
Supercomputing Challenge

Finalist Reports

2009-2010

www.challenge.nm.org

Printed in cooperation with
Los Alamos National Laboratory

High Performance Computing Group (HPC-3)
and

New Mexico Public Education Department

Cover: The Holy Grail of Adam’s Ale
Team 65 from Los Alamos High School

Rachel Robey, Gabriel Montoya,
Orion Staples and Orli Shlachter

Teacher Lee Goodwin
Winner in the Technical Poster Competition

Notification: These final reports are presented in an abridged form, leaving out actual
code, color, and appendices where appropriate. Complete copies of most of the final
reports are available from the archives of Supercomputing Challenge web site:
http://www.challenge.nm.org .

1

New Mexico Supercomputing Challenge
2009 – 2010 Finalist Reports

Table of Contents

About the New Mexico Supercomputing Challenge
For more information, please visit our website at http://www.challenge.nm.org ………2

2009—2010 Challenge Awards ………………...…………………………4

Scholarship winners ……………………………………………………….8

Sponsors …….……………………………………………………...………9

Participants ……………………………………………………………….10

Judges……………………………………………………………………...16

Finalist Reports …………………………………………………………..19

1. Control and Spread of Wildfires II, Melrose High, Team 99
2. The Holy Grail of Adam’s Ale, Locating Aquifers through Geostatistic
 Modeling, Los Alamos High, Team 65
3. To Kill a Flocking Bird, Los Alamos High, Team 70
4. The Metropolis Algorithm and Nanometer-Scale pattern Formation,
 Albuquerque Academy, Team 5
5. Arbitrary Precision Integers on the Cell Processor,
 Desert Academy, Team 36
6. The Spread of the Black Death in London, Desert Academy, Team 37
7. Enlightenment: Metropolis-Hastings Ray Prediction Model in 3D Space,
 Los Alamos High, Team 69
8. Particle-Atmosphere Interaction, McCurdy High, Team 84

http://www.challenge.nm.org/�

2

Supercomputing Challenge Vision

The Vision of the Supercomputing Challenge is to be a nationally recognized program
that promotes computational thinking in science and engineering so that the next
generation of high school graduates is better prepared to compete in an information based
economy.

Supercomputing Challenge Mission

The Mission of the Supercomputing Challenge is to teach teams of middle and high
schools students how to use powerful computers to analyze, model and solve real world
problems.

About the Supercomputing Challenge

The Supercomputing Challenge (the Challenge) is an exciting program that offers a truly
unique experience to students in our state. The opportunity to work on the most powerful
computers in the world is currently available to only a very few students in the entire
United States, but in New Mexico, it is just one of the benefits of living in the "Land of
Enchantment."

The Challenge is a program encompassing the school year in which teams of students
complete science projects using high-performance supercomputers. Each team of up to
five students and a sponsoring teacher defines and works on a single computational
project of its own choosing. Throughout the program, help and support are given to the
teams by their project advisors and the Challenge organizers and sponsors.

3

The Challenge is open to all interested students in grades 6 through 12 on a nonselective
basis. The program has no grade point, class enrollment or computer experience
prerequisites. Participants come from public, private, parochial and home-based schools
in all areas of New Mexico. The important requirement for participating is a real desire to
learn about science and computing.

Challenge teams tackle a range of interesting problems to solve. The most successful
projects address a topic that holds great interest for the team. In recent years, ideas for
projects have come from Astronomy, Geology, Physics, Ecology, Mathematics,
Economics, Sociology, and Computer Science. It is very important that the problem a
team chooses is what we call "real world" and not imaginary. A "real world" problem has
measurable components. We use the term Computational Science to refer to science
problems that we wish to solve and explain using computer models.

Those teams who make significant progress on their projects can enter them in the
competition for awards of cash and scholarships for the individuals and computer
equipment for the school. Team trophies are also awarded for: Teamwork, Best Written
Report, Best Professional Presentation, Electronic Search & Browse, Creativity and
Innovation, Environmental Modeling, High Performance, Science is Fun and the Judges'
Special Award, just to name a few.

The Challenge is offered at minimal cost to the participants or the school district. It is
sponsored by a partnership of federal laboratories, universities, and businesses. They
provide food and lodging for events such as the kickoff conference during which students
and teachers are shown how to use supercomputers, learn programming languages, how
to analyze data, write reports and much more.

These sponsors also supply time on the supercomputers and lend equipment to schools
that need it. Employees of the sponsoring groups conduct training sessions at workshops
and advise teams throughout the year. The Challenge culminates with an Expo and
Awards Ceremony in the spring at Los Alamos National Laboratory.

History

The New Mexico High School Supercomputing Challenge was conceived in 1990 by
former Los Alamos Director Sig Hecker and Tom Thornhill, president of New Mexico
Technet Inc., a nonprofit company that in 1985 set up a computer network to link the
state's national laboratories, universities, state government and some private companies.
Sen. Pete Domenici, and John Rollwagen, then chairman and chief executive officer of
Cray Research Inc., added their support.

In 2001, the Adventures in Supercomputing program formerly housed at Sandia National
Laboratories and then at the Albuquerque High Performance Computing Center at the
University of New Mexico merged with the former New Mexico High School
Supercomputing Challenge to become the New Mexico High School Adventures in
Supercomputing Challenge.

4

In 2002, the words "High School" were dropped from the name as middle school teams
had been invited to participate in 2000 and had done well.

In the summer of 2005, the name was simplified to the Supercomputing Challenge.

In 2007, the Challenge began collaborating with the middle school Project GUTS,
(Growing Up Thinking Scientifically), an NSF grant housed at the Santa Fe Institute.

2009—2010 Challenge Awards

Melrose High trio named top team in 20th New Mexico Supercomputing Challenge

Student research project modeled behavior of wildfire

LOS ALAMOS, New Mexico, April 27, 2010—A trio of students from Melrose High
School captured the top prize in the 20th New Mexico Supercomputing Challenge hosted
by Los Alamos National Laboratory. The report "Control and Spread of Wildfires II" by

5

brothers Richard and Randall Rush and Kyle Jacobs built upon previous research by the
team and added a new variable, topography, to the computer model as a factor
contributing to the behavior of wildfire.

Each student receives a check for $1,000. The team also received the Crowd Favorite
Award—and $100—as selected by student participants, teachers, and mentors.

Two Los Alamos High School teams captured second and third place. "The Holy Grail of
Adam’s Ale" received second place, and "To Kill a Flocking Bird" captured the third-
place prize.

The Supercomputing Challenge is open to any New Mexico high-school or middle-
school student. More than 250 students representing 70 teams from schools around the
state spent the school year researching scientific problems, developing sophisticated
computer programs, and learning about computer science with mentors from the state’s
national laboratories and other organizations.

The goal of the yearlong event is to teach teams of middle- and high-school students how
to use powerful computers to analyze, model, and solve real-world problems.
Participating students improve their understanding of technology by developing skills in
scientific inquiry, modeling, computing, communications, and teamwork.

The Los Alamos High School team of Gabriel Montoya, Rachel Robey, Orli Shlachter,
and Orion Staples each received $500 for the second-place research project, which used
geostatistics, a branch of applied statistics, to find aquifers and other groundwater
sources. Robey and Montoya took third place in last year’s challenge for their project on
energy efficiency through smart wall design.

The team also received the Best Technical Poster Award. Their poster will be used on the
front cover for the 2009-10 final reports book, which will be published this fall during the
kickoff for the 2010-11 Supercomputing Challenge. The team also received the
Visualization Award from New Mexico Institute of Mining and Technology. The award
comes with $150.

The third-place team consists of students Peter Ahrens, Stephanie Djidjev, Vickie Wang,
and Mei Lui. Their project explored techniques used to optimize the parameters of
flocking, a phenomenon frequently exhibited by birds during migration, animals such as
elephants who flock to protect smaller, weaker members, and in humans. They each
receive $250.

The quartet of Los Alamos High students also received the Best Internet Research
Prize—and a $500 cash award—from the Council for Higher Education
Computing/Communication Services. They also garnered the New Mexico Network for
Women in Science and Engineering award for best project with a majority of women
team members, and shared the Visualization Award with the second-place team from Los
Alamos High. The award comes with $150.

http://www.challenge.nm.org/�

6

Additional Finalist teams were:

Team 5, Albuquerque Academy, The Metropolis Algorithm and Nanometer-Scale Pattern
Formation
Team Members: Michael Wang, Jack Ingalls
Sponsor: Jim Mims, Mentor: David Dunlap, Ph.D

Team 36, Desert Academy, Arbitrary Precision Integers on the Cell Processor
Team Members: Megan Belzner, Matt Rohr, Bjorn Swenson
Sponsor/Mentor: Thomas Christie

Team 37, Desert Academy, The Spread of the Black Death in London
Team Members: Katie Boot, Sara Hartse
Sponsors: Thomas Christie, Jocelyn Comstock

Team 69, Los Alamos High School,
Enlightenment: Metropolis-Hastings Ray Prediction Model in 3D Space
Team Members: Kathy Lin, Jake Poston, Ryan Marcus, Dov Shlachter
Mentor: Lee Goodwin

Team 84, McCurdy High School, Particle-Atmosphere Interaction
Team Members: Dennis Trujillo, Oliver Galvan, Brandon Ricci
Mentors: John Pretz, Brenda Dingus, Philip Sanchez

All were taking home posters for their school trophy cabinets and a large banner for their
gym and $50 per student.

7

The Challenge honored Erika DeBenedictis who won the individual Intel Science Talent
Search with $100,000 scholarship. Erika participated as the youngest finalist judge as part
of the Challenge's appreciation for her skills.

The Creativity and Innovation Award, $100, from Sandia National Laboratories went to
Team 33, Deming High School, Tortuga Trouble: A New Survey Method. Team
Members were Rocky Navarrete and Gabriela Anguiano. Their teacher sponsor was
Creighton Edington.

The Science Rocks award went home with Team 18, Aspen Elementary, The
Disappearing Honeybees. Team Members were Kim Vo, Rowan Cantua and Kaelan
Prime. Their sponsor was Zeynep Unal. Their mentor was Duc Vo.

The best epidemiology project was given to Team 37 from Desert Academy. The title of
their project was The Spread of the Black Death in London. Team members were Katie
Boot and Sara Hartse. Their sponsors were Thomas Christie and Jocelyn Comstock.

Team 79, Los Alamos Middle School, Alien River Cloggers, won the Los Alamos
National Laboratory Environmental Modeling Award and $100. Team members were
Jacob Holesinger and Kevin Tao, Teacher sponsor was Clara Vigil. Their Mentor was
Terry Holesinger.

Cray, Inc. awarded Team 36, Desert Academy, Arbitrary Precision Integers on the Cell
Processor the High Performance Computing Award. Team members were Megan
Belzner, Matt Rohr, Bjorn Swenson. Sponsor and mentor was Thomas Christie.

The Don't Panic Award goes Team 50, Freedom High School, A Proper Interpretation of
Panic. Team members were William Barrett, Holly Campbell, Chelsea Kibbee and Amy
Ronan. Their teacher sponsor was Joe Vertrees.

Teamwork Award went to 107 from Quemado High and Silver High Their project First
Impressions earned $100. Team members were Jose Mora and Austin Nightengale. Their
teachers were Laura Larisch and Peggy Larisch.

Team 13 from Artesia received $100 for the Best Web Presentation of a Final Report for
their project Classroom Behavior. Team members were Cristina Villa, Nayeli Ramirez
and Brenna Arredondo. Teacher sponsor was Amy Mathis. Mentors were Randall Gaylor,
Nick Bennett and Olivia Rueda.

The Award for Best Agent Based Modeling goes to team 37 from Desert Academy. The
team members, Katie Boot and Sara Hartse, worked on the project, The Spread of the
Black Death in London. The sponsors were Thomas Christie and Jocelyn Comstock.

Team 102, from Navajo Preparatory School, Alexis Archambault, Ariel Nephew and
Wilfred Jumbo received the Community Focus Award and $100 for their project The
Latest Buzz About Bees. Their sponsor was Mavis Yazzie.

8

The Award for Best Professional Presentation Award, given by the Albuquerque Journal,
went to Team 68 from Los Alamos High School. They were well-prepared, articulate,
dressed appropriately, and responsive to feedback. The team members were Sam Baty
and Peter Armijo. Their sponsors were Lee Goodwin and Diane Medford. Mentors were
Roy Baty and John Armijo. Their project title was Astrophysical N-Body Simulations of
Star Clusters.

Team 53 was taking home the Jeff Bingaman Middle School Award. Team Members
were Ariel Koh and Aline Parliman Their project was Grocery Tracker. Their mentor was
Dr. Aik-Siong Koh.

Harry Henderson and JP Gonzales were awarded the Challenge Service Award for
traveling the state to support teams and being a vital part of the Challenge management
team.

Two new awards went to Jerry Esquivel, CEPi1, an Albuquerque charter school and
Laura Larisch, Quemado High. Laura won the Newcomer Award for being a first year
teacher sponsor who supported three teams and two scholarship applicants. Jerry won the
Magellan Award for bringing computer science to his school community and modeling
lifelong learning.

The best logo award went to Team 11, for the best graphic for next year's logo which
goes on the t-shirts and teacher bags. Artesia High School, Sugarscaping On a Beowulf
Ring. Team Members were Wesley Green, Isaiah Jordan, James McGee, Wen Hai Zheng.
Their teacher sponsor was Randall Gaylor. Their mentors were Nick Bennett and Jose
Quiroz.

The Best Use of Parallelism Award went to Team 69, Los Alamos High School, with
their project Enlightenment: Metropolis-Hastings Ray Prediction Model in 3D Space.
Team members were Kathy Lin, Jake Poston, Ryan Marcus and Dov Shlachter. Their
Teacher sponsor was Lee Goodwin. They received a $300 cash award from the Computer
Science and Engineering Department at New Mexico Tech.

A total of $62,700 in individual scholarships—$50,000 from the Laboratory’s Computer,
Computational, and Statistical Sciences Division—were awarded on Tuesday at Los
Alamos. An additional $2500 came
from Intel, $1200 from the Challenge
for the Willard Smith Scholarships and
$9,000 was given by in-state colleges
and universities. Students receiving
scholarships were: Erika DeBenedictis,
Albuquerque Academy, Dennis
Trujillo, McCurdy High, Gabriela
Anguiano, Deming High, Brenna
Arredondo, Artesia, Kathy Lin, Los
Alamos, Oliver Galvan, McCurdy, Jon

9

Romero, Bloomfield High, Cristina Villa, Artesia High, Jack Ingalls, Albuquerque
Academy, Ryan Marcus, Los Alamos High, Rocky Navarrete, Deming High, Michael
Wang, Albuquerque Academy, Elysia Berg, Hope Christian High, William Jennings,
Hope Christian High, Judith Flores, Quemado High, Janessa Larabee, Quemado, Erick
Chavez, Deming High, Cameron Corley, Bloomfield High, Matt Crockett, Bloomfield
High, Kaitlyn Dow, Northern New Mexico College, Amanda Edington, Deming High,
Yolly Gamboa, Hatch High, Jake Poston, Los Alamos High, Brandon Ricci, McCurdy
High, and Jeremy Salazar, Bloomfield High.

Consult, the Challenge management team, honored head finalist judge, Michael Trahan,
Sandia National Labs, veteran teacher, Karen Glennon, Jackson Mid School,
Albuquerque, and new teacher sponsor, Creighton Eddington, Deming High, for their
dedication, time and expertise.

CHECS, the New Mexico Council for Higher Education Computing/Communication
Service, provided cash for random drawing door prizes and Amy Ronan from Freedom
High, Michael Wang from Albuquerque Academy, Kelsey Theriot from Jackson Middle
School, Ryan Cortez and Lewis Taylor from V. Sue Cleveland High and Ryan Marcus
from Los Alamos High each received $100.

Students presented their research to a team of volunteer judges on Monday at the Lab’s J.
Robert Oppenheimer Study Center and discussed poster displays of their computing
projects. They also toured the Laboratory’s supercomputing centers and heard talks and
saw demonstrations by Laboratory researchers.

Sponsors
The Supercomputing Challenge is sponsored by Los Alamos and Sandia national
laboratories and the state of New Mexico.

Educational partners include The Center for Connected Learning, CHECS, Eastern New
Mexico University, High Plains Regional Cooperative, MIT StarLogo, New Mexico
Computing Applications Center, New Mexico Highlands University, New Mexico
Institute of Mining and Technology, Northern New Mexico College, New Mexico Public
Education Department, New Mexico State University, San Juan College, Santa Fe
Community College, Santa Fe Institute, and the University of New Mexico.

Lockheed Martin, Los Alamos National Laboratory Foundation, The Math Works,
Synergy Group, Vandyke Software Inc., and Wolfram Research, Inc. are "Gold"
commercial partners. "Silver" commercial partners are Abba Technologies, Google RISE,
Gulfstream Group and bigbyte.cc, Intel Corporation, Los Alamos National Security,
LLC, One Connect IP, Technology Integration Group, and ZiaNet.

Bronze partners are Apogentech, Albuquerque Journal, BX Internet, Cray Inc., Lobo
Internet Services, New Mexico Business Weekly, New Mexico Technology and Council,

10

Redfish Group, Jim Stewart, and Strategic Analytics, are Sun Microsystems “Bronze”
commercial partners.

Los Alamos National Laboratory, a multidisciplinary research institution engaged in
strategic science on behalf of national security, is operated by Los Alamos National
Security, LLC, a team composed of Bechtel National, the University of California, The
Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear
Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S.
nuclear stockpile, developing technologies to reduce threats from weapons of mass
destruction, and solving problems related to energy, environment, infrastructure, health,
and global security concerns.

More information on the New Mexico Supercomputing Challenge can be found at
http://www.challenge.nm.org online, while final student reports are available at
http://www.challenge.nm.org/archive/09-10/finalreports online.

Teams Finishing the Challenge and submitting final reports:

Team 3, Albuquerque Institute for Math and Science, Ant Recruitment
Team Members: Nico Ponder, Stefan Klosterman, Jordan Medlock, Erik Johnson
Sponsor: Terrence Lebeck, Mentors: Mark Johnson, Tatiana Paz

Team 5, Albuquerque Academy, The Metropolis Algorithm and Nanometer-Scale
Pattern Formation
Team Members: Michael Wang, Jack Ingalls
Sponsor: Jim Mims, Mentor: David Dunlap, Ph.D

Team 11, Artesia High School, Sugarscaping On a Beowulf Ring
Team Members: Wesley Green, Isaiah Jordan, James McGee, Wen Hai Zheng
Sponsor: Randall Gaylor, Mentors: Nick Bennett, Jose Quiroz

Team 13, Artesia High School, Classroom Behavior
Team Members: Cristina Villa, Nayeli Ramirez, Brenna Arredondo
Sponsor: Amy Mathis, Mentors: Randall Gaylor, Nick Bennett, Olivia Rueda

Team 15, Aspen Elementary, How Not to Become a Global Pandemic Statistic
Team Members: Pippa Chadwick, Claire DeCroix, Evan Oro, Claire Ticknor
Sponsor: Zeynep Unal, Mentors: David DeCroix, David Oro

Team 16, Aspen Elementary, Whose Fault Is It?
Team Members: Talia Dreicer, Hunter Eaton, David Smith
Sponsor: Zeynep Unal, Mentors: Jared Dreicer, Kathy Smith

http://www.challenge.nm.org/�
http://www.challenge.nm.org/archive/09-10/finalreports�

11

Team 17, Aspen Elementary, Powering Los Alamos With Solar and Wind Energy
Team Members: Emma Martens, Rachel Wallstrom
Sponsor: Zeynep Unal

Team 18, Aspen Elementary, The Disappearing Honeybees
Team Members: Kim Vo, Rowan Cantua, Kaelan Prime
Sponsor: Zeynep Unal, Mentors: Duc Vo

Team 20, Bloomfield High School, Adaptive Virus
Team Members: Cameron Corley, Matthew Crockett, Jon Romero
Sponsor: Elvira Crockett

Team 21, Bloomfield High School, Evolution of Influenza Over Time
Team Members: Jonathan Zamora, Simone Valdez, Alex Jim, Evelyn Gutierrez
Sponsor: Elvira Crockett, Mentor: Elvira Crockett

Team 23, Creative Education Preparatory Institute #1, Firework Hearing Loss
Team Members: Arlene Pino, Angela Caudle, Chance Lammey
Sponsors: Jerry Esquivel, James Stewart, Mentors: Mark Murmer, Judith Velarde, Laura
Rowen

Team 24, Creative Education Preparatory Institute #1, The Virus
Team Members: Michael Szanto, Devin Hayes, Ryan Fitzgerald
Sponsors: Jerry Esquivel, James Stewart

Team 25, Creative Education Preparatory Institute #1, Neurology and Epilepsy
Team Members: Sara “Katelynn” Higgins, Carlos E. Reazin
Sponsors: Jerry Esquivel, James Stewart, Mentor: Dr. Shiboya

Team 27, Creative Education Preparatory Institute #1, The Last Virus
Team Members: Robert Lopez, Robert Parnell
Sponsors: Jerry Esquivel, James Stewart

Team 29, V. Sue Cleveland High School, The Percentage of Disease During a Common
School Day
Team Members: Louis Taylor, Ben Fowler
Sponsor: Debra Loftin, Mentor: Nick Bennett

Team 30, V. Sue Cleveland High School, Accelerated Particles vs. Metastatic Cells
Team Members: Matthew Bradly, Jeremy Wright, Ryan Cortez, Kevin Clay
Sponsor: Debra Loftin, Mentor: Nick Bennett

Team 33, Deming High School, Tortuga Trouble: A New Survey Method
Team Members: Rocky Navarrete, Gabriela Anguiano
Mentor: Creighton Edington

12

Team 35, Deming High School, Help Me, Doctor!
Team Members: Amanda Edington, Erick Chávez
Sponsor: Creighton Edington

Team 36, Desert Academy, Arbitrary Precision Integers on the Cell Processor
Team Members: Megan Belzner, Matt Rohr, Bjorn Swenson
Sponsor/Mentor: Thomas Christie

Team 37, DesertAcademy, The Spread of the Black Death in London
Team Members: Katie Boot, Sara Hartse
Sponsors: Thomas Christie, Jocelyn Comstock

Team 38, Desert Academy, Socialist Manifesto
Team Members: Isaac Green, Sean Collin-Ellerin
Sponsor: Thomas Christie

Team 39, Edgewood Elementary School, Red Hot Chili Peppers
Team Members: Natasha Cordova, Deyvy Armendariz, Olivia Riblett
Sponsors: Jennifer Cordova, Carol Thompson, Mentors: Ryan Serrano, David R. Janecky

Team 40, Edgewood Elementary and Middle School, When Pigs Fly
Team Members: Timothy Thompson, Joshua Berson, Casey Bond, Joseph Shaffier
Sponsor: Carol Thompson, Mentor: Christopher Hoppe

Team 48, Freedom High School, The Rising Socorro Magma Body
Team Members: Joel Sandoval, Marika Plugge, Yoshua Reece, Jasmine Jensen
Sponsor: Joe Vertrees, Mentor: Paula Rimmer

Team 50, Freedom High School, A Proper Interpretation of Panic
Team Members: William Barrett, Holly Campbell, Chelsea Kibbee, Amy Ronan

Team 51, Hatch Valley High, Prediction of Green Chile
Team Members: Yoliy Gamboa, Joel Cazares
Mentor: Creighton Edington

Team 53, Los Alamos Homeschool, Grocery Tracker
Team Members: Ariel Koh, Aline Parliman
Mentor: Dr. Aik-Siong Koh

Team 56, Los Alamos Homeschool, Get on the Bus 2
Team Members: Isaac Koh
Sponsor/Mentor: Aik-Siong Koh

Team 57, Hope Christian School, Heart Attack
Team Members: Alexander Alvarez, Angela Wise, Elysia Berg
Sponsors: Pam Feather, Sue King, Mentor: Pam Feather

13

Team 59, Hope Christian School, Learning in Space
Team Members: Cameron Harjes, Aaron Gabaldon, Tyler Spahr, Ben Robinson
Sponsor: Sue King, Mentor: DeLesley Hutchins

Team 60, Hope Christian School, Video Games, the Moral Decline in America
Team Members: Jonathon Kruse, Alex Jennings, Burke Wilson
Sponsors: Pam Feather, Sue King

Team 61, Jackson Middle School, Undercover Bruise
Team Members: Karina Ortega, Kelsey Theriot, Sandra LeNguyen
Sponsor: Karen Glennon, Mentor: Nick Bennett

Team 62, Jackson Middle School, Jellyfish Domination
Team Members: Brendyn Toersbijns, Thomas Hughey, Spenser Gomez-Nelson
Sponsor: Karen Glennon, Mentor: Nick Bennett

Team 64, Jackson Middle School, Water Purification
Team Members: Christopher Hoebing
Sponsor: Karen Glennon, Mentors: Nick Bennett, Betsy Frederick

Team 65, Los Alamos High School, The Holy Grail of Adam's Ale
Team Members: Gabriel Montoya, Rachel Robey, Orli Shlachter, Orion Staples
Sponsor: Lee Goodwin, Mentors: Robert Robey, Thomas Robey

Team 67, Los Alamos High School,
Save Energy, Part 1: Numerical Method for Heat Conduction In Systems of Arbitrarily
Different Materials
Team Members: Edward Dai, Aidan Bradbury
Sponsor: Lee Goodwin, Mentor: William Dai

Team 68, Los Alamos High School, Astrophysical N-Body Simulations of Star Clusters
Team Members: Sam Baty, Peter Armijo
Sponsors: Lee Goodwin, Diane Medford, Mentors: Roy Baty, John Armijo

Team 69, Los Alamos High School,
Enlightenment: Metropolis-Hastings Ray Prediction Model in 3D Space
Team Members: Kathy Lin, Jake Poston, Ryan Marcus, Dov Shlachter
Mentors: Leroy Goodwin

Team 70, Los Alamos High School, To Kill a Flocking Bird
Team Members: Peter Ahrens, Stephanie Djidjev, Vicky Wang, Mei Liu
Sponsor: Lee Goodwin, Mentors: Christine Ahrens, James Ahrens

14

Team 73, Los Alamos Middle School, Artificial Intelligence used in a Battle Simulation
Team Members: George Barnum, Mohit Dubey, Ben Liu
Sponsor: Clara Vigil, Mentor: Bob Robey

Team 75, Los Alamos Middle School, Smart Grid
Team Members: Colin Redman, Michael Englert Erickson, Sudeep Dasari
Sponsor: Clara Vigil, Mentors: Andrew Erickson, Jim Redman, Venkat Dasari

Team 79, Los Alamos Middle School, Alien River Cloggers
Team Members: Jacob Holesinger, Kevin Tao
Sponsor: Clara Vigil, Mentor: Terry Holesinger

Team 81, Manzano High School, Java-Based Wireless Robot
Team Members: Philip Atencio, Dustin Chavez, Nathan Hassler, Nick Ratzer, David
Young
Sponsor/Mentor: Stephen Schum

Team 82, Manzano High School, Remote Combined Solar and Wind Renewable Energy
Power Grid
Team Members: Hathaweh Bassett, Hung Nguyen
Sponsor: Steve Schum

Team 83, McCurdy High School, Bridge Destruction
Team Members: Carlos Herrera, Louis Jaramillo, Justin Garcia, Ron DeVargas
Sponsor/Mentor: Robert Dryja

Team 84, McCurdy High School, Particle-Atmosphere Interaction
Team Members: Dennis Trujillo, Oliver Galvan, Brandon Ricci
Mentors: John Pretz, Brenda Dingus, Philip Sanchez

Team 85, McCurdy High School, Contributing Factors for Obesity in the U.S.
Team Members: Lindsay Redman, Isabel Garcia, Marisa Griego
Sponsor: Irina Cislaru, Mentors: Jennifer Tichy, Alin Panaitescu

Team 97, Melrose High School, Polar Ecosystem
Team Members: Quinton Flores, Brian Hemminger, Kira Anderson
Sponsors: Alan Daugherty, Rebecca Raulie

Team 98, Melrose High School, Surviving the Worst
Team Members: Brandon Mitchell, Victoria Northrup, Adrianna Saiz, Allicyn Trammell
Sponsors: Alan Daugherty, Rebecca Raulie

Team 99, Melrose High School, Control and Spread of Wildfires II
Team Members: Richard Rush, Kyle Jacobs, Randall Rush
Sponsors: Alan Daugherty, Rebecca Raulie

15

Team 102, Navajo Preparatory School, The Latest Buzz About Bees
Team Members: Alexis Archambault, Ariel Nephew, Wilfred Jumbo
Sponsor/Mentor: Mavis Yazzie

Team 103, Navajo Preparatory School, What's Up With the Ozone Layer
Team Members: Malcolm Bob, Leland Gray, Malcolm Keetso
Sponsor/Mentor: Mavis Yazzie

Team 104, Northern New Mexico College,
New Mexico on the Road: Impact of Fuel Consumption and CO2 from NM Cars
Team Members: Kaitlyn Dow, Annaleah Dow, Jeremy Salazar, Angela Gomez
Sponsor: Jorge Crichigno

Team 107, Quemado High School & Silver High School, First Impressions
Team Members: Jose Mora, Austin Nightengale
Sponsors: Laura Larisch, Peggy Lerisch

Team 108, Quemado High School, Can You Hear Me Now?
Team Members: Janessa Larrabee, Judith Flores
Sponsors/Mentors: Laura Larisch, Peggy Larisch

Team 109, Quemado High School, Oil Spills in Oceans
Team Members: Justin Miller
Mentor: Laura Larisch

Team 110, Red Mountain Middle School, Marble Roller Coaster “Thrill Ride”
Team Members: Bryce Golie

Team 112, Sandia Preparatory School, Analytical Hierarchal Process for Complex
Decisions
Team Members: Caitlyn Scharmer
Sponsor: Neil McBeth, Mentors: Minga Banks, Carol Scharmer

Team 119, Silver High School, Airplane Epidemiology
Team Members: Forest Brown
Sponsor: Peggy Larisch, Mentor: Dr. Camacho

Team 125, Tibbetts Jr High, Recycle This
Team Members: Jesse Duarte, Jacob Hensley
Sponsor: Ms. Maurer, Mentor: Bob Robey

Team 127, Manzano High School, Efficient Air Traffic Control
Team Members: Ryan Hensel, Elisabeth Keller, Jelke Adema
Sponsor: Steve Schum

16

Judges

Toru Aida, Los Alamos National Laboratory
Dr. Ed Angel, Santa Fe Complex
Dorian Arnold, University of New Mexico
Dorothy Ashmore, Sandia National Laboratories
Richard Barrett, Sandia National Laboratories
Nick Bennett, Grass Roots Consulting
Louise Byrd, APS Gifted Program, retired
Dr. Patrick Bridges, University of New Mexico
Jon Brown, New Mexico Tech
Powell Brown, New Mexico Tech
Kent Budge, Los Alamos National Laboratory
Cheri Burch, University of New Mexico
Dr. Chuck Burch, University of New Mexico
Dr. Jorge Crichigno, Northern New Mexico College
Roger Critchlow, File Systems Lab
Dr. Shaun Cooper, New Mexico State University
Dr. Larry Cox, Los Alamos National Laboratory
Mike Davis, Cray
Erika DeBenedictis, Albuquerque Academy
Dr. Sharon Deland, Sandia National Laboratories
Drew Einhorn, Fourth Watch Software
Dr. Gary Geernaert, Los Alamos National Laboratory
Dr. Bill Godwin, Lockheed-Martin Fellow, retired
John Paul Gonzales, Santa Fe Institute
Lisa Harris, Los Alamos National Laboratory
Willard Hemsing, Los Alamos National Laboratory
Harry Henderson, Rio Rancho Schools
David Janecky, Los Alamos National Laboratory
Dr. Philip Jones, Los Alamos National Laboratory
Sharad Kelkar, Los Alamos National Laboratory
Larry Kilham
Victor Kuhns, Cray
Larry Landis, Fourth Watch Software
Dr. Tom Laub, Sandia National Laboratories
Dr. Maximo Lazo, Science Applications International Corporation
Irene Lee, Santa Fe Institute/Project GUTS
Dr. Lorie Liebrock, New Mexico Institute of Mining and Technology
Debbie Limback, San Juan College
Jonathan Margulies, Sandia National Laboratories
Nico Marrero, New Mexico Tech
Dr. Cleve Moler, The MathWorks
Lonny Montoya, New Mexico Highlands University
Dr. James Overfelt, Sandia National Laboratories
Kathy Pallis, Los Alamos National Laboratory

17

Georgia Pedicini, Los Alamos National Laboratory
Dana Roberson, Department of Energy
Doug Roberts, RTI International
Dr. Tom Robey, Gaia Environmental Sciences
Bob Robey, Los Alamos National Laboratory
Janet Rolsma, Department of Energy
Shawn Shay, San Juan College
Dr. Willard Smith, Tennessee State University
Jack Stafurik, Technology Ventures Corporation
Julianne Stidham, Los Alamos National Laboratory
Mike Trahan, Sandia National Laboratories
Dr. Eleanor Walther, Sandia National Laboratories
Tim Warren, San Juan College
Dr. Suzanne Westbrook, University of Arizona
Talaya White
Beryl Wootton, New Mexico Tech
Peter Yanke, BX Internet

Do you want to become a supporter of the Supercomputing Challenge? Please email us at
consult@challenge.nm.org for details.

