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Executive Summary 
 

When chemicals are layered on a surface, they begin to form patterns in order to 

reduce energy.  This phenomenon is known as nanometer-scale pattern formation.  This 

phenomenon plays a huge role in nanotechnology.  If understood completely, it can be 

used to create devices at the nanometer scale.  In addition, it would allow for cheap mass 

production. 

In our previous project, we wrote a program that could simulate these patterns.  

However, we ran into several problems.  We had to solve a set of differential equations 

that described the pattern formation process.  Solving the equations required intense 

calculations, which slowed down our program significantly.  In many cases, simulations 

had to be done overnight to obtain any useful results.  In addition, we noticed that 

somehow mass was not conserved.  We believe that the main culprit is numeric error. 

In light of these issues, we seek to find a new way to simulate this phenomenon.  

In this project, we present a Monte Carlo method known as the Metropolis Algorithm that 

has successfully simulated the patterning phenomenon.  This method of solving the 

problem provides us, and hopefully future users, with a short simulation time and a great 

amount of flexibility to allow us to study systems under a wide variety of conditions.  In 

the previous project, extending the project to include many conditions might prove to be 

impossible, as one might not be able to derive the equations.  On the other hand, with this 

project, including many conditions doesn’t require more than a simple change in the 

code, thus making this program far more flexible.  
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A Brief Summary of the Past Project 

When deposited on a solid surface (substrate), some chemicals rearrange to form 

patterns.  The main factor that drives this pattern formation is free energy.  In order to 

reach any sort equilibrium, a system will try to minimize its total free energy.  In the case 

of pattern formation, the system will separate into multiple phases, that is, multiple 

regions of different concentration.  Each concentration corresponds to a minimum (a 

trough) in the free energy function as shown in the following figures (Suo and Lu, Forces 

that drive nanoscale self-assembly on solid surfaces, 2000).  

 
Figure 1: This is the free energy as a function of concentration.  Cα and Cβ correspond to the phases 

(below) α and β, respectively. 
 
 
 

 
 

Figure 2: Regions α and β are the two phases the system separates into. 
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There are actually two other factors: surface strain energy and interface energy.  

These factors however, do not affect the separation process.  Instead, they are involved in 

size selection.  Surface strain energy is the energy due to an elastic deformation in the 

substrate, which occurs when there is a heterogeneous pattern.  This is in some way 

analogous to having blocks of different masses resting on a bed of springs.  The heaver 

blocks will tend to compress the strings more than the lighter ones.  So, different 

concentrations will have different effects on the substrate.  Interface energy, also known 

as phase boundary energy, is the energy associated with a difference in concentration, or 

the chemical gradient.  It is like saying that a particle with zero neighbors will have an 

energy (likely higher) different from that of a particle with more than zero neighbors.  So, 

the longer a boundary is, the more interface energy there will be. 

 Now, how do these affect size selection?  It should be clear that interface energy 

increases with the sum of the lengths of all the boundaries.  Thus the system will try to 

reduce the total boundary length.  It turns out that the way to do this is by clumping like 

regions together.  In Figure 2, we see that the smaller regions group together into larger 

regions.  Will this continue until all that is left is one large region?  The answer would be 

yes if surface strain energy were not included.  As the size of each region increases, the 

larger the “heavier blocks” become and the more deformed the substrate becomes.  To 

reduce the strain energy, the size of the regions must decrease.  As you can probably 

guess, these two factors will eventually balance and the system will settle down in 

equilibrium. 
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Mathematical Model 

A diffusion equation has been developed by Lu and Kim to describe the process 

above. 
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 This equation is solved by using the Fourier Transform and a semi-implicit 

difference method.  The equation simplifies greatly to ( )CQkkPk
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ˆˆˆ .  Because we can’t intuitively “see” Fourier 

space, we must somehow transform this equation back into real space.  This is done with 

the Fast Fourier Transform (FFT).  Also, there are no known transforms for P.  

Therefore, we must calculate P in real space and then transform it to Fourier space. 

 This procedure produces interesting patterns as well as helping us understand the 

mysterious nanoworld.  However, there are two issues that we must address.  The first 

issue deals with time.  This procedure is very computationally intensive due to calling the 

FFT multiple times every time step.  In order to get interesting and useful results, we 

sometimes are required to run the simulation for several hours.  Though this isn’t an 

especially long period of time, it can still pose problems.   

The second issue deals with stability.  It is clear from the numeric methods that 

errors can build up over time.  We have noticed that mass is not conserved.  Mass seems 

to appear out of nowhere.  We believe that there are two possible causes for this: numeric 
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error or just something that wasn’t taken into account in the equations.  Whatever the 

cause, the simulations cannot give any useful results if mass is not conserved. 

In light of these issues, we sought another simulation method, in particular, a Monte 

Carlo method.  Professor David Dunlap suggested to us the Metropolis-Hastings 

Sampling Algorithm.   
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Boltzmann’s Distribution 

The Boltzmann’s distribution describes the probability that a system is in some 

particular state.  For example, Boltzmann’s distribution is frequently used to describe the 

distribution of velocities of particles in a gas (also known as the Maxwell-Boltzmann’s 

distribution).  In a more general case (not just kinetic energy), the Boltzmann’s 

distribution either describes the probability that a particles has a specific energy or 

roughly how many particles have one specific energy.  In this section, we show some 

brief simplified derivations of Boltzmann’s distribution in a two energy system and a n 

energy system. 

