
Get on the Bus 2

New Mexico

Supercomputing Challenge

Final Report

April 3, 2010

Team 56

Homeschool

Team Member:

Isaac Koh

ifckoh@gmail.com

Teacher:

Aik-Siong Koh

askoh@askoh.com

Mentor:

Aik-Siong Koh

mailto:ifckoh@gmail.com
mailto:askoh@askoh.com

Summary:

This project was to create a web based version of my Atomic City Bus Scheduler and allow the

user to type in his/her starting address and their destination's address and the program would tell them

which bus stop is closest and how to take the bus from that stop. This also included a Google Map that

would mark the start and end address and the two bus stops needed on the map so the user could see

where they had to go.

Initially, the user had to select his/her starting bus stop, their destination and the time they want

to arrive by. I created Routes which contained Trip Patterns and the program generated the Trips from

the Patterns. The final product was successful and could correctly tell you how to take the bus. All of

this was using Microsoft Visual C# 2008 Express Edition, which meant that this only ran on the hard

drive and had to be downloaded. I now decided move the entire system into a version that could on a

web browser.

Using Microsoft Visual Web Developer 2008 Express allowed me to move my C# code with

only a slight change in code. This first version ran well, but I had hard coded all of the Routes and

destinations into the main code body. This worked for the Atomic City Transit because it only had five

routes to input, but to expand to Park and Ride, Santa Fe, Espanola, or any larger system would be a

very tedious job for data input. This led me to read code in from a CSV file. I could now put the data in

a spreadsheet and saved it as a .csv file. This allowed me to write 10 lines of code to read the file and

get rid of the 700 lines that had been used to store the Routes. This also simplified data entry

considerably (See example).

In order to read the spreadsheet consistently I created a Location class and a TransportSystem

class. This will allow me to keep the Espanola and Santa Fe bus systems separate from each other and

any other system. Each TransportSystem contains Routes with Trip Patterns and Trips, but instead of

calling each stop a Destination we switched to Location. Location stores the latitude and longitude of

each bus stop.

These modifications created a functional and rather clean web friendly version, but any user

needed to know the bus stop nearest to them and the bus stop nearest their destination in order to use

the system. To solve this I changed the program to accept typed in addresses and use the latitude and

longitude to find the nearest bus stop. The program then tells you how to take the bus from that bus

stop.

Problem Investigated:

I wanted to make a program for the Los Alamos Atomic City Transit bus system that lets the user input

his/her starting place, destination, and the time they want to arrive. Then the program will return when

and where to catch the bus, when and where to switch if necessary and when the user will arrive. Upon

completing the program the next step was to put it on the Internet and increase usability by allowing

users to type in their starting address and the address of their destination instead of having to know

which bus stop was nearest to them and which stop was nearest their destination.

Classes (See Appendix A for code):

TransportSystem: Stores name, list of Routes, and list of Locations

Data Example:

Location name Arrival times of (Minutes Second

 first trip pattern after pattern

 (in minutes after Mid- (if necessary)

 the hour) night)

Trip: Name, Route it comes from, list of arrival times, and list of waiting times.

TripPattern (inherits Trip): Stores the number of minutes between each Trip, the time Trips start, the

time they end, and a collection of the Trips of that day for that pattern.

Route: Store name, list of Locations, list of TripPatterns, and list of Trips

Algorithm:

Concatnate the closest two Trips.

Return start time, starting point, Route
number, end point, and arrival time.

Start at the end of the combined Trips
and trace backwards till you find the end
point.

After finding
end point
continue till
you find the
end point
again or the
starting
point.

Treat new
instance as
the end point

end point found

starting point found

Main Algorithm
Condition: Start and End are on the same Route

Find Trip closest to arrival time.

Program:

Find Routes that are in both
sets.

Treat common stop as end point on
Start Route and apply Main Algorithm.

For each Start and
End Route pair find
common stops.

On End Route find end point
and trace backwards to first
common stop. Apply Main
Algorithm

found
not found

Main Program
Find Routes with the start,
and Routes with the end.

Start and End
are on the same
Route; use Main
Algorithm.

Return all instructions to take the bus.

Final Result:

Computational/Mathematical Model:

This program was created to solve a scheduling problem. The Routes are already given in the

booklet and there is nothing more to add to that. There is no Traveling Sales Man complications since

the program is for only two locations. There is no need to minimize distance for the bus since there is

only one way to get there per Route. There is a maximum of three different Routes that a person can

take in the Atomic City Transport to arrive at one destination. My program currently returns all three

and lets the user pick which bus they want to take. There is no optimization between multiple Routes.