18

CONTROL AND SPREAD OF WILDFIRES II

New Mexico

Supercomputing Challenge

Final Report

September 14, 2010

Team: 99

Melrose High School

Team Members:

Richard Rush

Kyle Jacobs

Randall Rush

Teachers:

Allan Daughtery

Rebecca Raulie

2

Table of Contents

Problem Explanation ..3

Solving the Problem ...3

 Mathematical Model ...6

Last Year’s Results ..9

Our Goals ...10

This Year’s Results ..10

 Firemen ..10

 Firebreaks ...11

 Distractions ..15

 Fire Fighting Techniques ...16

Executive Summary ...16

Bibliography ..18

Acknowledgements ..18

3

Problem Explanation

 This year we are expanding upon last year’s project on the control and spread of

wildfires. Fire has been a very important part of our lives and will continue to be so in the future,

in both positive and negative ways. Wildfires cause extensive amounts of life and property

damage; and we wanted to know the best way to extinguish a fire in progress and the best way to

protect property from an out of control blaze.

 Last year we created a model of a fire on a flat plain. We included the variables of fuel

load, wind speed, wind direction, and moisture content. We then took our model to the local fire

department and were able to accurately model a fire that they recently fought, verifying the

reliability of our model.

 This year, we have added a third dimension to our model, topography. On the Llano

Estacado this variable did not affect our model much, however, in most other parts of the world

it can be the most prominent factor affecting the fire’s behavior. We then had to develop a

procedure to cause the wind to react to the topography. Firefighters who try to fight the fire and

protect a residential area were also incorporated into the model. Then we tested various

firebreaks to determine which design is the most effective in diverting or slowing a fire’s

progress.

Solving the Problem

 Last year we began our model in “StarLogo TNG,” an agent based model. We did have

plans to expand our modeling this year into “NetLogo” (a more advanced and versatile modeling

program), however due to time constraints and limiting our project to goals to those that we

could achieve in one year, we simply expanded our old model. This was, as we found out, not a

detriment to this year’s project goals. With StarLogo TNG, we can set up different types of fire

breaks easier and more quickly than we could with NetLogo, as we understand the language.

We solve the various problems by introducing an agent in “SpaceLand” (The area where

the agents will operate) that will consume fuel and multiply and progress in accordance to the

following variables:

4

Fuel Load—The amount of fuel available per square area of land. This represents different

vegetation types and densities. This will be represented in our model by a scale of 1-10 in

shades of green. The darker the green, the greater the fuel load. The fuel load in an area

can change greatly, on one side of the fence there can be a green wheat field which has an

extremely low fuel load, and on the other side of the fence, there can be land enrolled in

CRP (Conservation Reserve Program) which can have a very high fuel load. The fuel

load in a single pasture can change too, depending on what kind of grass grows from

place to place and the quality of the soil across a field. The fuel loads that we will use for

our model will be:

1) Very, very low—less than 200 pounds of fuel per acre

2) Very low—from 200-500 pounds of fuel per acre

3) Moderately low—from 500-800 pounds of fuel per acre

4) Moderate—from 800-1100 pounds of fuel per acre

5) Moderately high—from 1100-1500 pounds of fuel per acre

6) Very high—over 1500 pounds of fuel per acre

Moisture Content—The amount of moisture in the area. Often the land will be very dry before a

thunder storm, therefore, lightning can easily start a fire. As the storm progresses it may

rain, increasing the moisture, retarding the fire’s progress, and possibly even putting the

fire out. This variable can also represent the growing stage of the vegetation represented.

Wind Direction—Wind direction plays a vital role in fire behavior and control. If there is a wild

fire, the fire fighters may have had it under control or could have had a firebreak set up

ahead of it, but if the fire suddenly changes direction, it may become uncontrolled once

again.

Wind Speed—Wind speed is also very important in fires. A fire under a light wind might not

ordinarily cross a firebreak or obstacle such as a road, but if the wind were blowing

5

enough, the road would barely slow down a raging fire. We will use these numbers to

represent the different wind speeds:

0—0-3 mph 3—15-25 mph

1—3-10 mph 4—over 25 mph

2—10-15 mph

Topography—The heat that radiates from a fire tends to rise, therefore a fire will advance much

more quickly up a hill than down a hill. The wind will also be affected by the terrain. A

hill can provide a wind break on one side and channel wind down a canyon on the other

side of the hill, thus changing wind speeds and directions. We control this variable with

“StarLogo TNG’s” versatile terrain editor.

With control of these variables in our model, we will “start a fire” on the map and let it

burn until the entire map is consumed or the fire burns itself out. We can then alter the map by

adding a firebreak and running the model again.

Our model runs on these basic principles:

1) Burn

 a) Test to see if patch color is some shade of green

 b) If so, then add one shade of white to the patch.

 c) If not, then test to see if patch is already burned

i) If so, then have a 66% chance of dying (This gives a fire a chance at

crossing a firebreak with sparks and tumbleweeds).

ii) If not, then have a 66% chance of dying.

(The 66% was determined through trial and error relying on local

firefighter’s experience of fire behavior.)

6

2) Spread

a) Test to see if a random number between 0-100 is less than or equal to dryness.

b) If so, then choose a random number between 0-360 for a direction

i) Then create a new fire and send it 1 step in the chosen direction.

3) Wind

a) Select a random number between 0-45 and add it to the wind direction

b) Then divide wind speed by 2 and add 0.5 and take that many steps in the

chosen direction.

4) Hills

 a) Test if patch height is less than patch height ahead.

i) If so, then go forward the difference between patch height and patch

height ahead times 4.

 ii) Hatch

b) Test if patch height is greater than patch height ahead.

i) If so, then go back the difference between the patch height ahead and

patch height times 1.

 ii) Have a 50% chance of dying.

Mathematical Model

The mathematical formulas that our model follows are stated below.

7

 Setup

 F1 = first fire agent generated

F1 is randomly placed on an x y grid according to …

 x~U[-50.5,50.5)

 y~U[-50.5,50.5)

Where U is uniform distribution.

F1 is randomly placed on a “patch”.

A “patch” is an area that is centered on an x y grid where x0, y0 ε

A “patch” includes…

x ε [x0 -0.5,x0 0.5)

y ε [y0 -0.5,y0 0.5)

Spread

 fi = fire agent i

 t = time

 P = probability

The probability that a fire sparks another fire is …

 P(fi produces fj), [t,t+1)

The location of fj is…

 xj = xi+cos r+wx

8

 yj = yi+sin r+wy

Where “ r” is a random angle uniformly distributed on [0,2π)

Where “w” is a wind vector composed of x and y directions

Burn

 Lk = fuel level in “patch” K

 The fuel level decreases by the number of “fires” on that “patch”

 Lkt+1 = max(Lkt – n, 0)

 Where “n” is the number of fire on “patch K”

 If Lkt = 0, all agents on “patch K” “die”, in the time interval, (t, t+1]

Hills

 If there is a positive grade

F1 moves forward (marginal difference)(4)

If there is a negative grade

F1 moves backwards (marginal difference)(1)

9

Last Year’s Results

 Last year we were able to accurately model a fire and did a lot of work with roads and

how the fire reacted to them. We used county roads as our standard. We started with the fire

approaching a road at a perpendicular angle. We tested this under varying fuel loads and wind

speeds and directions. The following graph shows the percent chance that the fire has of crossing

the road under the specific conditions.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

wind
0

wind
1

wind
2

wind
3

wind
4

very, very low fuel

very low fuel

moderately low
fuel
moderate fuel

moderate high
fuel
very high fuel

 We did not give anything a 0% chance or a 100% chance as there is a lot of random

numbers and anything could happen if the model were run enough times.

 We also tested the impact of varying fuel loads in drainage ditches that usually run next

to roads. They can either have higher fuel, due to being able to receive larger amounts of runoff,

or they can have a lower fuel load from the state or county mowing it off. We found that under

conditions in which a fire didn’t usually cross, the fire was able to cross the road if the ditch

contained a high fuel load. On the other hand if the ditch had a lower fuel load, it did delay the

fire’s crossing significantly.

 Another factor that we tested, was whether or not the fire’s angle of approach to the road

affected its chance of crossing the road. We found that the lower the fire’s angle in comparison

10

to the road, the less chance it had of crossing over the road. This was due to the fire traveling

with the road instead of against it. We used this information in the development of our

firebreaks.

Our Goals

 This year we decided to use the model that we created last year to find the best ways to

slow, stop, or divert a fire with firebreaks, as well as to find the most effective way for the

firemen to work with the firebreak to get the fire under control and extinguished thereby saving

lives and property. With StarLogo TNG, it is easy to manipulate the terrain for different

scenarios, and set up different types of firebreaks for testing.

This Year’s Results

 Last year we developed a model that accurately portrays how a fire will act under certain

variables and verified that our model is viable. This year we modeled various situations and fire

breaks so that we would be able to see how the fire would act under the given situation. We

tested two fuel loads in the different firebreak designs. We determined firefighter’s ability with

each fire break design to protect property by counting how many houses were left at the end of

each test. We further pursued the fire’s advancing angle to the firebreak.

Fire Men

 This year we added firefighters to our model. We set up independent agents to search for

and put out the fire. Currently we have a few firemen with fire extinguishers killing individual

fire agents when there can possibly be thousands of fire agents so, our fire fighters can easily be

overwhelmed. However, this is a great step towards setting up a program that would test

firefighting methods previously impractical due to safety hazards. This is also getting us closer to

another important piece of information, how much water will it take to put the fire out? As fire

trucks can only carry a limited amount of water it would be a great benefit for the fire fighters to

know how much water or fire fighting agent is needed to extinguish a fire under various

conditions.

11

 Right now though, our firemen aspect of the model shows how important early fire

control is and how little effort is needed to put a small fire out before it gets out of control. In this

model we have a village placed in the way of a fire. The wind is about 10 mph with damp

conditions and a low fuel load.

 As you can see, the fire was able to build up and envelope the village. In the next model

we let 10 firemen find the fire and proceed to try to put it out.

 In this model the firemen were able to find the fire and put it out before it had a chance to

grow. The firemen were able to save the village from the fire.

 We have also found that if an area is in danger, it works best if the firefighters “stage” in

front of it, however, they can’t be too close or too far away, because if they are too close they do

not have time to successfully engage the fire. However, if they are too far away, the firemen’s

resources are too dispersed to protect the village if the fire gets by them.

Fire Breaks

 We tested several different types of firebreaks to learn which one would be the most

effective in diverting a fire or slowing it. We tested various shapes and fuel loads for the

12

firebreaks, as well as fire direction in relation to the position of the firebreak. We also tested

whether the break slowed the fire enough for the firemen to extinguish it. We measured the

firebreak’s effectiveness by placing nine houses in front of the fire to represent a village, and

recorded how many houses survived the fire.

 One of the things that we took into account when we designed the firebreaks was

feasibility and aesthetics. For example, you could create a very effective firebreak for your house

by plowing up all the vegetation and converting it to mineral soil all around your property for

one hundred yards in all directions. This would pose a few problems for the people living in that

residence. It would probably be very dusty and the plowed up area would be subject to wind

erosion, removing the topsoil from the area. It would not look very good to have a huge brown

square all around your house either. So, we tried to keep the fire breaks to areas of low fuel or

small areas of no fuel.

To analyze our results more accurately we used Microsoft Excel’s statistical functions.

Since we only ran each model 10 times, we used small sample inference and the Student’s t test

(which our mentor found appropriate). The equation for Student’s t is as follows:

We used the Student’s t to determine how different our data sets were. In this case how the

firebreak’s effectiveness compared to a control of no firebreak. We also used this function to

determine if one design was significantly better than others.

We tested the following fire breaks under these conditions. The moisture content was set

at 40%, the wind speed was at a 1 or between 3 and 10 mph, the wind direction was blowing the

fire directly at the village, the base fuel load was moderate, the village consisted of nine houses

arranged in a block, and firefighters were extinguishing the fire. We started with no firebreak and

then added different designs: two strips of no fuel, two strips of low fuel, a solid strip of low fuel,

and an arrow or V shape around the village. However, StarLogo TNG does not allow us to draw

a homogenous diagonal line. This reduced the effectiveness of our angled breaks.

13

Control, no firebreak Two Lines, low fuel Two Lines, no fuel

Single Line, low fuel V design, low fuel

 The following graph shows the average number of houses that survived the fire after

running each model 10 times.

From the information presented in the graph we were able to infer a couple of things.

First of all, we were surprised to find that not all firebreaks were helpful. Next we found that a

firebreak that was more effectively designed with low fuel was better than a straight firebreak

with no fuel. When we noticed the first problem, we ran our model more times and examined the

14

behavior more closely. The reasons the firebreaks seemed to be detrimental was that the

firebreak was actually doing its job, it was slowing the fire down as indicated by our fire

population graph, but it was also widening the head of the fire spreading the firefighters

resources out too thinly to stop the fire’s progression.

To more accurately determine the differences between the breaks we have run a t-test on

the above sets of data testing the control against the firebreaks and testing the best firebreak

against the others. The following table shows the result of the t-test.

Firebreak control 2 Strips, Low

Fuel

2 Strips, No

Fuel

Solid Strip,

Low Fuel

V Around

T-test

(Rounded to 2

decimal places)

1 0.13 0.06 0.45 0.02

0.02 0.00 0.60 0.00 1

These numbers show that the V around and the two strips of no fuel were significantly

better than the control. The test also showed us that the V around is not significantly better than

the two strips of no fuel. There is strong evidence, 87%, that the two strips of low fuel were

detrimental to the survival of the town. Since we were very surprised by these results, we

doubled our sample size and nothing changed.

We can also deduct that an effectively designed and placed firebreak is better than just an

ordinary straight line. From the graph we can tell that the V design saved, on average, more

houses than the next best firebreak, the two lines with no fuel. From the statistical analysis,

however, we see that there is only a 40% chance that it is a significantly better firebreak. These

chances are not good enough for us to draw an immediate conclusion (for us to do so we will

have to do a significant amount of more testing), but right now, we will give the upper hand to

the V break due to erosion problems and aesthetics mentioned earlier.

Here, we have the fire break that performed the most desirably, the V, or arrow shaped

pointing in the direction that the fire is coming from, and surrounds the town. It has moderate

fuel load, with the break made of very low fuel.

15

 The fire men staged just to the houses side of the fire break, and were able to stop the

fire, and save all of the houses. We then ran this model by placing the houses on the top of a hill

and by placing the houses in the bottom of a low spot with and without the V break. In both

cases we found that a firebreak was better than no firebreak.

 The firebreak’s angle to the direction of the fire was also tested. However, due to

limitations in the program, we were not able to model this as accurately as we wished we could

have. But we did strengthen several beliefs about the fire’s behavior. First of all, the fire has

more difficulty in crossing a break when it is running at an angle to it or with it. This helps

explain why diagonally shaped fire breaks work the best at diverting a fire away from the village.

An area with no fuel is a better break than an area with low fuel. Firefighters are better

extinguishing agents than simply a firebreak. The firefighters need to effectively stage the fire or

use the firebreak to their best advantage. Such as, the firebreak is not as helpful if the firefighters

go out in front of it, because if the fire gets past them, then they are stuck behind the fire. The

firebreak is also not as effective if the firefighters are too far behind it, because it has had time to

increase to its original intensity.

Distractions

 While working with our firemen and firebreaks we have discovered a very interesting

result of having them together. In one model the firemen were to stay behind the firebreak and let

the firebreak slow the fire down so it was easier to put out. However, when the fire crossed the

break in one place, all of the firemen ran to put it out. While the firemen “had their backs

turned,” you could say, the fire would cross the break behind them and would destroy the village

before the firemen could do anything about it. This usually occurred with a relatively strong fire

break as well, and we were very surprised to find that it did not work as well with the firefighters

as we anticipated. We have heard that at some real fires all of the firemen would run up to the

16

largest part of the fire to put it out, while, unbeknownst to them, the fire is threatening a

residence elsewhere. This shows how it is important to have a chain of command in the field

with someone directing the firemen and trucks.

Firefighting Techniques

 While testing firebreaks we also discovered some firefighting tactics that are effective in

diverting the fire away from residential areas or other locations of interest. These can change

according to from which direction the fire is approaching. When the fire is coming straight at a

village it can be more effective to wait for the fire to get close to the village, then concentrate all

firefighting resources at one point in front of the fire. This will split the fire in two and allow the

firefighters to work on the inside flank of the fire and push it around the village.

 However, if the fire is approaching at an angle to the village, we would suggest that the

firefighters stage near the village on one flank of the fire; this would push the fire around one

side of the village. The firefighters could then work on putting the rest of the fire out when the

village is safe.

Executive Summary

 This year, we improved upon last year’s wildfire model by inputting topography, which

is very important for some areas. We were able to get the wind to react to the topography,

because wind can funnel through canyons, and hills or mountains can act as wind breaks. This

was the most difficult to simulate. We also implemented firemen, one of the most crucial

resources that a community has in protecting lives and property.

 We used our more advanced model to test different varieties of firebreaks and fire

fighting tactics. We found that out of the firebreaks that we tested, a V-shaped firebreak with the

village inside of it was the most effective. We also found through further testing, that firebreaks

are more effective if they are placed at an angle to the fire’s advancing direction. The firemen

perform best if they stage just behind the firebreak, and put it out as it is trying to cross. Not all

firebreaks are helpful; the firebreak has to influence the fire in such a way as to give the firemen

a strategic advantage. Firefighters in the field need a chain of command and a common goal to

help organize them so they will be able to use their resources more effectively.

17

 By expanding our model this year, we have tested the limits of StarLogo TNG. It has

been a very effective tool in verifying our procedures and models. However, it is now starting to

limit us. We cannot import real topographical maps from outside sources, we have a limited

amount of space in SpaceLand, and we cannot build custom procedures. There is also a limit to

the number of agents that can be in SpaceLand at once. This may be a moot point since we seem

to have reached the limits of our PC. Sometimes so many agents were running so many

procedures, that the program would become confused and would either shut off entirely or mix

up breeds of agents and the procedures that they were supposed to follow. To continue this

project we need to change our modeling program to enable us to overcome these obstacles and to

eventually meet the goal of creating a marketable program to be used by fire departments, cities,

and individuals to develop more effective firefighting techniques or just how to most effectively

protect their own home by custom designing firebreaks to meet an individual’s needs.

18

Bibliography

 Holecheck, Pieper, Herbel, Range Management, Principles and Practices,. 3.

 "Fire." wikipedia the free encyclopedia. 2008. 20 Nov 2008

 "Fire." FEMA.gov. 2006. 30 Mar 2009

Harris , Tom. "How Fire Works." HowStuffWorks.com. 1998. 20 Nov 2008

 David Rush, Forrest Volunteer Fire Department, Training Coordinator

 Addison-Wesley, Chemistry of Firefighting, copyright 1990

Bender, Douglas, Kramer, Statistical Methods for Food and Agriculture, copyright 1982

 Acknowledgements

 We would like to thank Nick Bennett for coming all the way to Melrose from

Albuquerque to help us with our programming and developing our mathematical model.

 We would like to thank John Paul Gonzales for showing us around Santa Fe at

Swarmfest, for listening to our presentation multiple times, and for coming to Melrose to help us

with our programming.

 We would also like to thank David Rush of the Forrest Fire Department for helping us

determine how to most accurately set up our model.

The Holy Grail of Adam's Ale

Locating Aquifers through Geostatistic Modeling

Team #65

April 7, 2010

New Mexico Supercomputing Challenge Final Report

Los Alamos High School

Team Members:

Gabriel Montoya

Rachel Robey

Orli Shlachter

Orion Staples

Teacher Sponsor:

Lee Goodwin

Mentors:

Robert Robey

Thomas Robey

Contents

1 Introduction 6

1.1 Problem Statement . 6

1.2 Objective . 6

1.3 Backround . 6

1.3.1 Geostatistics . 6

1.3.2 Aquifers . 7

2 Mathematical Models 8

2.1 Semi-variogram . 8

2.2 Interpolation . 9

2.2.1 Inverse Distance Weighting . 10

2.2.2 Kriging . 10

2.3 Sampling from Gaussian Distribution . 12

3 Computational Model 13

3.1 Semi-variogram . 13

3.2 Solution of Kriging Equations . 14

3.3 Anisotropy . 17

3.4 Sampling from Gaussian Distribution . 18

3.5 Multiple Points and Runs . 18

3.6 Optimization . 19

3.6.1 Variation on Random Iteration Algorithm . 19

3.6.2 Transferring Matrix Solver to the GPU . 20

4 Code 23

4.1 Overview and Structure . 23

4.2 WxWidget Windowing . 24

4.3 Computational . 26

4.4 OpenGL Graphics . 26

4.5 wxPlotCtrl Graphing . 28

5 Results 29

5.1 Case Study . 29

5.1.1 Data . 29

5.1.2 Semi-variogram . 31

5.1.3 Mixed Success of Interpolated Fields . 32

6 Conclusions 33

6.1 Current Status . 34

7 Teamwork 34

8 Recommendations 35

2

A References 35

A.1 Bibliography . 35

A.2 Software/Tools . 36

A.3 Acknowledgments . 36

B Glossary 37

C User Guide 37

3

List of Figures

1 Diagram of an aquifer[8]. 8

2 Example of the three common types of mathematical models for the semi-variogram

with the same range/sill. 10

3 The di�erential of the variance of error with respect to the weights. Kriging seeks to

minimize this variance to �nd the 'best' estimator. 11

4 'Normal' Gaussian Distribution. The mean is the interpolated value. 12

5 Computationally �nding experimental semi-variogram. 13

6 Screen capture of the plot section of the window showing an optimal experimental

semi-variogram, created from sample data. 13

7 Illustration of concept behind Givens Rotation. The i axis is rotated so as to make

point P lie upon it, zeroing its j′ coordinate. 15

8 Algorithm developed to randomly iterate through unknowns. Elements are swapped

to the back part of the array as they are randomly selected from the front part. . . . 18

9 Variation on the random iteration algorithm, grouping 'failed' elements in the front

to be retried after all the others have been iterated over. 19

10 Break down of Givens Rotation to be done in parellel on the GPU where rows 1 and

2 are those a�ected by the current rotation. 21

11 wxFormBuilder workspace . 25

12 The x-z plane for the 2D grid. The y coordinates are set based upon the value at

each point. 26

13 An RGB Cube - a graph of the colors with the red, green, and blue components on

each axis. 27

14 A cropped screen capture of a 3D terrain generated for sample data. 28

15 An example of the heightmap rendered for the same sample data as the terrain. . . . 28

16 Two dimensional cross-section of boreholes with di�erent elevations. 30

17 Location of the boreholes from the case study. 31

18 Semi-variogram of each of the data sets for the two boreholes. These are focused on

the y direction as there is only one known point in the x direction. 32

19 Height maps produced for inverse distance weighting interpolation between boreholes.

From top to bottom they are: resistivity, total porosity, SGR, and e�ective porosity. 33

20 Visual results of small section of borehole interpolated with kriging. 33

21 Data inserted . 37

22 Semivariogram plotted, mathematical models chosen 38

23 Model type, range and sill, scales, interpolation method, number of runs selected . . 38

24 Final screen with a terrain map . 39

25 Left->Height Map, Right->Terrain . 39

4

Executive Summary

This project sought to develop a windows-based application to perform geostatistics, with a focus

on its application to �nding aquifers and other groundwater sources. Geostatistics is a branch of

applied statistics used to calculate plausible values to �ll the gaps in fragmented data sets. It

depends on the idea of spatial correlation - that values located proximately are more likely to be

similar. The application in hydro-geology was chosen because of New Mexico's dependency on

groundwater; a case study was set up and real world data acquired from local boreholes.

This project encompassed an impressive feat of coding, incorporating C++, wxWidgets, OpenGL,

and OpenCL. C++ is used for the computational and to interface with the user-interface done with

wxWidgets. Visualization was done using OpenGL, and the beginning stages of optimization uti-

lized OpenCL to run on the graphics processor.

While this project is not the �rst computer programming to be accomplished in the �eld of

geostatistics, this project is a foundation for future studies. In the course of the year, several

original algorithms were developed as well as integration of established methods, resulting in a

working application that can reliably perform geostatistics of small problems. The case study on a

real problem was partially successful and provided invaluable insights into future work.

5

1 Introduction

1.1 Problem Statement

A lack of complete data is a common problem faced across many �elds of study. The solution is

to estimate these unknowns, but making an accurate approximation becomes much more complex

than simple means. The practice of this approximation is more di�cult than the simplicity of the

theory behind it. Geostatistics is a branch of statistics that can be used to make reliable predictions.

It is based on the theory that data proximately located is more likely to be related. If the data is

related then the unknowns can be approximated because the distance between data points would

tell one how similar they should be.

Geostatistics is an e�ective method of �lling in these �gaps� to logically create plausible data for

the unknown points. This can be important especially in computer modeling where data is needed

for every point, geostatistics can simplify the process.

The application of geostatistics to the discovery of aquifers was chosen because of New Mexico's

shortage of water. Water is a very valuable commodity in the drier and more polluted regions of

the world and the easier discovery of more water sources would help many people. To �nd new

groundwater sources in such large expanses of land by testing every mile or every half mile would

be di�cult and ine�cient. Using geostatistics to �ll in gaps in the landscape will allow geologists

and hydrologists to take far fewer samples and come up with more correct results. This will lessen

the time and expense of �nding groundwater sources, bene�ting both economic and hydrological

issues.

1.2 Objective

The purpose of this project was to write a windows-based program to perform geostatistics. The

program was designed to approximate unknown values and show the detail of the terrain values

in both color and height. There are many possible applications for geostatistics, and thus the

usefulness of the program. The focus is on using a geostatistical model to �nd aquifers without

taking inordinately large numbers of samples for a given area. To accomplish this goal a profusion

of code had to be written for the many di�erent facets of the program. The initial code to estimate

the data using geostatistics was written in C++, the user interface was generated in wxFormbuilder

(creating wxWidgets C++ code), and the graphics were rendered with OpenGL. The team wished to

create a working program utilizing all three di�erent programming languages that would accurately

predict unknown values for a data set. These unknowns pertain to aquifer data so as to �nd more

groundwater sources and alleviate problems in New Mexico and the rest of the world.

The program should reduce the time and money spent on geological surveying by a sizable

margin and can be changed minimally to be applied to other problems.

1.3 Backround

1.3.1 Geostatistics

Geostatistics is a branch of statistics used to predict unknown values at speci�c locations, using the

concept of spatially correlated data. That is, two values physically near each other are more similar

6

than two values farther apart. For example, in soil composition, samples taken closer together are

more likely to be made up of similar minerals.

Geostatistics, originating in mining for the discovery of precious stones and metals, was �rst

recognized as a reputable �eld theory in the 1960s in the French work �Theory of Regionalized

Variables� which paved the way for inspirational work in the new discipline. Many changes were

made to the math used in geostatistics and eventually it became applicable to many di�erent �elds

besides mining. Now such employments as picture reconstruction and epidemiology are utilizing

geostatistics[2].

To understand how geostatistics works one must understand the theories at the heart of the

process. The Theory of Regionalized Variables states that it is possible to make a model of the

spatial structure from known data and then use those known values to estimate the unknown ones[6].

The unknowns can be estimated because of the theory that data is spatially correlated. These are

the underlying precepts behind geostatistics; the theories that make all others possible.

These postulates are used to determine the value of a given property in speci�c materials. This

is done by applying the Theory of Regionalized Variables. There are two parts to regionalized

variables:

• a random aspect, the unpredictable variation from point to point

• a structured aspect, the prevalent regional trend

The random aspect is the deviation from the normal that will throw o� an approximation whereas

the structured aspect is the normal trend which allows for the use of geostatistics in the estimations

of unknown values.

Like most �elds, there is some specialized language used in geostatistics. These terms will be

de�ned as they appear, but are also described in the glossary (Appendix B on page 37)

1.3.2 Aquifers

The chosen application was locating aquifers. Backround information was needed to discover what

characteristics to search for as an indication of an aquifer.

An aquifer is an underground layer of water-bearing permeable rock (Figure 1), which can be

tapped by a well. The above diagram shows how the location of the water table is relative to the

surface and to the surrounding geological points. An aquifer is a valuable commodity as a water

source because, by de�nition, it readily transmits water to wells and springs. This means that it

will be not be stagnant and undrinkable. Also because of the location of aquifers underground,

the water cannot evaporate before its use. Unfortunately, aquifers are di�cult to locate and can

be contaminated. Aquifers are more likely to be closer to the surface because of the porous and

permeable rocks there. Porosity refers to a rock's ability to retain water, while permeability is

the capability of a porous rock to permit the �ow of �uids through it[12]. The permeability and

porosity generally decrease for larger distances from the surface since the cracks and �ssures in a

become diminished and close up as a result of the pressure of the rock overhead. However, this is

not always the case and usable aquifers have been found in all surface depths[8].

More valuable results can be garnered from porosity and permeability because they are more

reliable variables to use in a geostatistics model. This is because porosity and permeability more

extensively a�ect the rock's ability to be a potable resource[8].

7

Figure 1: Diagram of an aquifer[8].

An aquifer can become contaminated as a result of human interference. Every time the water

in an aquifer is used in a well, the level of the water table goes down and the water will be replaced

with precipitation, known as recharge. The area in which an aquifer can bene�t from the recharge

is called a recharge zone. The larger an aquifer's recharge zone, the more wells can be drilled from

it and the more often people can pump water for them. However, the larger an aquifer's recharge

zone is the more opportunity for the aquifer to be contaminated. If an aquifer is contaminated it

cannot be used thus creating a water shortage problem for its patrons.

Humanity's interference with the water table can also result in an aquifer's water pressure

decreasing at an alarming rate[8]. If one were to pump too much water out of a well without

allowing it its recharge period then surrounding wells could also go dry. This creates a problem

for rural communities that depend on groundwater, making aquifers very sought-after resources[5].

Aquifers are a solution to the dire problem of acquiring water in the drier, more rural regions of the

world. The case study of this project seeks to make them available by predicting their locations.

2 Mathematical Models

Geostatistics can be outlined with two main goals: to identify the spatial properties of the variable

and to estimate gaps in incomplete data from the surrounding samples. These purposes are related,

as characteristics of the spatial structure can be used to estimate unknowns. This is done by

1) constructing a semi-variogram, and 2) interpolating through the use of either inverse distance

weighting or kriging.

2.1 Semi-variogram

The idea of spatial correlation discussed in the introduction to geostatistics is fairly intuitive. It

makes sense that a value close to the unknown will be more similar to it than a value farther away.

The semi-variogram is a way to quantify the variance in the values over space. It is fundamental

to the idea of spatial correlation, and a crucial part of geostatistics.

8

The semi-variogram is unique for each material. Looking at many pairs of data at points about

the same distance apart can provide an expected di�erence in value for a given distance. Described

mathematically it is[2]:

γ ∗ (h) =
∑

[y (x)− y (x+ h)]2

2n

where γ (h) is the semi-variogram1 as a function of distance h between the data points,

y (x) and y (x+ h) are the values at locations x, and x plus the distance h,

and n is the number of pairs of samples with distance h separating them.

These points are plotted with distance on the horizontal axis and semi-variogram on the vertical

axis.

There are several speci�c terms associated with the semi-variogram. The distance at which the

graph plateaus is called the range of in�uence, or simply the range. Any points farther apart than

the range are completely uncorrelated, and thus are not helpful in accurately interpolating a value.

The semi-variogram at that point is referred to as the sill. In experimental semi-variograms, it is

possible that there will be a discontinuity at the origin called a nugget. In theory, this should not

happen because the value at a point is equal to its own value; however, measurement errors and a

random in�uence between the points can cause a nugget.