Deriving Boltzmann’s Distribution for a Simple Two Energy System 

 Let E1 and E2 be the two possible energies a particle can have.  Suppose our 

system is made up of N particles and M lattice sites on a grid.  M1 of the sites have energy 

E1 while M2 have energy E2.  We want to determine how many particles have energy 

particles have energy E1 and how many, energy E2.  We assume that there are N1 and N2 

particles having energies E1 and E2, respectively.  To find N1 and N2, will minimize the 

free energy of the system.  The free energy F is defined as WkTE ln− , where E is the 

energy, k is Boltzmann’s constant (1.3806505× 10-23
K

J ), T is the temperature, and W is 

the number of possible microstates or configurations.  The number of microstates is the 

number of ways N1 particles can be placed into M1 locations times the number of ways N2 

particles can be placed into M2 locations, or 
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2211 NENEE += , we have ( ) ( ) 
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Rewriting using logarithm rules, we obtain 
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Now we can minimize F using 12 NNN −= . 
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Knowing that 21 NNN += , we can readily solve for N1 and N2. 

Deriving Boltzmann’s Distribution for a n Energy System 

This is almost identical to the two energy system, only now we have n different 

energies.  F now is defined as ∏∑
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Using Lagrange multipliers with the constraint∑ = NNi , we find that
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becomes significantly harder to solve.  We will not show it here.
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Metropolis Algorithm 

Boltzmann’s distribution can be useful when figuring how particles are 

distributed.  Other examples include the distribution of velocity of gas particles (just let E 

be kinetic energy).  Analytically, the above process is how we would derive the 

distribution.  How would we do it computationally?  This is where the Metropolis 

Algorithm comes in (there are other ways).  In the Metropolis Algorithm, we essentially 

check whether or not a particle will move based on the energy change of that move.  The 

rules are incredibly simple.   

1. If the energy change is negative, accept the move. 

2. If the energy change is positive, generate a random number between 0 and 1.  If that 

random number is less than kT
changeenergy

e
−

, accept the move.  Otherwise, reject it. 

Entropy in the Metropolis Algorithm 

The Metropolis algorithm at first sight seems to not include entropy, the 

randomness of a system.  After all, it is based solely on energy reduction.  The entropy, 

however, is actually really subtle.  There are two ways to think it.  The first way is to 

examine how particles are moved in the algorithm.  The direction of movement is 

random.  In addition, it is a clear that a particle can only move to an unoccupied location.  

Therefore, if that particle is in an organized group, the only direction it can move is away 

from that group, thus slightly disturbing the order in the system.  The second way to 

understand entropy is to examine the energies.  In many cases, the energies themselves 

secretly encode entropy.  In our case, that energy is the surface strain energy.  If particles 

begin clumping together, the strain induced on the surface increases, which in turn 

increase the energy.  That increase in energy due to a high concentration of particles in 
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one region causes those particles to spread out, once again disturbing some sort of order.  

So, entropy is in fact included in the algorithm. 

Verifying the Metropolis Algorithm 

To determine whether we coded the algorithm rules correctly, we tested our code 

on one distribution.  That distribution is based on Boltzmann’s distribution in a two 

energy system.  For this simulation, the simulated region is a box having side length 200, 

meaning that there are a total of 40000 (=M) sites on the lattice.  This box is divided in to 

two rectangles, one with 10000 (=M1) sites and the other with 30000 (=M2) sites.  The 

rectangle containing 10000 sites is assigned a unit-less energy of 3 while the other 

rectangle is assigned an energy of 0 (we let Boltmann’s constant k and T be 1 for 

simplicity).  In our simulations, we placed down 20000 particles. 

To test our code, we look at the ratio of the number of particles in one region to 

the number of particles in the other region.  From our derivation of Boltzmann’s 

distribution for a two energy system, we find that 0423.0
1

2 =
N
N , where N2 is the number 

of particles having energy 1 and N1 is the number of particles having energy 0.   

Number of moves 
100000 
1000000 
2000000 
10000000 
20000000 
100000000 
200000000 
300000000 
400000000 
500000000 
600000000 
700000000 
1000000000 

Ratio N2/N1 
0.33129202 
0.32231404 
0.31648235 
0.28924128 
0.27048660 
0.20141767 
0.15667110 
0.12549240 
0.10674561 
0.09481060 
0.08483402 
0.07874865 
0.05982725 
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Figure 3: Graph of N2/N1 as a function on the number of moves.  The curve formed by the points 
approach ~0.04-0.05 

 

We did not run the simulation long enough to obtain points around 0.42.  

However, based on the table and graph, it is clear that 2000000000 moves, the ratio 

should begin to hover around 0.42. 

Energies in Our System 

There are two energies defined in our system: interaction energy and the misfit 

strain energy.  The interaction energy is like the boundary energy in our previous project 

while the misfit strain energy is related to the surface strain energy in out previous 

project.   

The interaction energy essentially models bonding and is determined by the 

number of neighbors.  In our specific system, the maximum number of neighbors a 

particle can have is four.  In our program, the energy is a function of the number of 

neighbors.  In many cases, as that number increases, the energy decreases.  If a particle 
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loves to “bond” or interact with other particles, then its energy will drop significantly for 

each addition particle it finds. 

The misfit strain energy essentially models how much strain a layer of particles 

induces on the surface.  The lattices constants for the particles and the surface are usually 

different, which creates misfit.  Particles typically want to align themselves with the 

surface to reduce energy.  However, due to the size difference, many particles will not be 

able to align and will instead become offset.  This creates strain and potential energy in 

the surface.  Below is a side view of the particles and surface. 

