birds are.  A low value means the birds are clustered close to the 

center.  A high value means they are spread out over the whole domain.   A zero value indicates 

the birds are all in the same position (in a dot).  This function was not used in the final code, 

because if the model is optimized completely to this function, the birds will be centered in a tiny 

dot. 

 

The second evaluation function developed was the mean deviation of the birds’ distance to 

center.  This evaluation function measures the deviations in the distances between each bird and 

the center bird.  This measurement will show how spread out and randomly spaced (within the 

flock) the birds are in relation to the center and each other. 
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mean deviation of distance to center =
abs( (xm − xc)2 + (ym − yc)2 − mean distance to center)( )

m= 0

pf

∑
pf

 

Equation 2: Where pf is the population of the flock, xm is the x-coordinate of the mth bird, xc is 

the x-coordinate of the center, ym is the y-coordinate of the mth bird, and yc is the y-coordinate 

of the center. 

 

 

A low value indicates less deviation, which means the birds are more ordered.  A high value 

indicates clumping (multiple clusters of birds) and a non-optimal flock.   A zero value 

(theoretical max optimization) means the birds are either in a circle centered around the center 

bird or all at the center point, but since this is usually never achieved, it make this an overall 

useful evaluation function.  

 

The third evaluation function developed was the mean difference in heading.  This is what the 

name implies.  It measures the average deviations in each birds’ heading compared to the 

average flock heading.   

 

 

mean heading deviation =

(arctan
sin(hi)

i= 0

pf

∑

cos(hj)
j= 0

pf

∑

 

 

 
 
 
  

 

 

 
 
 
  

− hn)
n= 0

pf

∑

pf
 

Equation 3: Where pf is the population of the flock, hn is the heading of the nth bird, hi is the 

heading of the ith bird, and hj is the heading of the jth bird. 

 

While this function does not exactly measure how good a flock is spatially, it does show that the 

flock is not bumping into each other or going different directions.  A low value indicates the 

birds are all heading in the same direction.  A high value indicates the birds are running into each 

other in a central flock, not flocking, or going different directions.  A zero value (theoretical max 
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optimization) means they are all going the same direction exactly, which does not necessarily 

indicate a good flock, but it does mean the birds are not running into each other. 

 

The fourth evaluation function developed is the mean difference in spacing between each bird 

and its nearest neighbor.  

 

 

mean spacing distance =
(xl − xnn)2 + (yl − ynn)2( )

l= 0

pf

∑
pf

 

Equation 4: Where pf is the population of the flock, xl is the x-coordinate of the lth bird, xnn is 

the x-coordinate of this bird’s nearest neighbor, yl is the y-coordinate of the lth bird, and ynn is 

the y-coordinate of the birds nearest neighbor. 

 

 

mean spacing deviation =

abs( (xq − xnn)2 + (yq − ynn)2 − mean spacing distance)( )
q= 0

pf

∑
pf

 

Equation 5: Where pf is the population of the flock, xq is the x-coordinate of the qth bird, xnn is 

the x-coordinate of this bird’s nearest neighbor, yq is the y-coordinate of the qth bird, and ynn is 

the y-coordinate of the birds nearest neighbor. 

 
It measures the mean difference in the distances between these birds and the birds closest to it. 

This function is very effective at measuring even spacing.  A low value indicates the birds have 

evenly spaced themselves in relation to each other.  A high value indicates the birds are either 

clumping or not flocking.  A zero value indicates the birds are in an isometric dot pattern or a dot 

in the center of the screen. 

 

All of these evaluation functions have shortcomings if used exclusively, but if averaged, they 

produce an accurate measurement of the quality of a flock.   The average of these evaluation 

functions is our goodness function.  After time was spent studying the effectiveness of the 

functions visually, the functions were weighted at the values in Table 1.  
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Evaluation Functions Weight 

Mean distance to center  0.7 

Mean deviation in the distances to center 0.75 

Mean deviation in spacing between birds 1.0 

Mean deviation of the agents’ headings 1.0 

Table 1. Weighting of evaluation functions within goodness function. 

 

 

3.4 Brute Force Parameter Study 
 

Before any search methods were run, a brute force search was done to understand the search 

space better.  To do this, a NetLogo tool called “Behavior Space” was used.  It is a tool designed 

to run parameter searches and similar tasks.  It ran the flocking code for 200 iterations for each 

combination of the input parameters on a thirty-bird flock. For minimum-separation, the value 

was a constant 0.75.  Note that minimum separation is just a preference for how big the end flock 

should be.  For a 30-bird flock, .75 is a sufficient minimum separation, accounting for a 72-

square-unit domain.  For max- {cohere, align and separate}-turn they were increments of 1 

between 0 and 10.   Those were the original ranges offered by the interface to the original 

flocking code and anything outside that range produces a bad flock.  Even though the parameters 

for the angles could be from 0 to 180, the goal is to optimize between 0 and 10.  Each parameter 

combination was run once.  The Behavior Space tool output a comma-separated file containing 

which combination of parameters was used and what the goodness function value was for that 

combination of parameters.  This file was read into Microsoft Excel, edited to remove irrelevant 

data, saved as comma-separated file again, renamed to a “.particle” (ParaView compatible) file 

and read into ParaView [11] for analysis by visualization. 

3.5 Other Search Method Implementations 
 

Three parameter search methods were to be used:  bracketing, steepest descent and genetic 

algorithms.   These search methods were chosen because they are some of the most widely used 

and applicable to flocking.    
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A framework was used in all three optimizations to make the search methods comparable and for 

code reuse.  The framework consisted of the general parameter search steps: generate, evaluate 

and select.  The generate step takes in a tuple of parameter combination and parameter bounds 

(call it a “state”) and generates multiple states to be tested.  These states are tested in the next 

step, evaluation.  To evaluate, the flocking model is run for a set number of iterations and the 

result of the goodness function is coupled to each state.   Finally, in the select step, the state with 

the best goodness function is selected and if the simulation is allowed to continue, it is fed back 

into the generate step, otherwise, this last state is the output.  Each search method has its own 

stopping criteria. 

 

The first parameter search technique implemented was bracketing [9].   This technique divides 

the search space in half and finds the best half, then uses the best half as the starting point for the 

next iteration, until the remaining half is small enough. In the generate step of bracketing, for 

each parameter, the min and the max were averaged to produce Point B.  The average of the min 

and Point B, Point A, was calculated and the average of Point B and the max, Point C was 

calculated. A list of all the possible combinations of Point A and Point C for all four parameters 

is generated.  To evaluate, the simulation is run for a specified number of iterations and the 

goodness function result is coupled with the parameter combination used.  To select, the 

parameter combination with the lowest goodness function value is selected.  For each parameter, 

if Point A was better, then the max is set as Point B.  If Point C was better, the min is set at Point 

B.  These min and max values are used for the next iteration.   The stopping condition developed 

for this search technique was that after four iterations of gen-eval-select, it would stop.  After 

four iterations, the values were precise enough for the parameter range used (0 to 10 for each 

parameter). 

 

The second parameter search technique implemented was steepest descent [8, 9].   This 

technique starts at a random point in the search space and evaluates the local surrounding search 

space, then proceeds one step towards the most promising direction.   To generate in the steepest 

descent parameter search method, all the possible combinations of each parameter value being 

incremented one step up or one step down are generated.  Step size was set at .05 times the max 

value for that parameter. Each of these combinations is evaluated like in bracketing and each 
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combination is coupled with its goodness function value.  To select, the best combination is sent 

back as input to the generate step.  It stops when it generates a flock with a goodness function 

value under 0.1.  This is the value deemed “good-enough.” 

 

The third search technique implemented is a genetic algorithm [1, 8].  It works by considering 

parameters to be genes that can be mutated, starting with organisms with randomly generated 

genes, evaluating them and choosing the organism with the best value to live, and others to die 

and be replaced by a mutation of the genes of the best organism.  The generate step takes a pre-

selected list of the worst in the flock, changes their parameters to be that of mean of the best 

birds and applies a mutation to that.  The evaluate step runs like in the previous search 

techniques.  To select, the best in the flock are selected and sent on to the generate stage. It stops 

when it generates a flock with a goodness function value under 0.1.  This is the value deemed 

“good-enough.” 

 

4.0 Results 
 
The purpose of the experiment was to find the optimal parameter search technique for flocking.  

Therefore, a brute force study was run to understand the search space.  Subsequently, the various 

parameter search techniques were run, evaluated and compared.   
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Figure 1. The parameter search space discovered via brute-force.  Sphere radii and color 

represent goodness values. 

 

In Figure 1, the results of the brute-force parameter study are shown.  The radii of the spheres are 

inversely proportionate to the goodness value (the lower the goodness value, the better the flock, 

the bigger the spheres the better the flock).  Different parameters are shown on each axis (cohere, 

align and separate).  The colors also signify goodness, with red being the best flock, blue being 

the worst. The figure shows that when cohere and align are approximately equal in value, a better 

goodness value is found.  From this figure, a parameter search space with a diagonal gradient can 

be seen. 

. 
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Figure 2. Search space as interpolated surface cube. 

 
Using the same test harness, Behavior Space, each parameter search technique was run ten times 

and the outputs saved to a file.  The outputs included the time it took to run each search, the 

parameters to the flocking run, the average goodness function value, and the number of “gen-

eval-select” steps.   Using this data, and the code written, the number of evaluations (200-

timestep flocking runs) is calculated. 

 

Results Brute Force Bracketing Genetic Steepest 
Descent 

Time (Min) ~150 8.79850 2.06589 2.93913 
Reliability 100% 70% 90% 100% 
Goodness 0.03559 0.05466 0.08721 0.06869 

Evaluations 1331 32 8.0 28.8 
Table 2.   Comparison of parameter search techniques. 
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• Time – The average time in minutes it takes for the search to come to a verdict. 

• Reliability – The percentage of successful runs (runs having a goodness function under 

0.1 in at least 30 iterations of the search). 

• Goodness – The output flock goodness of each successful run of the search technique.  

For the bracketing, genetic and steepest descent, this is an average of the 10 runs output. 

• Evaluations – The average number of 200 iteration flocking tests that are run (in 

successful runs). 

 
 

5.0 Conclusions 
 

The comparison of parameter search techniques shows that steepest descent is the most overall 

useful search technique, but each has its strengths and weaknesses.   

 

Steepest descent is most “reliable” (as defined above) most likely because the parameter search 

space appears to be devoid of local minima and has a broad gradient for steepest descent to 

follow.  It also has very good performance.   

 

Bracketing was the least reliable, but the average goodness value of its output parameter 

combination is the closest to brute-force output.    It performance is worse than steepest descent 

and genetic, but still much better than brute-force.   Bracketing’s reliability appeared to be 

impacted negatively by inadequate sampling of the search space due to the position of the 

gradient.   

 

Although the genetic search technique is intriguing and its performance was better than the other 

three techniques, it average goodness value of its output parameter combination was the worst of 

the four.   Since this technique was the only one that incorporated randomness, that may have 

affect its output goodness negatively. 
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6.0 Significant Original Achievement 
 
The most significant original achievement that was made by Team 70 was understanding the 

parameter search space. This is important to all of those interested in flocking, as the search 

space is very important to the search techniques run on it. Furthermore in order to understand the 

search space, the team made original contributions in equations to evaluate the flock. 

7.0 Work Products 
 

The code for the Behavior Space was stored with the NetLogo model.   Each search technique 

has a different code base, but the goodness functions are identical.  Code from original model is 

marked. BehaviorSpace code could not be included as it is stored in a GUI. 

 
 

7.1 Flocking with Goodness Functions 

 
 
Code removed, see http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf for the full 
report. 
 

http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf�
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7.2 Bracketing 

 
Code removed, see http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf for the full 
report. 
 

7.3 Steepest Descent 

 
Code removed, see http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf for the full 
report. 
 

http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf�
http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf�
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7.4 Genetic 

 
Code removed, see http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf for the full 
report. 
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Executive Summary 
 

When chemicals are layered on a surface, they begin to form patterns in order to 

reduce energy.  This phenomenon is known as nanometer-scale pattern formation.  This 

phenomenon plays a huge role in nanotechnology.  If understood completely, it can be 

used to create devices at the nanometer scale.  In addition, it would allow for cheap mass 

production. 

In our previous project, we wrote a program that could simulate these patterns.  

However, we ran into several problems.  We had to solve a set of differential equations 

that described the pattern formation process.  Solving the equations required intense 

calculations, which slowed down our program significantly.  In many cases, simulations 

had to be done overnight to obtain any useful results.  In addition, we noticed that 

somehow mass was not conserved.  We believe that the main culprit is numeric error. 

In light of these issues, we seek to find a new way to simulate this phenomenon.  

In this project, we present a Monte Carlo method known as the Metropolis Algorithm that 

has successfully simulated the patterning phenomenon.  This method of solving the 

problem provides us, and hopefully future users, with a short simulation time and a great 

amount of flexibility to allow us to study systems under a wide variety of conditions.  In 

the previous project, extending the project to include many conditions might prove to be 

impossible, as one might not be able to derive the equations.  On the other hand, with this 

project, including many conditions doesn’t require more than a simple change in the 

code, thus making this program far more flexible.  
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A Brief Summary of the Past Project 

When deposited on a solid surface (substrate), some chemicals rearrange to form 

patterns.  The main factor that drives this pattern formation is free energy.  In order to 

reach any sort equilibrium, a system will try to minimize its total free energy.  In the case 

of pattern formation, the system will separate into multiple phases, that is, multiple 

regions of different concentration.  Each concentration corresponds to a minimum (a 

trough) in the free energy function as shown in the following figures (Suo and Lu, Forces 

that drive nanoscale self-assembly on solid surfaces, 2000).  

 
Figure 1: This is the free energy as a function of concentration.  Cα and Cβ correspond to the phases 

(below) α and β, respectively. 
 
 
 

 
 

Figure 2: Regions α and β are the two phases the system separates into. 
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There are actually two other factors: surface strain energy and interface energy.  

These factors however, do not affect the separation process.  Instead, they are involved in 

size selection.  Surface strain energy is the energy due to an elastic deformation in the 

substrate, which occurs when there is a heterogeneous pattern.  This is in some way 

analogous to having blocks of different masses resting on a bed of springs.  The heaver 

blocks will tend to compress the strings more than the lighter ones.  So, different 

concentrations will have different effects on the substrate.  Interface energy, also known 

as phase boundary energy, is the energy associated with a difference in concentration, or 

the chemical gradient.  It is like saying that a particle with zero neighbors will have an 

energy (likely higher) different from that of a particle with more than zero neighbors.  So, 

the longer a boundary is, the more interface energy there will be. 