One of the things a semi-variogram can reveal about the data it represents is its isotropy. The

material can be isotropic, meaning the spatial correlation is equal independent of the direction. If

direction is an in�uence, it is anisotropic. Wood is a great example of this. There is a greater range

so the relation extends much farther along the grain than against it.

There are several types of mathematical models which can be matched to the semi-variogram

obtained from the data. A simple semi-variogram can be represented by a single type, but they can

be combined for more complexity. Three of the most commonly used mathematical models are[2]:

Spherical

γ(h) =

C
(

3
2
h

a
− 1

2
h3

a3

)
h ≤ a

C h > a

Exponential

γ(h) = C

[
1− exp

(
−h
a

)]
Gaussian

γ(h) = C

[
1− exp

(
−h

2

a2

)]

2.2 Interpolation

There are several di�erent approaches to interpolating. Generally, this is done with the general

equation for a weighted average shown below:

1The distinction between the variogram, 2γ (h), as opposed to the semi-variogram is important, and not always
clear if semi-variograms are inattentively called just variograms.

9

Figure 2: Example of the three common types of mathematical models for the semi-variogram with
the same range/sill.

F (x, y) =
n∑

i=1

wifi

which basically says that the value of the unknown point is a summation of the values of the

points it is being interpolated from times its weight. The di�erences occur in determining the

weights.

2.2.1 Inverse Distance Weighting

One of the simplest methods is Inverse Distance Weighting (IDW). The weights are purely dependent

on the distance. The inverse of the distance for each of the points within range is found. If a point

is 4 units from the unknown, it would be 1
4 . Then they must be summed and scaled to one. So the

weight of each point is:

wi =
d−1

i∑n
j=1 d

−1
j

where d is the distance for each point i of n points. The distances can be scaled to provide

larger weights in some directions than others as determined in the semi-variogram this is discussed

in more detail in Section 3.3. This method works fairly well for its simple approach and is a good

comparison method to the kriging.

2.2.2 Kriging

Kriging is an interpolation method unique to geostatistics. It works by �nding the �best� estimate.

An explanation of how this is done will be given in terms of an unknown value T at a point A, as

adapted from Practical Geostatistics[2].

If the value at the closest point is used as an estimation of T , it will incur an estimation error

ε which is a measure of the di�erence between T and the estimated value T∗:

10

ε =| T − T∗ |

Assuming there is no local trend, as the number of estimations increases towards in�nity, the

average error will approach zero. So, theoretically:

ε = 0

The reliability of an estimator is rated by the spread of the errors. A 'good' estimator has errors

consistently close to zero. If they range more widely, than the estimator is unreliable. The spread

can be measured by the standard deviation of the estimation error - the standard error.

Consider the de�nition of standard deviation σ, the square root of the variance.

σ2 =

∑
(X − µ)2

N
, the average of the squares of the di�erence from the mean. In case of the

variance of errors, it follows that:

= average of (ε− ε)2

= average of ε2, since ε = 0

= average of (T − T∗)2

It is impossible to calculate these values directly since the actual value is unknown. A closer

look at the de�nition provides a solution. The value of the point closest to point A is used for the

estimator, and should vary from the actual value dependent on the distance from A. This expected

di�erence is described by the variogram exactly, the average of the squared di�erences. Thus, the

mathematical semi-variogram chosen to represent the spatial structure can be used to estimate the

di�erence (multiplying by two yielding the variogram). So, �nally, the variance of the errors is:

σ2
ε = 2γ(h)

As the estimate grows more complex with the addition of other points, the variance of errors is

given as a weighted average of the variogram of each of them.

σ2
ε = 2

n∑
i=1

wiγ̄ (Pi, A)

Figure 3: The di�erential of the vari-

ance of error with respect to the

weights. Kriging seeks to minimize this

variance to �nd the 'best' estimator.

γ̄ (Pi, A) is the average semi-variogram, as de�ned by

the mathematical curve, between interpolation point P

and the point being estimated, A. Kriging is unique in

that it directly seeks to �d the 'best' estimate - that hav-

ing the smallest estimation variance. The only values free

to be altered are the weights of the weighted average, so

the estimation variance is being minimized with respect

to the weights. A minimum can be found by setting the

di�erential equal to zero (i.e. the slope is zero as in Figure

3):

∂σ2
ε

∂wi
= 0 i = 1, 2, 3, 4...n

11

While this will provide weights for the desired mini-

mum, the sum of the weights must also be explicitly set

to one so the related estimator will be a whole.

∑
wi = 1

This added constraint consequently over-determines the system of equations - n weights, or

variables, and n+ 1 equations. A Lagrangian Multiplier is introduced to balance this out. Rather

than simply the estimation variance to be minimized, it is the term:

σ2
ε − λ

(∑
wi − 1

)
When the sum of the weights is equal to one,

∑
wi − 1 = 0, thus nullifying the λ and taking

the smallest variance as de�ned. The expanded system equations for three points is de�ned as:

w1γ(P1, P1) + w2γ(P1, P2) + w3γ(P1, P3) + λ = γ(P1, A)

w1γ(P2, P1) + w2γ(P2, P2) + w3γ(P2, P3) + λ = γ(P2, A)

w1γ(P3, P1) + w2γ(P3, P2) + w3γ(P3, P3) + λ = γ(P3, A)

w1 + w2 + w3 = 1

On the left side of the equation are the weights times the variance between each point with

each other point, and on the left is the variance between said point and the unknown. The system

of equations follows the same pattern for any number of points used to interpolate. Solving these

equations is a computational problem addressed in Section 3.2.

2.3 Sampling from Gaussian Distribution

If the goal of the interpolation is not to be accurate but to generate a sample set of data to be

used, than it may be desired to address the random aspect of a regionalized variable. To give

the impression of a degree of random variance in each point, a Gaussian Distribution is randomly

sampled.

Figure 4: 'Normal' Gaussian Distribution. The

mean is the interpolated value.

The interpolation gives the mean of the dis-

tribution, or the most likely value, but the value

is free to vary from this. The magnitude of

this variance is based on the variance of the un-

known to the closest point as determined from

the semi-variogram. This is more of a stylistic

choice, and results in unknowns interpolating

from farther a�eld points having a larger ran-

dom element. This sampling is set up as the

mean (µ) - or most likely value - as being the

12

interpolated estimator. The standard deviation

(σ) is the square root of the variance found from the closest point. Values closer to the mean are

more likely to be sample because of the bell shape of the curve, and the smaller the variance the

smaller the range of possible values.

3 Computational Model

Since our program is windows based, the computational method is much more segmented. Each

part is driven by user generated events (e.g., clicking buttons, typing).

After the data is input, there is a vector array of the grid points whose values are unknown.

The user can interact with a plot to create a semi-variogram from the known data.

3.1 Semi-variogram

Figure 5: Computationally �nding

experimental semi-variogram.

The program must calculate both experimental and mathe-

matical semi-variograms. The experimental semi-variogram

is somewhat simpli�ed because the data is already broken up

into equally spaced points. It did not take long to develop the

basic method that was used. For convenience, the equation

will be repeated here.

γ (h) =
∑

[y (x)− y (x+ h)]2

2n

Part of the process is actually simpli�ed because the data

is already divided into equally spaced points. Each row or

column begins at the �rst element and �jumps� over h points.

If the values at both points are known, the semi-variogram is

calculated.

This process is continued by incrementing up the row by

one until there are no longer enough elements to skip h. Then h is increased.

Figure 6: Screen capture of the plot section of the window showing an optimal experimental semi-
variogram, created from sample data.

13

3.2 Solution of Kriging Equations

The kriging equations involved a more complex solution than IDW, using matrices to solve for all

of the unknowns in the system. The added constraint on the sums makes the system of equa-

tions overdetermined, meaning there are more equations than variables. QR decompositions are a

common solution for least squares problems with over-determined systems of equations[3].

QR factorization of the coe�cient array was used to solve for the weights, and was computed

using Givens rotations. QR factorization of a square matrix A ∈ Rn×n2 is given by A = QR, where

Q is orthogonal and R is upper triangular. The de�nitions of these special types of matrices are as

follows:

A square matrix Q ∈ Rn×n is orthogonal if QTQ = QQT = In, meaning its inverse is also its

transpose3. An upper triangular matrix, also called right triangular, is also square (n×n), with all

the entries below the main diagonal zero:

U =

u1,1 u1,2 u1,3 · · · u1,n

0 u2,2 u2,3 · · · u2,n

0 0
. . .

. . .
...

0 0 0
. . . un−1,n

0 0 0 0 un,n

Givens rotations can be used for selectively zero elements, and calculate the decomposition

of a matrix into its Q and R factors. Multiplication by a rotation matrix4 performs a rotation in

Euclidean space. To visualize a matrix geometrically, consider each column to be a set of coordinates

to de�ne the location of a point. Multiple points create a set of columns, a matrix, with each row the

coordinates in the same dimension. So the matrix

[
cos θ − sin θ
sin θ cos θ

]T

performs a counterclockwise

rotation of an angle θ about the origin of an x-y-plane - or alternatively viewed as the rotation of

the coordinate system axes in the opposite direction. A rotation can be performed on a larger scale

by expanding the previous rotation matrix to:

G(i, j, θ) =

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · sin θ · · · 0
...

...
. . .

...
...

0 · · · − sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

which is an identity matrix with the following substitutions: gii = cos θ, gij = sin θ, gji = − sin θ,
gjj = cos θ. The only rows a�ected are i and j, the others will remain the same, and thus may be

2This denotes the vector space of all real n-by-n matrices, essentially saying any matrix with the given dimensions.
3The transpose of a matrix is denoted with a superscript T.
4It should be noted that rotation matrices are orthogonal and have a determinant of one.

14

Figure 7: Illustration of concept behind Givens Rotation. The i axis is rotated so as to make point
P lie upon it, zeroing its j′ coordinate.

ignored.

A Givens rotation sets the angle to rotate the axis so the selected point lies on it, zeroing out

the value of the other coordinate. If x ∈ Rn, and y = G(i, j, θ)Tx, then, by matrix multiplication:

yk =

xi cos θ − xj sin θ k = i

xi sin θ + xj cos θ k = j

xk k 6= i, j

yj can be forced to be zero when it lies on the perpendicular axis. Figure 7 illustrates the right

triangle created by the previous axis and the new one that should run through point P (xi, xj).
This creates the desired angle of rotation. By directly using the de�nitions of the trigonometric

functions used in the rotation, calculation of θ can be bypassed entirely. The Pythagorean Theorem

(c2 = a2 + b2)gives the length of the hypotenuse, and the sides of the triangle are known from the

coordinates.

cos θ =
adj

hyp
=

xi√
x2

i + x2
j

sin θ =
opp

hyp
=

−xj√
x2

i + x2
j

Substitute these de�nitions into the expression for yj :

xi sin θ + xj cos θ

−xj√
x2

i + x2
j

xi +
xi√

x2
i + x2

j

xj

−xjxi + xixj√
x2

i + x2
j

= 0

And they result in zero because the �rst term of the numerator has a negative, making them

additive inverses. This only happens in the speci�c case that was intentionally set up.

15

These Givens rotations can be used to �nd the QR factorization used to solve a matrix equation

Ax = b. Each element of the coe�cient matrix A where i is greater than j would be zeroed, creating

an upper triangular matrix.

From the de�nitions of sine and cosine and the Pythagorean Theorem, they can be found as:

cos θ =
j

h
=

xi√
x2

i + x2
j

and sin θ =
i

h
=

−xk√
x2

i + x2
j

Now the matrix equation has been put into the form Ux = b, it can be solved using back

substitution. For a 2-by-2 example:[
u1,1 u1,2

0 u2,2

][
x1

x2

]
=

[
b1

b2

]
The bottom row has only one unknown, since the other variable is zeroed, and can be solved

directly. Once that value is known, it can be substituted up into the next row so there is again

only one unknown which can then be found. Starting at the bottom row, the unknown x's can be

solved for sequentially:

u2,2x2b2 is solved algebraically to be x2 = b2/u2,2

u1,1x1 + u1,2x2 = b1is x1 = (b1 − u1,2x2)/u1,1

This back substitution can be represented by[3] :

xi =

b−
n∑

j=i+1

ui,jxj

ui,i

This process provides the values of the weights in the weighted average. The corresponding code

for a coe�cient matrix A, right hand vector B, andmatrix size n, as based o� of the psuedo code

in Matrix Computations[3] is given in Listing 1. The solutoin is stored in vector x.

Listing 1: Matrix Solver using Givens Rotations

void GeoData : : QRGivens (double ∗∗A, double ∗B, i n t n , double ∗x) {

double c , s , tau , tau2 ;

i n t i , j , k ;

f o r (j = 0 ; j < n ; j++) {

f o r (i = n−1; i > j ; i−−) { // loop to zero a l l e lements in lower t r i a n g l e

/∗ Determine v a r i a b l e s f o r r o t a t i on ∗/
i f (A[i] [j] == 0 . 0) { // a l r eady 0 − don ' t change

c = 1 . 0 ;

s = 0 . 0 ;

}

e l s e i f (abs (A[i] [j]) > abs (A[j] [j])) {

tau = −A[j] [j] /A[i] [j] ;

s = 1 .0/ sq r t (1.0+SQ(tau)) ;

c = s ∗ tau ;
}

e l s e {

tau = −A[i] [j] /A[j] [j] ;

c = 1 .0/ sq r t (1.0+SQ(tau)) ;

s = c∗ tau ;
}

16

f o r (k = 0 ; k < n ; k++) { // perform ro t a t i on on elements in two

a f f e c t e d rows

tau = A[j] [k] ;

tau2 = A[i] [k] ;

A[j] [k] = c∗ tau − s ∗ tau2 ;
A[i] [k] = s ∗ tau + c∗ tau2 ;

}

/∗ Same ro t a t i on done on r i gh t hand s o l u t i o n vec to r ∗/
tau = B[j] ;

tau2 = B[i] ;

B[j] = c∗ tau − s ∗ tau2 ;
B[i] = s ∗ tau + c∗ tau2 ;

}

}

/∗ Back sub s t i t u t i o n s t o r e s s o l u t i o n in x ∗/
f o r (j = n−1; j >=0; j−−) {

x [j] = B[j] ;

f o r (i = n−1; i > j ; i−−) {

x [j] −= x [i]∗A[j] [i] ;

}

x [j] /= A[j] [j] ;

}

}

3.3 Anisotropy

Anisotropy is the property of being directionally dependent (as opposed to being isotropic). In

geostatistics, this means having di�erent spatial correlation in di�erent directions. Wood is a good

example of this characteristic. It is evident, even to the human eye, that it has a higher degree of

correlation along the grain than against it. This might not be so apparent in the various qualities of

di�erent substances. Therefore, anisotropy must be identi�ed using the semi-variogram. The plots

of the experimental semi-variograms for the two directions will have di�erent ranges of in�uence.

The solution is to make the ranges appear to be the same. This means adjusting the measure-

ments so that one 'unit' in the semi-variogram may be 5m horizontally and 25m vertically.

The calculations rely on a distance method to calculate how far one point is from another. This

is simple since they use a coordinate system. The distance formula is:

d =
√

(x2 − x1)2 + (y2 − y1)2

If the formula is modi�ed, it can account for the scaling of measurement. If s is the scale factor,

in the form of a decimal percent (i.e. to have half the range, s would be 0.5), then the new formula

can be expressed as:

d =
√

[sx (x2 − x1)]2 + [sy (y2 − y1)]2

The magnitude of the distance in each direction is scaled before the rest of the distance formula

is performed. This scaling e�ect has also been applied to relative distances in the two directions. If

it is one foot from one cell to the next horizontally, but two feet vertically, than the ratio is included

17

in the scale to make it a default of isotropic - the point above the unknown really is twice as far

away as the one to the right of it.

3.4 Sampling from Gaussian Distribution

The Gaussian Distribution was fairly simple to set up with the use of a method from Numerical

Recipes in C [9]. Once the interpolated value is set, the nearest point is found by searching through

the list of points in range and the variance computed for the distance. The random sample returned

from the method can be applied to the speci�c case.

double a , b ;

a = est imate . getValue () ;

b = GetVariogram (est imate , GetClosestPoint (e s t imate)) ;

r e turn a + gaussRandom () ∗b ;

The method gaussRandom() returns a sample from a Gaussian Distribution with a zero mean

and unit variance. Multiplication by b stretches the curve horizontally and adding a shifts it

horizontally.

Since this sampling was not important to the focus of this project, it has not been tied completely

into the user interface: there is not an option in the window for it. The code needed to compute

it is completed, but the method to apply it to each of the unknowns by choice of a user was not

updated with the other code changes.

3.5 Multiple Points and Runs

Thus far, the discussion has been limited to the interpolation of a single point. To �nd all of the

unknowns, they are ordered randomly to be calculated. This sequence is important because the

points are interdependent - once an estimated value is found it is used in the interpolation of others.

Figure 8: Algorithm developed to randomly

iterate through unknowns. Elements are

swapped to the back part of the array as they

are randomly selected from the front part.

Because of the random element of order, the an-

swers will vary between runs, making it necessary to

run multiple times. This repetition and integration

of results, in the form of a mean, has been auto-

mated.

An algorithm had to be developed to randomly

iterate through an array of the unknown points.

Each element is a structure which contains the index

of the unknown and a sum of the answers - which can

then be divided by the number of runs to �nd the

mean.

This is all done in a single array. A random index

between zero and the maximum size of the array is

chosen. Once the interpolation has taken place and

added to the sum, the element is switched with the

last element. The next random index is chosen, but

this time excluding the �nal element which has al-

ready been found - that is between zero and one less

18

than the array size. This next element is switched

with the second to last element, creating a segment at the end of the array of the elements that

have already been used. The next random element is searched for between zero and the maximum

minus the number of completed elements.

This algorithm works �ne until the problem of failures to calculate the points arises. If there

are no points within the range of the current unknown, it has nothing to interpolate from. It must

be skipped until later when more points have been calculated.

3.6 Optimization

Large scale problems are the norm in practical computing, calling for faster calculations to curb

the lengthy run-times. Due to the sectionalized nature of the code, these beginning stages of

optimization have been done within the separate methods. Later work may attempt to make this

more streamlined in order to further improve the speed.

3.6.1 Variation on Random Iteration Algorithm

Figure 9: Variation on the random iteration algo-

rithm, grouping 'failed' elements in the front to

be retried after all the others have been iterated

over.

Though it is not necessarily characteristic of

large problems, sparse data can become com-

putationally expensive in the random iteration

through the unknown points. In the original

method outlined on Section 3.5, if a point fails

- that is there are no points in range from which

to interpolate - the unknown is left where it is

in the array and the count of �nished elements

does not increase. This works when there is

ample data and these types of points are rare.

Another point is picked and eventually it will

be successfully calculated as the points around

it are found.

In a set of sparse data, however, there are

so many points with nothing in range that the

random index could continually hit these points

and no progress would be made. An alterna-

tive algorithm was created, which, while it does

not ensure equal chances in determining the

random path, prevents already failed elements

from being selected again before more points

are �lled in. This prevents repetitive sampling

which may waste computation time.

This was accomplished by setting o� ele-

ments at the beginning of the array, similar to

the one on the end. If the calculation of the unknown at a random index is successful - that is there

were points in range to interpolate from - it is swapped into the back section of the array. If it fails,

19

it is swapped into the front. Random indices are always selected from between the two boundaries

of the separated sections by �nding a random number for the range and o�setting it from the front:

index = rand() % (size−i−front) + front;

Once the boundaries converge, leaving no unknowns in the middle which have not been iterated

over, the front boundary is reset to the beginning of the array. This puts all the previously failed

elements in the middle to be retried. This continues until all the elements have been successfully

completed and moved to the back - or if the boundaries converge with no new successfully com-

pleted unknowns, indicating the elements that are left are impossible to calculate with the current

parameters.

The variation on the algorithm is implemented in the following fashion:

Listing 2: General Use Implementation of Variation of Random Iteration Algorithm

su c c e s s = 0 ;

f r on t = 0 ;

s i z e = array . s i z e () ;

for (i = 0 ; i < s i z e ; i++) { // i t e r a t o r to determine when a l l elements are completed

i f (f r on t == s i z e − i) { //check i f the boundaries have converged

i f (su c c e s s < 1) // i f there have been no successes here , the r e s t are imposs ib l e

send e r r o r

f r on t = 0 // re se t boundary and success count

su c c e s s = 0

}

index = rand () % (s i z e−i−f r on t) + f r on t // in C++, f ind random index between

boundaries

i f (c a l c u l a t i o n r e tu rn s s u c c e s s f u l) {

swap array [index] with array [s i z e−i −1]
su c c e s s++

}

else { // i f the ca l cu l a t i on f a i l e d

swap array [index] with array [f r on t]

i−− //compensate for automatic increment of i , i t wasn ' t suc ce s s f u l

f r on t++ //move up boundary of f ront sec t ion

}

}

Since there are potential consequences in the order of the random path, this alternative is only

used with the selection of a sparse data option in the application window.

3.6.2 Transferring Matrix Solver to the GPU

The Givens Rotation QR decomposition was parallelized using OpenCL to send it to the Graphic

Processor Unit (GPU). Large problems continued to use inordinate amounts of time without reach-

ing completion. A smaller sized test problem was run to identify which methods were most com-

putationally expensive. A signi�cant 55.56% of the total time was spent in the QRGivens method

(the solver for the kriging equations), which was also much larger than the next largest at 7.41%.

This made the matrix solver a clear target for optimization.

The speed-up gained by operating on a GPU is mainly due to to the parallel computation - the

same process is done on multiple data elements simultaneously[7]. The speed of calclulations on the

GPU make loading data the primary concern. The coe�cient and right hand vector of the matrix

equation are passed in globally. For every rotation, only two rows are a�ected, as discussed in the

description of Givens Rotations (Section 3.2) . Thus the rows can be loaded into local memory by

20

pairs, providing faster access.

Figure 10: Break down of Givens Rotation to be done in parellel on the GPU where rows 1 and 2
are those a�ected by the current rotation.

Parallelization can only be used where the values are independent of eachother. Once the

coe�cients of the rotation are found, they can be applied to each of the elements individually - that

is in parallel. This break down is shown in Figure 10. The current kernel implementation is shown

in Listing 3.

Listing 3: OpenCL Givens Rotation Kernel

#de f i n e A(j , i) Coe f f [j ∗npadded+i] . s0

#de f i n e SQ(a) ((a) ∗(a))
__kernel void QRGivensGPU_kern(

const i n t npadded ,

const i n t n ,

__global f l o a t 2 ∗ BX,

__global f l o a t 2 ∗ Coeff ,

__local f l o a t ∗ row1 ,

__local f l o a t ∗ row2 ,

__local f l o a t ∗ B)

{

i n t giX = get_global_id (0) ;

i n t tiX = get_local_id (0) ;

i n t ngX = get_globa l_s ize (0) ;

i n t ntX = get_loca l_s i z e (0) ;

f l o a t c , s , tau , tau2 ;

i n t i , j , k ;

i f (giX < n) { //Only f o r p r o c e s s o r s that were not added f o r padding

B[giX] = BX[giX] . s0 ;

f o r (j = 0 ; j < n ; j++) {

row1 [giX] = A(j , giX) ; //Each proc e s s o r s e t s va lue in row1 from

corre spond ing A

f o r (i = n−1; i > j ; i−−) {

21

row2 [giX] = A(i , giX) ;

b a r r i e r (CLK_GLOBAL_MEM_FENCE) ; //Force wait u n t i l a l l p r o c e s s o r s

are done

/∗ Set r o t a t i on va lue s ∗/
i f (row2 [j] == 0 .0 f) {

c = 1 .0 f ;

s = 0 .0 f ;

}

e l s e i f (f abs (row2 [j]) > fabs (row1 [j])) {

tau = −row1 [j] / row2 [j] ;
s = 1 .0 f / sq r t (1 . 0 f+SQ(tau)) ;

c = s ∗ tau ;
}

e l s e {

tau = −row2 [j] / row1 [j] ;
c = 1 .0 f / sq r t (1 . 0 f+SQ(tau)) ;

s = c∗ tau ;
}

/∗ Perform ro t a t i on on each element − p a r a l l e l ∗/
tau = row1 [giX] ;

tau2 = row2 [giX] ;

row1 [giX] = c∗ tau − s ∗ tau2 ;
row2 [giX] = s ∗ tau + c∗ tau2 ;
/∗ Perform ro t a t i on on appropr ia t e e lements o f s o l u t i o n vec to r ∗/
i f (giX == i | | giX == j) {

tau = B[j] ;

tau2 = B[i] ;

}

b a r r i e r (CLK_GLOBAL_MEM_FENCE) ;

i f (giX==j) B[j] = c∗ tau − s ∗ tau2 ;
i f (giX==i) B[i] = s ∗ tau + c∗ tau2 ;

A(i , giX) = row2 [giX] ; //Put updated va lues to the c o e f f i c e n t array

}

A(j , giX) = row1 [giX] ;

}

/∗ Back subs t i tu t e , putt ing answer in to second vec to r component o f BX ∗/
b a r r i e r (CLK_GLOBAL_MEM_FENCE) ;

f o r (j = n−1; j >=0; j−−) {

f o r (i = n−1; i > j ; i−−) {

B[j] −= B[i]∗A(j , i) ;
}

B[j] /= A(j , j) ;

}

BX[giX] . s1 = B[giX] ;

}

}

22

4 Code

4.1 Overview and Structure

This is a large project and, especially with the GUI, there is a signi�cant amount of code with

a complex structure. There are several key parts that will be discussed in more detail in the

next sections. This project was written primarily in C++, but also incorperated several di�erent

packages: wxWidgets (and its add-ons), OpenGL, and OpenCL.

The wxWidgets code which creates the windowing is generated using wxFormBuilder, but it is

not used directly. In fact, the programmer should not hand edit it at all. Instead, a child class

is created, inheriting the frame design and objects within in. It is in this class that the methods

called on each event are implemented. The role of each class will be clari�ed with a description of

their place in the structure and their methods.

AdamsAleAppGui is the �le generated by wxFormBuilder, and actually contains several classes

for the frame and each of the dialogs. Each one creates the window with the layout as designed

in wxFormBuilder, but nothing is functional.

AdamsAleApp is the �main� class in the application. It calls the constructor of the frame displays

it, and sets up the continuous rendering. Though these are its only tasks, they are important

because external code (from the windowing) is needed to initialize the application.

AdamsAleAppFrame is the class inherited from the frame produced by the generated code.

While the parent class has the layout, it is this class's job to �ll in designated spaces such as

the GLCanvasPane. It makes the original design functional by animating the controls, that

is, de�ning what should be done for di�erent user inputs. The frame has access to all of the

objects within it, so it can retrieve data from inputs, display values, and call the methods

of more complex objects (GLCanvasPane, PlotCtrlPane). The �command events� generated

by clicking buttons, selecting menu items, etc., are directed to here. In wxFormBuilder,

corresponding methods for each event can be set. These methods are de�ned here, generally

calling on more speci�c methods in other classes. Otherwise, it calls dialogs and has all the

�le I/O.

GeoData was developed later to hold all of the variables and methods on the computational

side of the application. It is purely computational, with no references to any of the user

interface. When a new model is created or a �le opened, an instance of the class is created

and values passed in. The frame can then call any of the methods: from the semi-variogram

to interpolating points.

GLCanvasPane is the pane in the window reserved for the visualization. An instance of this class

is created as part of the constructor of the frame. The pointer to the data class is passed into

this class after the unknowns have been interpolated so it has access to the values of each

point.

PlotCtrlPane comes from the wxWidgetsAddition wxPlotCtrl with additional methods for its

speci�c use in plotting semi-variograms.

23

The sizes of these classes may be estimated by the number of lines in each of their �les5:

File Line Count

AdamsAleApp 93

AdamsAleAppFrame 432

AdamsAleAppGui 763

DataPoint 65

GeoData 460

GLCanvasPane 301

PlotCtrlPane 184

Total 2311

There is an immense amount of code, and it cannot be recorded here in its entirety; major

sections are included in pertinent sections. It is all online in the repository used during its de-

velopment and can be viewed at: http://code.google.com/p/adams-ale/source/browse/#svn/

trunk/AdamsAle.

4.2 WxWidget Windowing

The windowing and user interaction were a signi�cant part of the program. Since there are so many

di�erent options in geostatistics, this format allows a user to choose the method that best �ts the

speci�c problem. The majority of the wxWidget C++ code was generated with wxFormBuilder,

saving the time needed to write out the simple code by hand. The rest of the code has been

integrated into this main application window as functions.

Figure 11 is a screen capture of the workspace in which the user interface is created. On the

left is the hierarchy in which the elements of the page can be easily arrangedwithout disturbing

the rest of the window. In the middle is a preview of the window the programmer is creating. On

the far right is the �properties and events� window. The �properties� tab allows the programmer

to set the size, labels, and properties of the object that was just created, while the �events� tab

lets the programmer set the methods for the object. For example, the programmer can write

�OnMouseClick� enable that object to be used when it is clicked on by a mouse by adding matching

code later on. This object can now be used because it has a function. WxWidgets is used for

creating the windowing in which a the program can operate. This tool allows the programmer to

create a window with relative ease. It creates most of the 'cosmetic' code, while it only requires the

programmer to write the code to animate the controls. This eliminates a lot of lines a programmer

must write by hand. wxWidgets is also very useful for programmers using more than one platform

as it is virtually the same on a PC and Mac - though this has not been attempted with this project

. Tabbed windows allow more information to be seen on the same page. Using wxWidgets along

with wxFormBuilder was a good choice because of the relative ease. because of the relative ease of

using it. In wxFormBuilder, the programmer starts with a frame, which is a basic window. Then a

sizer is added. Sizers organize the window and lay out the graphs and similar objects. After a sizer

there are virtually endless possibilities from which the programmer can choose: toolbars, graphs,

data tables, and graphics panes to be �lled by other programmers.

5Line counts are from a single point in time and will vary a little as changes are made. Header �les are included
in the count.

24

Figure 11: wxFormBuilder workspace

There are four di�erent types of sizers: box, staticboxes, grids, and �exgrids. BoxSizers are the

most common and ideal choice for a basic window. They space out the objects that are added to

it equally, placing them either vertically or horizontally. A box sizer was used for the left hand

side of the window. Static boxsizers are the basic variations. GridSizers are important because

they are contain graphs and charts. The bottom and top parts of the window have gridsizers.

All of the rows and collumns must be the same size. FlexGridSizer sizers are grid sizers with the

exception that the programmer can manipulate the dimensions. In this application a FlexGridSizer

is used to display the information on the right hand side of the window. Another important aspect

utilized was sashed windows. Sashed windows allow the window to be stretched making it larger or

smaller. For example, if there are seperate pieces of information such as a graph and dataset, the

sash enables the user to enlarge one of the the two to see more of the other. wxFormBuilder alows

the programmer to create buttons and windows with ease. The program writes all of the 'cosmetic'

code while the programmer creates the little working code.

The user interface was designed to be very intuitive. The process starts with importing data

from a speci�ed borehole. This data is placed in a chart at the top of the screen. It is placed with

two columns on opposite sides of the chart. This data could be porosity, amount of radiation, or

resistivity, depending on the data from the borehole. Once the data has been imported into the

chart, the user chooses the method of interpolation. After the method is chosen, the semi-variogram

is plotted on the PlotCtrlPane graph below the chart. There is a key on the right side of the graph.

In the right vertical portion of the window are many options for formatting the graph. The user can

select from three di�erent mathematical models: gaussian, spherical, and exponential. Once the

user chooses his model the program will generate the plausible points. The user can also choose the

range and sill as well as the scale in the x and y direction. He can also choose the number of times

the program will run. There is a tab for a label named �visual.� In that window a graph created in

OpenGL will appear. The graphic will correspond with di�erent numbers. For example, red would

represent a higher number while blue would represent a lower number. A small user guide has been

25

compiled to show this (Appendix C).

4.3 Computational

The overall structure of the code was dominated by the windowing, so the numerical code was

worked in as methods. Rather than mixing it in with the GUI, all of these methods were collected

into their own class. An instance of this data class is created upon the opening of a new project,

opening �le, or data import. Accessors are primarily used in setting the initial values from user

input or �le I/O, but are then mainly internal because they are only used in computations which are

inside the data class. Computations, such as interpolation, are instigated by a call of the method

in the frame class, and then the values can be accessed for display.