Film:  |          |          |          |          |          |          |          |          |          |        
Lattice: |         |        |        |        |        |        |        |        |        |        |        |      

To calculate the misfit energy, we look at the distances between the midpoints 

of the film and the lattice.  One can view each line above as one particle.  In our program, 

we select two adjacent particles in the film.  That gives us an interval between those two 

particles.  We then find all of the midpoints that lie on that interval.  In most cases, there 

is only one such midpoint.  Once we find all of the corresponding midpoints, we take the 

average of the distances between the midpoint of the two particles and the corresponding 

midpoints in the lattice/surface.  A particle that is aligned with the surface will have an 

energy of 0 because the midpoints will line up.  However, if the particle is offset by a 

small amount, the midpoints will not line up, thus generating energy.  This energy we 

describe is a function of the distance between the midpoints.  For simplicity and 

flexibility, we let that function be a polynomial.  Users can include as many terms in the 

polynomial as they wish, depending on the shape of the function.
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Architecture of the Program 

 

The structure of the program is straightforward.  The program is written in C#, 

which is very similar to Java.  In Form1, the user first inputs values for the parameters 

and starts the simulation.  The calculations are performed in Calculations and then the 

results are displayed in Display.  The calculations can be run over and over until 

satisfactory results are obtained. 

The BitmapConverter reads the hexadecimal numbers contained in the bitmap file 

and assigns energy levels to those numbers, or colors if one looks at the picture (e.g. 

black = 1 and white = 0).

Form1: Allows 
the user to input 
parameters for 
the simulation 

BitmapConverter: 
Takes a bitmap file 
containing an energy 
function and 
converts it into 
numbers used in the 
simulations 

Calculations: calculates 
energy changes and moves 
particles depending on those 
changes (see Metropolis 
Algorithm). 

Display: displays how the 
particles are arranged on 
the surface. 
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Results and Discussion 

The three most important results that we must reproduce with our program are 

quantum dots (patches of particles), serpentine stripes (particles arranged in snake-like 

shapes), and quantum pits (patches or “holes” where there are no particles).  At lower 

concentrations, we should be getting quantum dots.  As we increase the concentration or 

the number of particles, the results should transition from quantum dots to serpentine 

strips and finally from serpentine stripes to quantum pits.  Physically, this makes since.  

When the number of particles is low, serpentine stripes cannot form because the energy 

can still be lowered by breaking the serpentine stripes into quantum dots.  As the number 

of particles increases, it becomes difficult to form quantum dots because the limited room 

would create rather large patches, which actually would have a higher energy than 

serpentine stripes.  Once the particles cover a majority of the surface, quantum dots 

become impractical (they would be enormous).  There would not be enough room to for 

m serpentine stripes.  They would be so close together that they would begin to merge.  

Thus, quantum pits form. 

 
Figure 4: Simulations from the past project.  In the image on the far left, we see quantum dots (low 

concentration).  In the middle image, we see serpentine stripes (medium concentration).  In the image 
on the far left, we see quantum pits (high concentration). 
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Figure 5: As in Figure 4, we see the transition from quantum dots to serpentine stripes and from 

serpentine stripes to quantum pits.  Note that these simulations are more microscopic than those in 
Figure 4. 

 

 
Figure 6: Experimental observations of the nanoscale self-assembly of Pb (lead) on Cu (copper) 

(Plass et al., 2001).  A transition from quantum dots through serpentine stripes to quantum pits can 
be clearly seen in b-f. 
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The final simulation we perform shows the effect of misfit strain energy.  As 

predicted, misfit strain energy (also known as surface strain energy) should cause the 

system to form finer patterns.  For example, quantum dots should be smaller.  Below, we 

compare a simulation using small, almost negligible strain to one that uses a much larger 

strain. 

 

Figure 7: This camparison show the effect of strain energy.  The figure on the right didn't not use 
any strain energy while the figure on the lefet used 10x+10x2 (x is the distance between midpoints) as 
the strain energy function, which is significantly larger.  Due to the strain energy, the patterns in the 

system on the left become much finer because the system is more sensitive to concentration. 
 

Based on the simulations above and the numerous reruns, our program has 

successfully simulated the qualitative features of our system.  We successfully 

reproduced quantum dots, serpentine stripes, and quantum pits.  These results match 

accurately with our old program and experimental results.  In addition, we successfully 

included the effect of strain on the patterns. 

Future Plans 

There were many things that we could not include in our finished product.  We 

finished the most essential parts of the program.  There are actually three improvements 
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that we plan on making.  The first has to do with parallel computing.  The Metropolis 

algorithm can be run on multiple cores.  Not surprisingly, the new algorithm is called the 

Parallel Metropolis algorithm (see Appendix A for a brief description).  We would also 

like to expand our system more.  In other words, generalize it.  Now that we have the 

basic components finished, we can start adding more energy so that we can apply our 

program to many other systems.  For example, we can study how dipoles might arrange 

on the surface or how an electric or magnetic field might effect pattern formation, which 

could be useful to know if nanoscale circuits are used.  All of these additions are 

extremely easy to include.  Unlike the past project, we will not have to derive, if possible, 

any differential equations when we make the system more complicated.  It might be 

impossible to derive equations for such complicated systems.  Instead, we simply 

determine what new energies to include.  Finally, we would like to include heterogeneous 

initial distributions, that is, the user can put whatever initial distribution (e.g. a circuit) 

and see how it changes under certain conditions. 
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Appendix A: Brief Description of the Parallel Metropolis Algorithm  

As its name suggests, the Parallel Metropolis algorithm is a parallel version of the 

Metropolis algorithm.  To run the parallel version, the simulation grid is divided into 

sections, each sections is handled by one processor. 