 Now, how do these affect size selection?  It should be clear that interface energy 

increases with the sum of the lengths of all the boundaries.  Thus the system will try to 

reduce the total boundary length.  It turns out that the way to do this is by clumping like 

regions together.  In Figure 2, we see that the smaller regions group together into larger 

regions.  Will this continue until all that is left is one large region?  The answer would be 

yes if surface strain energy were not included.  As the size of each region increases, the 

larger the “heavier blocks” become and the more deformed the substrate becomes.  To 

reduce the strain energy, the size of the regions must decrease.  As you can probably 

guess, these two factors will eventually balance and the system will settle down in 

equilibrium. 
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Mathematical Model 

A diffusion equation has been developed by Lu and Kim to describe the process 

above. 
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 This equation is solved by using the Fourier Transform and a semi-implicit 

difference method.  The equation simplifies greatly to ( )CQkkPk
t
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we end up with ( ) tQkk
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=+ 34
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1 21

ˆˆˆ .  Because we can’t intuitively “see” Fourier 

space, we must somehow transform this equation back into real space.  This is done with 

the Fast Fourier Transform (FFT).  Also, there are no known transforms for P.  

Therefore, we must calculate P in real space and then transform it to Fourier space. 

 This procedure produces interesting patterns as well as helping us understand the 

mysterious nanoworld.  However, there are two issues that we must address.  The first 

issue deals with time.  This procedure is very computationally intensive due to calling the 

FFT multiple times every time step.  In order to get interesting and useful results, we 

sometimes are required to run the simulation for several hours.  Though this isn’t an 

especially long period of time, it can still pose problems.   

The second issue deals with stability.  It is clear from the numeric methods that 

errors can build up over time.  We have noticed that mass is not conserved.  Mass seems 

to appear out of nowhere.  We believe that there are two possible causes for this: numeric 
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error or just something that wasn’t taken into account in the equations.  Whatever the 

cause, the simulations cannot give any useful results if mass is not conserved. 

In light of these issues, we sought another simulation method, in particular, a Monte 

Carlo method.  Professor David Dunlap suggested to us the Metropolis-Hastings 

Sampling Algorithm.   
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Boltzmann’s Distribution 

The Boltzmann’s distribution describes the probability that a system is in some 

particular state.  For example, Boltzmann’s distribution is frequently used to describe the 

distribution of velocities of particles in a gas (also known as the Maxwell-Boltzmann’s 

distribution).  In a more general case (not just kinetic energy), the Boltzmann’s 

distribution either describes the probability that a particles has a specific energy or 

roughly how many particles have one specific energy.  In this section, we show some 

brief simplified derivations of Boltzmann’s distribution in a two energy system and a n 

energy system. 

Deriving Boltzmann’s Distribution for a Simple Two Energy System 

 Let E1 and E2 be the two possible energies a particle can have.  Suppose our 

system is made up of N particles and M lattice sites on a grid.  M1 of the sites have energy 

E1 while M2 have energy E2.  We want to determine how many particles have energy 

particles have energy E1 and how many, energy E2.  We assume that there are N1 and N2 

particles having energies E1 and E2, respectively.  To find N1 and N2, will minimize the 

free energy of the system.  The free energy F is defined as WkTE ln− , where E is the 

energy, k is Boltzmann’s constant (1.3806505× 10-23
K

J ), T is the temperature, and W is 

the number of possible microstates or configurations.  The number of microstates is the 

number of ways N1 particles can be placed into M1 locations times the number of ways N2 

particles can be placed into M2 locations, or 



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2211 NENEE += , we have ( ) ( ) 






−−

−+=
!!

!
!!

!ln
222

2

111

1
2211 NMN

M
NMN

MkTNENEF  .  

We now wish to minimize F. 

Rewriting using logarithm rules, we obtain 
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lnlnln

222222222222

1111111111112211

NMNMNMNNNMMM
NMNMNMNNNMMMkTNENEF

−−−−+−−−
+−−−−+−−−−+=

 
Now we can minimize F using 12 NNN −= . 

( ) ( )( )22211121
1

lnlnlnln NNMNNMkTEE
dN
dF

+−−−−−−= , or 

( )
( ) 0ln

122

211
21

1

=
−
−

−−=
NNM
NNMkTEE

dN
dF . 

Knowing that 21 NNN += , we can readily solve for N1 and N2. 

Deriving Boltzmann’s Distribution for a n Energy System 

This is almost identical to the two energy system, only now we have n different 

energies.  F now is defined as ∏∑
==









−=

n

i i

i
n

i
ii N

M
kTNEF

00

ln  , or equivalently 

( )∑∑
== −

−=
n

i iii

i
n

i
ii NMN

MkTNEF
00 !!

!ln . 

Simplifying and using Stirling’s approximation, we have 

( ) ( ) ( )( )( )∑ ∑
= =

−−−−+−−−−=
n

i

n

i
iiiiiiiiiiiiii NMNMNMNNNMMMkTNEF

0 0

lnlnln . 
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Using Lagrange multipliers with the constraint∑ = NNi , we find that
ji N

F
N
F

∂
∂

=
∂
∂ for all 

i and j.  Therefore, knowing
i

ii
i

i N
NMkTE

N
F −

−=
∂
∂ ln , we obtain 

j

jj
j

i

ii
i N

NM
kTE

N
NMkTE

−
−=

−
− lnln . 

Assuming the system is “large” (i.e. Mi >> Ni) and using the same approximation, we 

have kT
EE

i
i

j
j

ji

eN
M
M

N
−

= .  Summing over all j, we get∑ ∑
= =

−

==
n

j

n

j

kT
EE

i
i

j
j

ji

eN
M
M

NN
0 0

.  So, 

∑
=

−=
n

j

kT
EE

i

j
i ji

e
M
M

NN

0

.  However, if we do not assume that Mi >> Ni, then the equation 

becomes significantly harder to solve.  We will not show it here.
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Metropolis Algorithm 

Boltzmann’s distribution can be useful when figuring how particles are 

distributed.  Other examples include the distribution of velocity of gas particles (just let E 

be kinetic energy).  Analytically, the above process is how we would derive the 

distribution.  How would we do it computationally?  This is where the Metropolis 

Algorithm comes in (there are other ways).  In the Metropolis Algorithm, we essentially 

check whether or not a particle will move based on the energy change of that move.  The 

rules are incredibly simple.   

1. If the energy change is negative, accept the move. 

2. If the energy change is positive, generate a random number between 0 and 1.  If that 

random number is less than kT
changeenergy

e
−

, accept the move.  Otherwise, reject it. 

Entropy in the Metropolis Algorithm 

The Metropolis algorithm at first sight seems to not include entropy, the 

randomness of a system.  After all, it is based solely on energy reduction.  The entropy, 

however, is actually really subtle.  There are two ways to think it.  The first way is to 

examine how particles are moved in the algorithm.  The direction of movement is 

random.  In addition, it is a clear that a particle can only move to an unoccupied location.  

Therefore, if that particle is in an organized group, the only direction it can move is away 

from that group, thus slightly disturbing the order in the system.  The second way to 

understand entropy is to examine the energies.  In many cases, the energies themselves 

secretly encode entropy.  In our case, that energy is the surface strain energy.  If particles 

begin clumping together, the strain induced on the surface increases, which in turn 

increase the energy.  That increase in energy due to a high concentration of particles in 
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one region causes those particles to spread out, once again disturbing some sort of order.  

So, entropy is in fact included in the algorithm. 

Verifying the Metropolis Algorithm 

To determine whether we coded the algorithm rules correctly, we tested our code 

on one distribution.  That distribution is based on Boltzmann’s distribution in a two 

energy system.  For this simulation, the simulated region is a box having side length 200, 

meaning that there are a total of 40000 (=M) sites on the lattice.  This box is divided in to 

two rectangles, one with 10000 (=M1) sites and the other with 30000 (=M2) sites.  The 

rectangle containing 10000 sites is assigned a unit-less energy of 3 while the other 

rectangle is assigned an energy of 0 (we let Boltmann’s constant k and T be 1 for 

simplicity).  In our simulations, we placed down 20000 particles. 

To test our code, we look at the ratio of the number of particles in one region to 

the number of particles in the other region.  From our derivation of Boltzmann’s 

distribution for a two energy system, we find that 0423.0
1

2 =
N
N , where N2 is the number 

of particles having energy 1 and N1 is the number of particles having energy 0.   

Number of moves 
100000 
1000000 
2000000 
10000000 
20000000 
100000000 
200000000 
300000000 
400000000 
500000000 
600000000 
700000000 
1000000000 

Ratio N2/N1 
0.33129202 
0.32231404 
0.31648235 
0.28924128 
0.27048660 
0.20141767 
0.15667110 
0.12549240 
0.10674561 
0.09481060 
0.08483402 
0.07874865 
0.05982725 
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Figure 3: Graph of N2/N1 as a function on the number of moves.  The curve formed by the points 
approach ~0.04-0.05 

 

We did not run the simulation long enough to obtain points around 0.42.  

However, based on the table and graph, it is clear that 2000000000 moves, the ratio 

should begin to hover around 0.42. 

Energies in Our System 

There are two energies defined in our system: interaction energy and the misfit 

strain energy.  The interaction energy is like the boundary energy in our previous project 

while the misfit strain energy is related to the surface strain energy in out previous 

project.   

The interaction energy essentially models bonding and is determined by the 

number of neighbors.  In our specific system, the maximum number of neighbors a 

particle can have is four.  In our program, the energy is a function of the number of 

neighbors.  In many cases, as that number increases, the energy decreases.  If a particle 
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loves to “bond” or interact with other particles, then its energy will drop significantly for 

each addition particle it finds. 

The misfit strain energy essentially models how much strain a layer of particles 

induces on the surface.  The lattices constants for the particles and the surface are usually 

different, which creates misfit.  Particles typically want to align themselves with the 

surface to reduce energy.  However, due to the size difference, many particles will not be 

able to align and will instead become offset.  This creates strain and potential energy in 

the surface.  Below is a side view of the particles and surface. 

Film:  |          |          |          |          |          |          |          |          |          |        
Lattice: |         |        |        |        |        |        |        |        |        |        |        |      

To calculate the misfit energy, we look at the distances between the midpoints 

of the film and the lattice.  One can view each line above as one particle.  In our program, 

we select two adjacent particles in the film.  That gives us an interval between those two 

particles.  We then find all of the midpoints that lie on that interval.  In most cases, there 

is only one such midpoint.  Once we find all of the corresponding midpoints, we take the 

average of the distances between the midpoint of the two particles and the corresponding 

midpoints in the lattice/surface.  A particle that is aligned with the surface will have an 

energy of 0 because the midpoints will line up.  However, if the particle is offset by a 

small amount, the midpoints will not line up, thus generating energy.  This energy we 

describe is a function of the distance between the midpoints.  For simplicity and 

flexibility, we let that function be a polynomial.  Users can include as many terms in the 

polynomial as they wish, depending on the shape of the function.
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Architecture of the Program 

 

The structure of the program is straightforward.  The program is written in C#, 

which is very similar to Java.  In Form1, the user first inputs values for the parameters 

and starts the simulation.  The calculations are performed in Calculations and then the 

results are displayed in Display.  The calculations can be run over and over until 

satisfactory results are obtained. 

The BitmapConverter reads the hexadecimal numbers contained in the bitmap file 

and assigns energy levels to those numbers, or colors if one looks at the picture (e.g. 

black = 1 and white = 0).

Form1: Allows 
the user to input 
parameters for 
the simulation 

BitmapConverter: 
Takes a bitmap file 
containing an energy 
function and 
converts it into 
numbers used in the 
simulations 

Calculations: calculates 
energy changes and moves 
particles depending on those 
changes (see Metropolis 
Algorithm). 

Display: displays how the 
particles are arranged on 
the surface. 
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Results and Discussion 

The three most important results that we must reproduce with our program are 

quantum dots (patches of particles), serpentine stripes (particles arranged in snake-like 

shapes), and quantum pits (patches or “holes” where there are no particles).  At lower 

concentrations, we should be getting quantum dots.  As we increase the concentration or 

the number of particles, the results should transition from quantum dots to serpentine 

strips and finally from serpentine stripes to quantum pits.  Physically, this makes since.  

When the number of particles is low, serpentine stripes cannot form because the energy 

can still be lowered by breaking the serpentine stripes into quantum dots.  As the number 

of particles increases, it becomes difficult to form quantum dots because the limited room 

would create rather large patches, which actually would have a higher energy than 

serpentine stripes.  Once the particles cover a majority of the surface, quantum dots 

become impractical (they would be enormous).  There would not be enough room to for 

m serpentine stripes.  They would be so close together that they would begin to merge.  

Thus, quantum pits form. 

 
Figure 4: Simulations from the past project.  In the image on the far left, we see quantum dots (low 

concentration).  In the middle image, we see serpentine stripes (medium concentration).  In the image 
on the far left, we see quantum pits (high concentration). 
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Figure 5: As in Figure 4, we see the transition from quantum dots to serpentine stripes and from 

serpentine stripes to quantum pits.  Note that these simulations are more microscopic than those in 
Figure 4. 

 

 
Figure 6: Experimental observations of the nanoscale self-assembly of Pb (lead) on Cu (copper) 

(Plass et al., 2001).  A transition from quantum dots through serpentine stripes to quantum pits can 
be clearly seen in b-f. 
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The final simulation we perform shows the effect of misfit strain energy.  As 

predicted, misfit strain energy (also known as surface strain energy) should cause the 

system to form finer patterns.  For example, quantum dots should be smaller.  Below, we 

compare a simulation using small, almost negligible strain to one that uses a much larger 

strain. 

 

Figure 7: This camparison show the effect of strain energy.  The figure on the right didn't not use 
any strain energy while the figure on the lefet used 10x+10x2 (x is the distance between midpoints) as 
the strain energy function, which is significantly larger.  Due to the strain energy, the patterns in the 

system on the left become much finer because the system is more sensitive to concentration. 
 

Based on the simulations above and the numerous reruns, our program has 

successfully simulated the qualitative features of our system.  We successfully 

reproduced quantum dots, serpentine stripes, and quantum pits.  These results match 

accurately with our old program and experimental results.  In addition, we successfully 

included the effect of strain on the patterns. 

Future Plans 

There were many things that we could not include in our finished product.  We 

finished the most essential parts of the program.  There are actually three improvements 
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that we plan on making.  The first has to do with parallel computing.  The Metropolis 

algorithm can be run on multiple cores.  Not surprisingly, the new algorithm is called the 

Parallel Metropolis algorithm (see Appendix A for a brief description).  We would also 

like to expand our system more.  In other words, generalize it.  Now that we have the 

basic components finished, we can start adding more energy so that we can apply our 

program to many other systems.  For example, we can study how dipoles might arrange 

on the surface or how an electric or magnetic field might effect pattern formation, which 

could be useful to know if nanoscale circuits are used.  All of these additions are 

extremely easy to include.  Unlike the past project, we will not have to derive, if possible, 

any differential equations when we make the system more complicated.  It might be 

impossible to derive equations for such complicated systems.  Instead, we simply 

determine what new energies to include.  Finally, we would like to include heterogeneous 

initial distributions, that is, the user can put whatever initial distribution (e.g. a circuit) 

and see how it changes under certain conditions. 
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Appendix A: Brief Description of the Parallel Metropolis Algorithm  

As its name suggests, the Parallel Metropolis algorithm is a parallel version of the 

Metropolis algorithm.  To run the parallel version, the simulation grid is divided into 

sections, each sections is handled by one processor. 