This approach of isolating the computational code is much cleaner and makes changes in the

user interface easier since only method calls must be moved rather than blocks of code. Storing the

data in a data class also allows it to be passed to other parts of the frame. The graphic pane needs

the data to display, and C++ inclusion/dependency makes it di�cult to get the values if they are

an intergal part of the frame.

Details on the implementation on key methods in the computational section of the code is

detailed in Section 3.

4.4 OpenGL Graphics

The data set has been represented visually using OpenGL, an interface to graphics hardware.

OpenGL is complex and powerful, and is used for rendering interactive color images of three di-

mensional objects. There were two di�erent types of views created: a height map and a three-

dimensional terrain. Due to the inexperience of the team members with OpenGL, the programming

guide and tutorials were heavily relied upon[4, 10]. OpenGL creates smooth, aesthetically pleasing

images by automatically blending the programmed colors in the window. It also makes the sizing of

the screen simpler. The distance between a coordinate point on the graph and the origin will stay

in proportion during a change in size of the overall image. This allows the screen to be shrunken,

grown, or put into full screen while keeping the picture the same, which is especially important in

an application setting. There are many other options set in OpenGL: lighting, surface materials,

fog, movement, etc. which are beyond what this project requires.

Figure 12: The x-z plane for the 2D grid.

The y coordinates are set based upon the

value at each point.

In order to access the data to be visualized, the

pointer to the data class which stores that informa-

tion is passed to the GLCanvasPane after the inter-

polation is completed. This prevents anything from

being rendered until after the interpolation is �n-

ished, or if everything is �lled, the �Go� button is

pressed. The dimensions of the grid in number of

cells and maximum and minimum values are also

needed for rendering.

A terrain is a three dimensional surface with

varying heights. It is created by having a two-

dimensional mesh in the x-z plane and storing

26

heights (y coordinates) for each point. Speci�c to

this project, this means taking the two dimensional

slice that is being modeled, and using the values in each cell to set the height. A method is de�ned

to return a height for a given set of two-dimensional coordinates:

f l o a t GetHeight (i n t x , i n t z) { re turn ((data−>GetValue (x , z)−min) /(max − min) − 0 .5 f

) ; }

This takes the value relative to the minimum - which is the lowest point - and �nds where it lies

in the range. This returns a decimal, so subtracting 0.5 centers the object vertically. These heights

are put out in the format of decimals so the programmer must convert them into values.

Figure 13: An RGB Cube - a graph of the colors with

the red, green, and blue components on each axis.

Besides setting the height, the color

of the vertices are also set dependent on

the value of each point. This was more

complicated to do. First a color array is

set up, ranging from blue to red. A red-

green-blue (RGB) cube illustrates how

the color changes from blue to green to

red as di�erent components are added

and subtracted. The color array has

structures for elements to store the red,

green, and blue components of the col-

ors. By setting the length of the color

array proportional to the range of val-

ues, the index of a color can be calculated for a given value.

index

#colors
=

value

max−min

index =
(value)(#colors)
max−min

A method similar to the one for height is de�ned to return that index:

i n t GetColorIndex (i n t x , i n t z)

{ re turn ((data−>GetValue (x , z)−min) ∗NCOLORS/(max−min)) ; }

The next step is to draw the actual surface. This is done with a triangle strip. A triangle strip

takes given vertices and draws triangles for consecutive sets such as{1,2,3},{2,3,4},{3,4,5}. This is

fast because there are fewer three-dimensional vertices that have to be sent to the graphics card.

The method from the terrain tutorial was used for looping through the grid and setting the correct

vertices. The routine used to render the terrain is as follows, with a sample result in Figure 14.

i n t z , x , index ;

i n t s i z i n g = 2 . 2 5 ;

f l o a t s c a l e = 2 .0 f / MAX(width − 1 , l ength − 1) ;

g l S c a l e f (s ca l e , s ca l e , s c a l e) ;

g lT r an s l a t e f (−(f l o a t) (width−1)/2 , −0.5 f , −(f l o a t) (length −1)/2) ;

f o r (z = 0 ; z < length − 1 ; z++) {

glBeg in (GL_TRIANGLE_STRIP) ;

27

f o r (x = 0 ; x < width ; x++) {

index = GetColorIndex (x , z) ;

g lCo l o r 3 f (Rainbow [index] . Red , Rainbow [index] . Green , Rainbow [index] . Blue) ;

g lVe r t ex3 f (x , s i z i n g ∗GetHeight (x , z) , z) ;

index = GetColorIndex (x , z+1) ;

g lCo l o r 3 f (Rainbow [index] . Red , Rainbow [index] . Green , Rainbow [index] . Blue) ;

g lVe r t ex3 f (x , s i z i n g ∗GetHeight (x , z+1) , z+1) ;

}

glEnd () ;

}

Figure 14: A cropped screen capture of a 3D ter-

rain generated for sample data.

The other type of image was taken from the

idea of a heightmap. A heightmap is an im-

age used to store three-dimensional data. It

is essentially the two-dimensional plane with a

range of grayscale to represent height. It is eas-

ier to see the range of data in this heightmap, so

it has been included as a viewing option. The x-

y plane is used in this case, and only the colors

are set, not depth. This allowed the estimations

of the unknown geological values to be shown

in a window for easier intelligence. The values

of the makeup of the land were given speci�c

colors and then graphed in a window to create a two-dimensional model of the landscape.

Figure 15: An example of the heightmap rendered

for the same sample data as the terrain.

These graphics can be interpreted as red

spots being the higher numbers with the other

values colored accordingly. The preferable val-

ues and colors for �nding an aquifer will dif-

fer between the graphs of di�erent variables.

In a graph of the porosity of the bore hole a

higher number would be preferable to a lower

because water will be retained in the rock more

if the porosity is higher. However in a graph of

gamma radiation a lower number would be bet-

ter. This explains the lack of a key in the user

interface window: making sense of the values is

really up to the user.

4.5 wxPlotCtrl Graphing

Even though there are several plotting packages available to use with wxWidgets, wxPlotCtrl is

the one supported by wxFormBuilder. It is an interactive xy plot with options such as zooming,

selection of points, and data processing. Many of these functions were hard to access and use owing

to the lack of documentation. Despite this di�culty, an operational graph was created for the

semi-variogram.

PlotCtrlPane is an object within the application frame. Once the semi-variogram is calculated,

28

the data is passed down to be plotted. The x and y directions are separate and distinguished by color

in a key. The experimental semi-variogram is then interactively matched by the user. There are

several options on the left sidebar. The data sets can be scaled to account for anisotropy by entering

a percentage. This calls the function in the PlotCtrl which both performs the scale and saves the

inverse. The next percentage that is entered will �rst use the inverse to revert back to the original

size before applying the new scale. The sill/range of the semi-variogram is set by double clicking

on the graph, which is interpreted by the library as coordinates. These are recorded in variables

and used to calculate the mathematical models which are then added to the plot. These curves

are created by setting the points every whole number, which can cause some misrepresentations

for small horizontal sections. The sill and range can also be set originally from the sidebar. After

they are set � either in the sidebar or with the mouse � the current values are displayed in the

sidebar, updated in the idle loop, which prevents them from being set there again. Other methods

of updating were attempted, but interclass communication and propagation of events has not been

successful so far.

The wxPlotCtrl library also has some automatic functions that were useful. A click and drag of

the mouse will zoom in on the selected section of the plot and can scroll along the axes. The title

and labels can be edited, though they will always be reset.

5 Results

5.1 Case Study

This case study returns to the original application to aquifers: using data from boreholes to deter-

mine if water-bearing rock might be located in the ground between the holes. It is an ideal choice

in some ways, since geostatistics was used in hydro-geology early on in its development. In most

cases, it would be prudent to verify spatial dependence before interpolating, but for the limited

scope of this project it has been assumed. This assumption is supported by the traditionalism of

the �eld.

Regrettably, the two boreholes left to be used after one had to be dismissed were the farthest

apart and proved too challenging for the present version of the program. In spite of these problems,

progress has been made in completing the study and it has provided invaluble insights into what

future work is required.

5.1.1 Data

Data from boreholes in the Los Alamos area were generously provided for use in this project (Section

A.3). There are many di�erent types of information collected from the boreholes; this project deals

with depth, porosity, water �ow, and radiation emission. While porosity or a di�erent variable

can provide valuable information about the locations of aquifers, it really is the combination of

favorable qualities that will indicate a possible aquifer. This is because the perfect geological site

for an aquifer is determined by many di�erent variables acting together for the ideal surroundings.

This

There was data for three boreholes in the Mortandad Canyon area (R-1, R-7, and R-33 located

in Figure 17), but unfortunately, as it was prepared to be imported, it was realized that one did

29

not overlap with the other two depth wise and could not be used at this point. Borehole R-1 was

eliminated and the other two were imported to test the program.

The same section of depth was observed by taking the elevations and depths for the boreholes.

Even though the holes are not at the same elevation, it was possible to �nd an absolute measurement

above sea level by decreasing the gound elevation by the depth of the hole at each point. This lined

up sets of data, making it possible to take a consistant cross-section (Figure 16).

Five di�erent sets of data were provided so that it would be relatively easy to write an import

function to bring the sets into the program. The �rst set of measurements is standard Gamma

Rays in API units. Gamma rays are used to �nd water and the di�erent �uctuations in the rock

patterns. The meters measure incoming gamma rays from radioactive elements in the surrounding

rock. For example, if potassium or uranium are in a rock the water is most likely not there because

they have a large nuclear signature. Since these elements are highly radioactive they will create

quite a large signature and water will not be there because of lack of porosity. Even if there were

porosity, it would be �lled with the radioactive elements. The next type of data received was Deep-

Reading Resistivity in ohm-meters. This basically reads the conductivity and resistivity of the rock

at interval depths. The conductivity and resistivity of the di�erent depths can be used to determine

whether or not the rock holds any potential for water. The third set is a total porosity set which

measures the total amount of pore space in the probed aquifer. This is a less e�ective way to �nd

data because of its using all of the pore space no matter how small. More meaningful is the fourth

data set, e�ective porosity. E�ective porosity allows the probe to only �nd certain sized pores that

allow e�ective �ow of ground water measured by nuclear magnetic resonance (NMR). Last is the

Logarithmic mean of T2. The Logarithmic mean is the average pore size of the probed area and

can be used to tell how useful the aquifer is - the pores must be open enough to be interconnencted.

An import method was then written to bring the data into the application and was then used

as a sample set to test the program with real world data.

Figure 16: Two dimensional cross-section of boreholes with di�erent elevations.

30

Figure 17: Location of the boreholes from the case study.

5.1.2 Semi-variogram

The semi-variogram for the various types of data was successfully plotted. The x direction has only

one point because there is only the single distance from one borehole to the other. The y direction

produced interesting plots which are inluded here in Figure 18. Note the large values of variance

that probably arise when the data covers multiple rock structures. The large di�erences between

them would increase the average variance.

31

Figure 18: Semi-variogram of each of the data sets for the two boreholes. These are focused on the
y direction as there is only one known point in the x direction.

5.1.3 Mixed Success of Interpolated Fields

There were mixed results between inverse distance weighting and kriging. The IDW was able to

complete the interpolation, while kriging returned completely unreasonable numbers. These runs

used the anisotropy and sparse data options and only run for each since the problem is so large.

32

The height maps produced for each data set using IDW are shown in Figure 19.

Figure 19: Height maps produced for inverse distance weighting interpolation between boreholes.
From top to bottom they are: resistivity, total porosity, SGR, and e�ective porosity.

Since these results were only obtained at the end of the project, no attempt at numerical analysis

has been made.

Figure 20: Visual results of small section of bore-

hole interpolated with kriging.

Attempts to run the borehole problems us-

ing kriging continued to be fruitless. Even

though it was �nally capable of �nishing, the

numbers were ridiculously large. In interpola-

tion, results should fall within the range of the

original data, further invalidating those values.

It was theorized that the large variances used

in matching the semi-variogram, coupled with

the scale of the problem, simply overloaded the

methods and caused it to return nonsense. Ul-

timately, a small section of the boreholes was to use instead, and itwas successfully completed when

an much smaller variance was used (Figure 20).

6 Conclusions

There was a lot accomplished in the course of this project, but geostatistics is a complex �eld, so

only the fundamental levels were covered in the available time. The science that was managed to

be incorporated into the project is potentially useful in the a search for aquifers, as shown by the

preliminary results, and was a signi�cant learning experience for all involved.

The results of the case study demonstrated that there are still several adjustments to be made

33

for the program to be a viable tool in large scale problems. For smaller problems, it works well.

This includes several options set by the user for desired e�ects. The user interface still has some

pitfalls if it is not used the way it was designed, but turned out impressively.

Intersting characteristics of the two interpolation methods became apparant through the test

runs. Kriging provides a smoother interpolation in contrast to the 'bull's eye' e�ect of inverse

distance weighting. There are advantages of IDW which were demonstrated in the case study.

Kriging is much more sensitive to the high variances and anisotropy, which likely caused the faulty

results when it was used for the borehole data. IDW can complete this problem, returning results

for similar situations that are not possible with kriging.

More than the cursory attention given to the results from the case study would be required

to determine exactly how accuratly the program predicted possible aquifers. Unfortunately, these

were not completed until the very end of the project, so this analysis was not possible. In and of

itself, simply getting plausible results out of the program is an achievement.

6.1 Current Status

Despite hard work and good ideas there were many problems in the making of a working program.

There was a memory leak that made the system crash if overly extensive data sets were attempted

to be run. The memory leak was �xed, but large data sets still do not work, returning very large,

faulty answers. Smaller data sets do run through the program and yield successful results. The case

study involving the borehole data was imported into the program and helped to determine whether

the process worked. To hasten the slow computation of the computer program an optimization of

tasks was attempted. It was partially successful and made the program somewhat more e�cient.

The graphics presented many di�culties and much time was spent in �xing them. Getting them

to interface with the C++ was problematic and did not work for a long time. Making the graphic

map three dimensional was a trial. Initially the graphics were being written in OpenGL as rows of

colored boxes that would be colored by their speci�ed values, however that could not be contrived

to work correctly and was discarded in favor of triangle stripping. This worked much better and

the graphics �nally interfaced satisfyingly with the other code.

Fortunately, almost all of the problems encountered in the progress of �Adam's Ale� were dealt

with and eliminated to create a program that does what it was designed for. Hopefully, it will be

able to solve real world problems.

7 Teamwork

When a team has a small number of members, the con�nes of the duties are less well de�ned,

as more work has to be done by fewer people. Team 65 had four members of whom each had a

very speci�cally designated task. This system was designed for e�ciency and e�ectiveness and was

implemented with success. As well as giving each job to the most suitable team member, Team 65

attempted to involve each of their colleagues in their own allocated areas so as to provide instruction

for everyone. The team members not already versed in programming learned the basics of OpenGL,

wxFormbuilder, C and C++. Because of the program's application in geostatistics pertaining to

aquifers, everyone mastered the information on aquifers needed to make this project a success.

34

One of the many ways Team 65 improved on communication was through the utilization of

Google Code, Google Documents, and Google Calendar. Google Code granted the members of the

team working on programming a repository for their specialized parts of the whole. The repository

made the merging of the parts a quick and easy process. Google Documents was a repository for

the members of the team working on the various reports so that the many di�erent parts of the

writing could be done more easily and the other teammates could immediately have the most current

versions of the reports. The individuals of Team 65 are not especially noted for their organizational

skills, however Google Calendar recti�es this matter. It could be said that having their schedule

of events available for regular perusal impressed upon them the responsibilities of remembering

a meeting. Not only would the other teammates be disappointed in the individual if he missed

but would exclude him from the amusing antics Team 65 would routinely engage in while working

diligently.

Overall, Team 65 functioned under very superior working conditions for the entirety of their

project and were extremely pleased in the end result of all their hard work.

8 Recommendations

This project created a solid basis for future studies in the extensive and growing �eld of geostatistics.

The discontinuity of success from small to large problems should be addressed, perhaps in the form

of dividing the problem up into the separate structures. Additions of safe-guards to catch errors

that may occur for incorrect user operations would prevent unexplained crashes. The user should

be supplied with helpful messages to guide them to �x the problem in the input.

E�ciency in a computer program is always to be desired and optimization is the key to a faster

running program and should de�nitely be undertaken to better the program. The operation on

the GPU is still visibly slower than the CPU and requires more work to get any speed-up. This

should be done by parallelizing more sections of the method and balancing the gain of the parallel

processing with the cost of loading the data.

The case study involved in the program introduced the issue of creating an accurate semi-

variogram as only one value could be calculated in the x direction - at the distance between the

boreholes. It seems that this is still a dilemma of the �eld and that the graphing of semi-variograms

from sparse data has yet to be performed in the �eld of geostatistics. If this project managed to

achieve this milestone then many more could follow.

These improvements could take this project to a more complex and hopefully more useful level

of practice.

A References

A.1 Bibliography

References

[1] Gaussian function. Wikipedia, 2009.

[2] Isobel Clark. Practical Geostatistics. Elsevier Applied Science, 1979.

35

[3] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University

Press, Baltimore, Maryland, 3rd edition, 1996.

[4] Bill Jacobs. Opengl video tutorial - terrain. 2008.

[5] Shari Kelley and Peggy Johnson. Frequently asked questions about water. The New Mexico

Bureau of Geology and Mineral Resources, 2009.

[6] G. Matheron. The theory of regionalised variables and its applications. Technical report, 1971.

[7] NVIDIA. OpenCL Programming Guide for the CUDA Architecture, 2.3 edition, Mar. 2009.

[8] Howard Perlman. Water science for schools: Aquifers. United States Geological Survey, 2009.

[9] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical

Recipes in C. Cambridge University Press, New York, 1988.

[10] Dave Shreiner. OpenGL Programming Guide. Addison-Wesley Professional, Upper Saddle

River, New Jersey, 2009.

[11] Julian Smart, Kevin Hock, and Stefan Csomor. Cross-Platform GUI Programming with wxWid-

gets (Bruce Perens Open Source). Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[12] Kimberly J. Swanson. Aquifer characteristics. Water Encyclopedia: Science and Issues, 2009.

A.2 Software/Tools

Several programming tools and other applications were used in the development of this project:

wxWidgets/wxFormBuilder

Eclipse

Totalview

Doxygen

Google Code

Microsoft O�ce and OpenO�ce

LYX

A.3 Acknowledgments

We would like to extend our deepest thanks to the people who volunteered so much of their time

to help us with this project:

Robert Robey, for his general help with everything;

Thomas Robey, for his mentorship in the geostatistics and mathematics;

David Broxton, Danny Katzman, and Ned Clayton of Schlumberger, Inc for providing us with

data, de�nitions, and meeting with us to work through it;

Mary Green, for her advice in geology and hydrology;

Larry Cox and Jorge Crichigno and for their advice and positive comments at the interim

presentation.

36

B Glossary

Anisotropy property of directional dependence; in geostatistics this means that the data has

di�erent spatial correlation in the x and y directions. For example, wood will be more related

along the grain than against it.

Geostatistics a branch of applied statistics that uses the interdependence of spatially correlated

data to interpolate unknown values.

Isotropy property of consistency for all directions, in geostatistics the spatial correlation is inde-

pendent of direction.

Kriging a common method of interpolation in geostatistics that uses a mathematical model of the

semi-variogram.

Nugget (of semi-variogram) magnitude of discontinuity at the origin, usually a result of measur-

ing/sampling errors.

Range (of semi-variogram) distance at which the semi-variogram plateaus and range at which

points are correlated to some degree.

Semi-Variogram the formula and graph of the variation of data over distance, quantifying spatial

correlation.

Sill (of semi-variogram) variance value for distances beyond the range or the value of the plateau

Spatial Correlation the idea of data being related as a function of its location

C User Guide

This program was created to be very user friendly. The window is a very simple design in which

there are three large sections. The �rst section is a tabbed window in which the user can switch

between the visual and the raw data. Below that is the semi-variogram. That is the area in which

the data is graphed. On the right side is a vertical window in which the user can change the

appearance of the semi-variogram. For example, the user can choose the range, sill, a model, the

method of interpolation and the size at which the X and Y values are scaled.

-To start the process, either go to File->Open... or select File->New. Then select the set of

data that is to be implanted or created.

-It will open a window that has the uploaded data; select the set of data.

Figure 21: Data inserted

37

-Once that data set has been opened the chart at top of the window that reads �Raw Data� will

�ll with the selected set of data.

-Plot->Semivariogram, the graph will appear in the bottom section.

-Double click on the knee of the graph. Three more lines will appear, they are the three di�erent

mathematical models.

Figure 22: Semivariogram plotted, mathematical models chosen

-Select one of the models at the right in the �Model Type� scroll box. The model which has

been selected will now be the only one on the graph.

-Choose your method of interpolation, the scale for each X and Y direction, and the number of

runs.

Figure 23: Model type, range and sill, scales, interpolation method, number of runs selected

-Hit �Go!�.

-There are many paths the user can take from this point.

-It is possible to view the data in which the semivariogram has �come up with�.

38

Figure 24: Final screen with a terrain map

-Also, the user can view two di�erent versions of the visual with the �Visual� drop down menu.

Choose between �Height Map� and �Terrain�.

Figure 25: Left->Height Map, Right->Terrain

39

1

To Kill a Flocking Bird

New Mexico
Supercomputing Challenge

Final Report
April 6, 2010

Team 70

Los Alamos High School

Team Members

Peter Ahrens
Stephanie Djidjev
Vicky Wang
Mei Liu

Teacher

Lee Goodwin

Project Mentors

Christine Ahrens
James Ahrens

2

Table of Contents

TO KILL A FLOCKING BIRD 1

TABLE OF CONTENTS 2
1.0 EXECUTIVE SUMMARY 3
2.0 STATEMENT OF THE PROBLEM 4
3.0 DESCRIPTION OF THE METHOD USED TO SOLVE THE PROBLEM 5
3.1 THE NETLOGO FLOCKING MODEL 5
3.2 EVALUATION AND GOODNESS FUNCTIONS 6
3.4 BRUTE FORCE PARAMETER STUDY 10
3.5 OTHER SEARCH METHOD IMPLEMENTATIONS 10
4.0 RESULTS 12
5.0 CONCLUSIONS 15
6.0 SIGNIFICANT ORIGINAL ACHIEVEMENT 16
7.0 WORK PRODUCTS 16
7.1 FLOCKING WITH GOODNESS FUNCTIONS 16
7.2 BRACKETING 17
7.3 STEEPEST DESCENT 17
7.4 GENETIC 18
8.0 BIBLIOGRAPHY 18
9.0 ACKNOWLEDGEMENTS 19

3

1.0 Executive Summary

This project explores which search techniques work best to optimize the parameters of a flocking

model. Flocking is a natural phenomenon of many independent agents (birds) making decisions

that lead to the group acting as a whole. The parameters used to control flocking are the angle at

which a bird turns to get closer to his neighbors, the angle at which a bird turns to align itself

with the rest of the flock and the angle at which a bird turns to get away from his neighbors if he

is too close. NetLogo was used to develop an algorithm to judge qualities of a flock, implement

the search techniques, run the search techniques and gather the data for comparison. The search

techniques used were brute force (a test of all the possible combinations of parameters), genetic

algorithms (a random search variant modeling natural selection), bracketing (dividing the search

space iteratively), and steepest descent (searching locally and proceeding in the most promising

direction to the solution from a random starting point in the search space). To evaluate a flock, a

goodness function was created from the following functions: average distance to center, average

difference in birds’ distance to center, the average difference in the spacing of each bird to its

nearest neighbor, and the average difference the birds’ headings. A visual analysis of the brute

force parameter study showed a diagonal gradient through the search space. The other search

methods were tested, and compared based on the quality of the flocks produced, the reliability of

the search, and the time efficiency. The results showed that the steepest descent technique had

good performance and produced the best result.

4

2.0 Statement of the problem

Flocking is a natural phenomenon of many independent agents making decisions that lead to the

group acting as a whole. Some examples of flocking behavior happen frequently in nature and

they serve different purposes. Fish may exhibit flocking behavior to make themselves look

bigger and ward off predators. Birds exhibit flocking behavior when they migrate. They rotate

out of the front position in the flock and thus conserve energy breaking the wind. Elephants also

exhibit flocking behavior for a different purpose. The larger elephants form a ring around the

smaller, weaker elephants in an attempt to keep them safe from predators. Their flocks do not

move much.

Flocking occurs in the manmade world as well. Flocking can be seen in strategic military

formations and it can also be seen in traffic patterns (people tend to follow one another on large

freeways). The principles of flocking can be applied to collision detection in robotic domains.

Robots are usually programmed to avoid other robots or obstacles (unless they are battle bots).

Flocking principles can also be applied to military applications with computer driven vehicles.

An interesting thing about flocking is that a computer can model it. Each decision-making

entity, an “agent”, begins in a random position, then using the location of its neighbors, makes

decisions as to where to move itself. These decisions are usually called cohesion, alignment

and separation. To cohere, an agent will move itself closer towards its neighbors. To align, an

agent will align its heading with that of its neighbors. To separate, an agent will move itself

away from its neighbors if it is too close. If these decisions are carefully balanced, the agents in

the model will form a flock after a number of time steps. Balancing these decisions is a

challenge and the flock quality is directly dependent upon the balance. Measuring the quality of

the flock is a subjective process. Not everyone will agree that the quality of a flock is the same.

Usually the flocking decisions cohere, align, and separate are the parameters of the flocking

model. How would you find the best parameters? The only certain way to do this would be to

5

test them all in all their combinations (thousands), and evaluate the resulting flocks using a

function that tells you the quality of the flock or if it is a flock. This is a brute-force method of

optimizing the parameters. This is computationally intensive and inefficient in its use of time,

but it is the most accurate way of finding the best parameters.

Many common search techniques used widely in computer science can be used for finding

parameters, however not all of them are best suited towards flocking. Flocking can be

unpredictable and time-intensive to search through and thus not all search techniques will

perform the same. This project aims to find out which common search techniques will perform

the best, be the most accurate and be most reliable in finding the optimal parameters to a flocking

model. Others who are building or using flocking models can use this research.

3.0 Description of the Method Used to Solve the Problem

The method used to solve the problem of finding the best parameter search method started with a

simple flocking model. This model was modified the model to evaluate the “goodness” of the

flock by using goodness functions created by the team. After testing the goodness function

visually, a brute-force method was used to understand the search space. Three search methods

were then developed and tested, to find which produced the best parameter combination. The

brute-force and other search methods were compared using statistics.

3.1 The NetLogo Flocking Model

A NetLogo model of flocking was found in the sample models included with NetLogo.

NetLogo® was chosen because it is perfectly suited to flocking models. NetLogo® is an agent-

based program and it is iterative. There is a graphical user interface and a display that shows the

agents flocking and the time steps so far. The original code did not include any plots and all the

parameters were controlled by sliders (the user). There were no flock quality evaluation

functions included. In this model, the agents look like birds and flocked in a direction (they are

moving as they flock), which is similar to the way that birds flock. The agents will be referred to

as birds hereafter.

6

Picture 1: On the left, a flocking behavior is seen, on the right, there is no flocking.

The parameters used to control the decisions the birds made in this model are max-cohere-turn,

max-align-turn, max-separate-turn and minimum-separation. Max-cohere-turn designates

the maximum angle a bird can turn to cohere. It is the same with max-align-turn and max-

separate-turn; they are also the maximum angle a bird can turn to make a flocking decision (align

or separate). Minimum-separation is the distance between birds that signals that they need to

turn away from each other. Originally, minimum separation was thought a parameter to be

optimized, but was then understood to be a preference, as it designates how big a flock will be,

which does not affect flock quality.

3.2 Evaluation and Goodness Functions

The first step was to develop a way to evaluate the flock. The goal was to have one goodness

function that would tell how good the flock was. The goodness function used turned out to be an

average of several evaluation functions. The evaluation functions developed were mean

distance to center, mean deviation of agents’ distance to center, the mean deviation in the

spacing of each agent to its nearest neighbor, and the mean deviation of the agents’

headings.

7

In order to evaluate the goodness of the flock, it was necessary to calculate the center of the

flock. Although it was initially difficult to calculate the center of the birds in a boundless

domain, a center of mass algorithm [7] was used. Using this algorithm, a center bird was

created. It is enlarged for better visibility. Since it is the biggest bird of them all, it is colored

yellow in honor of Big Bird. The center bird represents the center of the flock and its heading is

the average heading of the flock.

The first evaluation function we developed was quite simple. It was the mean distance to center,

which is exactly what the name implies. It is the average of all the distances from each bird to

the center bird.

mean distance to center =
(xn − xc)2 + (yn − yc)2()

n= 0

pf

∑
pf

Equation 1: Where pf is the population of the flock, xn is the x-coordinate of the nth bird, xc is

the x-coordinate of the center, yn is the y-coordinate of the nth bird, and yc is the y-coordinate of

the center.

It indicates how clustered the birds are. A low value means the birds are clustered close to the

center. A high value means they are spread out over the whole domain. A zero value indicates

the birds are all in the same position (in a dot). This function was not used in the final code,

because if the model is optimized completely to this function, the birds will be centered in a tiny

dot.

The second evaluation function developed was the mean deviation of the birds’ distance to

center. This evaluation function measures the deviations in the distances between each bird and

the center bird. This measurement will show how spread out and randomly spaced (within the

flock) the birds are in relation to the center and each other.

8

mean deviation of distance to center =
abs((xm − xc)2 + (ym − yc)2 − mean distance to center)()

m= 0

pf

∑
pf

Equation 2: Where pf is the population of the flock, xm is the x-coordinate of the mth bird, xc is

the x-coordinate of the center, ym is the y-coordinate of the mth bird, and yc is the y-coordinate

of the center.

A low value indicates less deviation, which means the birds are more ordered. A high value

indicates clumping (multiple clusters of birds) and a non-optimal flock. A zero value

(theoretical max optimization) means the birds are either in a circle centered around the center

bird or all at the center point, but since this is usually never achieved, it make this an overall

useful evaluation function.

The third evaluation function developed was the mean difference in heading. This is what the

name implies. It measures the average deviations in each birds’ heading compared to the

average flock heading.

mean heading deviation =

(arctan
sin(hi)

i= 0

pf

∑

cos(hj)
j= 0

pf

∑

− hn)
n= 0

pf

∑

pf

Equation 3: Where pf is the population of the flock, hn is the heading of the nth bird, hi is the

heading of the ith bird, and hj is the heading of the jth bird.

While this function does not exactly measure how good a flock is spatially, it does show that the

flock is not bumping into each other or going different directions. A low value indicates the

birds are all heading in the same direction. A high value indicates the birds are running into each

other in a central flock, not flocking, or going different directions. A zero value (theoretical max

9

optimization) means they are all going the same direction exactly, which does not necessarily

indicate a good flock, but it does mean the birds are not running into each other.

The fourth evaluation function developed is the mean difference in spacing between each bird

and its nearest neighbor.

mean spacing distance =
(xl − xnn)2 + (yl − ynn)2()

l= 0

pf

∑
pf

Equation 4: Where pf is the population of the flock, xl is the x-coordinate of the lth bird, xnn is

the x-coordinate of this bird’s nearest neighbor, yl is the y-coordinate of the lth bird, and ynn is

the y-coordinate of the birds nearest neighbor.

mean spacing deviation =

abs((xq − xnn)2 + (yq − ynn)2 − mean spacing distance)()
q= 0

pf

∑
pf

Equation 5: Where pf is the population of the flock, xq is the x-coordinate of the qth bird, xnn is

the x-coordinate of this bird’s nearest neighbor, yq is the y-coordinate of the qth bird, and ynn is

the y-coordinate of the birds nearest neighbor.

It measures the mean difference in the distances between these birds and the birds closest to it.

This function is very effective at measuring even spacing. A low value indicates the birds have

evenly spaced themselves in relation to each other. A high value indicates the birds are either

clumping or not flocking. A zero value indicates the birds are in an isometric dot pattern or a dot

in the center of the screen.

All of these evaluation functions have shortcomings if used exclusively, but if averaged, they

produce an accurate measurement of the quality of a flock. The average of these evaluation

functions is our goodness function. After time was spent studying the effectiveness of the

functions visually, the functions were weighted at the values in Table 1.

10

Evaluation Functions Weight

Mean distance to center 0.7

Mean deviation in the distances to center 0.75

Mean deviation in spacing between birds 1.0

Mean deviation of the agents’ headings 1.0

Table 1. Weighting of evaluation functions within goodness function.