 
Figure 8: The schematics for the Parallel Metropolis Algorithm.  Gray cells represent ghost cells.  

http://www.fysik.uu.se/cmt/berg/node31.html 
 
In Figure 8, the grid is divided into four quadrants.  Each quadrant contains ghost 

cells (gray areas) that hold information about the adjacent quadrant.  As the program 

ones, the ghost cells are continuously updated.  Currently, our program runs significantly 

faster than the program in our past project.  However, we noticed that as the system 

becomes larger (more than a 200x200 grid), the program gets slower and slower.  By 

implementing the Parallel Metropolis Algorithm, we hope to further reduce the 

simulation time, which would allow us to simulate much larger and more interesting 

systems. 
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Appendix B: Screenshots of the Program 

 

Figure 9: Form 1.  Here, users can input parameter values.  The x and y scaling factors just change 
the pixiel size of each particle. 
 

 
Figure 10: Display screen.  This is where the result is displayed.  The current image is one of a 

random initial distribution.  Attached to this screen is a little control device on which the user can 
continue the calculations or exit the program. 
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Appendix C: The Code 

Form1 
 

using System; 
using System.Collections.Generic; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Text; 
using System.Windows.Forms; 
 
namespace MetropolisNanoSim 
{ 
    public partial class Form1 : Form 
    { 
        OpenFileDialog ofd = new OpenFileDialog(); 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Constructor 
         */ 
        public Form1() 
        { 
            InitializeComponent(); 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Start the simulation 
         */ 
        private void bt_start_Click(object sender, EventArgs e) 
        { 
            int height = int.Parse(tb_height.Text); //height (in pixels) 
of the simulated region 
            int yScale = int.Parse(tb_yscale.Text);  //height of an 
individual grid point 
            int width = int.Parse(tb_width.Text);  //width (int pixels) 
of the simulated region 
            int xScale = int.Parse(tb_xscale.Text);  //width of an 
individual grid point 
            int numP = int.Parse(tb_numparticles.Text);  //number of 
particles 
            double[] ie = toArray(tb_interaction.Text);   //interaction 
energy 
            double latConst = double.Parse(tb_lattice.Text); //lattice 
constant of the substrate 
            double filmConst = double.Parse(tb_film.Text);  //lattice 
constant of the film 
            double[] coef = toArray(tb_misfit.Text); //strain energy 
polynomial coefficients 
            String AEFileLocation = tb_AEFileLoc.Text; 
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            double AEScaleFactor = double.Parse(tb_AEScaleFactor.Text); 
 
            if (AEFileLocation != "") 
            { 
                BitmapConverter bmpc = new BitmapConverter(height, 
width, numP, ie, latConst, filmConst, coef, xScale, yScale, 
AEFileLocation, AEScaleFactor, true); 
            } 
            else 
            { 
                BitmapConverter bmpc = new BitmapConverter(height, 
width, numP, ie, latConst, filmConst, coef, xScale, yScale, 
AEFileLocation, AEScaleFactor, false); 
            } 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Convert the string "{value1, value2, ...}" into an array 
containing value1, value2,... 
         * Precondition: string is in the correct format 
         */ 
        private double[] toArray(String s) 
        { 
            List<double> vals = new List<double>(); 
            bool searching = false; 
            string sub; 
            string val = ""; 
 
            for (int i = 0; i < s.Length; i++) 
            { 
                sub = s.Substring(i, 1); 
                //if 'sub' is a (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, .), 
append it to 'val' until the 
                //end of the number is reached 
                if (!sub.Equals(",") && !sub.Equals(" ") 
&& !sub.Equals("{") && !sub.Equals("}")) 
                { 
                    val += sub; 
                    searching = true; 
                } 
                //once at the end of the number, convert it to a double 
and add to the list 
                //don't do this again until another number is found 
                else if (searching) 
                { 
                    vals.Add(double.Parse(val)); 
                    val = ""; 
                    searching = false; 
                } 
            } 
 
            //convert 'vals' and return the array 
            return vals.ToArray(); 
        } 
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        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Close the program 
         */  
        private void bt_close_Click(object sender, EventArgs e) 
        { 
            this.Dispose(); 
        } 
 
        private void bt_reset_Click(object sender, EventArgs e) 
        { 
            tb_height.Text = "200"; 
            tb_yscale.Text = "3"; 
            tb_width.Text = "200"; 
            tb_xscale.Text = "3"; 
            tb_numparticles.Text = "20000"; 
            tb_interaction.Text = "{8, 4, 0, -10, -32}"; 
            tb_lattice.Text = "1.9"; 
            tb_film.Text = "2.1"; 
            tb_misfit.Text = "{0, 0, 0}"; 
            tb_AEFileLoc.Text = ""; 
            tb_AEScaleFactor.Text = "1"; 
        } 
 
        private void bt_browse_Click(object sender, EventArgs e) 
        { 
            ofd.Filter = "Bitmap Image|*.bmp"; 
            ofd.Title = "Open an Image File"; 
            ofd.FileName = ""; 
            ofd.ShowDialog(); 
 
            tb_AEFileLoc.Text = ofd.FileName; 
        } 
    } 
} 
 

BitmapConverter 
 

using System; 
using System.IO; 
using System.Collections.Generic; 
using System.Text; 
 
namespace MetropolisNanoSim 
{ 
    class BitmapConverter 
    { 
        /** 
         * constructor 
         */ 
        public BitmapConverter(int sim_height, int sim_width, int 
numParticles, double[] intEnergy, 
            double latConst, double filmConst, double[] misfit_coefs, 
int xScl, int yScl, String FileLocation, double scaleFactor, bool 
fileNameExists) 