 
Figure 8: The schematics for the Parallel Metropolis Algorithm.  Gray cells represent ghost cells.  

http://www.fysik.uu.se/cmt/berg/node31.html 
 
In Figure 8, the grid is divided into four quadrants.  Each quadrant contains ghost 

cells (gray areas) that hold information about the adjacent quadrant.  As the program 

ones, the ghost cells are continuously updated.  Currently, our program runs significantly 

faster than the program in our past project.  However, we noticed that as the system 

becomes larger (more than a 200x200 grid), the program gets slower and slower.  By 

implementing the Parallel Metropolis Algorithm, we hope to further reduce the 

simulation time, which would allow us to simulate much larger and more interesting 

systems. 
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Appendix B: Screenshots of the Program 

 

Figure 9: Form 1.  Here, users can input parameter values.  The x and y scaling factors just change 
the pixiel size of each particle. 
 

 
Figure 10: Display screen.  This is where the result is displayed.  The current image is one of a 

random initial distribution.  Attached to this screen is a little control device on which the user can 
continue the calculations or exit the program. 
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 The Cell processor is used in the Playstation 3 gaming console and the Roadrunner 

supercomputer at Los Alamos National Labs.  It is a microprocessor specially designed to do 

calculations quickly with high data throughput. It has eight cores to process data and one core to 

manage the data flow, and provides many advantages, such as efficient calculation with the 

vector data type which allows multiple operations to be carried out in a single CPU cycle. In 

addition, all of the cores can be used at the same time and can communicate between each other.  

Despite all this, there has never been any efficient use of the Cell for arbitrary precision 

calculations. Our goal in this project was to make an arbitrary precision integer library that 

utilized the special capabilities of the Cell to allow for extremely fast calculations on any size 

integer.  

We programmed our library from scratch on a Playstation 3 using C.  We created a new 

data type, called a vecthor.  Each vecthor is an array of vectors that can hold up to [any multiple 

of] 1024 digits. We then proceeded to create functions for the standard operations commonly 

used in number theory and cryptography, namely addition, subtraction, multiplication, modding, 

and taking powers. 

Throughout the creation of our library, we paid special attention to efficiency in memory 

usage and speed. We utilized many Cell-specific functions, and constantly tested our functions 

for speed. We collected data for multiple number lengths, and compared our results to the 

leading arbitrary precision library, GMP. 

Our intention was to create a library optimized for the Cell processor that could be 

implemented separately and simultaneously on all of the cores and on multiple networked PS3s. 

We intended it to be used primarily for number theory applications such as prime finding as well 

as encryption and decryption. 

However, even with meticulous code optimizations and the power of the Cell processor, 

our library failed to meet the mark.  When compared to GMP, the results were dismal.  GMP 

outperformed us by several orders of magnitude in most cases, even for relatively simple 

operations.  We concluded that the power of the Cell processor is very hard to extract and 

manipulate.  In general, the difficulty of programming and managing memory is more trouble 

than it is worth when dealing with foreign data types and machine instructions. 
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1 Introduction  

In the year 2001, Sony, Toshiba and IBM (collectively called "STI") began work on the 

Cell Broadband Engine (CBE).  The Cell is a microprocessor with a heterogeneous design: 8 

cores processes data, and one core controls job execution and manages data flow. It was built 

around IBM's PowerPC technology, and is used in both Sony's Playstation 3 gaming system and 

IBM Supercomputers, including the Roadrunner at Los Alamos National Labs. All applications, 

from modeling physical simulations to multimedia, required that the processor have superior 

vector and floating point performance.  

In its current design, the Cell has 9 cores - one PPU (Power Processing Unit) and eight 

SPUs (Synergistic Processing Unit), all of which run at 3.2GHz. The PPU is an ordinary 

PowerPC processor and serves to organize data flow and job execution between the other cores. 

The SPUs are specially designed processors theoretically capable of 25.6 GFLOPs each, and can 

perform operations on 128-bit data types called vectors. IBM and third parties have developed 

libraries on the Cell tailored for graphics and modeling, such as arbitrary precision floating point 

arithmetic and fast matrix multiplication. However, currently no arbitrary precision integer 

library exists which utilizes the Cell's unique capabilities, meaning the Cell is not being used for 

number theory or cryptography.  

 

1.1 Problem  

Our goal with this project was to create an arbitrary precision integer library for the Cell 

processor using the C programming language.  The Cell processor on the Playstation 3 has a 

PPU (main processor) and 6 usable SPUs, since one is dedicated to the PS3's operating system 

and one is disabled by default.  As mentioned above, each SPU can do basic arithmetic 

operations on 128-bit data types, or 4 integers at once.  This means that, depending on the 

parallelizability of the algorithms, we thought we might be able to increase the speed of 

arithmetic operations on a single core up by up to 4x.  If we could make each SPU operate at 

maximum capacity, each Cell could do 6 to 24 times as many arbitrary-precision operations as a 

single-core 3.2GHz processor in a given amount of time.  Combined with the fact that MPI can 

be used to make multiple PS3s work on a problem in tandem, we thought that several networked 

PS3s could operate as a formidable machine for number-theoretical operations like prime finding 

and encoding/decoding information.  
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2 Implementation  

We chose to work on the Cell because of the calculating speed of the 6 usable individual 

SPUs, the availability the Cell in the form of the Playstation 3, and the SIMD (Single Instruction 

Multiple Data) capabilities of the Cell Processor. The SPU's 128-bit vector data type can be 

divided in various ways, such as 4 integers, 8 shorts, 2 longs, etc. Included in the Cell's libraries 

provided by IBM are functions called intrinsics which map directly into assembly language 

instructions. One such intrinsic function allows multiple numbers to be added together in a single 

computation like so:  

Vector 1:  {230597,  17345,  5198357,  3567}  

   +  +  +  +  

Vector 2:  {3298673,  839764,  235,  46082}  

 =  =  =  =  

Result:  {3529720,  857109,  5198592,  49649}  

 

This effectively means that 4 integers can be added simultaneously.  

We created a new data type to take advantage of the speed of the Cell's intrinsic 

functions, which are SPU functions that map directly onto assembly language instructions. Our 

library of functions is called "thor," so we named our data type "vecthor." Each vecthor consists 

of an array of [some multiple of] 32 vectors, plus one more that contains the size of the vecthor. 

Each vector contains 4 integers of maximum 8 digits each, and the number is broken into 8-digit 

groups and inserted in the vectors. Of course, a signed integer can have a value up to 231 = 2 147 

483 648, but we chose 99 999 99 as our "BIGGEST_INT" so that we could add several vectors 

together without the results overflowing the 231 value.   

In a vecthor, the first vector contains the metadata: the first integer (as well as the last 

one) is how many vectors are registered in memory as being part of the vecthor (not including 

the size vector and always a multiple of 32), the second integer contains the “virtual” size – how 

many vectors are actually used to contain the number, and the third integer contains the sign (0 

for positive, -1 for negative).  

For example the number 3467389200559205849930147290165382927106738 in vecthor 

form is:  
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{32, 2, 0, 32} *30 vectors w/ only 0s* {0, 0, 346, 73892005} {59205849, 93014729, 01653829, 27106738}  
   

We also decided to code in C for raw speed and usability in C++ code.  

 

2.1 Single vs. Multi-core Operations  

When we started our project we wanted to make use of the Cell's communication abilities 

by using Direct Memory Access (DMA) to allow all six SPU's to work on a single operation at 

the same time. However this approach would have far more difficult to implement than expected 

and the constant data transfer required would have hurt the speed. So with expert advice from 

DeLesley Hutchins we decided to focus on creating operations for single SPUs, and planned to 

have the PPUs dole out jobs to each SPU.    

Once we decided to make an operation run on a single SPU, we considered using the 

GNU Multi-Precision integer library (GMP) and modifying it to utilize the vector functions of 

the SPU.  Unfortunately, we could not get GMP to compile for the SPU, presumably to the 

SPU's limited built-in functionality.  We therefore proceeded to create a SPU-optimized library 

from scratch.  

 

2.2 Data Type Development  

In our original implementation, we dynamically sized the vecthors so that they always 

had just enough vectors to contain the number (plus the meta vector). However, this meant that 

the vecthor had to be resized whenever the number overflowed the current vecthor, and a lot of 

time was wasted on memory allocation. For example, if advanced carrying was necessary in 

addition with the old system, for a function c=func(a,b), first c had to be put in a temporary 

vecthor, then c had to be re-initialized to be one vector larger. Then the process had to be 

repeated as soon as the new vector was filled, which in the large calculations this is designed for 

was quite often.  One call of the C functions calloc and malloc takes about 340 times as much 

time as an intrinsic add or subtract operation.  With dynamic resizing, over 50% of the time for a 

single arbitrary-precision subtraction operation was used to allocate memory, and almost 50% of 

addition was allocating memory.  
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With a mostly fixed-size vector, overflow happens far less often – and the vector is 

simply doubled in size, which means that it’s unlikely to overflow again any time soon and much 

less time and resources are wasted on resizing the vecthors. A 2048 bit prime number key for 

RSA encryption is roughly 600 decimal digits. We chose a 32 vector vecthor as it holds 1024 

digits, so for these smaller prime numbers this means we won't have to resize the vecthors. 

Vethors now double in size when the numbers exceed 1024 digits, 2048 digits, etc and halve 

with getting smaller.  

 

2.3 Limited Success  

Because of the nature of the Cell, our intial goal was to have the PPU manage jobs for the 

SPUs, while the SPUs performed their jobs extremely quickly and reported back to the PPU. 

 Unfortunately, we quickly realized that programming at this low-level on a foreign processor 

architecture was unrealistic based on time constraints, and essentially beyond the scope of our 

project.  As a compromise, we decided to run programs on the SPU alone.  There are a few 

advantages to this:  

  -Writing code in C using vectors was much more easier to understand than working 

around the complexity of the DMA (Direct Memory Access) Transfers, individual mailbox 

routing to and from SPUs, and context/thread creation and management for each SPU.  

  -Using vectors on an SPU would give us a reasonable understanding on whether or not 

the Cell's philosophy and technology is really a breakthrough. Therefore, we could write and run 

code relatively quickly while still being able to draw a conclusion on the Cell as a whole.  

  -The SPUs are known to be the fastest part of the Cell.  A comparison of the new, exotic 

SPUs to a normal intel processor would be much more beneficial than one of the power PC 

brand PPU to an intel processor.  

No arbitrary precision integer library currently exists for the Cell, and if the processor's 

power was truly revolutionary, we may have seen dramatic increases in calculations with prime 

numbers, for example.  We gave our library the name 'thor', and decided to answer the question 

everyone is asking: Are the speed benefits from the Cell really worth the hassle of programming 

on a completely unexplored, foreign processor architecture?  Cleve Moler assured us that they 

are not, and as we discuss below, we have come to the same conclusion (at least for this 

application).  
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2.4 Function List  

Below is a list of all the functions we created, with a description of how they work and 

how they are used.   The full code is provided in appendix A. 

 

typedef vector signed int* __attribute__ ((aligned(4096))) vecthor;  

Summary: Defines the size of a vecthor. 

 

vecthor init_vecthor(void); 

Summary: Initializes a 4096-bit vecthor and returns a pointer to that vecthor  

Description: Our function for initializing vecthors simply allocates 32 vectors, each vector 

consisting of 128 bits (4096 bits for a standard vecthor).  This is done using the calloc function, 

which allocates and initializes a block of memory.  The metadata is also appropriately initialized, 

and finally a pointer to this newly created vecthor is returned.  Initially, we passed the desired 

size of the vecthor as the first argument.  However, after we switched to a fixed-sized datatype 

implementation, this was no longer needed.  

 

void vecthor_clear(vecthor a);  

Summary: Zeros out a vecthor, setting all values to zero and updating metadata accordingly.  

Description: This function loops through each vector in the vecthor, and inserts the scalar value 

of zero into each element of these vectors.  The metadata is also adjusted for the altered values.  

 

void vecthor_copy(vecthor a, vecthor b);  

Summary: Copies all data from a into b.  

Description: To copy data from one vecthor to another, we simply loop through the first 

vecthor, placing all vectors in the source vecthor into the destination vecthor.  This memory 

copying is admittedly slow.  However, if one was to simply set the two vecthors equal to each 

other (e.g. a=b;), this would only set the pointers equal to each other, therefore causing all 

further operations performed on a also to be performed on b.  

 

void str_to_vecthor(vecthor a, char *str);  
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Summary: Sets a equal to numeric data found in str.  

Description: str_to_vecthor works as follows: First, loop through the vectors in a from right to 

left.  For each iteration in the loop, convert the next 8 characters in str into an int, then place this 

in the relevant element in the vector.  

 

void vecthor_write_virtual_size(vecthor a);  

Summary: Determines the size of the number in the 4096-bit vecthor spaceand adjusts the meta-

data vecthor accordingly.  Used primarily in other library functions  

Description: In order to determine the variable virtual size of the data inside a vecthor (rather 

than the actual size), we look at each vector in the vecthor from left to right.  If, at any time 

during this loop, the given vector's contents are not equal to 0, then the loop is terminated and the 

size is updated in the metadata.  This loop must go from left to right, otherwise a series of 32 

zeros or more could possibly be interpreted as the end of the data in the vecthor (therefore 

corrupting the virtual size).  

 

int vecthor_virtual_size(vecthor a); 

Summary: Returns the virtual size of the vecthor, i.e. the number of vectors containing data. 

 Used primarily to optimize loops in library functions. 

Description: Literally, this function returns the second element in the metadata vector.  This 

variable can be used to optimize nearly every core arithmetic operation in the library.  The 

reason for this is that if a vecthor consists of a 32 vector-long chain, but only 1 or 2 of these 

vectors hold actual data, then it is useless to loop through this empty data (to perform addition or 

subtraction, for instance).  Using the vecthor_virtual_size() function, we could easily tell where a 

vecthor's data started and ended, and thus could loop through only the data that mattered when 

optimizing our functions. 

 

int vecthor_actual_size(vecthor a); 

Summary: Returns the actual size of a vecthor, i.e. the number of 128-bit vectors allocated to 

the vecthor.  
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Description: As opposed to vecthor_virtual_size() (see above function), the actual size of a 

vecthor is the amount of vectors allocated to the particular vecthor.  It follows that in order to 

determine the number of bits a vecthor occupies in memory, this conversion can be used:  

memory_usage(a)=128*vecthor_actual_size(a);  

as a vector takes up 128 bits.  