3.4 Brute Force Parameter Study

Before any search methods were run, a brute force search was done to understand the search

space better. To do this, a NetLogo tool called “Behavior Space” was used. It is a tool designed

to run parameter searches and similar tasks. It ran the flocking code for 200 iterations for each

combination of the input parameters on a thirty-bird flock. For minimum-separation, the value

was a constant 0.75. Note that minimum separation is just a preference for how big the end flock

should be. For a 30-bird flock, .75 is a sufficient minimum separation, accounting for a 72-

square-unit domain. For max- {cohere, align and separate}-turn they were increments of 1

between 0 and 10. Those were the original ranges offered by the interface to the original

flocking code and anything outside that range produces a bad flock. Even though the parameters

for the angles could be from 0 to 180, the goal is to optimize between 0 and 10. Each parameter

combination was run once. The Behavior Space tool output a comma-separated file containing

which combination of parameters was used and what the goodness function value was for that

combination of parameters. This file was read into Microsoft Excel, edited to remove irrelevant

data, saved as comma-separated file again, renamed to a “.particle” (ParaView compatible) file

and read into ParaView [11] for analysis by visualization.

3.5 Other Search Method Implementations

Three parameter search methods were to be used: bracketing, steepest descent and genetic

algorithms. These search methods were chosen because they are some of the most widely used

and applicable to flocking.

11

A framework was used in all three optimizations to make the search methods comparable and for

code reuse. The framework consisted of the general parameter search steps: generate, evaluate

and select. The generate step takes in a tuple of parameter combination and parameter bounds

(call it a “state”) and generates multiple states to be tested. These states are tested in the next

step, evaluation. To evaluate, the flocking model is run for a set number of iterations and the

result of the goodness function is coupled to each state. Finally, in the select step, the state with

the best goodness function is selected and if the simulation is allowed to continue, it is fed back

into the generate step, otherwise, this last state is the output. Each search method has its own

stopping criteria.

The first parameter search technique implemented was bracketing [9]. This technique divides

the search space in half and finds the best half, then uses the best half as the starting point for the

next iteration, until the remaining half is small enough. In the generate step of bracketing, for

each parameter, the min and the max were averaged to produce Point B. The average of the min

and Point B, Point A, was calculated and the average of Point B and the max, Point C was

calculated. A list of all the possible combinations of Point A and Point C for all four parameters

is generated. To evaluate, the simulation is run for a specified number of iterations and the

goodness function result is coupled with the parameter combination used. To select, the

parameter combination with the lowest goodness function value is selected. For each parameter,

if Point A was better, then the max is set as Point B. If Point C was better, the min is set at Point

B. These min and max values are used for the next iteration. The stopping condition developed

for this search technique was that after four iterations of gen-eval-select, it would stop. After

four iterations, the values were precise enough for the parameter range used (0 to 10 for each

parameter).

The second parameter search technique implemented was steepest descent [8, 9]. This

technique starts at a random point in the search space and evaluates the local surrounding search

space, then proceeds one step towards the most promising direction. To generate in the steepest

descent parameter search method, all the possible combinations of each parameter value being

incremented one step up or one step down are generated. Step size was set at .05 times the max

value for that parameter. Each of these combinations is evaluated like in bracketing and each

12

combination is coupled with its goodness function value. To select, the best combination is sent

back as input to the generate step. It stops when it generates a flock with a goodness function

value under 0.1. This is the value deemed “good-enough.”

The third search technique implemented is a genetic algorithm [1, 8]. It works by considering

parameters to be genes that can be mutated, starting with organisms with randomly generated

genes, evaluating them and choosing the organism with the best value to live, and others to die

and be replaced by a mutation of the genes of the best organism. The generate step takes a pre-

selected list of the worst in the flock, changes their parameters to be that of mean of the best

birds and applies a mutation to that. The evaluate step runs like in the previous search

techniques. To select, the best in the flock are selected and sent on to the generate stage. It stops

when it generates a flock with a goodness function value under 0.1. This is the value deemed

“good-enough.”

4.0 Results

The purpose of the experiment was to find the optimal parameter search technique for flocking.

Therefore, a brute force study was run to understand the search space. Subsequently, the various

parameter search techniques were run, evaluated and compared.

13

Figure 1. The parameter search space discovered via brute-force. Sphere radii and color

represent goodness values.

In Figure 1, the results of the brute-force parameter study are shown. The radii of the spheres are

inversely proportionate to the goodness value (the lower the goodness value, the better the flock,

the bigger the spheres the better the flock). Different parameters are shown on each axis (cohere,

align and separate). The colors also signify goodness, with red being the best flock, blue being

the worst. The figure shows that when cohere and align are approximately equal in value, a better

goodness value is found. From this figure, a parameter search space with a diagonal gradient can

be seen.

.

14

Figure 2. Search space as interpolated surface cube.

Using the same test harness, Behavior Space, each parameter search technique was run ten times

and the outputs saved to a file. The outputs included the time it took to run each search, the

parameters to the flocking run, the average goodness function value, and the number of “gen-

eval-select” steps. Using this data, and the code written, the number of evaluations (200-

timestep flocking runs) is calculated.

Results Brute Force Bracketing Genetic Steepest
Descent

Time (Min) ~150 8.79850 2.06589 2.93913
Reliability 100% 70% 90% 100%
Goodness 0.03559 0.05466 0.08721 0.06869

Evaluations 1331 32 8.0 28.8
Table 2. Comparison of parameter search techniques.

15

• Time – The average time in minutes it takes for the search to come to a verdict.

• Reliability – The percentage of successful runs (runs having a goodness function under

0.1 in at least 30 iterations of the search).

• Goodness – The output flock goodness of each successful run of the search technique.

For the bracketing, genetic and steepest descent, this is an average of the 10 runs output.

• Evaluations – The average number of 200 iteration flocking tests that are run (in

successful runs).

5.0 Conclusions

The comparison of parameter search techniques shows that steepest descent is the most overall

useful search technique, but each has its strengths and weaknesses.

Steepest descent is most “reliable” (as defined above) most likely because the parameter search

space appears to be devoid of local minima and has a broad gradient for steepest descent to

follow. It also has very good performance.

Bracketing was the least reliable, but the average goodness value of its output parameter

combination is the closest to brute-force output. It performance is worse than steepest descent

and genetic, but still much better than brute-force. Bracketing’s reliability appeared to be

impacted negatively by inadequate sampling of the search space due to the position of the

gradient.

Although the genetic search technique is intriguing and its performance was better than the other

three techniques, it average goodness value of its output parameter combination was the worst of

the four. Since this technique was the only one that incorporated randomness, that may have

affect its output goodness negatively.

16

6.0 Significant Original Achievement

The most significant original achievement that was made by Team 70 was understanding the

parameter search space. This is important to all of those interested in flocking, as the search

space is very important to the search techniques run on it. Furthermore in order to understand the

search space, the team made original contributions in equations to evaluate the flock.

7.0 Work Products

The code for the Behavior Space was stored with the NetLogo model. Each search technique

has a different code base, but the goodness functions are identical. Code from original model is

marked. BehaviorSpace code could not be included as it is stored in a GUI.

7.1 Flocking with Goodness Functions

Code removed, see http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf for the full
report.

http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf�

17

7.2 Bracketing

Code removed, see http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf for the full
report.

7.3 Steepest Descent

Code removed, see http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf for the full
report.

http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf�
http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf�

18

7.4 Genetic

Code removed, see http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf for the full
report.

8.0 Bibliography

[1] Stephanie Forrest: Genetic Algorithms: Principles of Natural Selection Applied to

Computation, 2007

[2] Isaac Councill, Lee Giles : Random Search For Multiple Layer Perceptron 2005

[3] István Maros : Computational Techniques of the Simplex Method (International Series in

Operations Research & Management Science) 2004

[4] R. Fletcher: Practical Methods of Optimization 2005

[5] Nigel Gilbert: Agent-Based Models in NetLogo (Quantitative Methods in Science) 2008

[6] Nick Bennett, Bob Robey, and Tom Robey :Computational Solution Techniques In

Mathematical Programming

[7] Linge Bai and David Breen: Center of Mass in an Unbounded 2D Environment

[8] Wikipedia – genetic algorithms and steepest descent.

[9] Bob Robey, Tom Robey: Talk on optimization algorithms at Supercomputing Challenge

Kickoff 2009.

[10] The NetLogo flocking model:

 Wilensky, U. (1998). NetLogo Flocking model.

http://www.challenge.nm.org/archive/09-10/finalreports/70.pdf�

19

 http://ccl.northwestern.edu/netlogo/models/Flocking.

 Center for Connected Learning and Computer-Based Modeling,

 Northwestern University, Evanston, IL.

[11] ParaView: www.paraview.org.

9.0 Acknowledgements

First and foremost, we would like to thank the people of the Supercomputing Challenge. This

project has opened the eyes of everybody on this team about the depths and usefulness of

computer programming. We would like to thank in particular Bob Robey for helping us

formulate an idea for a project.

Secondly, team 70 would like to thank Mr. Goodwin, our sponsor teacher, as he has encouraged

us through this difficult journey and kept us enthusiastic about the task at hand. He has provided

a warm and comforting atmosphere for our team, and the school, to get together and move

forward in our work.

Thirdly, we would all like to thank our sponsors, Christine and Jim Ahrens for their expertise in

computing and data visualization.

Fourthly, we would like to thank all of the judges. The judges took time out of their busy lives to

listen to our proposals and interim reports and give us feedback on what we need to work on.

They gave us positive feedback as well as suggestions for the future to make our project the best

that it could be.

And last but not least, we would all like to thank our families, our moms, dads, sisters, and

brothers.

The Metropolis Algorithm and
Nanometer-Scale Pattern Formation

New Mexico
Supercomputing Challenge

Final Report
April 7, 2010

Team 5
Albuquerque Academy

Team Members:
Michael Wang
Jack Ingalls

Teacher:
Jim Mims

Project Mentor:
David Dunlap, Ph.D

 1

Table of Contents
Executive Summary Page 2

A Brief Summary of the Past Project Page 3

Mathematical Model Page 5

Boltzmann’s Distribution Page 7

Simple Two Energy System Page 7

N Energy System Page 8

The Metropolis Algorithm Page 10

Algorithm Page 10

Entropy Page 10

Verifying the Metropolis Algorithm for a Two Energy System Page 11

Energies Used in Our System Page 12

Architecture of the Program Page 14

Results and Discussion Page 15

Future Plans Page 17

Acknowledgements Page 19

References Page 20

Appendices Page 21

Appendix A: Parallel Metropolis Algorithm Page 21

Appendix B: Screenshots of program Page 22

 2

Appendix C: The Code Page 23

 3

Executive Summary

When chemicals are layered on a surface, they begin to form patterns in order to

reduce energy. This phenomenon is known as nanometer-scale pattern formation. This

phenomenon plays a huge role in nanotechnology. If understood completely, it can be

used to create devices at the nanometer scale. In addition, it would allow for cheap mass

production.

In our previous project, we wrote a program that could simulate these patterns.

However, we ran into several problems. We had to solve a set of differential equations

that described the pattern formation process. Solving the equations required intense

calculations, which slowed down our program significantly. In many cases, simulations

had to be done overnight to obtain any useful results. In addition, we noticed that

somehow mass was not conserved. We believe that the main culprit is numeric error.

In light of these issues, we seek to find a new way to simulate this phenomenon.

In this project, we present a Monte Carlo method known as the Metropolis Algorithm that

has successfully simulated the patterning phenomenon. This method of solving the

problem provides us, and hopefully future users, with a short simulation time and a great

amount of flexibility to allow us to study systems under a wide variety of conditions. In

the previous project, extending the project to include many conditions might prove to be

impossible, as one might not be able to derive the equations. On the other hand, with this

project, including many conditions doesn’t require more than a simple change in the

code, thus making this program far more flexible.

 4

A Brief Summary of the Past Project

When deposited on a solid surface (substrate), some chemicals rearrange to form

patterns. The main factor that drives this pattern formation is free energy. In order to

reach any sort equilibrium, a system will try to minimize its total free energy. In the case

of pattern formation, the system will separate into multiple phases, that is, multiple

regions of different concentration. Each concentration corresponds to a minimum (a

trough) in the free energy function as shown in the following figures (Suo and Lu, Forces

that drive nanoscale self-assembly on solid surfaces, 2000).

Figure 1: This is the free energy as a function of concentration. Cα and Cβ correspond to the phases

(below) α and β, respectively.

Figure 2: Regions α and β are the two phases the system separates into.

 5

There are actually two other factors: surface strain energy and interface energy.

These factors however, do not affect the separation process. Instead, they are involved in

size selection. Surface strain energy is the energy due to an elastic deformation in the

substrate, which occurs when there is a heterogeneous pattern. This is in some way

analogous to having blocks of different masses resting on a bed of springs. The heaver

blocks will tend to compress the strings more than the lighter ones. So, different

concentrations will have different effects on the substrate. Interface energy, also known

as phase boundary energy, is the energy associated with a difference in concentration, or

the chemical gradient. It is like saying that a particle with zero neighbors will have an

energy (likely higher) different from that of a particle with more than zero neighbors. So,

the longer a boundary is, the more interface energy there will be.

 Now, how do these affect size selection? It should be clear that interface energy

increases with the sum of the lengths of all the boundaries. Thus the system will try to

reduce the total boundary length. It turns out that the way to do this is by clumping like

regions together. In Figure 2, we see that the smaller regions group together into larger

regions. Will this continue until all that is left is one large region? The answer would be

yes if surface strain energy were not included. As the size of each region increases, the

larger the “heavier blocks” become and the more deformed the substrate becomes. To

reduce the strain energy, the size of the regions must decrease. As you can probably

guess, these two factors will eventually balance and the system will settle down in

equilibrium.

 6

Mathematical Model

A diffusion equation has been developed by Lu and Kim to describe the process

above.

() () ()
() ()()

−+−

−+−
−∇−−Ω+

−
∇=

∂
∂

∫∫ ∂
∂

∂
∂

212
11

2
11

221122
2

3
21221

1
ln ξξ

ξξ

ξξ
π

ξξ dd
xx

xxQCC
C

C
t
C CC

 This equation is solved by using the Fourier Transform and a semi-implicit

difference method. The equation simplifies greatly to ()CQkkPk
t
C ˆ2ˆ 342 −−−=
∂
∂ , where

P̂ is the Fourier Transform of ()C
C

C 21
1

ln −Ω+
−

. Applying the semi-implicit method,

we end up with () tQkk
tPkCC nn

n ∆−+
∆−

=+ 34

2

1 21

ˆˆˆ . Because we can’t intuitively “see” Fourier

space, we must somehow transform this equation back into real space. This is done with

the Fast Fourier Transform (FFT). Also, there are no known transforms for P.

Therefore, we must calculate P in real space and then transform it to Fourier space.

 This procedure produces interesting patterns as well as helping us understand the

mysterious nanoworld. However, there are two issues that we must address. The first

issue deals with time. This procedure is very computationally intensive due to calling the

FFT multiple times every time step. In order to get interesting and useful results, we

sometimes are required to run the simulation for several hours. Though this isn’t an

especially long period of time, it can still pose problems.

The second issue deals with stability. It is clear from the numeric methods that

errors can build up over time. We have noticed that mass is not conserved. Mass seems

to appear out of nowhere. We believe that there are two possible causes for this: numeric

 7

error or just something that wasn’t taken into account in the equations. Whatever the

cause, the simulations cannot give any useful results if mass is not conserved.

In light of these issues, we sought another simulation method, in particular, a Monte

Carlo method. Professor David Dunlap suggested to us the Metropolis-Hastings

Sampling Algorithm.

 8

Boltzmann’s Distribution

The Boltzmann’s distribution describes the probability that a system is in some

particular state. For example, Boltzmann’s distribution is frequently used to describe the

distribution of velocities of particles in a gas (also known as the Maxwell-Boltzmann’s

distribution). In a more general case (not just kinetic energy), the Boltzmann’s

distribution either describes the probability that a particles has a specific energy or

roughly how many particles have one specific energy. In this section, we show some

brief simplified derivations of Boltzmann’s distribution in a two energy system and a n

energy system.

Deriving Boltzmann’s Distribution for a Simple Two Energy System

 Let E1 and E2 be the two possible energies a particle can have. Suppose our

system is made up of N particles and M lattice sites on a grid. M1 of the sites have energy

E1 while M2 have energy E2. We want to determine how many particles have energy

particles have energy E1 and how many, energy E2. We assume that there are N1 and N2

particles having energies E1 and E2, respectively. To find N1 and N2, will minimize the

free energy of the system. The free energy F is defined as WkTE ln− , where E is the

energy, k is Boltzmann’s constant (1.3806505× 10-23
K

J), T is the temperature, and W is

the number of possible microstates or configurations. The number of microstates is the

number of ways N1 particles can be placed into M1 locations times the number of ways N2

particles can be placed into M2 locations, or

=

2

2

1

1

N
M

N
M

W . Substituting this in with

 9

2211 NENEE += , we have () ()

−−

−+=
!!

!
!!

!ln
222

2

111

1
2211 NMN

M
NMN

MkTNENEF .

We now wish to minimize F.

Rewriting using logarithm rules, we obtain

() () ()()() () () ()()()()!ln!ln!ln!ln!ln!ln 222211112211 NMNMNMNMkTNENEF −+−+−+−−+=
.

Using Stirling’s approximation, () KKKK −≈ ln!ln for large K,

() () ()()(
()()))()ln(lnln

lnlnln

222222222222

1111111111112211

NMNMNMNNNMMM
NMNMNMNNNMMMkTNENEF

−−−−+−−−
+−−−−+−−−−+=

Now we can minimize F using 12 NNN −= .

() ()()22211121
1

lnlnlnln NNMNNMkTEE
dN
dF

+−−−−−−= , or

()
() 0ln

122

211
21

1

=
−
−

−−=
NNM
NNMkTEE

dN
dF .

Knowing that 21 NNN += , we can readily solve for N1 and N2.

Deriving Boltzmann’s Distribution for a n Energy System

This is almost identical to the two energy system, only now we have n different

energies. F now is defined as ∏∑
==

−=

n

i i

i
n

i
ii N

M
kTNEF

00

ln , or equivalently

()∑∑
== −

−=
n

i iii

i
n

i
ii NMN

MkTNEF
00 !!

!ln .

Simplifying and using Stirling’s approximation, we have

() () ()()()∑ ∑
= =

−−−−+−−−−=
n

i

n

i
iiiiiiiiiiiiii NMNMNMNNNMMMkTNEF

0 0

lnlnln .

 10

Using Lagrange multipliers with the constraint∑ = NNi , we find that
ji N

F
N
F

∂
∂

=
∂
∂ for all

i and j. Therefore, knowing
i

ii
i

i N
NMkTE

N
F −

−=
∂
∂ ln , we obtain

j

jj
j

i

ii
i N

NM
kTE

N
NMkTE

−
−=

−
− lnln .

Assuming the system is “large” (i.e. Mi >> Ni) and using the same approximation, we

have kT
EE

i
i

j
j

ji

eN
M
M

N
−

= . Summing over all j, we get∑ ∑
= =

−

==
n

j

n

j

kT
EE

i
i

j
j

ji

eN
M
M

NN
0 0

. So,

∑
=

−=
n

j

kT
EE

i

j
i ji

e
M
M

NN

0

. However, if we do not assume that Mi >> Ni, then the equation

becomes significantly harder to solve. We will not show it here.

 11

Metropolis Algorithm

Boltzmann’s distribution can be useful when figuring how particles are

distributed. Other examples include the distribution of velocity of gas particles (just let E

be kinetic energy). Analytically, the above process is how we would derive the

distribution. How would we do it computationally? This is where the Metropolis

Algorithm comes in (there are other ways). In the Metropolis Algorithm, we essentially

check whether or not a particle will move based on the energy change of that move. The

rules are incredibly simple.

1. If the energy change is negative, accept the move.

2. If the energy change is positive, generate a random number between 0 and 1. If that

random number is less than kT
changeenergy

e
−

, accept the move. Otherwise, reject it.

Entropy in the Metropolis Algorithm

The Metropolis algorithm at first sight seems to not include entropy, the

randomness of a system. After all, it is based solely on energy reduction. The entropy,

however, is actually really subtle. There are two ways to think it. The first way is to

examine how particles are moved in the algorithm. The direction of movement is

random. In addition, it is a clear that a particle can only move to an unoccupied location.

Therefore, if that particle is in an organized group, the only direction it can move is away

from that group, thus slightly disturbing the order in the system. The second way to

understand entropy is to examine the energies. In many cases, the energies themselves

secretly encode entropy. In our case, that energy is the surface strain energy. If particles

begin clumping together, the strain induced on the surface increases, which in turn

increase the energy. That increase in energy due to a high concentration of particles in

 12

one region causes those particles to spread out, once again disturbing some sort of order.

So, entropy is in fact included in the algorithm.

Verifying the Metropolis Algorithm

To determine whether we coded the algorithm rules correctly, we tested our code

on one distribution. That distribution is based on Boltzmann’s distribution in a two

energy system. For this simulation, the simulated region is a box having side length 200,

meaning that there are a total of 40000 (=M) sites on the lattice. This box is divided in to

two rectangles, one with 10000 (=M1) sites and the other with 30000 (=M2) sites. The

rectangle containing 10000 sites is assigned a unit-less energy of 3 while the other

rectangle is assigned an energy of 0 (we let Boltmann’s constant k and T be 1 for

simplicity). In our simulations, we placed down 20000 particles.

To test our code, we look at the ratio of the number of particles in one region to

the number of particles in the other region. From our derivation of Boltzmann’s

distribution for a two energy system, we find that 0423.0
1

2 =
N
N , where N2 is the number

of particles having energy 1 and N1 is the number of particles having energy 0.

Number of moves
100000
1000000
2000000
10000000
20000000
100000000
200000000
300000000
400000000
500000000
600000000
700000000
1000000000

Ratio N2/N1
0.33129202
0.32231404
0.31648235
0.28924128
0.27048660
0.20141767
0.15667110
0.12549240
0.10674561
0.09481060
0.08483402
0.07874865
0.05982725

 13

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200000000 400000000 600000000 800000000 1000000000 1200000000

Number of Moves

N
2/N

1

Figure 3: Graph of N2/N1 as a function on the number of moves. The curve formed by the points
approach ~0.04-0.05

We did not run the simulation long enough to obtain points around 0.42.

However, based on the table and graph, it is clear that 2000000000 moves, the ratio

should begin to hover around 0.42.

Energies in Our System

There are two energies defined in our system: interaction energy and the misfit

strain energy. The interaction energy is like the boundary energy in our previous project

while the misfit strain energy is related to the surface strain energy in out previous

project.

The interaction energy essentially models bonding and is determined by the

number of neighbors. In our specific system, the maximum number of neighbors a

particle can have is four. In our program, the energy is a function of the number of

neighbors. In many cases, as that number increases, the energy decreases. If a particle

 14

loves to “bond” or interact with other particles, then its energy will drop significantly for

each addition particle it finds.

The misfit strain energy essentially models how much strain a layer of particles

induces on the surface. The lattices constants for the particles and the surface are usually

different, which creates misfit. Particles typically want to align themselves with the

surface to reduce energy. However, due to the size difference, many particles will not be

able to align and will instead become offset. This creates strain and potential energy in

the surface. Below is a side view of the particles and surface.

Film: | | | | | | | | | |
Lattice: | | | | | | | | | | | |

To calculate the misfit energy, we look at the distances between the midpoints

of the film and the lattice. One can view each line above as one particle. In our program,

we select two adjacent particles in the film. That gives us an interval between those two

particles. We then find all of the midpoints that lie on that interval. In most cases, there

is only one such midpoint. Once we find all of the corresponding midpoints, we take the

average of the distances between the midpoint of the two particles and the corresponding

midpoints in the lattice/surface. A particle that is aligned with the surface will have an

energy of 0 because the midpoints will line up. However, if the particle is offset by a

small amount, the midpoints will not line up, thus generating energy. This energy we

describe is a function of the distance between the midpoints. For simplicity and

flexibility, we let that function be a polynomial. Users can include as many terms in the

polynomial as they wish, depending on the shape of the function.

 15

Architecture of the Program

The structure of the program is straightforward. The program is written in C#,

which is very similar to Java. In Form1, the user first inputs values for the parameters

and starts the simulation. The calculations are performed in Calculations and then the

results are displayed in Display. The calculations can be run over and over until

satisfactory results are obtained.

The BitmapConverter reads the hexadecimal numbers contained in the bitmap file

and assigns energy levels to those numbers, or colors if one looks at the picture (e.g.

black = 1 and white = 0).

Form1: Allows
the user to input
parameters for
the simulation

BitmapConverter:
Takes a bitmap file
containing an energy
function and
converts it into
numbers used in the
simulations

Calculations: calculates
energy changes and moves
particles depending on those
changes (see Metropolis
Algorithm).

Display: displays how the
particles are arranged on
the surface.

 16

Results and Discussion

The three most important results that we must reproduce with our program are

quantum dots (patches of particles), serpentine stripes (particles arranged in snake-like

shapes), and quantum pits (patches or “holes” where there are no particles). At lower

concentrations, we should be getting quantum dots. As we increase the concentration or

the number of particles, the results should transition from quantum dots to serpentine

strips and finally from serpentine stripes to quantum pits. Physically, this makes since.

When the number of particles is low, serpentine stripes cannot form because the energy

can still be lowered by breaking the serpentine stripes into quantum dots. As the number

of particles increases, it becomes difficult to form quantum dots because the limited room

would create rather large patches, which actually would have a higher energy than

serpentine stripes. Once the particles cover a majority of the surface, quantum dots

become impractical (they would be enormous). There would not be enough room to for

m serpentine stripes. They would be so close together that they would begin to merge.

Thus, quantum pits form.

Figure 4: Simulations from the past project. In the image on the far left, we see quantum dots (low

concentration). In the middle image, we see serpentine stripes (medium concentration). In the image
on the far left, we see quantum pits (high concentration).

 17

Figure 5: As in Figure 4, we see the transition from quantum dots to serpentine stripes and from

serpentine stripes to quantum pits. Note that these simulations are more microscopic than those in
Figure 4.

Figure 6: Experimental observations of the nanoscale self-assembly of Pb (lead) on Cu (copper)

(Plass et al., 2001). A transition from quantum dots through serpentine stripes to quantum pits can
be clearly seen in b-f.

 18

The final simulation we perform shows the effect of misfit strain energy. As

predicted, misfit strain energy (also known as surface strain energy) should cause the

system to form finer patterns. For example, quantum dots should be smaller. Below, we

compare a simulation using small, almost negligible strain to one that uses a much larger

strain.

Figure 7: This camparison show the effect of strain energy. The figure on the right didn't not use
any strain energy while the figure on the lefet used 10x+10x2 (x is the distance between midpoints) as
the strain energy function, which is significantly larger. Due to the strain energy, the patterns in the

system on the left become much finer because the system is more sensitive to concentration.

Based on the simulations above and the numerous reruns, our program has

successfully simulated the qualitative features of our system. We successfully

reproduced quantum dots, serpentine stripes, and quantum pits. These results match

accurately with our old program and experimental results. In addition, we successfully

included the effect of strain on the patterns.

Future Plans

There were many things that we could not include in our finished product. We

finished the most essential parts of the program. There are actually three improvements

 19

that we plan on making. The first has to do with parallel computing. The Metropolis

algorithm can be run on multiple cores. Not surprisingly, the new algorithm is called the

Parallel Metropolis algorithm (see Appendix A for a brief description). We would also

like to expand our system more. In other words, generalize it. Now that we have the

basic components finished, we can start adding more energy so that we can apply our

program to many other systems. For example, we can study how dipoles might arrange

on the surface or how an electric or magnetic field might effect pattern formation, which

could be useful to know if nanoscale circuits are used. All of these additions are

extremely easy to include. Unlike the past project, we will not have to derive, if possible,

any differential equations when we make the system more complicated. It might be

impossible to derive equations for such complicated systems. Instead, we simply

determine what new energies to include. Finally, we would like to include heterogeneous

initial distributions, that is, the user can put whatever initial distribution (e.g. a circuit)

and see how it changes under certain conditions.

Acknowledgements

We would like to thank our mentor, Professor David Dunlap, for his invaluable

help in demystifying the Metropolis Algorithm and giving us a brief introduction to

thermodynamics. We would also like to tank Jim Mims for supporting us along the way.

 20

References

Chen, L.-Q. and Shen, J., Applications of semi-implicit Fourier spectral method to phase
field equations, Comp. Phys. Commun. 108 (1998) 147–158.

Hu, Shaowen, Girish Nathan, Fazle Hussain, Donald J. Kouri, Pradeep Sharma, and

Gemunu H. Gunaratne. "On Stability of Self-Assembled Nanoscale Patterns."
Journal of the Mechanics and Physics of Solids 55 (2007): 1357-1384.
ScienceDirect. Elsevier. 28 Nov. 2007 <http://www.sciencedirect.com/>.

Johnson, K. L. "Point Loading of an Elastic Half-Space." Contact Mechanics.

Cambridge, U.K.: Cambridge University Press, 1985. 45-83.

Kaganovskii, Yu. S., L. N. Paritskaya, and V. V. Bogdanov. "Kinetics and

Mechanisms of Intermetallic Growth By Surface Interdiffusion." Mat. Res.
Soc. Symp. Proc. 527 (1998): 303-307.

Lu, Wei. "Theory and Simulation of Nanoscale Self-Assembly on Substrates."

Journal of Computational and Theoretical Nanoscience 3.3 (2006): 342-361.

Lu, Wei, and Dongchoul Kim. "Dynamics of Nanoscale Self-Assembly of Ternary

Epilayers." Microelectronic Engineering 75 (2004): 78-84. ScienceDirect. 26
Feb. 2004. Elsevier. 28 Nov. 2007 <http://www.sciencedirect.com/>.

- - -. "Patterning nanoscale Structures by Surface Chemistry." Nano Letters 4.2 (2004):

313-316.

- - -. "Simulation on Nanoscale Self-Assembly of Ternary-Epilayers." Computational

Materials Science 32 (2005): 20-30. ScienceDirect. Elsevier. 8 Dec. 2007
<http://www.sciencedirect.com/>.

Plass, Richard, Julie A. Last, N. C. Bartelt, and G. L. Kellogg. "Self-Assembled Domain

Patterns." Nature 412 (Aug. 2001): 875. 25 Mar. 2008 <http://www.nature.com>.

Ratsch, C. and Venables J. A., Nucleation Theory and the early stages of thin film

growth, J. Vac. Sci. Technol. A, Vol. 21, No. 5 (2003) S96-S109

Roduner, Emil. Nanoscopic Material: Size-Dependent Phenomena. Cambridge: The

Royal Society of Chemistry, 2006.

“Metropolis Algorithm Statistical System and Simulated Annealing.” N.d. Physics 170.

Web. 7 Apr. 2010. <http://kossi.physics.hmc.edu/courses/p170/Metropolis.pdf>.

 21

Appendix A: Brief Description of the Parallel Metropolis Algorithm

As its name suggests, the Parallel Metropolis algorithm is a parallel version of the

Metropolis algorithm. To run the parallel version, the simulation grid is divided into

sections, each sections is handled by one processor.

Figure 8: The schematics for the Parallel Metropolis Algorithm. Gray cells represent ghost cells.

http://www.fysik.uu.se/cmt/berg/node31.html

In Figure 8, the grid is divided into four quadrants. Each quadrant contains ghost

cells (gray areas) that hold information about the adjacent quadrant. As the program

ones, the ghost cells are continuously updated. Currently, our program runs significantly

faster than the program in our past project. However, we noticed that as the system

becomes larger (more than a 200x200 grid), the program gets slower and slower. By

implementing the Parallel Metropolis Algorithm, we hope to further reduce the

simulation time, which would allow us to simulate much larger and more interesting

systems.

 22

Appendix B: Screenshots of the Program

Figure 9: Form 1. Here, users can input parameter values. The x and y scaling factors just change
the pixiel size of each particle.

Figure 10: Display screen. This is where the result is displayed. The current image is one of a

random initial distribution. Attached to this screen is a little control device on which the user can
continue the calculations or exit the program.