The only criteria is arriving as close as possible but before the desired time, and this optimization

occurs inside each individual Route.

Adding Google Map with a starting address not necessarily a bus stop made me create criteria

for picking the best bus stop. Currently the program returns the closest stop. Closest is determined by

the distance formula using the latitude and longitude of the starting address and all the stops. This

means that the program is returning the closest bus stop as the crow flies. It does not take canyons or

winding paths into account. Sometimes the bus stop it returns is across a large canyon. The next step

will be to add in the new two hundred individual bus stops that have been added since the creation of

this program. Once these new stops are added the probability that the user will be assigned a bus stop

across a canyon is much lower, but also showing them a list of the closest three stops and letting them

pick is another improvement.

Adding Google Maps:

The final change I decided to make this year was to remedy this. I removed the list of bus stops

and put in two text boxes each paired with a Google Map. Now users can type in their starting address

and the address of their destination instead of having to know the closest bus stop to their starting point

and the closest stop to their destination. Now I used the latitude and longitude that is stored in each

Location and compare it to the latitude and longitude of the input addresses. Now the program takes the

bus stop (Location) nearest the starting address and the stop nearest the destination's address and run

the the normal algorithm to tell you how to take the bus. So the final result has a pop up marker on the

starting address and the nearest bus stop on the map paired with that text box. The second map has

markers on the ending bus stop and final address. I was hoping to add the blue direction lines and get a

path for people to follow, but that required Javascript and a lot of time that I didn't have.

Conclusion:

The program was successful and runs smoothly. I made a smooth transition from desktop application to

a web based application. I learned how to add and program a Google Maps API in Visual Web

Developer. I generalized data entry by allowing the program to read data from spreadsheets. I also

made the program simpler by storing all of the Locations in one place instead of having the program

find them again every time it ran. I added wait time to show when the bus is staying at a stop for any

duration of time. The TransportSystem & Location classes are to make expansion easier and will allow

me to keep Santa Fe's, Espanola's, and Park and Ride's collection of Routes separate from the Atomic

City Transit(ACT).

Future Work:

I plan to input the two hundred new individual stops that have been put in place recently for the ACT.

The county has also recently added a new Route that I have not included in the current version. Once

these simple tasks are done I hope to get my map to show the best path to walk to the bus stop it

returns. Once I get the path to show the plan is to give walking directions and a time estimate for the

walk. Once I perfect the program for Los Alamos I plan to expand to Santa Fe, Espanola, and Park and

Ride buses also.

Acknowledgments:

I would like to thank Aik-Siong Koh my teacher and mentor for helping and coaching me through this

project.

Resources:

Microsoft Visual Web Developer 2008 Express Edition

Google Maps API

Subgurim.NET

Atomic City Transit Schedule

Compaq Presario V3000 Laptop

Works Cited

GoogleMaps.Subgurim.NET. http://en.googlemaps.subgurim.net/. Subgurim. 6 March 2010.

CTA Bus Tracker. http://www.ctabustracker.com/bustime/home.jsp. CTA. 10 March 2009.

Google Maps. http://maps.google.com/maps?hl=en&tab=wl. Google. 12 Nov. 2009.

Appendix A
TransportSystem:
using System;

using System.Collections.Generic;
using System.Text;

namespace AtomicCityBusScheduler
{
 public class TransportSystem
 {
 public string name;
 public List<AtomicCityBusScheduler.Location> cLocation;
 public List<Route> cRoute;
 public TransportSystem()
 {
 cLocation = new List<AtomicCityBusScheduler.Location>();
 }

 public AtomicCityBusScheduler.Location aLocationAt(string locationName)
 {
 return
 cLocation.Find(delegate(AtomicCityBusScheduler.Location obj)
 {
 return obj.name == locationName;
 });

 }

 public Location aLocationNearest(Subgurim.Controles.GLatLng latlon)
 {
 double minDistanceSQ = 10^100;
 Location bestLocation = null;
 foreach (Location l in cLocation)
 {
 double distanceSQ = Math.Pow((latlon.lat - l.latitude), 2) + Math.Pow((latlon.lng - l.longitude), 2);
 if (distanceSQ < minDistanceSQ)
 {
 minDistanceSQ = distanceSQ;
 bestLocation = l;
 }
 }
 return bestLocation;