 

int vecthor_sign(vecthor a);  

Summary: Returns the sign of a vector (1 if positive, -1 if negative, 0 otherwise).  

Description: This function returns the third element of the metadata vector.  

 

void print_vector(vector signed int a); 

Summary: Prints a single vector (not a vecthor). 

Description: This function is used in debugging, to examine the individual elements of a vector. 

 Normally, print_vecthor() or print_vecthor_debug() is desired. 

 

void print_vecthor(vecthor a);  

Summary: Prints an entire vecthor to screen in an easy-to-read fashion. 

Description: print_vecthor(), after determining the relevant size bounds of the vecthor, takes all 

data vectors and displays them on the screen.  Extra precaution is taken in ensuring that the 

padding is correct (e.g. eight zeros will not be shortened to one, and zeros on the left will not be 

displayed). 

 

void print_vecthor_debug(vecthor a); 

Summary: Prints an entire vecthor to screen, including meta-data and zeros  

Description: This function quite literally prints all data (relevant or not) that the vecthor 

occupies in memory onto the screen.  This is used in testing functions, and is generally 

excessively difficult to read.  

 

void vecthor_lightning_add(vecthor c, vecthor a, vecthor b); 
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Summary: As fast as the lightning of thor!  Computes the sum of a and b, storing the result in c. 

 This function does not carry for you, so it should only be used when it is certain that no 

overflow will occur.  

Description: This function uses the assembly language intrinsic spu_add() to perform simple 

addition on two vecthors.  It is best used when incrementing a larger vecthor by a smaller 

amount, or for adding small values.  

 

void vecthor_add(vecthor c, vecthor a, vecthor b); 

Summary: Computes the sum of a and b, storing the result in c. 

Description: Addition is performed using the same spu_add() assembly language routine, 

however, carrying (the heart of addition) is performed afterwards to ensure that the data is lined 

up correctly. 

 

void vecthor_carry(vecthor c); 

Description: Ensures that each element is 99999999 or below. Properly formats the vecthor. 

 Use after any operation that increases the size of entries. 

Summary: This function is a carry function for use in addition. It utilizes the fact that we only 

use 8 digits per vector entry while an int can go up to 9. It loops through each entry of each 

vector, dividing the entry by 100,000,000 (our biggest allowed int plus 1) to obtain the carry and 

calculating the entry mod 100,000,000 to obtain the “mod”. The carry is added to the next entry 

to the left, and the mod replaces what was previously in the entry. 

 

void vecthor_carry_ext(vecthor c, int biggest); 

Summary: Carries, but with the option of manually setting the biggest-int size 

Description: Instead of treating the biggest int as 99999999, the biggest int is specified by the 

user. 

 

void vecthor_sub(vecthor c, vecthor a, vecthor b); 

Summary: Computes the difference of b and a, storing the result in c.  
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Description: Subtraction is first performed normally (e.g. simply subtracting everything in b 

from a, not worrying about negative values or borrowing).  Next, we look at all negative values. 

 For each negative value, we:  

-Take the absolute value of this number, making it positive.  

-Subtract this positive value from our biggest int + 1 (100,000,000).  

-Subtract one from the value to the left of it in the vecthor.  

 

void vecthor_mul(vecthor c, vecthor a, vecthor b); 

Summary: Computes the product of a and b, storing the result in c using the slow but 

straightforward naive multiplication.  The product must be less than 1024 digits. 

Description:  Naive multiplication is very similar to multiplication by hand.  We first loop 

through all the vectors in b and multiply each of these vectors by every vector in a.  The result is 

stored in an unsigned long long.  The result is split into two parts (the first part is the division by 

the biggest int, the second part is the long long mod our biggest int), and added to the appropriate 

'slot' in the vecthor.  Periodically, the result vecthor must be carried to prevent overflow. 

 

void vecthor_pow(vecthor c, vecthor a, vecthor bb); 

Summary: Uses successive squaring to compute a raised to the b power, storing the result in c. 

 b must be less than 99999999. 

Description:  Successive (sometimes called repeated) squaring involves looking at the binary 

representation of b (the exponent).  If the LSB is one, then our result vecthor is multiplied by our 

base.  Regardless of b's binary representation, our base is square with every iteration.  At the end 

of each iteration, our exponent is shifted right.  The loop terminates when the exponent is equal 

to zero. 

 

void vecthor_mod(vecthor c, vecthor a, vecthor b); 

Summary: Computes a mod b, storing the result in c. 

Description: Uses an algorithm that shifts b to the left until its binary representation is one bit 

less in length than a.  Then, b is subtracted from a until a<b.  This is repeated until a is less than 

the original b. 
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void vecthor_powm(vecthor c, vecthor a, vecthor bb, vecthor m); 

Summary: Computes a raised to b (mod m) and stores the result in c using successive squaring. 

Description: See vecthor_pow().  The algorithm is identical, except a is squared and 

subsequently modded by m with each iteration. 

 

void vecthor_is_prime(vecthor c, vecthor a); 

Summary: Uses Fermat's Little Theorem to test the primality of a.  a must be less than 

99999999.  Splats the result vecthor with 1's if a is prime, 0's otherwise. 

Description: Fermat's Little Theorem uses a small prime number as a base (2, 3, 5, 7), and raises 

this to a-1, modding the result by a.  If the result is not 1, then a is definitely not prime.  If the 

result is one, then we repeat the process with a different base.  The more bases used, the surer 

one can be that a is prime. 

 

int vecthor_comp(vecthor a, vecthor b);  

Summary: Compares the size of a and b.  Returns 1 if a>b, 0 if a==b, and -1 if a<b.  

Description: This function loops through a and b, using assembly language intrinsics to 

determine if one vector is greater than another.  If one is found to be greater than another, then 

the loop terminates.  

 

int vecthor_cnt_lz(vecthor a); 

Summary: Counts leading binary zeros in a vecthor. 

Description:  This function counts the binary leading zeros in a vecthor by using a loop coupled 

with the spu_cntlz function. 

 

void vecthor_lshift(vecthor c, vecthor a, int times);  

Summary: Multiplies vecthor a by 2  times number of times using a left-shift intrinsic function 

and carrying, storing the result in c.  

Description: This function calls spu_slqw() and carries when appropriate to prevent overflow or 

data discrepancies.  



Page 15 of 24  

 

int vecthor_bin_diff(vecthor a, vecthor b);  

Summary: Used in modding to determine how many times b would have to double to have the 

same size binary representation as a.  

Description: This function simply subtracts the values of vecthor_cnt_lz().   

 

int vecthor_pos_extract(vecthor a, int pos);  

Summary: Extracts the number in position pos from vecthor a where position is measured from 

right to left, (ie. the rightmost integer has pos=0 and the leftmost would have pos=32, since a 

standard size vecthor holds 32 integers).  Used exclusively as an auxiliary function in 

multiplication. 

 

void vecthor_pos_mul_add(vecthor a, int pos, unsigned long long x); 

Summary: Takes x, which represents two ints multiplied, split it into parts greater than and less 

than 99999999 and add it to the values to existing values in a.  Used exclusively as an auxiliary 

function in multiplication. 

 

int vecthor_find_max_pos(vecthor a); 

Summary: Returns the "size" of a, counting from left to right.  Max is 32*4=1024.  Used 

exclusively as an auxiliary function in multiplication. 

 

void start_timer(void);  

Summary: Starts SPU timer, measured in ticks.  One tick is approximately equal to 40 clock 

cycles.  

 

int read_timer(void); 

Summary: Reads from SPU timer, returning the number of "ticks" since the timer started. 

 

double ticks_to_ms(int x); 
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Summary: Converts x ticks to milliseconds, returning the number of ms for a given number of 

ticks. 

void init_aux(void);  

Summary: Should be called at the beginning of main.  Initializes a number of auxiliary vecthors 

used to extend the functionality of certain operations.  

Description: This function simply calls init_vecthor() on a number of global auxiliary vecthors. 

These are used when memory overwriting may occur (e.g. calling vecthor_add(a,a,b) may cause 

memory discrepancies).   

 

int add_elements(vector signed int a);  

Summary: Adds all of the elements in a given vector, returning the result.  

 

int intpow(int x, int pow); 

Summary: Computes x raised to the pow power.  Used in str_to_vecthor. 

 

int abs(int x);  

Summary: Returns the absolute value of an integer using bit logic to avoid branching.  

 

2.5 Software Used  

 To enable code writing and compilation on the Playstation 3 systems, we installed Fedora 

or Yellow Dog Linux distributions on each system.  Recent firmware updates have disabled the 

option to install a third-party OS, though Sony has disabled and re-enabled this capability in the 

past.  To compile C code on the Cell's PPU and SPU cores, we used Cell-specific gcc builds 

created by IBM named spu-gcc and ppu-gcc.  These are available for free on the IBM website as 

part of the “Software Development Kit for Multicore Acceleration Version 3.0,” 

 

2.6 Literature Used  

For instructional material, we used both books and IBM manuals for development on the  

Cell.  For general information on programming in C, we used Aitken’s Teach Yourself C in 21 

Days and Kernighan and Ritchie’s The C Programming Language.  For Cell specific 

information, we used Programming the Cell Processor, by Matthew Scarpino.  This was our 
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single best resource, without which we could not have produced as much Cell-specific code as 

we did.  The IBM manuals we used were all part of the Cell SDK.  Citations for these sources are 

provided at the end of this document.  

 

3 Results  

Below is a chart of the time taken for a single run-through of our primary functions. We 

tested each function with different numbers, once with 1 digit (e.g. 9+9), once with a full entry in 

a vector (99 999 999 + 99 999 999), once with a full vector (32 9s + 32 9s, etc), once with 4 full 

vectors, and one test with 308 digits which is roughly the length of a 1024-bit number, and 

therefore a component of a 2048-bit RSA key.  

 
 

We measured the timing in SPU ticks, which is equal to 40 processor cycles. To get more 

comprehensible view of the time taken, we translated the values in ticks into milliseconds by 

dividing the values by 80,000 (3.2 billion cycles per second, 3.2 million cycles per millisecond / 

40 cycles per tick = 80,000 ticks per millisecond).  
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3.1 Comparison to GMP  

The real test came when we compared the timing of our functions to the industry standard 

of arbitrary precision arithmetic, the GMP (GNU multiple precision) integer library.  For the 

GMP data below, we used the PPU, which runs at the same 3.2GHz clockspeed.  Converting 

PPU and SPU results to milliseconds allowed us to compare them directly.  Of course, different 

processor architecture is being used in each case, but as GMP will not compile on the SPU it is 

as close as we could get to a true comparison. 

These graphs show that GMP's functions far outperform thor's functions.  

 
 

The timing below is correct.  While our adding and subtracting functions likely use 

similar algorithms to those used in GMP, our multiplication is naive multiplication (the type you 

do by hand), and is therefore very slow compared to GMP's more sophisticated multiplication 

algorithms. 
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While GMP obviously outperforms thor for reasons discussed below, most functions are 

within an order of magnitude difference.  Multiplication is noticeably different, but as mentioned 

above, GMP utilizes Fast Furier Transform for multiplication, so we expected ours to be much 

slower.  The comparison is like apples to oranges until we develop FFT multiplication for the 

Cell. 
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This graph shows the log of the ratio between thor's functions and GMP's functions. It 

displays the time difference between comparable functions in terms of order of magnitude (i.e. 

10^2) to allow for better visibility of the data.  

The following charts show the percentage of total time in an addition operation used in 

adding and carrying.  The percentage of time used for carrying is roughly 83%, 87% and 91% 

respectively.  For addition operations smaller than 9 digits, carrying takes up roughly 83% of the 

total time as well. 

 
 

4 Analysis  

While we thought the Cell's novel structure would prove to be faster than a normal 

computer, the results proved just the opposite.  The fact that SPUs are not good at branching 
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coupled with the fact that datatypes can not be directly manipulated by C lead our library to be 

much slower than we thought it would be.  When compared to the GNU Multiple Precision 

library (GMP), we found that in several cases we were many orders of magnitude behind.  While 

the Cell processor may sound good on paper, vectors may be more trouble than they're worth, at 

least for integer arithmetic.  

 

4.1 Parallelizability / Comparison to GMP  

The Cell processor is praised for its ability to be parallelized and optimized for working 

with four integers at once (vectors).  However, when it comes to integer math, algorithms are 

only partially parallelizable.  For instance, when carrying after performing an addition operation, 

every significant bit relies explicitly on the bits less significant than it, and the algorithm must 

operate from right to left.  Thus, even with 6 or 7 SPUs, addition can not be optimized for 

multiple processors.  This does not lie inherently in the Cell processor, but is rather a weakness 

of positional notation in general.  Modulus and multiplication do not parallelize well either: our 

implementation of modulus is reliant on the results of repeated subtraction and shifting, and 

multiplication still involves the implementation of a carry method.  Because of this, arbitrary 

precision libraries tend to be inherently slow, and some algorithms must be linear in fashion. 

Even if the core of the operation can be parallelized, the carry must still be done linearly.  This 

greatly stunts the ability to optimize algorithms such as these.  

Another reason GMP outperformed thor was because of the difficulty of memory access 

on the Cell.  On a modern CPU, one can simply execute a[2]+=10;.  The processor is already 

adept at dealing with arrays of numbers.  However, on the Cell, that piece of code would 

resemble this: *a=spu_insert(spu_extract(*a,2)+10,*a,2);.  This is actually three operations, 

each of which takes about 3 CPU cycles.  The Cell must copy an integer from a place in 

memory, add to it, and insert it again into memory.  This lengthy bit of code leads to more 

compiled instructions, less efficient memory management, and ultimately less efficient code. 

 This leads us to conclude that when it comes to raw computing power in relation to small 

individual operations, the Cell is definitely not the weapon of choice. 

We expected our addition and subtractions to be most comparable to those utilized by 

GMP, because they are the most obviously and simply parallelizable.  Indeed, the actual adding 

or subtracting is remarkably easy.  However, carrying involves several operations for each 
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element of each component vector: 

 

Step 1:  extract an element from a vecthor, mod it by BIGGEST_INT + 1 

Step 2: add the result to the next entry over 

Step 3: divide the extracted element by BIGGEST_INT + 1 

Step 4: Insert the result of that operation back into its original place  

 

In C, it looks like this, where *(c+i) is the entry being processed 

 

            temp=spu_extract(*(c+i),j); 

            *(c+i)=spu_insert(spu_extract(*(c+i),j-1)+temp/(biggest+1),*(c+i),j-1); 

            *(c+i)=spu_insert(temp%(biggest+1),*(c+i),j);   

 

If the Cell had built-in intrinsic functions designed for integer modding and integer 

division, this process would be much faster. Unfortunately, it does not.  As it is, this sequence of 

oeprations must be done for every single entry of a vecthor.  We suspect that this carrying 

operation is what makes our adding algorithm slower than GMP's, not the adding per se.  As it 

was, results indicated that 80-90% of the CPU cycles in an adding operation were used for 

carrying.  If carrying were able to see the same 4x increase that pure addition does, an operation 

that now takes 100 time units would take roughly 28 time units.  This would make our operations 

take 3x as long as they do using GMP, rather than 10x. 