 23

Page 1 of 24

Arbitrary Precision Integers on the Cell Processor

New Mexico

Supercomputing Challenge

Final Report

April 6, 2010

Team #36

Desert Academy

Team Members

Megan Belzner

Matt Rohr

Bjorn Swenson

Teacher / Project Mentor

Thomas Christie

Page 2 of 24

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK

Page 3 of 24

Table Of Contents

0 Executive Summary 4

1 Introduction 5

 1.1 Problem 5

2 Implementation 6

 2.1 Single vs. Multi-core Operations 7

 2.2 Data Type Development 7

 2.3 Limited Success 8

 2.4 Function List 9

 2.5 Software Used 16

 2.6 Literature Used 16

3 Results 17

 3.1 Comparison to GMP 18

4 Analysis 20

 4.1 Parallelizibility / Comparison to GMP 21

5 Conclusion 23

 5.1 Most Significant Original Achievement 24

6 Resources 24

Appendices

 Appendix A – Code 25

 Appendix Z – EPIC FAIL 37

0 Executive Summary

Page 4 of 24

 The Cell processor is used in the Playstation 3 gaming console and the Roadrunner

supercomputer at Los Alamos National Labs. It is a microprocessor specially designed to do

calculations quickly with high data throughput. It has eight cores to process data and one core to

manage the data flow, and provides many advantages, such as efficient calculation with the

vector data type which allows multiple operations to be carried out in a single CPU cycle. In

addition, all of the cores can be used at the same time and can communicate between each other.

Despite all this, there has never been any efficient use of the Cell for arbitrary precision

calculations. Our goal in this project was to make an arbitrary precision integer library that

utilized the special capabilities of the Cell to allow for extremely fast calculations on any size

integer.

We programmed our library from scratch on a Playstation 3 using C. We created a new

data type, called a vecthor. Each vecthor is an array of vectors that can hold up to [any multiple

of] 1024 digits. We then proceeded to create functions for the standard operations commonly

used in number theory and cryptography, namely addition, subtraction, multiplication, modding,

and taking powers.

Throughout the creation of our library, we paid special attention to efficiency in memory

usage and speed. We utilized many Cell-specific functions, and constantly tested our functions

for speed. We collected data for multiple number lengths, and compared our results to the

leading arbitrary precision library, GMP.

Our intention was to create a library optimized for the Cell processor that could be

implemented separately and simultaneously on all of the cores and on multiple networked PS3s.

We intended it to be used primarily for number theory applications such as prime finding as well

as encryption and decryption.

However, even with meticulous code optimizations and the power of the Cell processor,

our library failed to meet the mark. When compared to GMP, the results were dismal. GMP

outperformed us by several orders of magnitude in most cases, even for relatively simple

operations. We concluded that the power of the Cell processor is very hard to extract and

manipulate. In general, the difficulty of programming and managing memory is more trouble

than it is worth when dealing with foreign data types and machine instructions.

Page 5 of 24

1 Introduction

In the year 2001, Sony, Toshiba and IBM (collectively called "STI") began work on the

Cell Broadband Engine (CBE). The Cell is a microprocessor with a heterogeneous design: 8

cores processes data, and one core controls job execution and manages data flow. It was built

around IBM's PowerPC technology, and is used in both Sony's Playstation 3 gaming system and

IBM Supercomputers, including the Roadrunner at Los Alamos National Labs. All applications,

from modeling physical simulations to multimedia, required that the processor have superior

vector and floating point performance.

In its current design, the Cell has 9 cores - one PPU (Power Processing Unit) and eight

SPUs (Synergistic Processing Unit), all of which run at 3.2GHz. The PPU is an ordinary

PowerPC processor and serves to organize data flow and job execution between the other cores.

The SPUs are specially designed processors theoretically capable of 25.6 GFLOPs each, and can

perform operations on 128-bit data types called vectors. IBM and third parties have developed

libraries on the Cell tailored for graphics and modeling, such as arbitrary precision floating point

arithmetic and fast matrix multiplication. However, currently no arbitrary precision integer

library exists which utilizes the Cell's unique capabilities, meaning the Cell is not being used for

number theory or cryptography.

1.1 Problem

Our goal with this project was to create an arbitrary precision integer library for the Cell

processor using the C programming language. The Cell processor on the Playstation 3 has a

PPU (main processor) and 6 usable SPUs, since one is dedicated to the PS3's operating system

and one is disabled by default. As mentioned above, each SPU can do basic arithmetic

operations on 128-bit data types, or 4 integers at once. This means that, depending on the

parallelizability of the algorithms, we thought we might be able to increase the speed of

arithmetic operations on a single core up by up to 4x. If we could make each SPU operate at

maximum capacity, each Cell could do 6 to 24 times as many arbitrary-precision operations as a

single-core 3.2GHz processor in a given amount of time. Combined with the fact that MPI can

be used to make multiple PS3s work on a problem in tandem, we thought that several networked

PS3s could operate as a formidable machine for number-theoretical operations like prime finding

and encoding/decoding information.

Page 6 of 24

2 Implementation

We chose to work on the Cell because of the calculating speed of the 6 usable individual

SPUs, the availability the Cell in the form of the Playstation 3, and the SIMD (Single Instruction

Multiple Data) capabilities of the Cell Processor. The SPU's 128-bit vector data type can be

divided in various ways, such as 4 integers, 8 shorts, 2 longs, etc. Included in the Cell's libraries

provided by IBM are functions called intrinsics which map directly into assembly language

instructions. One such intrinsic function allows multiple numbers to be added together in a single

computation like so:

Vector 1: {230597, 17345, 5198357, 3567}

 + + + +

Vector 2: {3298673, 839764, 235, 46082}

 = = = =

Result: {3529720, 857109, 5198592, 49649}

This effectively means that 4 integers can be added simultaneously.

We created a new data type to take advantage of the speed of the Cell's intrinsic

functions, which are SPU functions that map directly onto assembly language instructions. Our

library of functions is called "thor," so we named our data type "vecthor." Each vecthor consists

of an array of [some multiple of] 32 vectors, plus one more that contains the size of the vecthor.

Each vector contains 4 integers of maximum 8 digits each, and the number is broken into 8-digit

groups and inserted in the vectors. Of course, a signed integer can have a value up to 231 = 2 147

483 648, but we chose 99 999 99 as our "BIGGEST_INT" so that we could add several vectors

together without the results overflowing the 231 value.

In a vecthor, the first vector contains the metadata: the first integer (as well as the last

one) is how many vectors are registered in memory as being part of the vecthor (not including

the size vector and always a multiple of 32), the second integer contains the “virtual” size – how

many vectors are actually used to contain the number, and the third integer contains the sign (0

for positive, -1 for negative).

For example the number 3467389200559205849930147290165382927106738 in vecthor

form is:

Page 7 of 24

{32, 2, 0, 32} *30 vectors w/ only 0s* {0, 0, 346, 73892005} {59205849, 93014729, 01653829, 27106738}

We also decided to code in C for raw speed and usability in C++ code.

2.1 Single vs. Multi-core Operations

When we started our project we wanted to make use of the Cell's communication abilities

by using Direct Memory Access (DMA) to allow all six SPU's to work on a single operation at

the same time. However this approach would have far more difficult to implement than expected

and the constant data transfer required would have hurt the speed. So with expert advice from

DeLesley Hutchins we decided to focus on creating operations for single SPUs, and planned to

have the PPUs dole out jobs to each SPU.

Once we decided to make an operation run on a single SPU, we considered using the

GNU Multi-Precision integer library (GMP) and modifying it to utilize the vector functions of

the SPU. Unfortunately, we could not get GMP to compile for the SPU, presumably to the

SPU's limited built-in functionality. We therefore proceeded to create a SPU-optimized library

from scratch.

2.2 Data Type Development

In our original implementation, we dynamically sized the vecthors so that they always

had just enough vectors to contain the number (plus the meta vector). However, this meant that

the vecthor had to be resized whenever the number overflowed the current vecthor, and a lot of

time was wasted on memory allocation. For example, if advanced carrying was necessary in

addition with the old system, for a function c=func(a,b), first c had to be put in a temporary

vecthor, then c had to be re-initialized to be one vector larger. Then the process had to be

repeated as soon as the new vector was filled, which in the large calculations this is designed for

was quite often. One call of the C functions calloc and malloc takes about 340 times as much

time as an intrinsic add or subtract operation. With dynamic resizing, over 50% of the time for a

single arbitrary-precision subtraction operation was used to allocate memory, and almost 50% of

addition was allocating memory.

Page 8 of 24

With a mostly fixed-size vector, overflow happens far less often – and the vector is

simply doubled in size, which means that it’s unlikely to overflow again any time soon and much

less time and resources are wasted on resizing the vecthors. A 2048 bit prime number key for

RSA encryption is roughly 600 decimal digits. We chose a 32 vector vecthor as it holds 1024

digits, so for these smaller prime numbers this means we won't have to resize the vecthors.

Vethors now double in size when the numbers exceed 1024 digits, 2048 digits, etc and halve

with getting smaller.

2.3 Limited Success

Because of the nature of the Cell, our intial goal was to have the PPU manage jobs for the

SPUs, while the SPUs performed their jobs extremely quickly and reported back to the PPU.

 Unfortunately, we quickly realized that programming at this low-level on a foreign processor

architecture was unrealistic based on time constraints, and essentially beyond the scope of our

project. As a compromise, we decided to run programs on the SPU alone. There are a few

advantages to this:

 -Writing code in C using vectors was much more easier to understand than working

around the complexity of the DMA (Direct Memory Access) Transfers, individual mailbox

routing to and from SPUs, and context/thread creation and management for each SPU.

 -Using vectors on an SPU would give us a reasonable understanding on whether or not

the Cell's philosophy and technology is really a breakthrough. Therefore, we could write and run

code relatively quickly while still being able to draw a conclusion on the Cell as a whole.

 -The SPUs are known to be the fastest part of the Cell. A comparison of the new, exotic

SPUs to a normal intel processor would be much more beneficial than one of the power PC

brand PPU to an intel processor.

No arbitrary precision integer library currently exists for the Cell, and if the processor's

power was truly revolutionary, we may have seen dramatic increases in calculations with prime

numbers, for example. We gave our library the name 'thor', and decided to answer the question

everyone is asking: Are the speed benefits from the Cell really worth the hassle of programming

on a completely unexplored, foreign processor architecture? Cleve Moler assured us that they

are not, and as we discuss below, we have come to the same conclusion (at least for this

application).

Page 9 of 24

2.4 Function List

Below is a list of all the functions we created, with a description of how they work and

how they are used. The full code is provided in appendix A.

typedef vector signed int* __attribute__ ((aligned(4096))) vecthor;

Summary: Defines the size of a vecthor.

vecthor init_vecthor(void);

Summary: Initializes a 4096-bit vecthor and returns a pointer to that vecthor

Description: Our function for initializing vecthors simply allocates 32 vectors, each vector

consisting of 128 bits (4096 bits for a standard vecthor). This is done using the calloc function,

which allocates and initializes a block of memory. The metadata is also appropriately initialized,

and finally a pointer to this newly created vecthor is returned. Initially, we passed the desired

size of the vecthor as the first argument. However, after we switched to a fixed-sized datatype

implementation, this was no longer needed.

void vecthor_clear(vecthor a);

Summary: Zeros out a vecthor, setting all values to zero and updating metadata accordingly.

Description: This function loops through each vector in the vecthor, and inserts the scalar value

of zero into each element of these vectors. The metadata is also adjusted for the altered values.

void vecthor_copy(vecthor a, vecthor b);

Summary: Copies all data from a into b.

Description: To copy data from one vecthor to another, we simply loop through the first

vecthor, placing all vectors in the source vecthor into the destination vecthor. This memory

copying is admittedly slow. However, if one was to simply set the two vecthors equal to each

other (e.g. a=b;), this would only set the pointers equal to each other, therefore causing all

further operations performed on a also to be performed on b.

void str_to_vecthor(vecthor a, char *str);

Page 10 of 24

Summary: Sets a equal to numeric data found in str.

Description: str_to_vecthor works as follows: First, loop through the vectors in a from right to

left. For each iteration in the loop, convert the next 8 characters in str into an int, then place this

in the relevant element in the vector.

void vecthor_write_virtual_size(vecthor a);

Summary: Determines the size of the number in the 4096-bit vecthor spaceand adjusts the meta-

data vecthor accordingly. Used primarily in other library functions

Description: In order to determine the variable virtual size of the data inside a vecthor (rather

than the actual size), we look at each vector in the vecthor from left to right. If, at any time

during this loop, the given vector's contents are not equal to 0, then the loop is terminated and the

size is updated in the metadata. This loop must go from left to right, otherwise a series of 32

zeros or more could possibly be interpreted as the end of the data in the vecthor (therefore

corrupting the virtual size).

int vecthor_virtual_size(vecthor a);

Summary: Returns the virtual size of the vecthor, i.e. the number of vectors containing data.

 Used primarily to optimize loops in library functions.

Description: Literally, this function returns the second element in the metadata vector. This

variable can be used to optimize nearly every core arithmetic operation in the library. The

reason for this is that if a vecthor consists of a 32 vector-long chain, but only 1 or 2 of these

vectors hold actual data, then it is useless to loop through this empty data (to perform addition or

subtraction, for instance). Using the vecthor_virtual_size() function, we could easily tell where a

vecthor's data started and ended, and thus could loop through only the data that mattered when

optimizing our functions.

int vecthor_actual_size(vecthor a);

Summary: Returns the actual size of a vecthor, i.e. the number of 128-bit vectors allocated to

the vecthor.

Page 11 of 24

Description: As opposed to vecthor_virtual_size() (see above function), the actual size of a

vecthor is the amount of vectors allocated to the particular vecthor. It follows that in order to

determine the number of bits a vecthor occupies in memory, this conversion can be used:

memory_usage(a)=128*vecthor_actual_size(a);

as a vector takes up 128 bits.

int vecthor_sign(vecthor a);

Summary: Returns the sign of a vector (1 if positive, -1 if negative, 0 otherwise).

Description: This function returns the third element of the metadata vector.

void print_vector(vector signed int a);

Summary: Prints a single vector (not a vecthor).

Description: This function is used in debugging, to examine the individual elements of a vector.

 Normally, print_vecthor() or print_vecthor_debug() is desired.

void print_vecthor(vecthor a);

Summary: Prints an entire vecthor to screen in an easy-to-read fashion.

Description: print_vecthor(), after determining the relevant size bounds of the vecthor, takes all

data vectors and displays them on the screen. Extra precaution is taken in ensuring that the

padding is correct (e.g. eight zeros will not be shortened to one, and zeros on the left will not be

displayed).

void print_vecthor_debug(vecthor a);

Summary: Prints an entire vecthor to screen, including meta-data and zeros

Description: This function quite literally prints all data (relevant or not) that the vecthor

occupies in memory onto the screen. This is used in testing functions, and is generally

excessively difficult to read.

void vecthor_lightning_add(vecthor c, vecthor a, vecthor b);

Page 12 of 24

Summary: As fast as the lightning of thor! Computes the sum of a and b, storing the result in c.

 This function does not carry for you, so it should only be used when it is certain that no

overflow will occur.

Description: This function uses the assembly language intrinsic spu_add() to perform simple

addition on two vecthors. It is best used when incrementing a larger vecthor by a smaller

amount, or for adding small values.

void vecthor_add(vecthor c, vecthor a, vecthor b);

Summary: Computes the sum of a and b, storing the result in c.

Description: Addition is performed using the same spu_add() assembly language routine,

however, carrying (the heart of addition) is performed afterwards to ensure that the data is lined

up correctly.

void vecthor_carry(vecthor c);

Description: Ensures that each element is 99999999 or below. Properly formats the vecthor.

 Use after any operation that increases the size of entries.

Summary: This function is a carry function for use in addition. It utilizes the fact that we only

use 8 digits per vector entry while an int can go up to 9. It loops through each entry of each

vector, dividing the entry by 100,000,000 (our biggest allowed int plus 1) to obtain the carry and

calculating the entry mod 100,000,000 to obtain the “mod”. The carry is added to the next entry

to the left, and the mod replaces what was previously in the entry.

void vecthor_carry_ext(vecthor c, int biggest);

Summary: Carries, but with the option of manually setting the biggest-int size

Description: Instead of treating the biggest int as 99999999, the biggest int is specified by the

user.

void vecthor_sub(vecthor c, vecthor a, vecthor b);

Summary: Computes the difference of b and a, storing the result in c.

Page 13 of 24

Description: Subtraction is first performed normally (e.g. simply subtracting everything in b

from a, not worrying about negative values or borrowing). Next, we look at all negative values.

 For each negative value, we:

-Take the absolute value of this number, making it positive.

-Subtract this positive value from our biggest int + 1 (100,000,000).

-Subtract one from the value to the left of it in the vecthor.

void vecthor_mul(vecthor c, vecthor a, vecthor b);

Summary: Computes the product of a and b, storing the result in c using the slow but

straightforward naive multiplication. The product must be less than 1024 digits.

Description: Naive multiplication is very similar to multiplication by hand. We first loop

through all the vectors in b and multiply each of these vectors by every vector in a. The result is

stored in an unsigned long long. The result is split into two parts (the first part is the division by

the biggest int, the second part is the long long mod our biggest int), and added to the appropriate

'slot' in the vecthor. Periodically, the result vecthor must be carried to prevent overflow.

void vecthor_pow(vecthor c, vecthor a, vecthor bb);

Summary: Uses successive squaring to compute a raised to the b power, storing the result in c.

 b must be less than 99999999.

Description: Successive (sometimes called repeated) squaring involves looking at the binary

representation of b (the exponent). If the LSB is one, then our result vecthor is multiplied by our

base. Regardless of b's binary representation, our base is square with every iteration. At the end

of each iteration, our exponent is shifted right. The loop terminates when the exponent is equal

to zero.

void vecthor_mod(vecthor c, vecthor a, vecthor b);

Summary: Computes a mod b, storing the result in c.

Description: Uses an algorithm that shifts b to the left until its binary representation is one bit

less in length than a. Then, b is subtracted from a until a<b. This is repeated until a is less than

the original b.

Page 14 of 24

void vecthor_powm(vecthor c, vecthor a, vecthor bb, vecthor m);

Summary: Computes a raised to b (mod m) and stores the result in c using successive squaring.

Description: See vecthor_pow(). The algorithm is identical, except a is squared and

subsequently modded by m with each iteration.

void vecthor_is_prime(vecthor c, vecthor a);

Summary: Uses Fermat's Little Theorem to test the primality of a. a must be less than

99999999. Splats the result vecthor with 1's if a is prime, 0's otherwise.

Description: Fermat's Little Theorem uses a small prime number as a base (2, 3, 5, 7), and raises

this to a-1, modding the result by a. If the result is not 1, then a is definitely not prime. If the

result is one, then we repeat the process with a different base. The more bases used, the surer

one can be that a is prime.

int vecthor_comp(vecthor a, vecthor b);

Summary: Compares the size of a and b. Returns 1 if a>b, 0 if a==b, and -1 if a<b.

Description: This function loops through a and b, using assembly language intrinsics to

determine if one vector is greater than another. If one is found to be greater than another, then

the loop terminates.

int vecthor_cnt_lz(vecthor a);

Summary: Counts leading binary zeros in a vecthor.

Description: This function counts the binary leading zeros in a vecthor by using a loop coupled

with the spu_cntlz function.

void vecthor_lshift(vecthor c, vecthor a, int times);

Summary: Multiplies vecthor a by 2 times number of times using a left-shift intrinsic function

and carrying, storing the result in c.

Description: This function calls spu_slqw() and carries when appropriate to prevent overflow or

data discrepancies.

Page 15 of 24

int vecthor_bin_diff(vecthor a, vecthor b);

Summary: Used in modding to determine how many times b would have to double to have the

same size binary representation as a.

Description: This function simply subtracts the values of vecthor_cnt_lz().

int vecthor_pos_extract(vecthor a, int pos);

Summary: Extracts the number in position pos from vecthor a where position is measured from

right to left, (ie. the rightmost integer has pos=0 and the leftmost would have pos=32, since a

standard size vecthor holds 32 integers). Used exclusively as an auxiliary function in

multiplication.

void vecthor_pos_mul_add(vecthor a, int pos, unsigned long long x);

Summary: Takes x, which represents two ints multiplied, split it into parts greater than and less

than 99999999 and add it to the values to existing values in a. Used exclusively as an auxiliary

function in multiplication.

int vecthor_find_max_pos(vecthor a);

Summary: Returns the "size" of a, counting from left to right. Max is 32*4=1024. Used

exclusively as an auxiliary function in multiplication.

void start_timer(void);

Summary: Starts SPU timer, measured in ticks. One tick is approximately equal to 40 clock

cycles.

int read_timer(void);

Summary: Reads from SPU timer, returning the number of "ticks" since the timer started.

double ticks_to_ms(int x);

Page 16 of 24

Summary: Converts x ticks to milliseconds, returning the number of ms for a given number of

ticks.

void init_aux(void);

Summary: Should be called at the beginning of main. Initializes a number of auxiliary vecthors

used to extend the functionality of certain operations.

Description: This function simply calls init_vecthor() on a number of global auxiliary vecthors.

These are used when memory overwriting may occur (e.g. calling vecthor_add(a,a,b) may cause

memory discrepancies).

int add_elements(vector signed int a);

Summary: Adds all of the elements in a given vector, returning the result.

int intpow(int x, int pow);

Summary: Computes x raised to the pow power. Used in str_to_vecthor.

int abs(int x);

Summary: Returns the absolute value of an integer using bit logic to avoid branching.

2.5 Software Used

 To enable code writing and compilation on the Playstation 3 systems, we installed Fedora

or Yellow Dog Linux distributions on each system. Recent firmware updates have disabled the

option to install a third-party OS, though Sony has disabled and re-enabled this capability in the

past. To compile C code on the Cell's PPU and SPU cores, we used Cell-specific gcc builds

created by IBM named spu-gcc and ppu-gcc. These are available for free on the IBM website as

part of the “Software Development Kit for Multicore Acceleration Version 3.0,”

2.6 Literature Used

For instructional material, we used both books and IBM manuals for development on the

Cell. For general information on programming in C, we used Aitken’s Teach Yourself C in 21

Days and Kernighan and Ritchie’s The C Programming Language. For Cell specific

information, we used Programming the Cell Processor, by Matthew Scarpino. This was our

Page 17 of 24

single best resource, without which we could not have produced as much Cell-specific code as

we did. The IBM manuals we used were all part of the Cell SDK. Citations for these sources are

provided at the end of this document.

3 Results

Below is a chart of the time taken for a single run-through of our primary functions. We

tested each function with different numbers, once with 1 digit (e.g. 9+9), once with a full entry in

a vector (99 999 999 + 99 999 999), once with a full vector (32 9s + 32 9s, etc), once with 4 full

vectors, and one test with 308 digits which is roughly the length of a 1024-bit number, and

therefore a component of a 2048-bit RSA key.

We measured the timing in SPU ticks, which is equal to 40 processor cycles. To get more

comprehensible view of the time taken, we translated the values in ticks into milliseconds by

dividing the values by 80,000 (3.2 billion cycles per second, 3.2 million cycles per millisecond /

40 cycles per tick = 80,000 ticks per millisecond).

Page 18 of 24

3.1 Comparison to GMP

The real test came when we compared the timing of our functions to the industry standard

of arbitrary precision arithmetic, the GMP (GNU multiple precision) integer library. For the

GMP data below, we used the PPU, which runs at the same 3.2GHz clockspeed. Converting

PPU and SPU results to milliseconds allowed us to compare them directly. Of course, different

processor architecture is being used in each case, but as GMP will not compile on the SPU it is

as close as we could get to a true comparison.

These graphs show that GMP's functions far outperform thor's functions.

The timing below is correct. While our adding and subtracting functions likely use

similar algorithms to those used in GMP, our multiplication is naive multiplication (the type you

do by hand), and is therefore very slow compared to GMP's more sophisticated multiplication

algorithms.

Page 19 of 24

While GMP obviously outperforms thor for reasons discussed below, most functions are

within an order of magnitude difference. Multiplication is noticeably different, but as mentioned

above, GMP utilizes Fast Furier Transform for multiplication, so we expected ours to be much

slower. The comparison is like apples to oranges until we develop FFT multiplication for the

Cell.

Page 20 of 24

This graph shows the log of the ratio between thor's functions and GMP's functions. It

displays the time difference between comparable functions in terms of order of magnitude (i.e.

10^2) to allow for better visibility of the data.

The following charts show the percentage of total time in an addition operation used in

adding and carrying. The percentage of time used for carrying is roughly 83%, 87% and 91%

respectively. For addition operations smaller than 9 digits, carrying takes up roughly 83% of the

total time as well.

4 Analysis

While we thought the Cell's novel structure would prove to be faster than a normal

computer, the results proved just the opposite. The fact that SPUs are not good at branching

Page 21 of 24

coupled with the fact that datatypes can not be directly manipulated by C lead our library to be

much slower than we thought it would be. When compared to the GNU Multiple Precision

library (GMP), we found that in several cases we were many orders of magnitude behind. While

the Cell processor may sound good on paper, vectors may be more trouble than they're worth, at

least for integer arithmetic.

4.1 Parallelizability / Comparison to GMP

The Cell processor is praised for its ability to be parallelized and optimized for working

with four integers at once (vectors). However, when it comes to integer math, algorithms are

only partially parallelizable. For instance, when carrying after performing an addition operation,

every significant bit relies explicitly on the bits less significant than it, and the algorithm must

operate from right to left. Thus, even with 6 or 7 SPUs, addition can not be optimized for

multiple processors. This does not lie inherently in the Cell processor, but is rather a weakness

of positional notation in general. Modulus and multiplication do not parallelize well either: our

implementation of modulus is reliant on the results of repeated subtraction and shifting, and

multiplication still involves the implementation of a carry method. Because of this, arbitrary

precision libraries tend to be inherently slow, and some algorithms must be linear in fashion.

Even if the core of the operation can be parallelized, the carry must still be done linearly. This

greatly stunts the ability to optimize algorithms such as these.

Another reason GMP outperformed thor was because of the difficulty of memory access

on the Cell. On a modern CPU, one can simply execute a[2]+=10;. The processor is already

adept at dealing with arrays of numbers. However, on the Cell, that piece of code would

resemble this: *a=spu_insert(spu_extract(*a,2)+10,*a,2);. This is actually three operations,

each of which takes about 3 CPU cycles. The Cell must copy an integer from a place in

memory, add to it, and insert it again into memory. This lengthy bit of code leads to more

compiled instructions, less efficient memory management, and ultimately less efficient code.

 This leads us to conclude that when it comes to raw computing power in relation to small

individual operations, the Cell is definitely not the weapon of choice.

We expected our addition and subtractions to be most comparable to those utilized by

GMP, because they are the most obviously and simply parallelizable. Indeed, the actual adding

or subtracting is remarkably easy. However, carrying involves several operations for each

Page 22 of 24

element of each component vector:

Step 1: extract an element from a vecthor, mod it by BIGGEST_INT + 1

Step 2: add the result to the next entry over

Step 3: divide the extracted element by BIGGEST_INT + 1

Step 4: Insert the result of that operation back into its original place

In C, it looks like this, where *(c+i) is the entry being processed

 temp=spu_extract(*(c+i),j);

 (c+i)=spu_insert(spu_extract((c+i),j-1)+temp/(biggest+1),*(c+i),j-1);

 (c+i)=spu_insert(temp%(biggest+1),(c+i),j);

If the Cell had built-in intrinsic functions designed for integer modding and integer

division, this process would be much faster. Unfortunately, it does not. As it is, this sequence of

oeprations must be done for every single entry of a vecthor. We suspect that this carrying

operation is what makes our adding algorithm slower than GMP's, not the adding per se. As it

was, results indicated that 80-90% of the CPU cycles in an adding operation were used for

carrying. If carrying were able to see the same 4x increase that pure addition does, an operation

that now takes 100 time units would take roughly 28 time units. This would make our operations

take 3x as long as they do using GMP, rather than 10x.

With that said, a well-parallelizable, higher level algorithm may in fact see a speed

benefit from the Cell architecture. If work was divided up in an efficient way and doled out to

the SPUs intelligently, each one could perform their small bit of the problem sequentially (the

part of the problem would have to be large enough as to not suffer from the above speed

penalties). For example, when generating a large prime for use in an RSA key, each SPU could

be asked to look at a different set of numbers, meaning the overall result would be found 6x as

fast as using one SPU. However, in this particular example, since GMP cannot be compiled on

the SPUs and thor is not fast enough to be worth using, a standard multi-core processor using

GMP is still a better choice. Given the successful application of the Cell in physical simulations

and multimedia, it seems the Cell is great for floating point computations that are not strictly

Page 23 of 24

sequential. However, the Cell does not show appreciable value under the constraints of integer

arithmetic. The above considerations also suggest that using highly parallelized architectures

such as GPUs or upcoming GP-GPUs for doing integer math would probably not be worthwhile.

5 Conclusion

Through exploring the capabilities and limitations of the new Cell processor architecture,

we have learned not only of some specific drawbacks to using the Cell, but some drawbacks of

parallelized computing in general. For example, while vectors may be able to hold four integers

and operate on them simultaneously, the strenuous task of reading from and writing to these

vectors when operating on them is slow. Also, when performing numeric operations, because of

the nature of arithmetic algorithms, some pieces of data rely on other pieces. This leads to a

large stunting in the amount of data that can be parallelized at a low level, and, therefore, a

smaller amount of potential in multicore programming to be realized.

The Cell's SPU cores reputedly lack efficient branching capabilities, which also greatly

hurt us. Many arbitrary precision libraries examine the input and select an algorithm based on

length of the operands. On the Cell however, determining which algorithm to use on specific

input data would be extremely time consuming, and this limited our speed greatly. Keep in mind

that we ran into branching problems on algorithms as low of a level as adding. A higher level

algorithm might experience even more severe impediments, depending on its design.

On a larger scale, we can safely conclude that when examining a program with the intent

of parallelizing it, one should not necessarily attempt to distribute the low-level number

crunching loops, but rather examine the algorithm from a top down perspective and optimize it in

this fashion. However, the textbook way of optimizing a program for multiple cores typically

says the opposite. One is usually told to look for bottle-neck loops in the program and divide

these up between available processors. From our extensive experience on the Cell, we can say

that this is in fact not the way to go about it. The main reasons for this are the Cell processor's

sheer incompetence when it comes to completing low level sequential integer operations

smoothly. Because these low level operations require a large number of functions to accomplish

relatively simple tasks, the Cell benefits from a top-down optimization approach. Most of our

optimization mistakes were made in assuming that the best way to optimize was to tweak

functions at as low of a level as possible.

Page 24 of 24

5.1 Most Significant Original Achievement

Our most significant achievement is taking several algorithms we take for granted when

using high level languages (addition, subtracting, multiplication, string and memory

manipulation), and examining them closely at the lowest possible level. It has taught us a great

deal about what it was like to implement the algorithms, as well as specific details as to how

compilers, bits in memory, memory allocation, assembly language, threading, processor

architecture, and intense line-by-line optimization works. The final product, spu_thor.h, may or

may not be used extensively by the Cell programming community (or lack thereof). However,

through producing the library we have learned more than ever before about the nature of

computers and algorithms, and it will continue to influence the way we meticulously build and

optimize our programs.

6 Resources

Aitken, Peter G., Bradley Jones, and Peter G. Aitken. Sams Teach Yourself C in 21 Days.

Indianapolis, Ind.: SAMS, 2000. Print.

"DeveloperWorks : Cell Broadband Engine Resource Center." IBM - United States. Web. 07

Apr. 2010. <http://www.ibm.com/developerworks/power/Cell/>.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language. New Delhi:

Prentice-Hall of India, 1999. Print.

Scarpino, Matthew. Programming the Cell Processor: for Games, Graphics, and Computation.

Upper Saddle River, NJ: Prentice Hall, 2009. Print.

We would also like to give special thanks to the Los Alamos National Lab Foundation for

providing the funding used to purchase the equipment used in our project. Without their help,

this project would have been difficult to impossible. Thank you!

1

The Spread of the Black Death in London

New Mexico

Supercomputing Challenge

Final Report

April 7, 2010

Team 37

Desert Academy

Team Members:

Katie Boot

Sara Hartse

Teachers:

Thomas Christie

Jocelyn Comstock

2

Table of Contents

1. Executive Summary…………………………………………………………………………3

2. Introduction ……………………………………………………………………….4

 A. Goal

 B. Hypothesis

3. Description …………………………………………………………..…………….5

 A. Biology

B. Background

 C. Significance

 D. Model

4. Development …………………………………………………………….……………9

5. Results …………………………………………………………………………….11

6. Conclusion ………………………………………………………………………..15

7. References ………………………………………………………………………...18

8. Code………………………………………………………………………………….19

3

1. Executive Summary

 The objective of our project is to model the development of the bubonic plague in

London for the duration of the primary outbreak in 1347 that lasted into 1350. We are applying

epidemiology to the pandemic and analyzing the consequence it had on general social classes,

for example the peasant’s mortality rate versus that of the nobles and higher classes.