 }
 }
}

Route:
using System;

using System.Collections.Generic;
//using System.Linq;
using System.Web;
using System.Text;

namespace AtomicCityBusScheduler
{

 public class Route
 {
 public List<AtomicCityBusScheduler.Location> cLocation;
 public string name;
 public List<TripPattern> cTripPattern;
 public List<Trip> cTrip;
 public Route()
 {
 cLocation = new List<AtomicCityBusScheduler.Location>();
 cTripPattern = new List<TripPattern>();
 }

 public List<Trip> setcTrip()
 {
 cTrip = new List<Trip>();
 foreach (TripPattern tp in cTripPattern)
 {
 cTrip.AddRange(tp.setcTrip());
 }

 // storing yesterday's trips.
 int nTrip = cTrip.Count;
 int day = 0;
 while (cTrip.Count < (nTrip + 4))
 {
 day = day + 1;
 for (int ii = 0; ii < nTrip; ii++)
 {
 Trip yTrip = cTrip[ii].Copy();
 for (int i = 0; i < yTrip.c1ArrivalTime.Count; i++)
 {
 yTrip.c1ArrivalTime[i] = yTrip.c1ArrivalTime[i] - (day * 24 * 60);
 }
 cTrip.Add(yTrip);
 }
 }
 return cTrip;
 }

 public List<int> cLocationIndex(AtomicCityBusScheduler.Location aLocation)
 {
 List<int> cLocationIndex = new List<int>();
 List<AtomicCityBusScheduler.Location> cLocation = this.cLocation;
 for (int i = 0; i < cLocation.Count; i++)
 {
 if (aLocation == cLocation[i])

 {
 cLocationIndex.Add(i);
 }
 }
 if (cLocationIndex.Contains(0) & cLocationIndex.Contains(cLocation.Count - 1))
 {
 cLocationIndex.Remove(0);
 }
 return cLocationIndex;
 }

 public List<Trip> cTripNearestTime(AtomicCityBusScheduler.Location aLocation, int time)
 {
 List<Trip> cTripNearestTime = new List<Trip>();
 List<int> cLocationIndex = this.cLocationIndex(aLocation);
 for (int i = 0; i < cTrip.Count; i++)
 {
 Trip aTrip = cTrip[i];
 if (cLocationIndex.Exists(delegate(int index) { return aTrip.c1ArrivalTime[index] < time; }))
 {
 cTripNearestTime.Add(aTrip);
 }
 }
 int j = cLocationIndex[cLocationIndex.Count - 1];
 cTripNearestTime.Sort(delegate(Trip t1, Trip t2) { return t1.c1ArrivalTime[j].CompareTo(t2.c1ArrivalTime[j]); });
 return cTripNearestTime;
 }

 public List<int> startandEndTime(AtomicCityBusScheduler.Location startDest, AtomicCityBusScheduler.Location
endDest, int aArrivalTime)
 {
 List<Trip> cTripNearestTime = this.cTripNearestTime(endDest, aArrivalTime);
 int index = cTripNearestTime.Count - 1;
 Trip bestTrip = cTripNearestTime[index].Copy();
 JoinedTrip bestJoinedTrip = new JoinedTrip();
 bool found = false;
 while (!found)
 {
 index--;
 Trip previousTrip = cTripNearestTime[index];
 if (!(previousTrip.overlaps(bestTrip)))
 {
 found = true;
 bestJoinedTrip = previousTrip.Append(bestTrip);
 }
 }
 index = cTripNearestTime.Count - 2;
 Trip secondBestTrip = cTripNearestTime[index].Copy();
 JoinedTrip secondBestJoinedTrip = new JoinedTrip();
 found = false;
 while (!found)
 {
 index--;
 Trip previousTrip = cTripNearestTime[index];
 if (!(previousTrip.overlaps(secondBestTrip)))
 {
 found = true;
 secondBestJoinedTrip = previousTrip.Append(secondBestTrip);

 }
 }

 List<int> bestStartandEndTime = bestJoinedTrip.startandEndTime(startDest, endDest, aArrivalTime);
 List<int> secondBestStartEndTime = secondBestJoinedTrip.startandEndTime(startDest, endDest, aArrivalTime);
 bestStartandEndTime.AddRange(secondBestStartEndTime);
 return bestStartandEndTime;
 }