With that said, a well-parallelizable, higher level algorithm may in fact see a speed 

benefit from the Cell architecture.  If work was divided up in an efficient way and doled out to 

the SPUs intelligently, each one could perform their small bit of the problem sequentially (the 

part of the problem would have to be large enough as to not suffer from the above speed 

penalties).  For example, when generating a large prime for use in an RSA key, each SPU could 

be asked to look at a different set of numbers, meaning the overall result would be found 6x as 

fast as using one SPU.  However, in this particular example, since GMP cannot be compiled on 

the SPUs and thor is not fast enough to be worth using, a standard multi-core processor using 

GMP is still a better choice.  Given the successful application of the Cell in physical simulations 

and multimedia, it seems the Cell is great for floating point computations that are not strictly 
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sequential.  However, the Cell does not show appreciable value under the constraints of integer 

arithmetic.  The above considerations also suggest that using highly parallelized architectures 

such as GPUs or upcoming GP-GPUs for doing integer math would probably not be worthwhile.  

 

5 Conclusion  

Through exploring the capabilities and limitations of the new Cell processor architecture, 

we have learned not only of some specific drawbacks to using the Cell, but some drawbacks of 

parallelized computing in general.  For example, while vectors may be able to hold four integers 

and operate on them simultaneously, the strenuous task of reading from and writing to these 

vectors when operating on them is slow.  Also, when performing numeric operations, because of 

the nature of arithmetic algorithms, some pieces of data rely on other pieces.  This leads to a 

large stunting in the amount of data that can be parallelized at a low level, and, therefore, a 

smaller amount of potential in multicore programming to be realized.   

The Cell's SPU cores reputedly lack efficient branching capabilities, which also greatly 

hurt us.  Many arbitrary precision libraries examine the input and select an algorithm based on 

length of the operands.  On the Cell however, determining which algorithm to use on specific 

input data would be extremely time consuming, and this limited our speed greatly.  Keep in mind 

that we ran into branching problems on algorithms as low of a level as adding.  A higher level 

algorithm might experience even more severe impediments, depending on its design.   

On a larger scale, we can safely conclude that when examining a program with the intent 

of parallelizing it, one should not necessarily attempt to distribute the low-level number 

crunching loops, but rather examine the algorithm from a top down perspective and optimize it in 

this fashion.  However, the textbook way of optimizing a program for multiple cores typically 

says the opposite.  One is usually told to look for bottle-neck loops in the program and divide 

these up between available processors.  From our extensive experience on the Cell, we can say 

that this is in fact not the way to go about it.  The main reasons for this are the Cell processor's 

sheer incompetence when it comes to completing low level sequential integer operations 

smoothly.  Because these low level operations require a large number of functions to accomplish 

relatively simple tasks, the Cell benefits from a top-down optimization approach.  Most of our 

optimization mistakes were made in assuming that the best way to optimize was to tweak 

functions at as low of a level as possible. 
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5.1 Most Significant Original Achievement  

Our most significant achievement is taking several algorithms we take for granted when 

using high level languages (addition, subtracting, multiplication, string and memory 

manipulation), and examining them closely at the lowest possible level.  It has taught us a great 

deal about what it was like to implement the algorithms, as well as specific details as to how 

compilers, bits in memory, memory allocation, assembly language, threading, processor 

architecture, and intense line-by-line optimization works. The final product, spu_thor.h, may or 

may not be used extensively by the Cell programming community (or lack thereof).  However, 

through producing the library we have learned more than ever before about the nature of 

computers and algorithms, and it will continue to influence the way we meticulously build and 

optimize our programs.  
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1. Executive Summary 

  The objective of our project is to model the development of the bubonic plague in 

London for the duration of the primary outbreak in 1347 that lasted into 1350. We are applying 

epidemiology to the pandemic and analyzing the consequence it had on general social classes, 

for example the peasant’s mortality rate versus that of the nobles and higher classes.  

We chose this topic because we are interested in epidemiology, and wish to know how 

and why past societies were affected by circumstances that can be encountered today. We are 

also curious about the spread of the bubonic plague in past communities versus its spread in 

modern communities. If we can accurately replicate the Black Death, we could continue with the 

project and model a version of the Black Death in the modern-day London community. This 

would enable us to compare the spread of the plague in modern times to that of the past.  

While our final model does not reflect the degree of complexity we originally intended, it 

takes into account the chances of infection, recovery and death, the geometry of 14th century 

London and the fact that the disease was initially brought to London by ships.  We were able to 

determine model parameters, such as probability of recovery and the infection rate, that provide 

model results which correspond to historical data to a relatively high degree.  This information 

will allow us to continue to use this model and add more elements in the future. 
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2. Introduction 

A. Goal 

 Our goal for this project is to create a model of the bubonic plague in London and have it 

produce historically accurate figures, specifically with regard to the rate of death and overall rate 

of infection. We should be able observe the effect of the plague and its variations in different 

sectors of London. We ultimately want this model to be used to compare the effect of the plague 

on different social classes, comparing the mortality rates of peasants to aristocracy, or different 

professions such as the clergy or farmers.  

 

B. Hypothesis  

 We predict that if we successfully create and calibrate our model so that it gives 

historically accurate results, then we will be able to see trends of people of higher class surviving 

longest and members of the clergy dying first. Furthermore, we predict that agents who start off 

in more crowed areas, especially near the Thames, will die more swiftly than those in more 

isolated areas. 
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3. Description 

A. Biology 

              The bubonic plague, also known as the Black Death in the mid-fourteenth century, is 

derived from a bacterium called Yersinia pestis (Y. pestis), and is spread by the bite of an 

infected flea, Xenopsylla cheopis (the rat flea). The term “bubonic plague” comes from the most 

recognizable symptom, buboes, which are lymph nodes that become inflamed and swell to a 

substantial size. Victims of the plague generally die within three to seven days of infection. The 

reason for the plague’s lethality is that humans rarely have immunity to it, and once contracted, 

the plague usually spreads too quickly throughout the body for one’s immune system to react to 

it. However, if a person survives the plague they would probably never contract it again.  

The bubonic plague cannot disseminate directly from person to person, but it can develop 

into two other forms of plague, septicemic and pneumonic. Septicemic plague is developed 

through blood poisoning, and cannot spread from person to person. Pneumonic plague, derived 

from pneumonia, is communicable through people and can circulate quickly through a populace 

by means of coughing, and can cause death in three days or less. During the Black Death, the 

pneumonic plague worked with the bubonic plague and caused approximately half of the total 

plague-related deaths. 

Though the bubonic plague can be detrimental to a human population, it usually only 

occurs in rodents. This disease is only dangerous when it mutates and breaks out of its out 

biological group (rodents) and infects other groups (humans). Fleas spread the illness from 

infected rats to healthy rats by biting them and transferring some of their blood. Rats can transfer 

the plague to humans by biting them, in which case the plague is administered directly into the 

body.  
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Rats are the preferred host of the Xenopsylla cheopis, but if the rat population happened 

to decline, the fleas would be forced to find new hosts such as humans and livestock. The plague 

can also spread when the bubonic plague mutates into the pneumonic plague, which can move 

from person to person.  

B. Background 

              Thought to have originated in East Asia, the outbreak of the bubonic plague was 

devastating for the European population. It was the first major disease to reach Europe in 

centuries. The plague first appeared in Europe in 1347 and swept through the populace for the 

next two and a half years, killing over 25 million people CITE – where is this data from? With a 

preliminary population of approximately 7 million, England’s inhabitants declined as the plague 

killed almost half of its citizens. All of the social classes were affected, though the peasants were 

the most susceptible due to unhealthy living conditions and overpopulation. Only a few members 

of the nobles and royal family died due to the plague. The loss of the peasant class caused a great 

decline in food production, which contributed to the famine already sweeping the countryside, 

thus killing more people. 

The people of the middle ages had no effective way of treating the plague and it was not 

until antibiotics were developed that there was any way of stopping it at all. People blamed the 

plagues outbreak on a couple factors, including “bad air," witches, astrology and a rare alignment 

of planets. Many people believed the Black Death signaled the end of the world, or the 

apocalypse. Others thought that the Jews had created the plague as a way to destroy the Christian 

world. Thousands of Jews and other minorities were killed and tortured by the panicked masses 

of Europe, especially in England. England was already experiencing its own hardships when the 
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plague hit in 1347. The various harvests had been almost completely destroyed by rains, winter 

was approaching, and the lower classes, such as peasants, were slowly starving to death.  

The plague hit the hardest in large cities, of which London is a prime example. The 

plague reached London through the rats that inhabited trading ships carrying goods from Asia. 

Once the ships docked, the rats and fleas dissipated into the city, infecting both humans and rats 

as they went. London was overwhelmed by a combination of pneumonic and bubonic plague. 

Nearly 50% of London’s population succumbed to the plague, and thousands more died of 

starvation and other causes. By late 1350, the plague had subsided, but outbreaks would continue 

for the following three hundred years. It was not until the mid-1600s that the plague would be 

mostly eradicated.  

C. Significance  

              The Black Death had many consequences and produced many changes that would make 

a huge difference in European life. It was a turning point of the development of human 

civilization. For example, it led to the decline of the religious dogma that had controlled most 

societies for centuries. It caused people to have a greater interest in the study of science and 

medicine, which continued to philosophy, art, and a new era of invention. Trade expanded and 

eventually more efficient trade routes were searched for, leading to the discovery of America. 

The epidemic also eliminated serfdom in much of Europe. After a great quantity of the lower 

class peasants was killed by the plague, peasants were no longer thought of as personal property, 

but as individuals, and necessary for a society to flourish. Although the Black Death had many 

negative results, it brought about an adjustment in lifestyle that changed the way people thought 

and behaved, and eventually, the course of civilization itself.  
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The plague has emerged in the human population quite a few times throughout history, 

but the most famous and widespread outbreak is the epidemic that occurred from 1347 to 1350. 

This is the outbreak on which our project is based. The bubonic plague is still a common 

problem in the world today, and is currently the cause of major epidemics in regions such as 

Uganda, Kurdistan, and northern India. Also, as of late, bubonic plague has been found 

increasingly in the United States, especially the Southwest.  

D. Model 

We used Netlogo to model the spread of the plague in London.  The basic function of our 

model is to create infected agents (rats), who start off at points along the Thames River. They 

dissipate randomly into “London” staying on specific paths and interacting with the human 

agents. There are about 7,000 human agents, each representing 10 of the 70,000 people living in 

London at the start of the Plague.  

The sick rats are orange and they disperse through the London docks and infect the 

human and rat inhabitants of London through proximity. Healthy humans are green at first, and 

become yellow once they are infected. The infected agents generally live three to six more 

“ticks”. Human agents do not spread the plague as quickly as the rats do, and can only infect 

each other pneumonic plague, which has a lower chance of transmission. If a human or a rat 

manages to recover (this is moderately unlikely), then they become immune and the agent is 

shown in grey. 
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4. Development 

Throughout the course of this project we learned a lot about epidemiology as well as 

NetLogo, the program we used to model the Black Death. First, we created a basic epidemiology 

model. After we had agents infecting and recovering, we added some factors that are more 

specific to the plague. For example, we changed the model so that rats were the original infected 

agent and the spread of the sickness depended on their movement and behavior.  

One of our main challenges was incorporating a map of London into the model. We tried 

many different things, until we eventually colored in a fundamental map of fourteenth-century 

London using the GIMP photo-editing program. We colored in as many streets as we could, 

making sure that all the major roads and public areas in London were covered. We used red for 

this task, giving specific paths for the agents to move along and make contact with each other. 

We colored the Thames River blue and the docks green, and imported the patches from the 
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image into our model. This allowed us to make the agents responsive to the patch colors. The 

next step was to enable the “human” agents to move along the roads and remain on the red 

patches, avoiding the blue Thames River and the green docks. We used a piece of code that 

asserted when the setup button is hit the “human” agents automatically determine the color of 

their current patch. If the patch color is not red (the color of the roads) then the agents continue 

to move randomly until they move on to a red patch. We used a similar procedure to have the 

"rat" agents start off at specific colored points, namely the docks, which are the green patches in 

the model. These were placed at all the major docks along the London section of the Thames 

River, where the infected rats exit ships, and spread the plague among the human populace. 

This is a screenshot of the model in the earlier stages of the epidemic.  
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5. Results 

A large part of the modeling process has been tweaking various features of our model in 

an effort to make it as accurate, yet as functional as possible. Adjusting the size of the interface 

was a delicate matter; at one point there were so many pixels in “London”, that none of the 

agents ever had a chance to interact. We fixed this by shrinking the number of pixels and adding 

a variable that increased the infection radius, expanding the area surrounding an agent in which 

they could infect someone else.  

The other variables that have taken more time to adjust are those of the chance of dying, 

chance of recovering, the infectiousness of the bubonic plague and the infectiousness of the 

pneumonic plague. Our ideal model ends with about 5% of the population recovered and 

immune, 45% dead and the remaining 50% still susceptible. To figure out the perimeters that 

would lead to these results we have repeatedly run the models using the “Behavior Space” 

feature of NetLogo over long periods of time, altering these variables in increments of varying 

sizes each time. In total, we ran the model approximately 4500 times, each time with varying 

parameters. We then analyzed this information in spreadsheet form and found the ideal values 

for these variables. 

The following chart shows the closest values for the variables that we found after 

repeatedly running the model. None of the calculated variables were ideal. We were aiming for a 

survival rate of 50 to 60% and the closest runs were still 70%. Our reasoning for this is that the 

increments we adjusted the variable in had to be fairly large in order to keep the number of times 

we had to run the model down to 720 times per computer (we used 6 different computers 

overnight). These numbers all produced survival rates that were too high, but we were able to 

take the values for the variables and adjust them to create a model that produced results closer to  
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the actual statistics of the Bubonic Plague in London.  