 26 

        { 
            Calculations c = new Calculations(sim_height, sim_width, 
numParticles, intEnergy, latConst, filmConst, misfit_coefs, 
colorToEnergyLevel(FileLocation, sim_height, sim_width, scaleFactor, 
fileNameExists)); 
            Display disp = new Display(c, sim_height, sim_width, xScl, 
yScl); 
        } 
 
        //-------------------------------------------------------------
------ 
        /** 
         * This returns the concentrations corresponding to the colors 
in  
         * the bmp file 
         */ 
        private Dictionary<int, double> colorToEnergyLevel(String 
filename, int height, int width, double AEScale, bool nameExists) 
        { 
            Dictionary<int, double> AEMat = new Dictionary<int, 
double>(); 
            byte hex1, hex2, hex3; 
            int pixelColor, hash; 
            int yVal = 1; 
            int xVal = 1; 
            hash = width + 1; 
 
            if (nameExists) 
            { 
                FileStream file = new FileStream(filename, 
FileMode.Open, FileAccess.Read); 
                BinaryReader reader = new BinaryReader(file); 
 
                // read past the 54 byte header 
                for (int i = 0; i < 54; i++) 
                { 
                    reader.ReadByte(); 
                } 
 
                for (int i = 1; i < height * width + 1; i++) 
                { 
                    hex1 = reader.ReadByte(); 
                    hex2 = reader.ReadByte(); 
                    hex3 = reader.ReadByte(); 
                    pixelColor = (hex1 << 16) + (hex2 << 8) + hex3; 
                    switch (pixelColor) 
                    { 
                        case 0x000000://black 
                            AEMat.Add(xVal + hash * yVal, 0.99 * 
AEScale); 
                            break; 
                        case 0x061310: 
                            AEMat.Add(xVal + hash * yVal, 0.95 * 
AEScale); 
                            break; 
                        case 0x0E2520: 
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                            AEMat.Add(xVal + hash * yVal, 0.9 * 
AEScale); 
                            break; 
                        case 0x143830: 
                            AEMat.Add(xVal + hash * yVal, 0.85 * 
AEScale); 
                            break; 
                        case 0x1D4940: 
                            AEMat.Add(xVal + hash * yVal, 0.8 * 
AEScale); 
                            break; 
                        case 0x245B4F: 
                            AEMat.Add(xVal + hash * yVal, 0.75 * 
AEScale); 
                            break; 
                        case 0x2B6F60: 
                            AEMat.Add(xVal + hash * yVal, 0.70 * 
AEScale); 
                            break; 
                        case 0x32816F: 
                            AEMat.Add(xVal + hash * yVal, 0.65 * 
AEScale); 
                            break; 
                        case 0x37957D: 
                            AEMat.Add(xVal + hash * yVal, 0.6 * 
AEScale); 
                            break; 
                        case 0x3EA88D: 
                            AEMat.Add(xVal + hash * yVal, 0.55 * 
AEScale); 
                            break; 
                        case 0x48B798: 
                            AEMat.Add(xVal + hash * yVal, 0.5 * 
AEScale); 
                            break; 
                        case 0x59BFA8: 
                            AEMat.Add(xVal + hash * yVal, 0.45 * 
AEScale); 
                            break; 
                        case 0x6CC6B4: 
                            AEMat.Add(xVal + hash * yVal, 0.4 * 
AEScale); 
                            break; 
                        case 0x7ECDBD: 
                            AEMat.Add(xVal + hash * yVal, 0.35 * 
AEScale); 
                            break; 
                        case 0x93D2C5: 
                            AEMat.Add(xVal + hash * yVal, 0.30 * 
AEScale); 
                            break; 
                        case 0xA4DBCE: 
                            AEMat.Add(xVal + hash * yVal, 0.25 * 
AEScale); 
                            break; 
                        case 0xB6E2D9: 
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                            AEMat.Add(xVal + hash * yVal, 0.20 * 
AEScale); 
                            break; 
                        case 0xC8EAE3: 
                            AEMat.Add(xVal + hash * yVal, 0.15 * 
AEScale); 
                            break; 
                        case 0xDAF1ED: 
                            AEMat.Add(xVal + hash * yVal, 0.1 * 
AEScale); 
                            break; 
                        case 0xEDF8F5: 
                            AEMat.Add(xVal + hash * yVal, 0.05 * 
AEScale); 
                            break; 
                        default: 
                            AEMat.Add(xVal + hash * yVal, 0.05 * 
AEScale); 
                            break; 
                    } 
 
                    xVal++; 
                    if (xVal == width + 1) 
                    { 
                        yVal++; 
                        xVal = 1; 
                    } 
                } 
 
                reader.Close(); 
                file.Close(); 
 
                return AEMat; 
            } 
            else 
            { 
                for (int i = 1; i < height + 1; i++) 
                { 
                    for (int j = 1; j < width + 1; j++) 
                    { 
                        AEMat.Add(i + hash * j, 0); 
                    } 
                } 
 
                return AEMat; 
            } 
        } 
    } 
} 
 

Calculations 
 

using System; 
using System.Collections.Generic; 
using System.Collections; 
using System.Text; 
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namespace MetropolisNanoSim 
{ 
    public class Calculations 
    { 
        int height; //height of the simulated region  
        int width; //width of the simulated region 
        int numP; //number of particles 
        double totalE; //energy of the system at a particular state 
        double T; //temperature 
        double al; //lattice constant of the substrate 
        double af; //lattice constant of the film 
        Dictionary<int, Particle> particle; //collection of particles 
        Dictionary<int, double> artificialE; 
        List<int> locs; //collection of locations 
        Random r; //random number 
        //const double kb = 1.3806505e-23; //Boltzmann's constant 
        const double kb = 1; //Boltzmann's constant 
        int[,] directions = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 
0 } }; //possible move directions 
        double[] interaction; //interaction energy 
        double[] coef; //misfit energy polynomial coefficients 
        int hash; //number used to create the hashing function 
 