We chose this topic because we are interested in epidemiology, and wish to know how

and why past societies were affected by circumstances that can be encountered today. We are

also curious about the spread of the bubonic plague in past communities versus its spread in

modern communities. If we can accurately replicate the Black Death, we could continue with the

project and model a version of the Black Death in the modern-day London community. This

would enable us to compare the spread of the plague in modern times to that of the past.

While our final model does not reflect the degree of complexity we originally intended, it

takes into account the chances of infection, recovery and death, the geometry of 14th century

London and the fact that the disease was initially brought to London by ships. We were able to

determine model parameters, such as probability of recovery and the infection rate, that provide

model results which correspond to historical data to a relatively high degree. This information

will allow us to continue to use this model and add more elements in the future.

4

2. Introduction

A. Goal

 Our goal for this project is to create a model of the bubonic plague in London and have it

produce historically accurate figures, specifically with regard to the rate of death and overall rate

of infection. We should be able observe the effect of the plague and its variations in different

sectors of London. We ultimately want this model to be used to compare the effect of the plague

on different social classes, comparing the mortality rates of peasants to aristocracy, or different

professions such as the clergy or farmers.

B. Hypothesis

 We predict that if we successfully create and calibrate our model so that it gives

historically accurate results, then we will be able to see trends of people of higher class surviving

longest and members of the clergy dying first. Furthermore, we predict that agents who start off

in more crowed areas, especially near the Thames, will die more swiftly than those in more

isolated areas.

5

3. Description

A. Biology

 The bubonic plague, also known as the Black Death in the mid-fourteenth century, is

derived from a bacterium called Yersinia pestis (Y. pestis), and is spread by the bite of an

infected flea, Xenopsylla cheopis (the rat flea). The term “bubonic plague” comes from the most

recognizable symptom, buboes, which are lymph nodes that become inflamed and swell to a

substantial size. Victims of the plague generally die within three to seven days of infection. The

reason for the plague’s lethality is that humans rarely have immunity to it, and once contracted,

the plague usually spreads too quickly throughout the body for one’s immune system to react to

it. However, if a person survives the plague they would probably never contract it again.

The bubonic plague cannot disseminate directly from person to person, but it can develop

into two other forms of plague, septicemic and pneumonic. Septicemic plague is developed

through blood poisoning, and cannot spread from person to person. Pneumonic plague, derived

from pneumonia, is communicable through people and can circulate quickly through a populace

by means of coughing, and can cause death in three days or less. During the Black Death, the

pneumonic plague worked with the bubonic plague and caused approximately half of the total

plague-related deaths.

Though the bubonic plague can be detrimental to a human population, it usually only

occurs in rodents. This disease is only dangerous when it mutates and breaks out of its out

biological group (rodents) and infects other groups (humans). Fleas spread the illness from

infected rats to healthy rats by biting them and transferring some of their blood. Rats can transfer

the plague to humans by biting them, in which case the plague is administered directly into the

body.

6

Rats are the preferred host of the Xenopsylla cheopis, but if the rat population happened

to decline, the fleas would be forced to find new hosts such as humans and livestock. The plague

can also spread when the bubonic plague mutates into the pneumonic plague, which can move

from person to person.

B. Background

 Thought to have originated in East Asia, the outbreak of the bubonic plague was

devastating for the European population. It was the first major disease to reach Europe in

centuries. The plague first appeared in Europe in 1347 and swept through the populace for the

next two and a half years, killing over 25 million people CITE – where is this data from? With a

preliminary population of approximately 7 million, England’s inhabitants declined as the plague

killed almost half of its citizens. All of the social classes were affected, though the peasants were

the most susceptible due to unhealthy living conditions and overpopulation. Only a few members

of the nobles and royal family died due to the plague. The loss of the peasant class caused a great

decline in food production, which contributed to the famine already sweeping the countryside,

thus killing more people.

The people of the middle ages had no effective way of treating the plague and it was not

until antibiotics were developed that there was any way of stopping it at all. People blamed the

plagues outbreak on a couple factors, including “bad air," witches, astrology and a rare alignment

of planets. Many people believed the Black Death signaled the end of the world, or the

apocalypse. Others thought that the Jews had created the plague as a way to destroy the Christian

world. Thousands of Jews and other minorities were killed and tortured by the panicked masses

of Europe, especially in England. England was already experiencing its own hardships when the

7

plague hit in 1347. The various harvests had been almost completely destroyed by rains, winter

was approaching, and the lower classes, such as peasants, were slowly starving to death.

The plague hit the hardest in large cities, of which London is a prime example. The

plague reached London through the rats that inhabited trading ships carrying goods from Asia.

Once the ships docked, the rats and fleas dissipated into the city, infecting both humans and rats

as they went. London was overwhelmed by a combination of pneumonic and bubonic plague.

Nearly 50% of London’s population succumbed to the plague, and thousands more died of

starvation and other causes. By late 1350, the plague had subsided, but outbreaks would continue

for the following three hundred years. It was not until the mid-1600s that the plague would be

mostly eradicated.

C. Significance

 The Black Death had many consequences and produced many changes that would make

a huge difference in European life. It was a turning point of the development of human

civilization. For example, it led to the decline of the religious dogma that had controlled most

societies for centuries. It caused people to have a greater interest in the study of science and

medicine, which continued to philosophy, art, and a new era of invention. Trade expanded and

eventually more efficient trade routes were searched for, leading to the discovery of America.

The epidemic also eliminated serfdom in much of Europe. After a great quantity of the lower

class peasants was killed by the plague, peasants were no longer thought of as personal property,

but as individuals, and necessary for a society to flourish. Although the Black Death had many

negative results, it brought about an adjustment in lifestyle that changed the way people thought

and behaved, and eventually, the course of civilization itself.

8

The plague has emerged in the human population quite a few times throughout history,

but the most famous and widespread outbreak is the epidemic that occurred from 1347 to 1350.

This is the outbreak on which our project is based. The bubonic plague is still a common

problem in the world today, and is currently the cause of major epidemics in regions such as

Uganda, Kurdistan, and northern India. Also, as of late, bubonic plague has been found

increasingly in the United States, especially the Southwest.

D. Model

We used Netlogo to model the spread of the plague in London. The basic function of our

model is to create infected agents (rats), who start off at points along the Thames River. They

dissipate randomly into “London” staying on specific paths and interacting with the human

agents. There are about 7,000 human agents, each representing 10 of the 70,000 people living in

London at the start of the Plague.

The sick rats are orange and they disperse through the London docks and infect the

human and rat inhabitants of London through proximity. Healthy humans are green at first, and

become yellow once they are infected. The infected agents generally live three to six more

“ticks”. Human agents do not spread the plague as quickly as the rats do, and can only infect

each other pneumonic plague, which has a lower chance of transmission. If a human or a rat

manages to recover (this is moderately unlikely), then they become immune and the agent is

shown in grey.

9

4. Development

Throughout the course of this project we learned a lot about epidemiology as well as

NetLogo, the program we used to model the Black Death. First, we created a basic epidemiology

model. After we had agents infecting and recovering, we added some factors that are more

specific to the plague. For example, we changed the model so that rats were the original infected

agent and the spread of the sickness depended on their movement and behavior.

One of our main challenges was incorporating a map of London into the model. We tried

many different things, until we eventually colored in a fundamental map of fourteenth-century

London using the GIMP photo-editing program. We colored in as many streets as we could,

making sure that all the major roads and public areas in London were covered. We used red for

this task, giving specific paths for the agents to move along and make contact with each other.

We colored the Thames River blue and the docks green, and imported the patches from the

10

image into our model. This allowed us to make the agents responsive to the patch colors. The

next step was to enable the “human” agents to move along the roads and remain on the red

patches, avoiding the blue Thames River and the green docks. We used a piece of code that

asserted when the setup button is hit the “human” agents automatically determine the color of

their current patch. If the patch color is not red (the color of the roads) then the agents continue

to move randomly until they move on to a red patch. We used a similar procedure to have the

"rat" agents start off at specific colored points, namely the docks, which are the green patches in

the model. These were placed at all the major docks along the London section of the Thames

River, where the infected rats exit ships, and spread the plague among the human populace.

This is a screenshot of the model in the earlier stages of the epidemic.

11

5. Results

A large part of the modeling process has been tweaking various features of our model in

an effort to make it as accurate, yet as functional as possible. Adjusting the size of the interface

was a delicate matter; at one point there were so many pixels in “London”, that none of the

agents ever had a chance to interact. We fixed this by shrinking the number of pixels and adding

a variable that increased the infection radius, expanding the area surrounding an agent in which

they could infect someone else.

The other variables that have taken more time to adjust are those of the chance of dying,

chance of recovering, the infectiousness of the bubonic plague and the infectiousness of the

pneumonic plague. Our ideal model ends with about 5% of the population recovered and

immune, 45% dead and the remaining 50% still susceptible. To figure out the perimeters that

would lead to these results we have repeatedly run the models using the “Behavior Space”

feature of NetLogo over long periods of time, altering these variables in increments of varying

sizes each time. In total, we ran the model approximately 4500 times, each time with varying

parameters. We then analyzed this information in spreadsheet form and found the ideal values

for these variables.

The following chart shows the closest values for the variables that we found after

repeatedly running the model. None of the calculated variables were ideal. We were aiming for a

survival rate of 50 to 60% and the closest runs were still 70%. Our reasoning for this is that the

increments we adjusted the variable in had to be fairly large in order to keep the number of times

we had to run the model down to 720 times per computer (we used 6 different computers

overnight). These numbers all produced survival rates that were too high, but we were able to

take the values for the variables and adjust them to create a model that produced results closer to

12

the actual statistics of the Bubonic Plague in London.

Run
number

Infectiousness-
pneumonic

Chance
recover

Chance
die

Infectiou
sness Steps

End
Count %

212 65 2 9 15 498 6214 Survived 77.7

212 498 5971
Never
infected 74.6

212 498 243 Recovered 3.0
220 65 2 9 95 480 6113 Survived 76.4

220 480 5852
Never
infected 73.2

220 480 261 Recovered 3.3
454 70 2 9 35 570 6117 Survived 76.5

454 570 5871
Never
infected 73.4

454 570 246 Recovered 3.1
700 75 2 9 95 513 6016 Survived 75.2

700 513 5755
Never
infected 71.9

700 513 261 Recovered 3.3
935 95 2 9 45 924 6073 Survived 75.9

935 924 5821
Never
infected 72.8

935 924 252 Recovered 3.2
936 95 2 9 55 501 6054 Survived 75.7

936 501 5775
Never
infected 72.2

936 501 279 Recovered 3.5
938 95 2 9 75 470 6019 Survived 75.2

938 470 5772
Never
infected 72.2

938 470 247 Recovered 3.1
939 95 2 9 85 399 6013 Survived% 75.5

939 399 5765
Never
infected 72.1

939 399 248 Recovered 3.1
940 95 2 9 95 729 5738 Survived 71.7

940 729 5463
Never
infected 68.3

940 729 275 Recovered 3.4

13

The variables that seemed to produce the most realistic results were infectiousness-

pneumonic = 60, chance recover = 1, chance die = 5, infectiousness = 95. We decided to

decrease the chance-die and chance-recover because the agents were dying so quickly that they

could not move far enough to spread the sickness. Here is a NetLogo graph of the populations of

the agents in our model while running it within these parameters.

Results with Optimal Parameters

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 68 135 202 269 336 403 470 537 604 671 738 805 872 939 1006 1073

Ticks

Total Population
Infected
Healthy/Susceptible
Recovered

After running the model with in these parameters many times, we began to notice

patterns within the behavior of the agents and how they interact with their environment. Because

of the paths that agents have to follow, they take longer to spread the illness. Some agents who

are on wider paths come into contact with many other agents and if they happen to be near the

Infectiousness-pneumonic = 60
Chance recover = 1
Chance die = 5
Infectiousness = 95

14

river, these are the first areas to be wiped out. The agents that live the longest are those that start

out on smaller streets, farther away from the river. Because of this variation in terrain and the

randomness of the agents’ movement, different trials of the same parameters often produced

slightly different results. The following graph records the populations of the agents over ten

different runs.

Ticks

Tu
rtl

e
Po

pu
la

tio
n

Population After Multiple Runs of Same Model

15

6. Conclusion

 We were not able to get as far with our project this year as we had planned. As explained

earlier, we managed to create a working base model of London and the plague, but we were not

able to go into as much detail as we had originally intended. We did not finish making different

agent behaviors to represent social classes. However, we were able to learn a lot about the

epidemiology behind the Bubonic Plague and how the landscape of London affected that.

Our hypothesis that agents in wider, more crowded areas, especially those close to the

Thames would die more quickly was correct. Agents in these areas transmitted the disease very

quickly, causing the count of sick agents to spike. We observed that it only took a few infected

agents to enter one of these areas and almost everyone would become sick. This was also true for

very isolated areas, but these areas also had the highest rate of survival, because they had such

limited interaction with the other inhabitants of the model.

 While we were trying the correctly calibrate the model and pick values for the variables

that would generate historically accurate results, we learned quite a bit about epidemiology in

general. We learned that a higher chance of death was not necessarily the way to make an

epidemic worse; high chance of death, at least in our model, caused almost all infected agents to

die before they could infect anyone else. We discovered that the key to a long lasting and

dangerous epidemic is relatively low chance of death and very high infectiousness. This creates a

disease that, like the Bubonic Plague, is very contagious, but does not kill all of its victims

immediately, allowing it spread it to many other people. This is shown in the following graphs.

 In these two graphs, the first is one in which the chance of dying was very high. The

second had much lower chance of dying, but despite the low chance of death about 2,000 more

people died in this simulation than in the previous one. The high chance of death in the first run

16

meant that infected people died very quickly, before they could infect anyone else. The number

of infected people spiked rapidly and then bottomed out. The lower chance of death in the

second run kept the sickness around much longer, infecting many more people, eventually

leading to more deaths. When calculating the parameters for our final model we actually had to

raise the chance of death to have a higher survival rate.

17

Our final model is not entirely realistic, in that it is still missing a few key factors. The

main way that we think it could be improved is by adding an incubation period for the agents. A

period of time in which they are contagious but are not showing symptoms would greatly help us

achieve our goal of realism. We could also improve the circulation of the agents to make the

spread of the plague more realistic. We could do this either by making people walk on “tracks”

instead of randomly “wiggling” through the streets, or by making them walk further between

each proximity check.

 There are many ways that we can expand and use this model in the future. The most

immediate thing we would like to do is complete our goals for this year by adding different types

of “human” agents to represent the different social classes with different movement patterns and

trying to model the varying effects of the Bubonic Plague on them. We are also interested in

modeling the bubonic plague on a much smaller scale, looking at the interaction between

Yersinia pestis, Xenopsylla cheopis (the rat flea), rats and humans, as well as what causes

Yersinia pestis to break out of its biological group of rats and move on to infect humans. What

we accomplished this year has given us a good base model of the Bubonic Plague in London and

a good point at which to start further investigation.

18

7. References

"1320: Section 6: The Black Death." Welcome to Utah State University. Web. 15 Jan. 2010.

<http://www.usu.edu/markdamen/1320Hist&Civ/chapters/06PLAGUE.htm>.

 "The Black Death in England 1348-50." UK Travel and Heritage - Britain Express UK Travel

Guide. Web. 15 Jan. 2010. <http://www.britainexpress.com/History/medieval/black-

death.htm>.

"The Bubonic Plague." Essortment Articles: Free Online Articles on Health, Science, Education

& More. Web. 15 Jan. 2010. <http://www.essortment.com/all/bubonicplague_rvdr.htm>.

"CBRNE - Plague: EMedicine Emergency Medicine." EMedicine - Medical Reference. Web. 15
Jan. 2010. <http://emedicine.medscape.com/article/829233-overview>.

"CDC Plague Home Page - CDC Division of Vector-Borne Infectious Diseases (DVBID)."

Centers for Disease Control and Prevention. Web. 15 Jan. 2010.

<http://www.cdc.gov/ncidod/dvbid/plague/index.htm>.

When creating this project we referenced several models in the NetLogo model library

including Virus and African Plains, though the code in our model is all written by us. We

would like to thank all the people who helped us and gave us feedback throughout the

course of this project; we could not have done it without them.

Los Alamos High School Team 69 SCC Final Report

Enlightenment: Metropolis-Hastings Ray Prediction Model in
3D Space

New Mexico
Supercomputing Challenge

Final Report
April 1st, 2010

Team #69
Los Alamos High School

Team members:
1. Kathy Lin

2. Jake Poston

3. Ryan Marcus

4. Doc Shlachter

Teachers:
1. Leroy Goodwin

Project mentors:
1. Leroy Goodwin

Metropolis-Hasting Ray Tracing 1 / 23

Los Alamos High School Team 69 SCC Final Report

Table of Contents
Enlightenment: Metropolis-Hastings Ray Prediction Model in 3D Space 1
Executive Summary ... 3
The Rendering Equation .. 4
Monte-Carlo Methods .. 5

Description and explanation .. 5
Supercomputing .. 6

Ray Tracing Basics .. 7
Description .. 7
Problems with ray tracing ... 7
An overview of shading .. 7

3D Calculations .. 9
Defining Three-Dimensional Objects ... 9
Spheres .. 9
Rotation for cylinders and cones ... 11
Cylinders ... 12
Cones ... 14

The Metropolis-Hastings Light Transport Algorithm .. 17
Introduction and disclaimer ... 17
Explanation of the algorithm ... 17
Image comparison ... 19
Parallel advantages of the algorithm ... 20
Video produced by the algorithm .. 21

Conclusions .. 23
Code ... 24

All images depicting rendering were generated with Team 69's implementation of the algorithm,
and used no third party rendering software.

Metropolis-Hasting Ray Tracing 2 / 23

Los Alamos High School Team 69 SCC Final Report

Executive Summary
For years, the rendering equation has posed an unbreakable enigma to the scientific

world. The sheer computational complexity of light – from diffraction to reflection to diffusion –

forms one of the greatest problems known to physicists and computer scientists. For example,

consider the light illuminating this sheet of paper: an uncountable number of protons are

streaming down from a light source and striking this sheet of paper. After they hit this sheet of

paper, some may reflect back into your eyes, and some may reflect out into space. Some may be

absorbed into the paper, others may diffuse against the surface, and others still may pass through

the sheet of paper and strike the desk beneath you. A complicated problem, to be sure – but one

with a rather intuitive and simple solution.

Through a combination of upper-level statistical theory and brute force, the laws of

probability can provide the solution to this complex problem. Our unique implementation of the

Metropolis-Hastings algorithm gives us a method to predict light rays based on the path of other

light rays. Through this method, we can compute a few rays and then use this method to discover

all the other rays.

Our process begins by creating a scene containing a camera, a light source, and some

objects. We then test various paths from the camera out towards objects to determine if the

camera is looking at something that is illuminated. Once we find a few rays (paths from the light

source to the camera), we create a sampling distribution based on properties of those rays. From

that distribution, we randomly generate new rays that are then tested for accuracy. If any given

new ray is found to be accurate, it is added to the sampling distribution.

This method allows us to create very realistic images at a very efficient rate. The creation

of these high-quality images can be utilized for a number of purposes, ranging from analyzing X-

rays to modeling light itself.

Metropolis-Hasting Ray Tracing 3 / 23

Los Alamos High School Team 69 SCC Final Report

The Rendering Equation
Essentially, the rendering equation is the formal mathematical statement of how much

light is emitted from a given point given the incident angle of the light, a given viewing angle,

and various properties of the material (such as luster, reflection, index of refraction, etc). When

one talks about “solving the rendering equation,” one does not speak of finding an algebraic

solution to this formula. When considering solutions to the rendering equation, one looks at

various methods that could produce the answer the rendering equation would yield. Actual

mathematical manipulation of the equation itself would prove fruitless because many variables

are never known, even in completely simulated situations.

Even though the equation is incredibly general, it still does not properly account for

several aspects of light.

1. Fluorescence: When light bounces off an object (reflection or refraction) and has

a different wave length then when it first hit the object.

2. Interference: When light waves constructively or destructively interfere with each

other, such as in a double-slit experiment (described here: http://en.wikipedia.org/

wiki/Double-slit_experiment)

3. Phosphorescence: When light is absorbed and not immediately emitted, such as

glow-in-the-dark shirts or shoes.

4. Surface Scattering: Because the rendering equation (and almost every subsequent

rendering algorithm) assumes that, with enough depth, every surface is entirely

smooth, some objects may look unnaturally solid.

Because these constraints are built into the rendering equation and any given computer

rendering algorithm is an attempt to provide the solution to this equation, no strictly-traditional

rendering algorithm will take these into account either. The method documented in this paper,

however, will (optionally) compensate for fluorescence and surface scattering.

Metropolis-Hasting Ray Tracing 4 / 23

http://en.wikipedia.org/wiki/Double-slit_experiment
http://en.wikipedia.org/wiki/Double-slit_experiment

Los Alamos High School Team 69 SCC Final Report

Monte-Carlo Methods

Description and explanation
Often, a perfect mathematical solution is not available for a given problem. For example,

the integration of many functions (like the normal distribution) can only be estimated. One tool

in the mathematician's arsenal for resolving these troublesome situations is the Monte-Carlo

method. Implementations of Monte-Carlo methods involve taking a large number of random

samples from some form of distribution relating to a given problem, and then applying those

samples in such a way as to estimate the actual solution.

Imagine that a mathematician is given a pair of two-dimensional closed shapes that exist

across a single known domain and range. The only thing that the mathematician can test is

whether a given point lies within a given shape. The mathematician wishes to determine which

one has a greater area. For now, consider that the domain of both shapes is [x, y] and the range is

[a, b]. If this mathematician wished to employ a Monte-Carlo method, s/he would take a simple

random sample of points within [x, y] and [a, b] for both shapes. After determining a finite

number of points, the mathematician could conclude that whichever shape had the lower number

of points within it had the smaller area.

Two uniform properties of Monte-Carlo methods make them especially applicable to

solving the rendering equation. First, as the number of samples (trials, runs, tests, etc.) increase,

the answer produced by the method becomes closer and closer to the truth. Stated formally: The

accuracy of a Monte-Carlo method is directly proportional to the number of samples used.

Secondly, Monte-Carlo methods allow for predictions about a population to be made

using samples from that population. The difference between a Monte-Carlo method and any

other statistical tool is that the Monte-Carlo method is flexible enough to be applied to a very

wide range of situations. While one could simply take the mean of a sample of light rays, the

result would be entirely useless. However, using a Monte-Carlo method combined with a

sampling distribution proves fruitful.

Metropolis-Hasting Ray Tracing 5 / 23

Los Alamos High School Team 69 SCC Final Report

Supercomputing
The complexity (both in terms of sampling and in terms of computation based on those

samples) makes Monte-Carlo methods a great candidate for supercomputing. Because these

methods require a massive amount of processing power to obtain enough sample data, and

because sample data (for the most part) can be taken in parallel, supercomputers seem to be an

ideal platform.

Metropolis-Hasting Ray Tracing 6 / 23

Los Alamos High School Team 69 SCC Final Report

Ray Tracing Basics

Description
Ray tracing has been a frequently used solution

to the rendering equation. Essentially, a ray tracing

model will trace rays out from an eye source, into a

scene, to a object in the scene, and then to the light. A

ray is traced through every point on the viewing plane

(represented in by the vertical line) in this way. Based on

various angles of these vectors (and rays, represented by

the two-segment line in the image to the right), decisions about shading and location are made.

After the tracing process is complete, each point on the viewing plane (which is not actually a

line, but a 2D plane) is mapped to a pixel in an image and the color of that pixel is determined.

Problems with ray tracing
While ray tracing provides a decent solution to the rendering equation, it comes burdened

with several disadvantages. The first and most significant disadvantage is performance. Because

there are potentially an infinite number of points on the viewing plane, achieving a perfect render

with ray tracing would take an infinite amount of time. Second, ray tracing treats all pixels

equally. This means that a pixel where there are clearly no objects (if a ray is traced out from the

eye through this point, the ray, upon entering the scene, does not even come close to any objects)

is treated in the same manner as a colored pixel. This is incredibly inefficient because an

optimized algorithm should concentrate only on important areas of an image.

An overview of shading
One of the difficulties faced by programmers attempting to implement a ray tracing-like

model is properly shading each point. Luckily, an observable property of light makes this quite

an easy task.

Metropolis-Hasting Ray Tracing 7 / 23

Los Alamos High School Team 69 SCC Final Report

Consider the two traced rays in the

image to the right. If one considers what

this situation would look like in the real

world, one would realize that the bottom of

the cylinder would be more brightly

illuminated then the top of the cylinder. In

this case, the point represented by ray #2

should be brighter then the point represented by ray #1. In order to determine this, consider the

normal of the cylinder (a vector coming out directly away from the center column of the

cylinder). The angle formed between the normal and the incident ray represents the proportion of

shading. The larger the angle, the less illumination. One convenience utilized by many

programmers is referred to as “cosine shading” because one could easily use the cosine of the

angle between the normal and the incident ray as a coefficient of shading.

Metropolis-Hasting Ray Tracing 8 / 23

Los Alamos High School Team 69 SCC Final Report

3D Calculations

Defining Three-Dimensional Objects

Our three-dimensional world is created using basic shapes, such as spheres, rectangles,

cylinders, and cones. We used the basic equations of these shapes combined with parametric

equations to define these shapes in our program. For each shape, we need to be able to find three

things:

1. Determine if an incoming ray intersects the object and where the collision point is.

2. The reflected or refracted ray from an incoming ray.

3. The cosine of the angle between the incoming ray and the normal vector from the

collision point. This value is used to find the amount of lighting that points on the object

should receive.

Spheres
A sphere is defined by its center point and radius, and it has the equation

 x−c1
2 y−c 2

2 z−c3
2=s2

with (c1, c2, c3) being the center point and s being the radius. Our incoming ray is

defined by a starting point (a, b, c) and slope (p, q, r). The ray can be represented by parametric

equations

x=a pt , y=bqt , z=crt .

In order to determine if and where the ray hits the sphere, we need to solve these two

equations together. We first plug in the values for x, y, and z from the second equation into the

first one.

a pt−c1
2bqt−c2

2crt−c3
2=s2

We then expand the expression and write it as a quadratic in terms of t.

Metropolis-Hasting Ray Tracing 9 / 23

Los Alamos High School Team 69 SCC Final Report

 p2q2r 2 t 22ap−2c1 p2bq−2c2 q2cr−2c3 r tc1−a2c2−b2c3−c2−s 2=0

To simplify notation, let

l= p2q2r 2 , m=2ap−2c1 p2bq−2c2 q2cr−2c3 r ,

n=c1−a2c2−b2c3−c2−s 2

The previous quadratic equation becomes

l t2mtn=0

To determine the real roots of this equation, we first find the discriminant.

d=m2−4ln

If this value if negative, then t has no real solutions, and the ray does not hit the sphere.

Otherwise, we use the quadratic formula and find the solutions. Plugging these values of t into

the parametric equations gives us the points at which the line that contains the ray intersects the

sphere. Negative values of t correspond to points behind the starting point of the ray, so they can

be eliminated. Then we find the smallest positive value of t, which corresponds to the first point

that the ray intersects the sphere, which is the collision point of the ray with the sphere.

To determine the resulting ray from the incident ray, we use the vector component of the

incident ray in a formula to produce the vector component of the resulting ray. The starting point

of the resulting ray is the collision point. Given incident vector v1 and normal vector n of some

surface, the resulting vector is

v 2=v1−2 v1⋅n ∗n

The normal to the sphere at the collision point is given by the vector that goes from the

center of the sphere to the collision point. We simply plug in the values into the formula and find

the resulting vector.

The last part we have to find for sphere is the cosine of the angle between incident vector

and the normal. We find this by using the two ways of defining the dot product. Let's call the

Metropolis-Hasting Ray Tracing 10 / 23

Los Alamos High School Team 69 SCC Final Report

incident v, the normal vector n, and the angle between them a. (Note that vx , vy , and vz refer to

the x, y, and z components of v.)

v⋅n=∥v∥∥n∥cosa

v⋅n=v x n xv y n yv z n z

Equating these two formulas and solving for cos(a) gives us

cosa =
v x n xv y n yv z nz

∥v∥∥n∥

Rotation for cylinders and cones
Cylinders and cones are more complicated because the standard equations for them are

complicated. However, the standard equations for cylinders and cones that are aligned with an

axis are much simpler. To take advantage of this, we define each shape with its parameters, use a

rotation matrix to rotate the shape and align it with the z-axis, find the results of the methods, and

rotate everything back to its original alignment.

To rotate an object, we first represent the current axis of the object as a vector. (For a

cylinder, the axis is the line between centers of the two circles on the ends. For a cone, the axis is

the line that connects the point of the cone with the center of the bottom circle). We then find the

unit vector that has the same slope as the axis we want to rotate to, which is the z-axis in this

case. Using the dot product, we can find the angle between these two vectors. Call this angle a.

Then we use the cross product to find the vector that is perpendicular to the plane

containing the first two vectors. This is the axle of rotation about which our object will be

rotated. We normalize this vector and call it u. Using the axis-angle formula, the matrix of

rotation is:

R=[u x
21−u x

2c u x u y 1−c−u z s ux u z1−cu y s
u x u y 1−cu z s u y

21−u y
2c u y u z1−c −u x s

u x u z 1−c−u y s u y u z 1−cux s u z
21−uz

2c]

Metropolis-Hasting Ray Tracing 11 / 23

Los Alamos High School Team 69 SCC Final Report

where c = cos a and s = sin a.

To apply this matrix to object, multiply the vector parameters, like slopes of rays, by the

matrix. To adjust points, such as centers of objects, multiply the point by the matrix. But

remember that the matrix only rotates objects to align with the z-axis. The axes of the objects do

not necessarily coincide with the z-axis. To remedy this, we calculate how far away the axes are

from the z-axis along the x and y directions. Then we shift every point by that amount. The result

is a transformed object with the same shape, but a different orientation. The axis of the object lies

along the z-axis. Afterwards, we shift the points back and multiply the points and vectors by the

inverse matrix of the rotation matrix.

Cylinders
Now that we have rotated our objects, cylinders and cones are very similar to spheres and

rectangles. The general equation of a cylinder whose axis coincides with the z-axis is given by

x2 y 2=r2 z0z z1

where r is the radius and z0 and z1 are the top and bottom bounds of the cylinder. Just like

before, we define the incoming ray by its starting point (a,b,c) and its slope (p,q,r). This ray can

be written parametrically as

x=a pt , y=bqt , z=crt

A ray, if extended, can potentially hit

multiple points on the cylinder. Like with the

sphere, we find all the points where the ray

could hit and take the point that is closest to

the starting point of the ray.

First, we check if this ray will ever

strike the two faces of the cylinder. We find

where the ray would hit the planes of the

faces. Recall that the cylinder is upright and in-line with the z-axis, so the planes of the faces are

Metropolis-Hasting Ray Tracing 12 / 23

Illustration 1: Cylinders rendered with
Metropolis-Hastings

Los Alamos High School Team 69 SCC Final Report

z=z0 and z= z1

If the ray hits these planes, it will hit the planes when

crt= z0 and crt= z1

If the ray does hit one of these planes, we solve for t. We must then determine if the ray

strikes the plane inside the face, which is a circle. This is only true if

a pt 2bqt 2r2

If this expression is true, we save this value of t. Then we must determine if the ray

strikes the lateral side of the cylinder. We plug the parametric values into the general equation

a pt 2bqt 2=r2

We then simplify and write the resulting equation as a quadratic equation with t.

 p2q2t 22ap2bq ta2b2−r2=0

The real roots of this equation are values of t (if any) for which the ray hits the lateral

side. To reduce the number of calculations that the computer must do, we first find the

discriminant, simplify the expression and assign the variable m to this value.

m=4b2 p2−a 2 q24r 2 p2r2 q2

If the discriminant is negative, the equation has no real roots. Otherwise, we use the

quadratic equation to find the roots.

t=−2ap−2bq±m
2 p2q2

Out of all the values of t we have so far, we find the first place that the ray hits the

cylinder, which corresponds to the smallest value of t. However, negative values of t correspond

to points that are behind the starting point, so we must find the smallest positive value. We plug

this value of t back into our parametric equation to find the point that the ray hits the cylinder.