 

Run 
number 

Infectiousness-
pneumonic 

Chance 
recover 

Chance 
die 

Infectiou
sness Steps 

End 
Count   % 

212 65 2 9 15 498 6214 Survived 77.7 

212         498 5971 
Never 
infected 74.6 

212         498 243 Recovered 3.0 
220 65 2 9 95 480 6113 Survived 76.4 

220         480 5852 
Never 
infected 73.2 

220         480 261 Recovered 3.3 
454 70 2 9 35 570 6117 Survived 76.5 

454         570 5871 
Never 
infected 73.4 

454         570 246 Recovered 3.1 
700 75 2 9 95 513 6016 Survived 75.2 

700         513 5755 
Never 
infected 71.9 

700         513 261 Recovered 3.3 
935 95 2 9 45 924 6073 Survived 75.9 

935         924 5821 
Never 
infected 72.8 

935         924 252 Recovered 3.2 
936 95 2 9 55 501 6054 Survived 75.7 

936         501 5775 
Never 
infected 72.2 

936         501 279 Recovered 3.5 
938 95 2 9 75 470 6019 Survived 75.2 

938         470 5772 
Never 
infected 72.2 

938         470 247 Recovered 3.1 
939 95 2 9 85 399 6013 Survived% 75.5 

939         399 5765 
Never 
infected 72.1 

939         399 248 Recovered 3.1 
940 95 2 9 95 729 5738 Survived 71.7 

940         729 5463 
Never 
infected 68.3 

940         729 275 Recovered 3.4 
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The variables that seemed to produce the most realistic results were infectiousness-

pneumonic = 60, chance recover = 1, chance die = 5, infectiousness = 95. We decided to 

decrease the chance-die and chance-recover because the agents were dying so quickly that they 

could not move far enough to spread the sickness. Here is a NetLogo graph of the populations of 

the agents in our model while running it within these parameters. 

Results with Optimal Parameters
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After running the model with in these parameters many times, we began to notice 

patterns within the behavior of the agents and how they interact with their environment. Because 

of the paths that agents have to follow, they take longer to spread the illness. Some agents who 

are on wider paths come into contact with many other agents and if they happen to be near the 

Infectiousness-pneumonic = 60 
Chance recover = 1 
Chance die = 5 
Infectiousness = 95 
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river, these are the first areas to be wiped out. The agents that live the longest are those that start 

out on smaller streets, farther away from the river. Because of this variation in terrain and the 

randomness of the agents’ movement, different trials of the same parameters often produced 

slightly different results. The following graph records the populations of the agents over ten 

different runs. 
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6. Conclusion 

 We were not able to get as far with our project this year as we had planned. As explained 

earlier, we managed to create a working base model of London and the plague, but we were not 

able to go into as much detail as we had originally intended. We did not finish making different 

agent behaviors to represent social classes. However, we were able to learn a lot about the 

epidemiology behind the Bubonic Plague and how the landscape of London affected that. 

Our hypothesis that agents in wider, more crowded areas, especially those close to the 

Thames would die more quickly was correct. Agents in these areas transmitted the disease very 

quickly, causing the count of sick agents to spike. We observed that it only took a few infected 

agents to enter one of these areas and almost everyone would become sick. This was also true for 

very isolated areas, but these areas also had the highest rate of survival, because they had such 

limited interaction with the other inhabitants of the model. 

 While we were trying the correctly calibrate the model and pick values for the variables 

that would generate historically accurate results, we learned quite a bit about epidemiology in 

general. We learned that a higher chance of death was not necessarily the way to make an 

epidemic worse; high chance of death, at least in our model, caused almost all infected agents to 

die before they could infect anyone else. We discovered that the key to a long lasting and 

dangerous epidemic is relatively low chance of death and very high infectiousness. This creates a 

disease that, like the Bubonic Plague, is very contagious, but does not kill all of its victims 

immediately, allowing it spread it to many other people. This is shown in the following graphs.  

 In these two graphs, the first is one in which the chance of dying was very high. The 

second had much lower chance of dying, but despite the low chance of death about 2,000 more 

people died in this simulation than in the previous one. The high chance of death in the first run 
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meant that infected people died very quickly, before they could infect anyone else. The number 

of infected people spiked rapidly and then bottomed out. The lower chance of death in the 

second run kept the sickness around much longer, infecting many more people, eventually 

leading to more deaths. When calculating the parameters for our final model we actually had to 

raise the chance of death to have a higher survival rate.  
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Our final model is not entirely realistic, in that it is still missing a few key factors. The 

main way that we think it could be improved is by adding an incubation period for the agents. A 

period of time in which they are contagious but are not showing symptoms would greatly help us 

achieve our goal of realism. We could also improve the circulation of the agents to make the 

spread of the plague more realistic. We could do this either by making people walk on “tracks” 

instead of randomly “wiggling” through the streets, or by making them walk further between 

each proximity check. 

 There are many ways that we can expand and use this model in the future. The most 

immediate thing we would like to do is complete our goals for this year by adding different types 

of “human” agents to represent the different social classes with different movement patterns and 

trying to model the varying effects of the Bubonic Plague on them. We are also interested in 

modeling the bubonic plague on a much smaller scale, looking at the interaction between 

Yersinia pestis, Xenopsylla cheopis (the rat flea), rats and humans, as well as what causes 

Yersinia pestis to break out of its biological group of rats and move on to infect humans. What 

we accomplished this year has given us a good base model of the Bubonic Plague in London and 

a good point at which to start further investigation. 
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Executive Summary
For years, the rendering equation has posed an unbreakable enigma to the scientific 

world. The sheer computational complexity of light – from diffraction to reflection to diffusion – 

forms one of the greatest problems known to physicists and computer scientists. For example, 

consider the light illuminating this sheet of paper: an uncountable number of protons are 

streaming down from a light source and striking this sheet of paper. After they hit this sheet of 

paper, some may reflect back into your eyes, and some may reflect out into space. Some may be 

absorbed into the paper, others may diffuse against the surface, and others still may pass through 

the sheet of paper and strike the desk beneath you. A complicated problem, to be sure – but one 

with a rather intuitive and simple solution.

Through a combination of upper-level statistical theory and brute force, the laws of 

probability can provide the solution to this complex problem. Our unique implementation of the 

Metropolis-Hastings algorithm gives us a method to predict light rays based on the path of other 

light rays. Through this method, we can compute a few rays and then use this method to discover 

all the other rays.

Our process begins by creating a scene containing a camera, a light source, and some 

objects. We then test various paths from the camera out towards objects to determine if the 

camera is looking at something that is illuminated. Once we find a few rays (paths from the light 

source to the camera), we create a sampling distribution based on properties of those rays. From 

that distribution, we randomly generate new rays that are then tested for accuracy. If any given 

new ray is found to be accurate, it is added to the sampling distribution.

This method allows us to create very realistic images at a very efficient rate. The creation 

of these high-quality images can be utilized for a number of purposes, ranging from analyzing X-

rays to modeling light itself.
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The Rendering Equation
Essentially, the rendering equation is the formal mathematical statement of how much 

light is emitted from a given point given the incident angle of the light, a given viewing angle, 

and various properties of the material (such as luster, reflection, index of refraction, etc). When 

one talks about “solving the rendering equation,” one does not speak of finding an algebraic 

solution to this formula. When considering solutions to the rendering equation, one looks at 

various methods that could produce the answer the rendering equation would yield. Actual 

mathematical manipulation of the equation itself would prove fruitless because many variables 

are never known, even in completely simulated situations.

Even though the equation is incredibly general, it still does not properly account for 

several aspects of light.

1. Fluorescence: When light bounces off an object (reflection or refraction) and has 

a different wave length then when it first hit the object.

2. Interference: When light waves constructively or destructively interfere with each 

other, such as in a double-slit experiment (described here: http://en.wikipedia.org/

wiki/Double-slit_experiment)

3. Phosphorescence: When light is absorbed and not immediately emitted, such as 

glow-in-the-dark shirts or shoes.

4. Surface Scattering: Because the rendering equation (and almost every subsequent 

rendering algorithm) assumes that, with enough depth, every surface is entirely 

smooth, some objects may look unnaturally solid.

Because these constraints are built into the rendering equation and any given computer 

rendering algorithm is an attempt to provide the solution to this equation, no strictly-traditional 

rendering algorithm will take these into account either. The method documented in this paper, 

however, will (optionally) compensate for fluorescence and surface scattering.
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Monte-Carlo Methods

Description and explanation
Often, a perfect mathematical solution is not available for a given problem. For example, 

the integration of many functions (like the normal distribution) can only be estimated. One tool 

in the mathematician's arsenal for resolving these troublesome situations is the Monte-Carlo 

method. Implementations of Monte-Carlo methods involve taking a large number of random 

samples from some form of distribution relating to a given problem, and then applying those 

samples in such a way as to estimate the actual solution.

Imagine that a mathematician is given a pair of two-dimensional closed shapes that exist 

across a single known domain and range. The only thing that the mathematician can test is 

whether a given point lies within a given shape. The mathematician wishes to determine which 

one has a greater area. For now, consider that the domain of both shapes is [x, y] and the range is 

[a, b]. If this mathematician wished to employ a Monte-Carlo method, s/he would take a simple 

random sample of points within [x, y] and [a, b] for both shapes. After determining a finite 

number of points, the mathematician could conclude that whichever shape had the lower number 

of points within it had the smaller area.

Two uniform properties of Monte-Carlo methods make them especially applicable to 

solving the rendering equation. First, as the number of samples (trials, runs, tests, etc.) increase, 

the answer produced by the method becomes closer and closer to the truth. Stated formally: The 

accuracy of a Monte-Carlo method is directly proportional to the number of samples used.

Secondly, Monte-Carlo methods allow for predictions about a population to be made 

using samples from that population. The difference between a Monte-Carlo method and any 

other statistical tool is that the Monte-Carlo method is flexible enough to be applied to a very 

wide range of situations. While one could simply take the mean of a sample of light rays, the 

result would be entirely useless. However, using a Monte-Carlo method combined with a 

sampling distribution proves fruitful.
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Supercomputing
The complexity (both in terms of sampling and in terms of computation based on those 

samples) makes Monte-Carlo methods a great candidate for supercomputing. Because these 

methods require a massive amount of processing power to obtain enough sample data, and 

because sample data (for the most part) can be taken in parallel, supercomputers seem to be an 

ideal platform.
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Ray Tracing Basics

Description
Ray tracing has been a frequently used solution 

to the rendering equation. Essentially, a ray tracing 

model will trace rays out from an eye source, into a 

scene, to a object in the scene, and then to the light. A 

ray is traced through every point on the viewing plane 

(represented in by the vertical line) in this way. Based on 

various angles of these vectors (and rays, represented by 

the two-segment line in the image to the right), decisions about shading and location are made. 

After the tracing process is complete, each point on the viewing plane (which is not actually a 

line, but a 2D plane) is mapped to a pixel in an image and the color of that pixel is determined.

Problems with ray tracing
While ray tracing provides a decent solution to the rendering equation, it comes burdened 

with several disadvantages. The first and most significant disadvantage is performance. Because 

there are potentially an infinite number of points on the viewing plane, achieving a perfect render 

with ray tracing would take an infinite amount of time. Second, ray tracing treats all pixels 

equally. This means that a pixel where there are clearly no objects (if a ray is traced out from the 

eye through this point, the ray, upon entering the scene, does not even come close to any objects) 

is treated in the same manner as a colored pixel. This is incredibly inefficient because an 

optimized algorithm should concentrate only on important areas of an image.

An overview of shading
One of the difficulties faced by programmers attempting to implement a ray tracing-like 

model is properly shading each point. Luckily, an observable property of light makes this quite 

an easy task.
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Consider the two traced rays in the 

image to the right. If one considers what 

this situation would look like in the real 

world, one would realize that the bottom of 

the cylinder would be more brightly 

illuminated then the top of the cylinder. In 

this case, the point represented by ray #2 

should be brighter then the point represented by ray #1. In order to determine this, consider the 

normal of the cylinder (a vector coming out directly away from the center column of the 

cylinder). The angle formed between the normal and the incident ray represents the proportion of 

shading. The larger the angle, the less illumination. One convenience utilized by many 

programmers is referred to as “cosine shading” because one could easily use the cosine of the 

angle between the normal and the incident ray as a coefficient of shading.
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3D Calculations

Defining Three-Dimensional Objects

Our three-dimensional world is created using basic shapes, such as spheres, rectangles, 

cylinders, and cones. We used the basic equations of these shapes combined with parametric 

equations to define these shapes in our program. For each shape, we need to be able to find three 

things:

1. Determine if an incoming ray intersects the object and where the collision point is.

2. The reflected or refracted ray from an incoming ray.

3. The cosine of the angle between the incoming ray and the normal vector from the 

collision point. This value is used to find the amount of lighting that points on the object 

should receive.

Spheres
A sphere is defined by its center point and radius, and it has the equation

 x−c1
2 y−c 2

2 z−c3
2=s2

with (c1, c2, c3) being the center point and s being the radius. Our incoming ray is 

defined by a starting point (a, b, c) and slope (p, q, r). The ray can be represented by parametric 

equations

x=a pt , y=bqt , z=crt .

In order to determine if and where the ray hits the sphere, we need to solve these two 

equations together. We first plug in the values for x, y, and z from the second equation into the 

first one.

a pt−c1
2bqt−c2

2crt−c3
2=s2

We then expand the expression and write it as a quadratic in terms of t. 
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 p2q2r 2 t 22ap−2c1 p2bq−2c2 q2cr−2c3 r  tc1−a2c2−b2c3−c2−s 2=0

To simplify notation, let

l= p2q2r 2 , m=2ap−2c1 p2bq−2c2 q2cr−2c3 r ,

n=c1−a2c2−b2c3−c2−s 2

The previous quadratic equation becomes 

l t2mtn=0

To determine the real roots of this equation, we first find the discriminant.

d=m2−4ln

If this value if negative, then t has no real solutions, and the ray does not hit the sphere. 

Otherwise, we use the quadratic formula and find the solutions. Plugging these values of t into 

the parametric equations gives us the points at which the line that contains the ray intersects the 

sphere. Negative values of t correspond to points behind the starting point of the ray, so they can 

be eliminated. Then we find the smallest positive value of t, which corresponds to the first point 

that the ray intersects the sphere, which is the collision point of the ray with the sphere.

To determine the resulting ray from the incident ray, we use the vector component of the 

incident ray in a formula to produce the vector component of the resulting ray. The starting point 

of the resulting ray is the collision point. Given incident vector v1 and normal vector n of some 

surface, the resulting vector is 

v 2=v1−2 v1⋅n ∗n

The normal to the sphere at the collision point is given by the vector that goes from the 

center of the sphere to the collision point. We simply plug in the values into the formula and find 

the resulting vector.

The last part we have to find for sphere is the cosine of the angle between incident vector 

and the normal. We find this by using the two ways of defining the dot product. Let's call the 
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incident v, the normal vector n, and the angle between them a. (Note that vx , vy , and vz refer to 

the x, y, and z components of v.) 

v⋅n=∥v∥∥n∥cosa

v⋅n=v x n xv y n yv z n z

Equating these two formulas and solving for cos(a) gives us

cosa =
v x n xv y n yv z nz

∥v∥∥n∥

Rotation for cylinders and cones
Cylinders and cones are more complicated because the standard equations for them are 

complicated. However, the standard equations for cylinders and cones that are aligned with an 

axis are much simpler. To take advantage of this, we define each shape with its parameters, use a 

rotation matrix to rotate the shape and align it with the z-axis, find the results of the methods, and 

rotate everything back to its original alignment. 