        //------------------How the hashing function works-------------
----// 
        /** 
         * h(x,y) = x + (width + 1) * y 
         * As long as x is in the grid, h(x,y) will be unique for all y. 
         *  
         * Brief Proof (if it isn't already intuitive): 
         * Suppose h(x1,y1) = h(x2,y2), or x1 + hash * y1 = x2 + hash * 
y2. 
         * Rewrite this as y2 = (x1 - x2) / hash + y1.  Since y2 is an 
         * integer, (x1 - x2) / hash must also be an integer.  
Therefore, 
         * x1 - x2 = hash * integer.  But this implies that x1 or x2 
must 
         * be off the grid.  So this h(x,y) works! 
         *  
         * Modifications to the code: 
         * In some of the methods, there is a temporary variable.  
Instead 
         * of calculating the x and y coordinates and THEN calculating 
the  
         * adjacent location variable, we simply the calculation by 
expanding 
         * the adjacent location variable.  In other words... 
         * (x + xChange) + hash * (y + yChange) --> 
         * x + hash * y + xChange + hash * yChange --> 
         * location variable + temporary variable (= xChange + hash * 
yChange) 
         *  
         * In some cases, this will reduce the number of operations. 
         */ 
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        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Constructor 
         */ 
        public Calculations(int simulation_height, int simulation_width, 
int number_of_particles, double[] interaction_energy, 
            double lattice_constant, double film_lattice_constant, 
double[] misfit_coefficients, Dictionary<int, double> artificial_energy) 
        { 
            height = simulation_height; 
            width = simulation_width; 
            numP = number_of_particles; 
            interaction = interaction_energy; 
            al = lattice_constant; 
            af = film_lattice_constant; 
            hash = width + 1; 
 
            interaction = interaction_energy; 
            coef = misfit_coefficients; 
 
            particle = new Dictionary<int, Particle>(); 
            artificialE = artificial_energy; 
            locs = new List<int>(); 
            r = new Random(); 
 
            //distribute the particles randomly over the grid 
            distribute_particles(); 
            //calculate the energy of the inital state 
            initial_energy(); 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Return the occupied locations 
         */ 
        public List<int> getOccupiedLocations() 
        { 
            return locs; 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Distribute numP particles randomly over the grid 
         * Precondition: there are more grid spaces as there are 
particles 
         */ 
        private void distribute_particles() 
        { 
            int tempNum = height + 1; //0<=y<=height 
            int loc; //a location 
            int numUnOccLocs; //number of unoccupied locations 
 
            //loop through all locations on the grid and apply the 
hashing function 
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            for (int x = 1; x < hash; x++) 
            { 
                for (int y = 1; y < tempNum; y++) 
                { 
                    locs.Add(x + hash * y); 
                } 
            } 
            numUnOccLocs = locs.Count; 
 
            //loop through each particle 
            for (int i = 0; i < numP; i++) 
            { 
                //random location 
                loc = locs[r.Next(numUnOccLocs)]; 
 
                //place a particle at 'loc' 
                particle.Add(loc, update(loc)); 
 
                //'loc' is not occupied 
                locs.Remove(loc); 
                numUnOccLocs--; 
            } 
 
            //fill 'locs' with all occupied locations 
            locs = new List<int>(particle.Keys); 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Update all relevant particles involved in placing a particle 
at 'location' 
         */ 
        private Particle update(int location) 
        { 
            int tempVar; //see top of class for explanation 
            int counter;  
            int addNumInDir; //number of new particles in a specific 
directions 
            int adjLoc; //adjacent location 
            Particle p = new Particle(); 
 
            for (int i = 0; i < 4; i++) 
            { 
                tempVar = directions[i, 0] + hash * directions[i, 1]; 
                counter = 1; 
 
                //adjLoc = (x + directions[i, 0]) + hash * (y + 
directions[i, 1]) 
                adjLoc = location + tempVar; 
                if (particle.ContainsKey(adjLoc)) 
                { 
                    p.NN++; //increment number of nearest neighbors 
                    p.numInDir[i] = particle[adjLoc].numInDir[i] + 1; 
//update number of particles in direction i 
                    particle[adjLoc].NN++; //increment number of 
nearest neighbors for particles around 'location' 
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                    addNumInDir = p.numInDir[i] + 1; 
                } 
                else 
                { 
                    p.numInDir[i] = 0; 
                    addNumInDir = 1; 
                } 
 