 public AtomicCityBusScheduler.Location joinStartandEnd(Route startRoute, AtomicCityBusScheduler.Location
startDest, AtomicCityBusScheduler.Location endDest)
 {
 List<AtomicCityBusScheduler.Location> csDest = new List<AtomicCityBusScheduler.Location>();
 List<AtomicCityBusScheduler.Location> ceDest = new List<AtomicCityBusScheduler.Location>();
 csDest.AddRange(startRoute.cLocation);
 ceDest.AddRange(this.cLocation);
 List<AtomicCityBusScheduler.Location> commonDest = new List<AtomicCityBusScheduler.Location>();
 foreach (AtomicCityBusScheduler.Location str in csDest)
 {
 if (ceDest.Contains(str))
 {
 commonDest.Add(str);
 }
 }
 int endIndex = -1;
 List<AtomicCityBusScheduler.Location> cEndDest = this.cLocation;
 for (int i = cEndDest.Count - 1; endIndex < 0; i--)
 {
 if (cEndDest[i] == endDest)
 {
 endIndex = i;
 }
 }
 int startIndex = -1;
 for (int i = endIndex - 1; (startIndex < 0) & (i >= 0); i--)
 {
 if (cEndDest[i] == endDest)
 {
 endIndex = i;
 }
 if (commonDest.Contains(cEndDest[i]))
 {
 startIndex = i;
 }
 }
 return cEndDest[startIndex];
 }

 public TripPattern addTripPattern(TripPattern aTripPattern)
 {
 cTripPattern.Add(aTripPattern);
 aTripPattern.aRoute = this;
 return aTripPattern;
 }

 public bool ContainsEnd(AtomicCityBusScheduler.Location endDest)
 {
 for (int i = 1; i < cLocation.Count; i++)

 {
 if (endDest == cLocation[i])
 {
 return true;
 }
 }
 return false;
 }

 public bool ContainsStart(AtomicCityBusScheduler.Location startDest)
 {
 for (int i = 0; i < cLocation.Count - 1; i++)
 {
 if (startDest == cLocation[i])
 {
 return true;
 }
 }
 return false;
 }
 }

}

Trip:
using System;

using System.Collections.Generic;
//using System.Linq;
using System.Web;
using System.Text;

namespace AtomicCityBusScheduler
{

 public class Trip
 {
 public string name;
 public Route aRoute;
 public List<int> c1ArrivalTime;
 public List<int> cWaitTime;
 public Trip()
 {
 c1ArrivalTime = new List<int>();
 cWaitTime = new List<int>();
 }

 public List<AtomicCityBusScheduler.Location> cRouteLocation
 {
 get
 {
 return aRoute.cLocation;
 }
 }

 public Boolean isAtDestNearTime(AtomicCityBusScheduler.Location aLocation, int aTime, int aTolerance)
 {
 for (int i = 0; i < cRouteLocation.Count; i++)
 {
 if (cRouteLocation[i] == aLocation)
 {
 int time = this.c1ArrivalTime[i];
 if ((time < aTime) & (time >= aTime - aTolerance))
 {
 return true;
 }
 }
 }
 return false;
 }

 public Boolean overlaps(Trip bTrip)
 {
 int lastTime = c1ArrivalTime[c1ArrivalTime.Count - 1];
 int firstTime = c1ArrivalTime[0];
 if ((lastTime > bTrip.c1ArrivalTime[0]) & (lastTime < bTrip.c1ArrivalTime[c1ArrivalTime.Count - 1]))
 {
 return true;
 }
 if ((firstTime > bTrip.c1ArrivalTime[0]) & (firstTime < bTrip.c1ArrivalTime[c1ArrivalTime.Count - 1]))
 {
 return true;

 }
 return false;
 }

 public List<int> cTime(AtomicCityBusScheduler.Location aLocation)
 {
 List<int> cTimeDest = new List<int>();

 for (int i = 0; i < cRouteLocation.Count; i++)
 {
 if (cRouteLocation[i] == aLocation)
 {
 cTimeDest.Add(c1ArrivalTime[i]);
 }
 }

 return cTimeDest;
 }

 public Trip Copy()
 {
 Trip answer = new Trip();
 answer.aRoute = aRoute;
 answer.c1ArrivalTime = new List<int>();
 answer.c1ArrivalTime.AddRange(c1ArrivalTime);
 answer.cWaitTime = new List<int>();
 answer.cWaitTime.AddRange(cWaitTime);
 return answer;
 }