To rotate an object, we first represent the current axis of the object as a vector. (For a 

cylinder, the axis is the line between centers of the two circles on the ends. For a cone, the axis is 

the line that connects the point of the cone with the center of the bottom circle). We then find the 

unit vector that has the same slope as the axis we want to rotate to, which is the z-axis in this 

case. Using the dot product, we can find the angle between these two vectors. Call this angle a.

Then we use the cross product to find the vector that is perpendicular to the plane 

containing the first two vectors. This is the axle of rotation about which our object will be 

rotated. We normalize this vector and call it u. Using the axis-angle formula, the matrix of 

rotation is:

R=[ u x
21−u x

2c u x u y 1−c−u z s ux u z1−cu y s
u x u y 1−cu z s u y

21−u y
2c u y u z1−c −u x s

u x u z 1−c−u y s u y u z 1−cux s u z
21−uz

2c ]  
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where c = cos a and s = sin a.

To apply this matrix to object, multiply the vector parameters, like slopes of rays, by the 

matrix. To adjust points, such as centers of objects, multiply the point by the matrix. But 

remember that the matrix only rotates objects to align with the z-axis. The axes of the objects do 

not necessarily coincide with the z-axis. To remedy this, we calculate how far away the axes are 

from the z-axis along the x and y directions. Then we shift every point by that amount. The result 

is a transformed object with the same shape, but a different orientation. The axis of the object lies 

along the z-axis. Afterwards, we shift the points back and multiply the points and vectors by the 

inverse matrix of the rotation matrix.

Cylinders
Now that we have rotated our objects, cylinders and cones are very similar to spheres and 

rectangles. The general equation of a cylinder whose axis coincides with the z-axis is given by

x2 y 2=r2 z0z z1

where r is the radius and z0 and z1 are the top and bottom bounds of the cylinder. Just like 

before, we define the incoming ray by its starting point (a,b,c) and its slope (p,q,r). This ray can 

be written parametrically as 

x=a pt , y=bqt , z=crt

A ray, if extended, can potentially hit 

multiple points on the cylinder. Like with the 

sphere, we find all the points where the ray 

could hit and take the point that is closest to 

the starting point of the ray.

First, we check if this ray will ever 

strike the two faces of the cylinder. We find 

where the ray would hit the planes of the 

faces. Recall that the cylinder is upright and in-line with the z-axis, so the planes of the faces are 
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z=z0 and z= z1

If the ray hits these planes, it will hit the planes when

crt= z0 and   crt= z1

If the ray does hit one of these planes, we solve for t. We must then determine if the ray 

strikes the plane inside the face, which is a circle. This is only true if

a pt 2bqt 2r2

If this expression is true, we save this value of t. Then we must determine if the ray 

strikes the lateral side of the cylinder. We plug the parametric values into the general equation

a pt 2bqt 2=r2

We then simplify and write the resulting equation as a quadratic equation with t.

 p2q2t 22ap2bq ta2b2−r2=0

The real roots of this equation are values of t (if any) for which the ray hits the lateral 

side. To reduce the number of calculations that the computer must do, we first find the 

discriminant, simplify the expression and assign the variable m to this value.

m=4b2 p2−a 2 q24r 2 p2r2 q2

If the discriminant is negative, the equation has no real roots. Otherwise, we use the 

quadratic equation to find the roots.

t=−2ap−2bq±m
2 p2q2

Out of all the values of t we have so far, we find the first place that the ray hits the 

cylinder, which corresponds to the smallest value of t. However, negative values of t correspond 

to points that are behind the starting point, so we must find the smallest positive value. We plug 

this value of t back into our parametric equation to find the point that the ray hits the cylinder.

We find the resulting ray with the same formula as before. To find the normal vector of 
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the cylinder at the collision point, we rotate and shift the cylinder to align with the z-axis and 

determine whether the collision point is on the two faces of cylinder or on the lateral surface. If 

the point is on the top face, the normal is the vector in the positive z direction. If the point is on 

the bottom, the normal vector is in the negative z direction. If the point is on the lateral surface, 

the normal is the vector parallel to the xy plane that intersects the axis and the point. For 

example, if the the point is (x, y, z), the normal is the vector (x, y, 0). We then plug this value and 

the incident vector into our resulting vector formula.

Finding the cosine of the angle between the incoming ray and the normal is simple. We 

have already found the normal, and we just use the definitions of the dot product like before.

Cones
After rotating and shifting the cone to align with the z-axis, the general equation is 

x2 y 2

m2 =z0−z 2 where m= radius
height

Just like with the other shapes, we check first if the ray hits the bottom circle. Then we 

write the ray as a parametric equation, 

plug the values into the general equation, 

write the expression as a quadratic 

equation, and find the real roots. We take 

the smallest positive value of t and plug 

this value back into the parametric 

equations to find the collision point. 

Finding the resulting ray is a little 

more difficult that before because finding the normal vector is more complicated. If the point is 

on the bottom circle (or the top circle, if the cone is inverted), the normal is either the negative z-

direction or the positive z-direction. For points on the lateral surface, we've provided a figure on 

the next page shows a cross section of the cone. Point A (x, y, z) is the collision point, point B (0, 
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0, z) is the point on the axis of the cone that is on the same horizontal plane as A. The vector 

between C and A is the vector we are trying to find. Let's call this vector n.

We note that 

 ABC ~ DAB

They both have a right angles, and 

∠CAB + ∠ACB = 90o = ∠ACB + ∠CDA 

So, ∠CAB = ∠CDA and the triangles are similar. We can use the dot product definitions to 

find the angle between the axis and the vector between D and A. This is ∠CDA, which is 

equivalent to ∠CAB. Let's call this angle a. By the definition of sine,

sin a=CB
AB

We solve for CB . Since we know the coordinates of B, the distance between B and C, 

and the fact that C is also on the z-axis, we can find the coordinates of C. From the coordinates 

of A, B, and C, we can find the vector from C to B and the vector from B to A. The vector sum of 

these vectors is the vector between C and A, which is what we want. We plug this vector and the 

incident vector in our resulting vector formula to find the resulting ray.
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Since we now know the normal vector on the cone from the collision point, we can use 

our dot product definitions to find the cosine of the angle between the incident vector and the 

normal vector.
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The Metropolis-Hastings Light Transport Algorithm

Introduction and disclaimer
The Metropolis-Hastings algorithm is a specific Monte-Carlo method that approximates 

the distribution of functions that can not be directly sampled. In other words, the Metropolis-

Hastings algorithm lets one use sample data to approximate the distribution of the entire 

population.

In terms of rendering, the Metropolis-Hastings algorithm requires a slight deviation from 

the formal statement of the algorithm. Therefore, the methods documented here should not 

necessarily be considered an implementation of the Metropolis-Hastings algorithm, but should 

instead be considered as a Monte-Carlo approach to rendering rooted in the logic of the 

Metropolis-Hasting algorithm.

Explanation of the algorithm
The algorithm begins by tracing a finite number of 

rays from the camera/eye through evenly spaced points on the 

viewing plane into the scene. These rays are then stored in 

memory as three points: the point where the ray intersects the 

viewing plane (this point will be referred to as P), the point 

where the ray strikes an object in the scene (S), and the point 

where the ray hits the light source (L). It is important to note that an image can be generated from 

this point, and a sample image is shown in Illustration 3. Notice the black lines and dots present 

from a lack of sampling in certain regions, as well as the “hard” shadows present behind both 

spheres.

Let the overall population of light rays represent every single possible light ray traveling 

from the light source to the eye/camera. The list of rays generated from the first stage of our 

algorithm serves as a random sample of this population. Because the population size is virtually 

infinite (as there can be an infinite number of modeled rays from the light source to the eye), the 
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distribution of the list of rays taken will be approximately normal, as per the central limit 

theorem. With this known, the algorithm creates several distributions based upon rays that pass 

through the viewing plane in close proximity to each other. Each of these groups of rays form a 

“ray cluster,” a group of rays that have similar properties because they are within close proximity 

within the image. Realistically, there will probably be between 1,000 and 100,000 ray clusters for 

a given image.

Each ray cluster forms nine graphs/distributions – one for each coordinate in each point 

of each ray. For example, the P point's X, Y, and Z components are each plotted in their own 

distribution. The algorithm calculates the mean and standard deviation (which, in this case, is 

actually the standard error) of each distribution and uses the results as parameters to create a 

normal sampling distribution. The algorithm then takes random samples from each of these 

distributions to propose a new ray. This proposed ray is comprised of 9 random points taken from 

9 different sampling distributions. Thus, a proposed ray can be defined as: 

P{X, Y, Z} S{A,B,C} L{Q, R, S}

Once this proposed ray has been generated, it is tested against the scene itself (i.e., the 

algorithm makes sure that the proposed ray is actually valid within the modeled world). If the 

proposed ray is added, the proposed ray is added to the 

current ray cluster and the mean and standard deviation 

of the normal distribution being used is recalculated 

and another ray is proposed. This process repeats until 

an adequate number of rays have been calculated, or a 

finite time has been reached. Illustration 4 is what 

Illustration 3 looks like after the Metropolis-Hasting's algorithm finds 1280000 rays. The result 

speaks for itself.
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Image comparison
The first image is a high quality image produced by the Metropolis-Hastings algorithm. 

The second image is created from standard ray tracing. Specifically, note the softer shadows and 

lack of graininess in the Metropolis-Hastings image.
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Parallel advantages of the algorithm
Rendering algorithms are great candidates for parallel computing. In fact, most modern 

day graphics cards (such as those designed by nVidia and ATI) contain hundreds of vector 

processors for quickly rendering images. Sadly, the methods and algorithms used are aimed at 

creating realistic looking graphics, not an accurate model of light. However, the same capabilities 

for parallelization exist within the algorithm's more accurate and realistic model of light.

The graph above depicts the runtime for a high-quality render using the Metropolis-

Hastings algorithm. The blue bar represents the time it took for a given number of cells (in this 

case, each cell is a separate computer running 3 threads) to complete the render. The red bar 

represents how long it would take to render the image in a perfect world – i.e., one with perfect 

scaling. For example, with one cell the render took 900 minutes. In a perfect world, eight 

computers would be able to preform the same task eight times faster, which would be 112.5 

minutes. The algorithm took 113 minutes with 8 cells, demonstrating that the algorithm is 

incredibly distributable, and thus an excellent candidate for a supercomputer.

There are three properties of the algorithm and its implementation that make it 

particularly distributable:

1. Each ray cluster can be calculated independently of other ray clusters. This has 
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two implications. First, it means that each cell requires no communication with 

the cells around it. Each cell only needs to be able to talk to one central cell 

(perhaps called a server). Second, each ray cluster can be calculated at the same 

time, which means as the number of cells increase, the algorithm continues to 

scale because the number of clusters will always exceed the number of cells (one 

can control the number of ray clusters for any given image, giving the algorithm 

almost infinite scalability).

2. The actual rendering – the creation of the pixels themselves – can be done 

independently from each ray cluster. This means that each cell does not have to 

send back all the data contained in its ray cluster, only the RGB values (red, 

green, and blue) of each pixel the cell was assigned to calculate. This provides for 

a very low amount of network traffic, thus decreasing the cost of adding an 

additional cell.

3. The algorithm has a low traffic-to-processing ratio. This means that very little 

data needs to be sent across the network to instruct each cell of what it needs to 

do. Each cell needs only two components in order to operate: the area of the 

viewing plane that contains the ray cluster a given cell would be responsible for, 

and a copy of the scene. The area is only two doubles, one representing a starting 

point and another representing a stopping point. The digital world is small as well, 

and could even be preloaded. One may think the scene would take up a lot of 

space, but keep in mind that a sphere is really just a point and a radius. Everything 

within the algorithm is represented in terms of dimensions.

Video produced by the algorithm
Little known fact: The movie Shrek took several years to render. In designing the 

algorithm, it was pointed out that if high quality images could be produced, then high quality 

video could also be produced by stitching several images together. The results proved 

illuminating (pun intended). Because this medium (paper) does not easily allow for the 
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publishing of a video file, a sample video produced by the algorithm can be viewed here: http://

marcusfamily.info/~ryan/Export.mov

The ability to render video makes the algorithm an even better candidate for a 

supercomputer. Because each frame can rendered independently of each other, the algorithm can 

efficiently encompass even more cells while gaining a phenomenal performance boost. 
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Conclusions
While the algorithm described here (and developed, in full, by team 69) does not come 

close to providing an all encompassing model for light, it does succeed in providing a 

supercomputer-ready, high quality, and incredibly accurate model of light.

Through a combination of statistics, theory, and the power of computers, this 

implementation of the Metropolis-Hastings Light Transport algorithm was not only incredibly 

successful, but also a pleasure to develop.

Light is a tricky thing. It surrounds every human everyday, and is probably one of the 

most taken-for-granted elements of human life. Hopefully, this algorithm will provide some 

insight into the surprisingly dark mystery of light. That is everyone's goal anyway: 

enlightenment. 

A wise grandmother once said: “computers seem to be a compilation of pretty pictures on 

top of loud boxes.” The algorithm creates some of the prettiest pictures on some of the loudest 

boxes, so at a minimum, it is grandmother-approved.
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2. Executive Summary 

As a result of cosmic radiation interaction with the atmosphere we find that a series of 

phenomena known as extensive air showers results from the decay of these particles when they make 

contact with the gases and other elements our atmosphere is composed of. Because each particle decays 

differently depending on the strength of the forces that bind it we find that air showers produced by 

different particles produce a different array of daughter particles which if unstable continually break up 

into other subatomic particles. Because of such we can determine what kind of particle each air shower 

is produced by based on the pattern of decay left as it approaches ground level and the energy of the 

particle causing the air shower.  

The purpose of our project is to determine the difference between gamma and electromagnetic 

air showers. We are going to solve this problem with the help of the CORSIKA computational model. 

The CORSIKA model itself is a Monte Carlo system, that is to say, that it randomly chooses numbers 

for its plotting. We want to evaluate the distribution of particles at seven thousand feet and first 

interaction relative to density that the GNUplots produce. All graphs are plotted on a Cartesian 

coordinate system with the center of the interaction as the origin. If a particle is a proton there will be 

much more energy towards the center of the interaction. If a particle is a gamma then it will not have as 

much particles and they will be more spread out towards the center of the interaction. Another means of 

determining the differences is by evaluating the different daughter particles that each interaction 

produces. For example if a particle is a proton it will produce muons. If it the particle is gamma then it 

will produce solely electromagnetic daughter particles. We are not going to launch these results once, 

but more like a thousand times in order to gain a more accurate understanding of the characteristics 

associated with air shower events.
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3. Introduction 

Extensive air shower simulation is a area of study which has great potential relative to the 

understanding of particle decay and development as evidenced by findings related to particle decay and 

daughter particle development as a result of air showers resulting from interactions similar to those 

evaluated within our study. Such studies can result in information relative to the stability of certain 

particles, the decay rate of these particles, and the creation of daughter particles. Essentially the 

evaluation of particle interaction within nature is comparable to the work done at CERN with the LHC 

although with real interactions being taken into consideration.  Therefore we find that the study and 

simulation of extensive air showers is a vital and cheap means of evaluating particle characteristics and 

the forces which drive the universe as a whole.