                //adjLoc = (x - directions[i, 0]) + hash * (y - 
directions[i, 1]) 
                //update all other particles in x and y directions 
                adjLoc = location - tempVar; 
                while (particle.ContainsKey(adjLoc)) 
                { 
                    particle[adjLoc].numInDir[i] += addNumInDir; 
                    counter++; 
                    adjLoc = location - counter * tempVar; 
                } 
            } 
 
            return p; 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Update all relevant particles involved in moving one 
particle from 'old_location' to 
         * 'new_location' 
         */ 
        private Particle update(int old_location, int new_location) 
        { 
            int tempVar, adjLoc;  
            int counter; 
            int subtractNumInDir; //number of old particles in a 
specific direction 
 
            for (int i = 0; i < 4; i++) 
            { 
                tempVar = directions[i, 0] + hash * directions[i, 1]; 
                counter = 1; 
 
                adjLoc = old_location + tempVar; 
                if (particle.ContainsKey(adjLoc)) 
                { 
                    subtractNumInDir = particle[adjLoc].numInDir[i] + 2; 
                    particle[adjLoc].NN--; 
                } 
                else 
                { 
                    subtractNumInDir = 1; 
                } 
 
                adjLoc = old_location - tempVar; 
                while (particle.ContainsKey(adjLoc)) 
                { 
                    particle[adjLoc].numInDir[i] -= subtractNumInDir; 
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                    counter++; 
                    adjLoc = old_location - counter * tempVar; 
                } 
            } 
 
            return update(new_location); 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Calculate the initial energy of the system 
         */ 
        private void initial_energy() 
        { 
            Particle p; 
 
            foreach (int loc in locs) 
            { 
                p = particle[loc]; 
 
                //calculate misfit energy 
                totalE += misfit_energy(p.numInDir[1] + p.numInDir[3] + 
1); 
                totalE += misfit_energy(p.numInDir[0] + p.numInDir[2] + 
1); 
 
                //calculate 
                totalE += interaction[p.NN]; 
            } 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Move the particles 
         */ 
        public void next(int number_of_moves, double temperature) 
        { 
            T = temperature; 
            int numlocs = locs.Count; 
            int rDir, tempVar, rLoc, moveLoc; 
 
            for (int i = 0; i < number_of_moves; i++) 
            { 
                //select a random particle and a random direction 
                rLoc = locs[r.Next(numlocs)]; 
                rDir = r.Next(4); 
 
                tempVar = directions[rDir, 0] + hash * directions[rDir, 
1]; 
                moveLoc = rLoc + tempVar; 
 
                //check if move is valid 
                if (isValidMove(moveLoc)) 
                { 
                    //check the energy change 
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                    if (metropolis(energy_change(rLoc, moveLoc))) 
                    { 
                        //remove from old location 
                        particle.Remove(rLoc); 
                        locs.Remove(rLoc); 
 
                        //add to new location 
                        particle.Add(moveLoc, update(rLoc, moveLoc)); 
                        locs.Add(moveLoc); 
                    } 
                } 
            } 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Check if 'location' is a valid location.  'location' cannot 
be occupied or outside the grid 
         */ 
        private bool isValidMove(int location) 
        { 
            int x = location % hash; 
            int y = (location - x) / hash; 
 
            //return false if the location is occupied or it is outside 
the grid 
            if (x == 0 || y == 0 || y > height || 
particle.ContainsKey(location)) 
            { 
                return false; 
            } 
            else 
            { 
                return true; 
            } 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Calculate the energy change associated with moving a 
particle from 'old_location' to  
         * 'new_location' 
         */ 
        private double energy_change(int old_location, int new_location) 
        { 
            double Ei = 0; 
            double Ef = 0; 
            int tempVar, adjLoc; 
            int NNNew = 0; 
            int[] length = { 0, 0 }; 
            Particle p; 
           
            Ei += interaction[particle[old_location].NN]; 
            Ei += misfit_energy(particle[old_location].numInDir[1] + 
particle[old_location].numInDir[3] + 1); 
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            Ei += misfit_energy(particle[old_location].numInDir[0] + 
particle[old_location].numInDir[2] + 1); 
            Ei += artificialE[old_location]; 
            for (int i = 0; i < 4; i++) 
            { 
                tempVar = directions[i, 0] + hash * directions[i, 1]; 
 
                adjLoc = old_location + tempVar; 
                if (particle.ContainsKey(adjLoc)) 
                { 
                    p = particle[adjLoc]; 
 
                    Ei += interaction[p.NN]; 
                    Ef += interaction[p.NN - 1]; 
 
                    Ef += misfit_energy(p.numInDir[i] + 1); 
                } 
                adjLoc = new_location + tempVar; 
                if (particle.ContainsKey(adjLoc)) 
                { 
                    p = particle[adjLoc]; 
 
                    Ei += interaction[p.NN]; 
                    Ef += interaction[p.NN + 1]; 
 
                    Ei += misfit_energy(p.numInDir[i] + 1); 
                    length[i % 2] += p.numInDir[i] + 1; 
 
                    NNNew++; 
                } 
            } 
            Ef += interaction[NNNew]; 
            Ef += misfit_energy(length[0] + 1); 
            Ef += misfit_energy(length[1] + 1); 
            Ef += artificialE[new_location]; 
 
            return (Ef - Ei); 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Apply the metropolis algorithm given a change in energy 
         */ 
        private bool metropolis(double difference) 
        { 
            if (difference <= 0) 
            { 
                //if energy change is 0, hte particle has a 50% chance 
of moving 
                if (difference == 0 && r.NextDouble() > 0.5) 
                { 
                    return false; 
                } 
                totalE += difference; 
                return true; 
            } 
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            else if (r.NextDouble() < Math.Pow(Math.E, -difference / 
(kb * T))) 
            { 
                totalE += difference; 
                return true; 
            } 
            else 
            { 
                return false; 
            } 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Calculate the misfit energy 
         */ 
        private double misfit_energy(int length) 
        { 
            List<short> j = new List<short>(); 
            int ith = 0; 
            short jth = 1; 
            double average; 
            double sum = 0; 
            int upperLim = length / 2 + 1; 
            double sumOdd = 0; 
            bool isOdd; 
 