We find the resulting ray with the same formula as before. To find the normal vector of

Metropolis-Hasting Ray Tracing 13 / 23

Los Alamos High School Team 69 SCC Final Report

the cylinder at the collision point, we rotate and shift the cylinder to align with the z-axis and

determine whether the collision point is on the two faces of cylinder or on the lateral surface. If

the point is on the top face, the normal is the vector in the positive z direction. If the point is on

the bottom, the normal vector is in the negative z direction. If the point is on the lateral surface,

the normal is the vector parallel to the xy plane that intersects the axis and the point. For

example, if the the point is (x, y, z), the normal is the vector (x, y, 0). We then plug this value and

the incident vector into our resulting vector formula.

Finding the cosine of the angle between the incoming ray and the normal is simple. We

have already found the normal, and we just use the definitions of the dot product like before.

Cones
After rotating and shifting the cone to align with the z-axis, the general equation is

x2 y 2

m2 =z0−z 2 where m= radius
height

Just like with the other shapes, we check first if the ray hits the bottom circle. Then we

write the ray as a parametric equation,

plug the values into the general equation,

write the expression as a quadratic

equation, and find the real roots. We take

the smallest positive value of t and plug

this value back into the parametric

equations to find the collision point.

Finding the resulting ray is a little

more difficult that before because finding the normal vector is more complicated. If the point is

on the bottom circle (or the top circle, if the cone is inverted), the normal is either the negative z-

direction or the positive z-direction. For points on the lateral surface, we've provided a figure on

the next page shows a cross section of the cone. Point A (x, y, z) is the collision point, point B (0,

Metropolis-Hasting Ray Tracing 14 / 23

Illustration 2: A cone rendered by Metropolis-
Hasting

Los Alamos High School Team 69 SCC Final Report

0, z) is the point on the axis of the cone that is on the same horizontal plane as A. The vector

between C and A is the vector we are trying to find. Let's call this vector n.

We note that

 ABC ~ DAB

They both have a right angles, and

∠CAB + ∠ACB = 90o = ∠ACB + ∠CDA

So, ∠CAB = ∠CDA and the triangles are similar. We can use the dot product definitions to

find the angle between the axis and the vector between D and A. This is ∠CDA, which is

equivalent to ∠CAB. Let's call this angle a. By the definition of sine,

sin a=CB
AB

We solve for CB . Since we know the coordinates of B, the distance between B and C,

and the fact that C is also on the z-axis, we can find the coordinates of C. From the coordinates

of A, B, and C, we can find the vector from C to B and the vector from B to A. The vector sum of

these vectors is the vector between C and A, which is what we want. We plug this vector and the

incident vector in our resulting vector formula to find the resulting ray.

Metropolis-Hasting Ray Tracing 15 / 23

A B

C

D

Los Alamos High School Team 69 SCC Final Report

Since we now know the normal vector on the cone from the collision point, we can use

our dot product definitions to find the cosine of the angle between the incident vector and the

normal vector.

Metropolis-Hasting Ray Tracing 16 / 23

Los Alamos High School Team 69 SCC Final Report

The Metropolis-Hastings Light Transport Algorithm

Introduction and disclaimer
The Metropolis-Hastings algorithm is a specific Monte-Carlo method that approximates

the distribution of functions that can not be directly sampled. In other words, the Metropolis-

Hastings algorithm lets one use sample data to approximate the distribution of the entire

population.

In terms of rendering, the Metropolis-Hastings algorithm requires a slight deviation from

the formal statement of the algorithm. Therefore, the methods documented here should not

necessarily be considered an implementation of the Metropolis-Hastings algorithm, but should

instead be considered as a Monte-Carlo approach to rendering rooted in the logic of the

Metropolis-Hasting algorithm.

Explanation of the algorithm
The algorithm begins by tracing a finite number of

rays from the camera/eye through evenly spaced points on the

viewing plane into the scene. These rays are then stored in

memory as three points: the point where the ray intersects the

viewing plane (this point will be referred to as P), the point

where the ray strikes an object in the scene (S), and the point

where the ray hits the light source (L). It is important to note that an image can be generated from

this point, and a sample image is shown in Illustration 3. Notice the black lines and dots present

from a lack of sampling in certain regions, as well as the “hard” shadows present behind both

spheres.

Let the overall population of light rays represent every single possible light ray traveling

from the light source to the eye/camera. The list of rays generated from the first stage of our

algorithm serves as a random sample of this population. Because the population size is virtually

infinite (as there can be an infinite number of modeled rays from the light source to the eye), the

Metropolis-Hasting Ray Tracing 17 / 23

Illustration 3: An image
generated from only ray tracing

Los Alamos High School Team 69 SCC Final Report

distribution of the list of rays taken will be approximately normal, as per the central limit

theorem. With this known, the algorithm creates several distributions based upon rays that pass

through the viewing plane in close proximity to each other. Each of these groups of rays form a

“ray cluster,” a group of rays that have similar properties because they are within close proximity

within the image. Realistically, there will probably be between 1,000 and 100,000 ray clusters for

a given image.

Each ray cluster forms nine graphs/distributions – one for each coordinate in each point

of each ray. For example, the P point's X, Y, and Z components are each plotted in their own

distribution. The algorithm calculates the mean and standard deviation (which, in this case, is

actually the standard error) of each distribution and uses the results as parameters to create a

normal sampling distribution. The algorithm then takes random samples from each of these

distributions to propose a new ray. This proposed ray is comprised of 9 random points taken from

9 different sampling distributions. Thus, a proposed ray can be defined as:

P{X, Y, Z} S{A,B,C} L{Q, R, S}

Once this proposed ray has been generated, it is tested against the scene itself (i.e., the

algorithm makes sure that the proposed ray is actually valid within the modeled world). If the

proposed ray is added, the proposed ray is added to the

current ray cluster and the mean and standard deviation

of the normal distribution being used is recalculated

and another ray is proposed. This process repeats until

an adequate number of rays have been calculated, or a

finite time has been reached. Illustration 4 is what

Illustration 3 looks like after the Metropolis-Hasting's algorithm finds 1280000 rays. The result

speaks for itself.

Metropolis-Hasting Ray Tracing 18 / 23

Illustration 4: Low quality
Metropolis-Hasting render

Los Alamos High School Team 69 SCC Final Report

Image comparison
The first image is a high quality image produced by the Metropolis-Hastings algorithm.

The second image is created from standard ray tracing. Specifically, note the softer shadows and

lack of graininess in the Metropolis-Hastings image.

Metropolis-Hasting Ray Tracing 19 / 23

Los Alamos High School Team 69 SCC Final Report

Parallel advantages of the algorithm
Rendering algorithms are great candidates for parallel computing. In fact, most modern

day graphics cards (such as those designed by nVidia and ATI) contain hundreds of vector

processors for quickly rendering images. Sadly, the methods and algorithms used are aimed at

creating realistic looking graphics, not an accurate model of light. However, the same capabilities

for parallelization exist within the algorithm's more accurate and realistic model of light.

The graph above depicts the runtime for a high-quality render using the Metropolis-

Hastings algorithm. The blue bar represents the time it took for a given number of cells (in this

case, each cell is a separate computer running 3 threads) to complete the render. The red bar

represents how long it would take to render the image in a perfect world – i.e., one with perfect

scaling. For example, with one cell the render took 900 minutes. In a perfect world, eight

computers would be able to preform the same task eight times faster, which would be 112.5

minutes. The algorithm took 113 minutes with 8 cells, demonstrating that the algorithm is

incredibly distributable, and thus an excellent candidate for a supercomputer.

There are three properties of the algorithm and its implementation that make it

particularly distributable:

1. Each ray cluster can be calculated independently of other ray clusters. This has

Metropolis-Hasting Ray Tracing 20 / 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

100

200

300

400

500

600

700

800

900

1000

Scaling factors

Runtime
Expected

Number of cells

Ti
m

e
(m

in
ut

es
)

Los Alamos High School Team 69 SCC Final Report

two implications. First, it means that each cell requires no communication with

the cells around it. Each cell only needs to be able to talk to one central cell

(perhaps called a server). Second, each ray cluster can be calculated at the same

time, which means as the number of cells increase, the algorithm continues to

scale because the number of clusters will always exceed the number of cells (one

can control the number of ray clusters for any given image, giving the algorithm

almost infinite scalability).

2. The actual rendering – the creation of the pixels themselves – can be done

independently from each ray cluster. This means that each cell does not have to

send back all the data contained in its ray cluster, only the RGB values (red,

green, and blue) of each pixel the cell was assigned to calculate. This provides for

a very low amount of network traffic, thus decreasing the cost of adding an

additional cell.

3. The algorithm has a low traffic-to-processing ratio. This means that very little

data needs to be sent across the network to instruct each cell of what it needs to

do. Each cell needs only two components in order to operate: the area of the

viewing plane that contains the ray cluster a given cell would be responsible for,

and a copy of the scene. The area is only two doubles, one representing a starting

point and another representing a stopping point. The digital world is small as well,

and could even be preloaded. One may think the scene would take up a lot of

space, but keep in mind that a sphere is really just a point and a radius. Everything

within the algorithm is represented in terms of dimensions.

Video produced by the algorithm
Little known fact: The movie Shrek took several years to render. In designing the

algorithm, it was pointed out that if high quality images could be produced, then high quality

video could also be produced by stitching several images together. The results proved

illuminating (pun intended). Because this medium (paper) does not easily allow for the

Metropolis-Hasting Ray Tracing 21 / 23

Los Alamos High School Team 69 SCC Final Report

publishing of a video file, a sample video produced by the algorithm can be viewed here: http://

marcusfamily.info/~ryan/Export.mov

The ability to render video makes the algorithm an even better candidate for a

supercomputer. Because each frame can rendered independently of each other, the algorithm can

efficiently encompass even more cells while gaining a phenomenal performance boost.

Metropolis-Hasting Ray Tracing 22 / 23

http://marcusfamily.info/~ryan/Export.mov
http://marcusfamily.info/~ryan/Export.mov

Los Alamos High School Team 69 SCC Final Report

Conclusions
While the algorithm described here (and developed, in full, by team 69) does not come

close to providing an all encompassing model for light, it does succeed in providing a

supercomputer-ready, high quality, and incredibly accurate model of light.

Through a combination of statistics, theory, and the power of computers, this

implementation of the Metropolis-Hastings Light Transport algorithm was not only incredibly

successful, but also a pleasure to develop.

Light is a tricky thing. It surrounds every human everyday, and is probably one of the

most taken-for-granted elements of human life. Hopefully, this algorithm will provide some

insight into the surprisingly dark mystery of light. That is everyone's goal anyway:

enlightenment.

A wise grandmother once said: “computers seem to be a compilation of pretty pictures on

top of loud boxes.” The algorithm creates some of the prettiest pictures on some of the loudest

boxes, so at a minimum, it is grandmother-approved.

Metropolis-Hasting Ray Tracing 23 / 23

PARTICLE-ATMOSPHERE
INTERACTION1

NM Supercomputing Challenge
Final Report, March 23, 2010

Team 84 McCurdy High

Team Members:

Dennis Trujillo
Oliver Galvan
Brandon Ricci

Project Mentors:

John Pretz
Brenda Dingus
Philip Sanchez

1 Amended from 'Gamma-Muonic Flux Supernovae Correlation Model'

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 1

1. Table of Contents ..2

2. Executive Summary ..4

3. Introduction...5

 3.1 Problem Statement ..6

 3.2 Procedure Overview ..6

4. Background Research ..7

 4.1 General Particle Information...7

 4.2 Equations Used............ ..8

 4.3 Air Shower Evaluation............ ..10

 4.4 Hadronic VS. Gamma Particles ...11

5. Procedure: Particle Determination... 13

5.1 CORSIKA Simulation.. 13

5.2 Physical Model..13

6. Analysis of Methods .. 17

7. Sample Results18

 7.1 Sample Data...18

 7.2 Data from Distcalc.cpp..18

7.3 Data from PID-Distributions.cpp..19

7.4 Daughter Particle Spread..19

7.5 Particle Distance from Center...21

7.6 Proton Shower Images..24

7.7 Gamma Shower Images..25

8. Future Work .. 27

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 2

9. Conclusion .. 28

10. Acknowledgments ... 29

11. Bibliography...30

 11.1 Internet Resources.. 30

12. Appendix ... 31

 12.1 Particle-Identification Table....... ... 31

 12.2 Data Read Code............... .. 33

 12.3 Particle Determination Code...46

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 3

2. Executive Summary

As a result of cosmic radiation interaction with the atmosphere we find that a series of

phenomena known as extensive air showers results from the decay of these particles when they make

contact with the gases and other elements our atmosphere is composed of. Because each particle decays

differently depending on the strength of the forces that bind it we find that air showers produced by

different particles produce a different array of daughter particles which if unstable continually break up

into other subatomic particles. Because of such we can determine what kind of particle each air shower

is produced by based on the pattern of decay left as it approaches ground level and the energy of the

particle causing the air shower.

The purpose of our project is to determine the difference between gamma and electromagnetic

air showers. We are going to solve this problem with the help of the CORSIKA computational model.

The CORSIKA model itself is a Monte Carlo system, that is to say, that it randomly chooses numbers

for its plotting. We want to evaluate the distribution of particles at seven thousand feet and first

interaction relative to density that the GNUplots produce. All graphs are plotted on a Cartesian

coordinate system with the center of the interaction as the origin. If a particle is a proton there will be

much more energy towards the center of the interaction. If a particle is a gamma then it will not have as

much particles and they will be more spread out towards the center of the interaction. Another means of

determining the differences is by evaluating the different daughter particles that each interaction

produces. For example if a particle is a proton it will produce muons. If it the particle is gamma then it

will produce solely electromagnetic daughter particles. We are not going to launch these results once,

but more like a thousand times in order to gain a more accurate understanding of the characteristics

associated with air shower events.

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 4

3. Introduction

Extensive air shower simulation is a area of study which has great potential relative to the

understanding of particle decay and development as evidenced by findings related to particle decay and

daughter particle development as a result of air showers resulting from interactions similar to those

evaluated within our study. Such studies can result in information relative to the stability of certain

particles, the decay rate of these particles, and the creation of daughter particles. Essentially the

evaluation of particle interaction within nature is comparable to the work done at CERN with the LHC

although with real interactions being taken into consideration. Therefore we find that the study and

simulation of extensive air showers is a vital and cheap means of evaluating particle characteristics and

the forces which drive the universe as a whole.

The primary goal of several institutions around the country and throughout the world is particle

characterization as a result of computer simulation and physical experimentation in order to produce a

more full understanding of the components which account for all matter and likewise hold the key to

understanding why the universe exists in the means in which it does. These simulations and

experiments are integral to one another; each exists to prove or test the other. We find that code can be

written according to theory but the true test of its worth can only be found through experimentation,

and similarly experiments need to be designed according to certain standards which can be determined

through computer simulation.

A companion approach involving the use of both physical experimentation and computer

simulation can provide the best means of evaluation. A large scale analysis of data produced by proven

code and the implementation of physical experimentation could potentially lead to the association of

certain before unknown characteristics with certain particles, a cheap means of particle study yielding

the same results as something as complex as the LHC, and potentially provide information relative to

why the universe exists as it does and perhaps lead to the discovery of before unknown particles.

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 5

3.1 Problem Statement

How can raw data be accurately used to potentially identify the parent particle causing an

extensive air shower event, i.e. Hadronic vs. electromagnetic in origin? How can these observations be

used to further our knowledge of particle behavior and characteristics?

3.2 Procedure Overview

Our study begins with the acquisition of raw data produced by a series of simulations validated

by code for data analysis. Such data is produced by the CORSIKA version 6900 program, a Monte

Carlo simulation package which simulates the interaction and break up of certain particles and light

nuclei. This data contains a series of parameters relative to particle decay and interaction, including

parent particle type, daughter particle types, and energy at ground level interactions of 7000 ft in

elevation.

Using this data we then compare the number of particles produced, the types of daughter

particles, and energies at ground level to the parent of the original interaction. These are then plotted on

a curve in order to determine the fundamental differences between particle interactions and establish

traits common to each parent as it decays.

This means of distinguishing particles is commonly used and can potentially be used to classify

and determine before unknown characteristics of particles as they decay and interact. We have meshed

the CORSIKA version 6900 software with our own coding in order to write a program which can take

raw data from any source, in terms of daughter particle types, total energy in GeV or TeV, and number

of particles produced and provide a fairly guess as to what particle initiated the interaction in question.

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 6

4. Background Research

4.1 General Particle Information

Particles responsible for extensive air showers must have a source. Stars, supernova, black

holes, and similar objects produce radiation. This radiation comes in the form of particles. Different

particles decay faster than others depending on how stable they are. All particles decay at different rates

depending on how stable they are and the rate of velocity with which they collide with an object or

material in space. All particles have different charges and masses. Relative to our project we are

looking at protons, muons, and gamma particles. For example less stable particles such as pions and

kaons produce a cascade faster as a result of but they are not relative to our project.

A cascade occurs when particles decay producing more and more particles; a chain reaction

occurs. The explosion produces masses of particles. Cascades produce particles exponentially. These

cascades occur 24 hours a day 7 days a week. Cascade simulation is important because it is the main

focus of our project and it provides a means of studying particle interaction cheaply.

Since protons have a charge and a mass they are affected by the gravitational fields of planets,

supernovas, black holes and objects in space of which either hold a strong enough gravitational pull or

magnetic field to interact with the particle’s t Hadronic vs rajectory. These influences alter the path of

the particles when they reach the earth. Particles will decay if they encounter an object at a high enough

velocity no matter how stable a particle is. This includes protons. Even though they are very stable they

will still decay. We are aware that the magnetosphere and material interaction does play a role in our

CORSIKA program, and have set out to identify and understand the corresponding equations. When

protons hit the magnetosphere, the proton particles will be repelled, since both protons and the

magnetosphere have different charges. If the proton has a high enough velocity it will break up and

decay through. When they hit the earth the cascade the parent particle produces can be seen as

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 7

containing several characteristics common of the parent which produced it.

Gammas are the opposite from protons; they do not have a charge and a mass. So they are not

affected by gravitational pulls of objects in space. They will also produce daughter particles but that is

unlikely.

We are going to gather the attributes of both Hadronic and electromagnetic air shower

interactions and with the help of our computational model determine the differences between these two

groups of particle interactions.

2

4.2 Equations Used

The following equations are integral to calculating the outcome of interactions between particles

2 http://lpsc.in2p3.fr/TPsubat/m2/cosmic-rays.jpg

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 8

file:///E:/Eudora Data/att10/	http:/lpsc.in2p3.fr/TPsubat/m2/cosmic-rays.jpg

and a material and are essential to understanding the interaction between the atmosphere and a particle.

These equations describe the phenomena accurately and are essential to describing several particle

characteristics.

Bethe-Block Stopping Formula

dEi= λ z2

1 ln −1 −2 = 2

2−1
1 ln 2−1−2

β = v/c, γ is its Lorentz factor, z is the charge of the ionizing particle in units of e. κ1 = 0.153287 MeV

g −1 cm2 and κ2 = 9.386417 are derived from values for dry air

Deflection in Earth's Magnetic Field

≈lZ
[p X B]

p2 Hadronic vs

This is a description of particle deflection in Earth's magnetic field, where l = length, z = charge, B

vector = magnetic field vector, p vector = particle momentum

Time of Flight Hadronic vs

dt= l
cave

At the first interaction of the primary in the atmosphere, the timing of the shower is started. The time

interval dt is the time elapsed as the particle moves along its path; dt is calculated by dividing the path

length l by the average particle velocity, where B ave is the arithmetic mean of the particle at the

beginning and end of the trajectory.

Mean Path

 tni=mair / tni

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 9

Describes the interaction between muons and a material, in this case air. The mean free path for these

interactions is given by the equation above where m air = 14.54 is the average atomic weight of air in

g/mol and λ tni is given in g /cm2 .

Probability of Material Traverse

 P tni= 1
 tni

e−/

Describes the probability of a muon to traverse an atmospheric layer of thickness λ without

corresponding interaction.

4.3 Air Shower Evaluation

We find air showers to be reliant on the particles that produce them; the particle that produces

an interaction will inevitably affect what happens during this process. Therefore we find that an

interaction which contains a gamma as a parent will decay differently than a proton or other particle,

and as a result produce a different numbers of daughter particles as opposed to a proton shower

produced under the same conditions. Likewise these particles will differ in terms of final ground level

energy, and daughter particle types.

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 10

3

4.4 Hadronic VS. Gamma Particles

In terms of our project we are solely identifying the differences between Hadronic air shower

events and electromagnetic or gamma induced events. These particles have a series of major

fundamental differences in terms of the physical qualities of the individual particles themselves and in

terms of the air showers they produce, as evidenced by our work. Some of the fundamental differences

between protons, the parent of Hadronic showers, and gamma particles can be found in variances in

charge, i.e. protons have a charge of 1+e, mass of 1.672621637(83)×10−27 and a mean lifetime of

>2.1×1029yr. Gamma particles however have no mass, no charge, and are stable with an indefinite

lifetime (see figure above). Likewise we find that air shower events produced by differing particles

3 Standard Model of Particle Physics

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 11

decay differently as a result of their stability and makeup.

4 Model of Proton

We find protons to be composed of one down and two up quarks as evidenced by the model below.

4 http://en.wikipedia.org/wiki/File:Quark_structure_proton.svg

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 12

5. Procedures

5.1 CORSIKA Simulation

The computational model we are implementing in our project is written in the FORTRAN and C

programming languages and is known as CORSIKA version 6900. CORSIKA is a Monte Carlo

program, meaning it sets random values for simulation, hence it looks at a wide array of simulations

and interactions at different energies and altitudes. Because of such we find that CORSIKA is non-

limiting and useful for a wide variety of terms. Besides imaging gamma and proton showers, which are

the focus of our project, CORSIKA also simulates air showers created by other subatomic particles,

nuclei of certain elements, and photons.

5

5.2 Physical Model

Our physical model is based on a wire array detector known as a Geiger Muller detector and

consists of several arrays of thin wire, approximately 250 micrometers in diameter, which is laid out

5 CORSIKA start page

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 13

and charged with high voltage. These detectors are assembled in an array and are designed to have

several layers of wire arrays. The physical properties of these detectors allow particles with a charge to

be counted because when these particles encounter the array they interact with the voltage carried

through the sense wires and change the overall voltage running through the system, which initiates our

counter to consider this small change as a particle interaction. We must allow for arrays to be layered in

order to effectively determine a particle’s origin. The reason for such lies in the fact that background

radiation interacts with the detector and can cause changes in voltage within one array although if data

from layered arrays is considered we can consider background radiation ruled out. Such phenomenon

exists because we find that background radiation has a low implicit velocity and charge, therefore it

should cause a change in only one array although we find that particles resulting from cosmic rays and

their daughter particles hold an inherit high charge and velocity and should likewise pass through

multiple detectors easily. With the combination of a semi large array of particles we should be able to

determine the pattern produced by several real air showers and compare them to data found through our

simulations in CORSIKA and our original coding to determine the parent particle which initiated the

shower.

At this point we have not been able to run our detector due to problems associated with the

particle counter and power supply. This side project is still in progress and we intend to complete and

run it in order to possibly compare data collected from this with our own coding and the CORSIKA

models.

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 14

6 Original particle detector dsesign

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 15

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 16

6. Analysis of Methods

One of the methods we are going to use involves the evaluation the series of plots and graphs

that were produced by CORSIKA and our own coding. We are going to use these graphs as a means of

determining the differences between Hadronic and Electromagnetic air showers. Through our research

we have discovered that the methods we have employed, evaluating daughter particle distances from

the center, and evaluating daughter particle types produced are effective ways of determining the

differences of Hadronic and Electromagnetic air showers.

In one of our graphs we are comparing the distance of daughter particles from the center of the

interaction from both proton and gamma showers. We intend to determine similar qualities between

similar particles in order to produce a means of particle identification.

In another one of our graphs we are comparing the daughter particle spread of both Hadronic

and Electromagnetic showers. This method helped us determine the different types of daughter

particles that will be produced between both Hadronic and Electromagnetic showers in one interaction.

In our plots we are comparing the images of the Hadronic and Electromagnetic showers. Some

visual differences we need to analysis in the plots are high amounts of energy or low amounts of

energy, if the energy is more compressed or more spread out, and weather or not the interaction

produces daughter particles or not.

If the air shower is produce by particles that have a mass and a charge then visually the plot will

reveal high amounts of energy, the energy will be more compressed, and there will daughter particles

like muons present. If the air shower is produced by particles without a mass and a charge then there

will be lower amounts of energy, the energy will be more spread out, and there will be no daughter

particles.

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 17

7. Sample Results

7.1 Sample Data

The following data has been produced as a result of our own coding and the COSIKA software

and represents a fragment of the data used for our study.

7.2 Data from Distcalc.cpp

The following data excerpt represents particle distance versus bin number produced by the

Distcalc.cpp program. This data is visualized in the 'Particle Distance from Center' plots following.

0 2670

1 2527

2 2054

3 1710

4 1363

5 1060

6 898

7 740

8 550

9 498

10 437

11 377

12 294

13 276

14 244

15 207

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 18

16 188

17 165

18 153

19 129

20 132

21 108

22 86

23 96

24 73

25 74

26 73

27 66

28 71

29 43

30 50

31 55

32 50

33 38

34 46

35 41

36 25

37 31

38 37

39 22

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 19

7.3 Data from PID-Distributions.cpp

The following data represents the number of daughter particles versus daughter particle types

produced by our PID-Distributions.cpp program, and is visualized directly below in the 'Daughter

Particle Spread' plots.

Gamma Parent

0 637

1 430627

2 18410

3 33565

5 55

6 61

Proton Parent

0 366

1 755891

2 37362

3 64554

5 7493

6 7302

7.4 Daughter Particle Spread

The following graph represents daughter particle types produced by a pool of gamma and proton

interactions, focusing on particle types 1-6. We find that for the given data set that there is a subtle

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 20

although noticeable difference between the daughter particles produced by both gamma and proton

parents between the number of type five and six particles. This difference therefore provides a possible

means of particle identification and differentiation.

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 21

Image plotted with Log Scale

In the following plot the same data set used above is plotted with a log scale function in order to

make more subtle differences stand out. As a result we find that daughter particle types produced by

both gamma and proton parents is similar, although through use of the log scale function the

differences between particle types five and six, the muon particle and antiparticle, μ±, is made more

clear.

7.5 Particle Distance from Center

In the following images we find a representation of the individual particle distances from the

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 22

center plotted as a function of number of particles versus particle distance. On the image portrayed

directly below we find that the distances of particles, i.e muons, produced by different parent particles

is very close regardless of the fact that they are produced by different parents. As a result we can label

particle distance from the center as a fairly inaccurate means of distinguishing the parent of an

interaction, but a valuable means of differentiating between daughter particle types produced.

Image Plotted with Log scale Function

The plot below represents the same data table as above although with an added log scale

function used to make subtle differences between our plotted data easier to interpret. Likewise the

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 23

linear regression of each particle type versus distance from center is made more clear.

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 24

7.6 Proton Shower Images

Following are a series of proton plots produced in CORSIKA and plotted in GNUplot, each

represents an individual shower with differing energies. Through evaluating these plots we can begin to

see differences between different interactions, i.e. muon production in proton showers7, in the case of

the following images.8

7 Muon particles represented in green in plots.
8 All GNUplot images original product of data produced by CORSIKA v. 6900

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 25

7.7 Gamma Shower Images

The following images contain data relative to gamma particle interactions; once again we find

some visual differences between gamma and proton induced interactions. Note in the following images

the lack of muons and overall difference in number of daughter particles.

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 26

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 27

8. Future Work

This project is still in progress. In the future we would like to:

• Input data and actually determine weather the interaction is a proton or a gamma. Right now we
only have characteristics; we do no actually have solid conclusions that the interaction we are
looking at is a proton or a gamma

• Optimize our coding to produce images in our GNUplots that will be easier and more efficient
to analyze

• If possible we would like to feed our coding with real world data and compare both the real
world data and data from the CORSIKA source code to determine if results are the same in both
situations.

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 28

9. Conclusion

With our research we have discovered that our coding and the CORSIKA source code will help

us develop plots and graphs that will distinguish between characteristics of both Hadronic and

Electromagnetic air showers. Some characteristics we have discovered in our plots and graphs are

energy amounts, the spread and compression of the energy amount, distance away form the center, and

daughter particles. With the characteristics that we have gathered from our research we will be able to

determine the differences between Hadronic and Electromagnetic air showers. We have found that the

most significant original achievement made as a result of our project is relative to determining specific

characteristics of different air shower events.

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 29

10. Acknowledgments

In consideration of support received from external sources and people we would like to accredit the
success of this project to:

• John Pretz
• Brenda Dingus
• Michelle Thomsen
• Philip Sanchez

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 30

11. Bibliography

10.1 Internet Resources

Carlson, Shawn, “Counting Particles from space”. Scientific American February 2001:

1-2

Wales, Jimmy. "Statistics". Wikimedia Foundation, Inc.. April 2010 <http://en.wikipedia.org/wiki/

Statistics#Statistical_methods>.

Pierog, Tanguey. "CORSIKA an Air Shower Simulation Program". Karlsruhe Institute of

Technology . April 2010 <http://www-ik.fzk.de/CORSIKA/>.

Wales, Jimmy. "Bethe Formula". Wikimedia Foundation, Inc.. April 2010

<http://en.wikipedia.org/wiki/Bethe_formula>.

Wales, Jimmy. "Lorentz Factor". Wikimedia Foundation, Inc.. April 2010

<http://en.wikipedia.org/wiki/Lorentz_factor>.

Wales, Jimmy. "Muon". Wikimedia Foundation, Inc.. April 2010

<http://en.wikipedia.org/wiki/Muons>.

Wales, Jimmy. "Particle Physics". Wikimedia Foundation, Inc.. April 2010

<http://en.wikipedia.org/wiki/Particle_physics#Subatomic_partilces>.

Wales, Jimmy. "List of Particles". Wikimedia Foundation, Inc.. April 2010

<http://en.wikipedia.org/wiki/List_of_subatomic_particles>.

TEAM 84, PARTICLE-ATMOSPHERE INTERACTION 31

	cover_front_back.pdf
	final_report_intro
	New Mexico Supercomputing Challenge
	Table of Contents
	About the New Mexico Supercomputing Challenge
	2009—2010 Challenge Awards ………………...…………………………4
	Participants ……………………………………………………………….10
	Judges……………………………………………………………………...16
	Finalist Reports …………………………………………………………..19

	1_99_1-18
	2_65_1-40
	65.pdf
	blank_page

	3_70_1-20
	team_70_report.pdf
	To Kill a Flocking Bird
	Table of Contents
	1.0 Executive Summary
	2.0 Statement of the problem
	3.0 Description of the Method Used to Solve the Problem
	3.1 The NetLogo Flocking Model
	3.2 Evaluation and Goodness Functions
	3.4 Brute Force Parameter Study
	3.5 Other Search Method Implementations

	4.0 Results
	5.0 Conclusions
	6.0 Significant Original Achievement
	7.0 Work Products
	7.1 Flocking with Goodness Functions
	7.2 Bracketing
	7.3 Steepest Descent
	7.4 Genetic

	8.0 Bibliography
	9.0 Acknowledgements

	blank_page

	4_05_1-24
	The Metropolis Algorithm and Nanometer-Scale Pattern Formation
	New Mexico
	Team 5
	Team Members:
	Michael Wang
	Jack Ingalls
	Teacher:
	Jim Mims
	Project Mentor:
	David Dunlap, Ph.D Table of Contents

	5_36_1-24
	6_37_1-18
	7_69_1-24
	team_069_report.pdf
	Enlightenment: Metropolis-Hastings Ray Prediction Model in 3D Space
	Executive Summary
	The Rendering Equation
	Monte-Carlo Methods
	Description and explanation
	Supercomputing

	Ray Tracing Basics
	Description
	Problems with ray tracing
	An overview of shading

	3D Calculations
	Defining Three-Dimensional Objects
	Spheres
	Rotation for cylinders and cones
	Cylinders
	Cones

	The Metropolis-Hastings Light Transport Algorithm
	Introduction and disclaimer
	Explanation of the algorithm
	Image comparison
	Parallel advantages of the algorithm
	Video produced by the algorithm

	Conclusions

	blank_page

	8_84_1-32
	84.pdf
	blank_page