 public JoinedTrip Append1(Trip aTrip)
 {
 JoinedTrip answer = new JoinedTrip();
 answer.cLocation.AddRange(this.cRouteLocation);
 answer.c1ArrivalTime.AddRange(this.c1ArrivalTime);
 answer.cWaitTime.AddRange(this.cWaitTime);
 if (this.cRouteLocation[this.cRouteLocation.Count - 1] == aTrip.cRouteLocation[0])
 {
 int nLocation = aTrip.cRouteLocation.Count;
 for (int i = 1; i < nLocation; i++)
 {// skip first location to avoid duplication.
 answer.cLocation.Add(aTrip.cRouteLocation[i]);
 answer.c1ArrivalTime.Add(aTrip.c1ArrivalTime[i]);
 answer.cWaitTime.Add(aTrip.cWaitTime[i]);
 }
 }
 else
 {
 answer.cLocation.AddRange(aTrip.cRouteLocation);
 answer.c1ArrivalTime.AddRange(aTrip.c1ArrivalTime);
 answer.cWaitTime.AddRange(aTrip.cWaitTime);
 }

 return answer;
 }
 public JoinedTrip Append(Trip aTrip)
 {
 JoinedTrip answer = new JoinedTrip();

 answer.cLocation.AddRange(this.cRouteLocation);
 answer.c1ArrivalTime.AddRange(this.c1ArrivalTime);
 answer.cWaitTime.AddRange(this.cWaitTime);
 answer.cLocation.AddRange(aTrip.cRouteLocation);
 answer.c1ArrivalTime.AddRange(aTrip.c1ArrivalTime);
 answer.cWaitTime.AddRange(aTrip.cWaitTime);
 int index = this.c1ArrivalTime.Count-1;
 answer.cWaitTime[index] = aTrip.c1ArrivalTime[0] - this.c1ArrivalTime[index];

 return answer;
 }
 }

TripPattern:
 public class TripPattern : Trip
 {
 public int repeatMinutes;
 public int firstRepeatTime;
 public int lastRepeatTime;
 public List<Trip> cTrip;
 public TripPattern()
 : base()
 {
 }

 public List<Trip> setcTrip()
 {
 cTrip = new List<Trip>();
 for (int time = firstRepeatTime; time <= lastRepeatTime; time = time + repeatMinutes)
 {
 Trip aTrip = new Trip();
 List<int> cTime = new List<int>();
 foreach (int aArrivalTime in c1ArrivalTime)
 {
 cTime.Add(time + aArrivalTime);
 }
 aTrip.c1ArrivalTime = cTime;
 aTrip.cWaitTime = this.cWaitTime;
 aTrip.aRoute = this.aRoute;
 aTrip.name = name;
 cTrip.Add(aTrip);
 }
 return cTrip;
 }

 public List<Trip> yesterdaycTrip()
 {
 cTrip = new List<Trip>();
 for (int time = firstRepeatTime; time <= lastRepeatTime; time = time + repeatMinutes)
 {
 Trip aTrip = new Trip();
 List<int> cTime = new List<int>();
 foreach (int aArrivalTime in c1ArrivalTime) { cTime.Add(time + aArrivalTime); }
 aTrip.c1ArrivalTime = cTime;
 aTrip.cWaitTime = this.cWaitTime;
 aTrip.aRoute = this.aRoute;
 aTrip.name = name;
 cTrip.Add(aTrip);
 }
 return cTrip;
 }

 }

 public class JoinedTrip : Trip
 {
 public List<AtomicCityBusScheduler.Location> cLocation;
 public JoinedTrip()
 : base()
 {

 cLocation = new List<AtomicCityBusScheduler.Location>();
 }

 public List<int> startandEndTime(AtomicCityBusScheduler.Location startDest, AtomicCityBusScheduler.Location
endDest, int aArrivalTime)
 {
 int endIndex = -1;
 for (int i = c1ArrivalTime.Count - 1; endIndex < 0; i--)
 {
 if ((cLocation[i] == endDest) & (c1ArrivalTime[i] < aArrivalTime))
 {
 endIndex = i;
 }
 }
 int startIndex = -1;
 for (int i = endIndex - 1; (startIndex < 0) & (i >= 0); i--)
 {
 if (cLocation[i] == endDest)
 {
 endIndex = i;
 }
 if ((cLocation[i] == startDest) & (c1ArrivalTime[i] < c1ArrivalTime[endIndex]))
 {
 startIndex = i;
 }
 }
 int startTime = c1ArrivalTime[startIndex] + cWaitTime[startIndex];
 int endTime = c1ArrivalTime[endIndex];
 List<int> startandEndTime = new List<int>();
 startandEndTime.Add(startTime);
 startandEndTime.Add(endTime);
 return startandEndTime;
 }

 }

}

Location:
using System;

using System.Collections.Generic;
using System.Text;

namespace AtomicCityBusScheduler
{
 public class Location
 {
 public string name;
 public string address;
 public double latitude;
 public double longitude;
 public List<Route> cRoute;
 }
}