The primary goal of several institutions around the country and throughout the world is particle 

characterization as a result of computer simulation and physical experimentation in order to produce a 

more full understanding of the components which account for all matter and likewise hold the key to 

understanding why the universe exists in the means in which it does. These simulations and 

experiments are integral to one another; each exists to prove or test the other. We find that code can be 

written according to theory but the true test of its worth can only be found through experimentation, 

and similarly experiments need to be designed according to certain standards which can be determined 

through computer simulation.

A companion approach involving the use of both physical experimentation and computer 

simulation can provide the best means of evaluation.  A large scale analysis of data produced by proven 

code and the implementation of physical experimentation could potentially lead to the association of 

certain before unknown characteristics with certain particles, a cheap means of particle study yielding 

the same results as something as complex as the LHC, and potentially provide information relative to 

why the universe exists as it does and perhaps lead to the discovery of before unknown particles. 
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3.1 Problem Statement 

How can raw data be accurately used to potentially identify the parent particle causing an 

extensive air shower event, i.e. Hadronic vs. electromagnetic in origin? How can these observations be 

used to further our knowledge of particle behavior and characteristics? 

3.2 Procedure Overview 

Our study begins with the acquisition of raw data produced by a series of simulations validated 

by code for data analysis. Such data is produced by the CORSIKA version 6900 program, a Monte 

Carlo simulation package which simulates the interaction and break up of certain particles and light 

nuclei. This data contains a series of parameters relative to particle decay and interaction, including 

parent particle type, daughter particle types, and energy at ground level interactions of 7000 ft in 

elevation.

Using this data we then compare the number of particles produced, the types of daughter 

particles, and energies at ground level to the parent of the original interaction. These are then plotted on 

a curve in order to determine the fundamental differences between particle interactions and establish 

traits common to each parent as it decays. 

This means of distinguishing particles is commonly used and can potentially be used to classify 

and determine before unknown characteristics of particles as they decay and interact. We have meshed 

the CORSIKA version 6900 software with our own coding in order to write a program which can take 

raw data from any source, in terms of daughter particle types, total energy in GeV or TeV, and number 

of particles produced and provide a fairly guess as to what particle initiated the interaction in question.
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4. Background Research 

4.1 General Particle Information 

Particles responsible for extensive air showers must have a source. Stars, supernova, black 

holes, and similar objects produce radiation. This radiation comes in the form of particles. Different 

particles decay faster than others depending on how stable they are. All particles decay at different rates 

depending on how stable they are and the rate of velocity with which they collide with an object or 

material in space. All particles have different charges and masses. Relative to our project we are 

looking at protons, muons, and gamma particles. For example less stable particles such as pions and 

kaons produce a cascade faster as a result of  but they are not relative to our project.

A cascade occurs when particles decay producing more and more particles; a chain reaction 

occurs. The explosion produces masses of particles. Cascades produce particles exponentially. These 

cascades occur 24 hours a day 7 days a week. Cascade simulation is important because it is the main 

focus of our project and it provides a means of studying particle interaction cheaply.  

Since protons have a charge and a mass they are affected by the gravitational fields of planets, 

supernovas, black holes and objects in space of which either hold a strong enough gravitational pull or 

magnetic field to interact with the particle’s t Hadronic vs rajectory. These influences alter the path of 

the particles when they reach the earth. Particles will decay if they encounter an object at a high enough 

velocity no matter how stable a particle is. This includes protons. Even though they are very stable they 

will still decay. We are aware that the magnetosphere and material interaction does play a role in our 

CORSIKA program, and have set out to identify and understand the corresponding equations. When 

protons hit the magnetosphere, the proton particles will be repelled, since both protons and the 

magnetosphere have different charges. If the proton has a high enough velocity it will break up and 

decay through. When they hit the earth the cascade the parent particle produces can be seen as 
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containing several characteristics common of the parent which produced it.

Gammas are the opposite from protons; they do not have a charge and a mass. So they are not 

affected by gravitational pulls of objects in space. They will also produce daughter particles but that is 

unlikely. 

We are going to gather the attributes of both Hadronic and electromagnetic air shower 

interactions and with the help of our computational model determine the differences between these two 

groups of particle interactions. 

2

4.2 Equations Used

The following equations are integral to calculating the outcome of interactions between particles 

2 http://lpsc.in2p3.fr/TPsubat/m2/cosmic-rays.jpg  
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and a material and are essential to understanding the interaction between the atmosphere and a particle. 

These equations describe the phenomena accurately and are essential to describing several particle 

characteristics.  

Bethe-Block Stopping Formula 

dEi= λ z2


1 ln −1 −2 =  2

2−1
1 ln 2−1−2

β = v/c, γ is its Lorentz factor, z is the charge of the ionizing particle in units of e.  κ1 = 0.153287 MeV 

g −1 cm2 and κ2 = 9.386417 are derived from values for dry air

Deflection in Earth's Magnetic Field 

≈lZ
[p X B]

p2  Hadronic vs

This is a description of particle deflection in Earth's magnetic field, where l = length, z = charge, B 

vector = magnetic field vector, p vector = particle momentum 

Time of Flight    Hadronic vs  

dt= l
cave

At the first interaction of the primary in the atmosphere, the timing of the shower is started. The time 

interval dt is the time elapsed as the particle moves along its path; dt is calculated by dividing the path 

length l by the average particle velocity, where B ave is the arithmetic mean of the particle at the 

beginning and end of the trajectory.

Mean Path 

 tni=mair / tni
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Describes the interaction between muons and a material, in this case air. The mean free path for these 

interactions is given by the equation above where m air = 14.54 is the average atomic weight of air in 

g/mol and λ tni is given in g /cm2 .  

Probability of Material Traverse 

 P tni= 1
 tni

e−/

Describes the probability of a muon to traverse an atmospheric layer of thickness λ without 

corresponding interaction.

4.3 Air Shower Evaluation 

We find air showers to be reliant on the particles that produce them; the particle that produces 

an interaction will inevitably affect what happens during this process. Therefore we find that an 

interaction which contains a gamma as a parent will decay differently than a proton or other particle, 

and as a result produce a different numbers of daughter particles as opposed to a proton shower 

produced under the same conditions. Likewise these particles will differ in terms of final ground level 

energy, and daughter particle types. 
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3

4.4 Hadronic VS. Gamma Particles 

In terms of our project we are solely identifying the differences between Hadronic air shower 

events and electromagnetic or gamma induced events. These particles have a series of major 

fundamental differences in terms of the physical qualities of the individual particles themselves and in 

terms of the air showers they produce, as evidenced by our work. Some of the fundamental differences 

between protons, the parent of Hadronic showers, and gamma particles can be found in variances in 

charge, i.e.  protons have a charge of 1+e, mass of 1.672621637(83)×10−27 and a mean lifetime of 

>2.1×1029yr.  Gamma particles however have no mass, no charge, and are stable with an indefinite 

lifetime (see figure above). Likewise we find that air shower events produced by differing particles 

3  Standard Model of Particle Physics
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decay differently as a result of their stability and makeup.

4  Model of Proton   

We find protons to be composed of one down and two up  quarks as evidenced by the model below. 

4 http://en.wikipedia.org/wiki/File:Quark_structure_proton.svg
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5. Procedures 

5.1 CORSIKA Simulation

The computational model we are implementing in our project is written in the FORTRAN and C 

programming languages and is known as CORSIKA version 6900. CORSIKA is a Monte Carlo 

program, meaning it sets random values for simulation, hence it looks at a wide array of simulations 

and interactions at different energies and altitudes. Because of such we find that CORSIKA is non-

limiting and useful for a wide variety of terms. Besides imaging gamma and proton showers, which are 

the focus of our project, CORSIKA also simulates air showers created by other subatomic particles, 

nuclei of certain elements, and photons. 

5

5.2 Physical Model

Our physical model is based on a wire array detector known as a Geiger Muller detector and 

consists of several arrays of thin wire, approximately 250 micrometers in diameter, which is laid out 

5 CORSIKA start page 
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and charged with high voltage. These detectors are assembled in an array and are designed to have 

several layers of wire arrays. The physical properties of these detectors allow particles with a charge to 

be counted because when these particles encounter the array they interact with the voltage carried 

through the sense wires and change the overall voltage running through the system, which initiates our 

counter to consider this small change as a particle interaction. We must allow for arrays to be layered in 

order to effectively determine a particle’s origin. The reason for such lies in the fact that background 

radiation interacts with the detector and can cause changes in voltage within one array although if data 

from layered arrays is considered we can consider background radiation ruled out. Such phenomenon 

exists because we find that background radiation has a low implicit velocity and charge, therefore it 

should cause a change in only one array although we find that particles resulting from cosmic rays and 

their daughter particles hold an inherit high charge and velocity and should likewise pass through 

multiple detectors easily. With the combination of a semi large array of particles we should be able to 

determine the pattern produced by several real air showers and compare them to data found through our 

simulations in CORSIKA and our original coding to determine the parent particle which initiated the 

shower. 

At this point we have not been able to run our detector due to problems associated with the 

particle counter and power supply. This side project is still in progress and we intend to complete and 

run it in order to possibly compare data collected from this with our own coding and the CORSIKA 

models.
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6 Original particle detector dsesign
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6. Analysis of Methods

One of the methods we are going to use involves the evaluation the series of plots and graphs 

that were produced by CORSIKA and our own coding. We are going to use these graphs as a means of 

determining the differences between Hadronic and Electromagnetic air showers. Through our research 

we have discovered that the methods we have employed, evaluating daughter particle distances from 

the center, and evaluating daughter particle types produced are effective ways of determining the 

differences of Hadronic and Electromagnetic air showers.

In one of our graphs we are comparing the distance of daughter particles from the center of the 

interaction from both proton and gamma showers. We intend to determine similar qualities between 

similar particles in order to produce a means of particle identification.

In another one of our graphs we are comparing the daughter particle spread of both Hadronic 

and Electromagnetic showers. This method helped us determine the different types of daughter 

particles that will be produced between both Hadronic and Electromagnetic showers in one interaction.

In our plots we are comparing the images of the Hadronic and Electromagnetic showers. Some 

visual differences we need to analysis in the plots are high amounts of energy or low amounts of 

energy, if the energy is more compressed or more spread out, and weather or not the interaction 

produces daughter particles or not.

If the air shower is produce by particles that have a mass and a charge then visually the plot will 

reveal high amounts of energy, the energy will be more compressed, and there will daughter particles 

like muons present. If the air shower is produced by particles without a mass and a charge then there 

will be lower amounts of energy, the energy will be more spread out, and there will be no daughter 

particles.     
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7. Sample Results 

7.1 Sample Data

The following data has been produced as a result of our own coding and the COSIKA software 

and represents a fragment of the data used for our study.

7.2 Data from Distcalc.cpp

The following data excerpt represents particle distance versus bin number produced by the 

Distcalc.cpp program. This data is visualized in the 'Particle Distance from Center' plots following. 

0 2670

1 2527

2 2054

3 1710

4 1363

5 1060

6 898

7 740

8 550

9 498

10 437

11 377

12 294

13 276

14 244

15 207
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16 188

17 165

18 153

19 129

20 132

21 108

22 86

23 96

24 73

25 74

26 73

27 66

28 71

29 43

30 50

31 55

32 50

33 38

34 46

35 41

36 25

37 31

38 37

39 22
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7.3 Data from PID-Distributions.cpp

The following data represents the number of daughter particles versus daughter particle types 

produced by our PID-Distributions.cpp program, and is visualized directly below in the 'Daughter 

Particle Spread' plots.

Gamma Parent 

0 637

1 430627

2 18410

3 33565

5 55

6 61

Proton Parent

0 366

1 755891

2 37362

3 64554

5 7493

6 7302

7.4 Daughter Particle Spread 

The following graph represents daughter particle types produced by a pool of gamma and proton 

interactions, focusing on particle types 1-6. We find that for the given data set that there is a subtle 
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although noticeable difference between the daughter particles produced by both gamma and proton 

parents between the number of type five and six particles. This difference therefore provides a possible 

means of particle identification and differentiation. 
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Image plotted with Log Scale 

In the following plot the same data set used above is plotted with a log scale function in order to 

make more subtle differences stand out. As a result we find that daughter particle types produced by 

both gamma and proton parents is similar, although through use of the log scale function the 

differences between particle types five and six, the muon particle and antiparticle, μ±,  is made more 

clear.

7.5 Particle Distance from Center

In the following images we find a representation of the individual particle distances from the 
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center plotted as a function of number of particles versus particle distance.  On the image portrayed 

directly below we find that the distances of particles, i.e muons, produced by different parent particles 

is very close regardless of the fact that they are produced by different parents. As a result we can label 

particle distance from the center as a fairly inaccurate means of distinguishing the parent of an 

interaction, but a valuable means of differentiating between daughter particle types produced.  

Image Plotted with Log scale Function 

The plot below represents the same data table as above although with an added log scale 

function used to make subtle differences between our plotted data easier to interpret. Likewise the 
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linear regression of each particle type versus distance from center is made more clear.
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7.6 Proton Shower Images

Following are a series of proton plots produced in CORSIKA and plotted in GNUplot, each 

represents an individual shower with differing energies. Through evaluating these plots we can begin to 

see differences between different interactions, i.e. muon production in proton showers7, in the case of 

the following images.8

7 Muon particles represented in green in plots. 
8 All GNUplot images original product of data produced by CORSIKA v. 6900 
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7.7 Gamma Shower Images

The following images contain data relative to gamma particle interactions; once again we find 

some visual differences between gamma and proton induced interactions. Note in the following images 

the lack of muons and overall difference in number of daughter particles.
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8. Future Work

This project is still in progress. In the future we would like to:

• Input data and actually determine weather the interaction is a proton or a gamma. Right now we 
only have characteristics; we do no actually have solid conclusions that the interaction we are 
looking at is a proton or a gamma

• Optimize our coding to produce images in our GNUplots that will be easier and more efficient 
to analyze

•  If possible we would like to feed our coding with real world data and compare both the real 
world data and data from the CORSIKA source code to determine if results are the same in both 
situations.
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9. Conclusion

With our research we have discovered that our coding and the CORSIKA source code will help 

us develop plots and graphs that will distinguish between characteristics of both Hadronic and 

Electromagnetic air showers. Some characteristics we have discovered in our plots and graphs are 

energy amounts, the spread and compression of the energy amount, distance away form the center, and 

daughter particles. With the characteristics that we have gathered from our research we will be able to 

determine the differences between Hadronic and Electromagnetic air showers. We have found that the 

most significant original achievement made as a result of our project is relative to determining specific 

characteristics of different air shower events.
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