            if (length % 2 != 0) 
            { 
                isOdd = true; 
            } 
            else 
            { 
                isOdd = false; 
            } 
 
            do 
            { 
                ith++; 
                average = 0; 
                j.Clear(); 
                j.TrimExcess(); 
 
                while ((ith - 1) * af <= (jth - 1 / 2) * al && (jth - 1 
/ 2) * al <= ith * af) 
                { 
                    j.Add(jth); 
                    jth++; 
                } 
 
                if ((jth - 1 / 2) * al == ith * af) 
                { 
                    jth--; 
                } 
 
                if (j.Count == 0) 
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                { 
                    j.Add(jth); 
                    j.Add((short)(jth - 1)); 
                } 
 
                foreach (short js in j) 
                { 
                    average += Math.Abs((ith - 1 / 2) * af - (js - 1 / 
2) * al); 
                } 
                average /= j.Count; 
                sum += polynomial(coef, average); 
 
                if (isOdd && ith == upperLim - 1) 
                { 
                    sumOdd = sum; 
                } 
 
            } while (ith < upperLim); 
 
            if (isOdd) 
            { 
                return (sum + sumOdd); 
            } 
            else 
            { 
                return (2 * sum); 
            } 
        } 
 
        private double polynomial(double[] c, double value) 
        { 
            int n = c.Length - 1; 
            double result = c[n]; 
 
            for (int i = n - 1; i >= 0; i--) 
            { 
                result = result * value + c[i]; 
            } 
 
            return result; 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Calculate the ratio.  Simply used to testing. 
         */ 
        /*public double calcRatio() 
        { 
            double ratio; 
            int x, y; 
            double N1 = 0; 
            double N2 = 0; 
 
            for (int i = 0; i < numP; i++) 
            { 
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                x = locs[i] % hash; 
                //y = (location - x) / hash; 
 
                //this part is hard coded just for testing 
                if (x > 150) 
                { 
                    N2++; 
                } 
                else 
                { 
                    N1++; 
                } 
            } 
            ratio = N2 / N1; 
 
            return ratio; 
        }*/ 
    } 
} 
 

Controls 
 

using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Text; 
using System.Windows.Forms; 
 
namespace MetropolisNanoSim 
{ 
    public partial class Controls : Form 
    { 
        Display disp; 
        Calculations calc; 
        int totalNumMoves; 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Constructor 
         */ 
        public Controls(Calculations calculations, Display display) 
        { 
            calc = calculations; 
            disp = display; 
            totalNumMoves = 0; 
            InitializeComponent(); 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Move particles 
         */ 
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        private void bt_makemoves_Click(object sender, EventArgs e) 
        { 
            int numMoves = int.Parse(tb_nummoves.Text); 
            double temp = double.Parse(tb_temperature.Text); 
            totalNumMoves += numMoves; 
            tb_totalmoves.Text = totalNumMoves + ""; 
 
            calc.next(numMoves, temp); 
            //tb_totalmoves.Text += ", " + calc.calcRatio(); 
 
            disp.display_state(sender); 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Close the simulation window 
         */ 
        private void bt_close_Click(object sender, EventArgs e) 
        { 
            this.Dispose(); 
            disp.Dispose(); 
        } 
    } 
} 

 
Display 

 
using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Text; 
using System.Windows.Forms; 
 
namespace MetropolisNanoSim 
{ 
    public partial class Display : Form 
    { 
        Calculations calc; 
        List<int> newLocs; 
        int hash, xScaleFactor, yScaleFactor; 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Constructor 
         */ 
        public Display(Calculations calculations, int height, int width, 
int xscale, int yscale) 
        { 
            calc = calculations; 
            hash = width + 1; 
            xScaleFactor = xscale; 
            yScaleFactor = yscale; 
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            InitializeComponent(); 
 
            p_disp.Size = new Size(xscale * width, yscale * height); 
            this.MaximumSize = new Size(xscale * width + 10, yscale * 
height + 36); 
            this.MinimumSize = new Size(xscale * width + 10, yscale * 
height + 36); 
 
            //create Controls form 
            Controls ctrls = new Controls(calculations, this); 
            this.Show(); 
            ctrls.Show(); 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Draw the current state of the system 
         */ 
        private void p_disp_Paint(object sender, PaintEventArgs e) 
        { 
            //clear the screen 
            e.Graphics.Clear(Color.White); 
 
            //display the new configuration 
            newLocs = calc.getOccupiedLocations(); 
 
            SolidBrush blackBrush = new SolidBrush(Color.Black); 
            int x, y; 
 
            foreach (long loc in newLocs) 
            { 
                x = (int)(loc % hash); 
                y = (int)((loc - x) / hash); 
                //NOTE: points in the panel lie in the grid 
[0,width]x[0,height], so x and y needed to be decremented 
                e.Graphics.FillRectangle(blackBrush, xScaleFactor * (x 
- 1), yScaleFactor * (y - 1), xScaleFactor, yScaleFactor); 
            } 
        } 
 
        //-------------------------------------------------------------
---------------------------- 
        /** 
         * Call p_disp_Paint 
         */ 
        public void display_state(object sender) 
        { 
            Graphics g = p_disp.CreateGraphics(); 
            Rectangle r = new Rectangle(); 
            PaintEventArgs e = new PaintEventArgs(g, r); 
 
            p_disp_Paint(sender, e); 
        } 
    } 
} 
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