
The Holy Grail of Adam's Ale

Locating Aquifers through Geostatistic Modeling

Team #65

April 7, 2010

New Mexico Supercomputing Challenge Final Report

Los Alamos High School

Team Members:

Gabriel Montoya

Rachel Robey

Orli Shlachter

Orion Staples

Teacher Sponsor:

Lee Goodwin

Mentors:

Robert Robey

Thomas Robey

Contents

1 Introduction 6

1.1 Problem Statement . 6

1.2 Objective . 6

1.3 Backround . 6

1.3.1 Geostatistics . 6

1.3.2 Aquifers . 7

2 Mathematical Models 8

2.1 Semi-variogram . 8

2.2 Interpolation . 9

2.2.1 Inverse Distance Weighting . 10

2.2.2 Kriging . 10

2.3 Sampling from Gaussian Distribution . 12

3 Computational Model 13

3.1 Semi-variogram . 13

3.2 Solution of Kriging Equations . 14

3.3 Anisotropy . 17

3.4 Sampling from Gaussian Distribution . 18

3.5 Multiple Points and Runs . 18

3.6 Optimization . 19

3.6.1 Variation on Random Iteration Algorithm . 19

3.6.2 Transferring Matrix Solver to the GPU . 20

4 Code 23

4.1 Overview and Structure . 23

4.2 WxWidget Windowing . 24

4.3 Computational . 26

4.4 OpenGL Graphics . 26

4.5 wxPlotCtrl Graphing . 28

5 Results 29

5.1 Case Study . 29

5.1.1 Data . 29

5.1.2 Semi-variogram . 31

5.1.3 Mixed Success of Interpolated Fields . 32

6 Conclusions 33

6.1 Current Status . 34

7 Teamwork 34

8 Recommendations 35

2

A References 35

A.1 Bibliography . 35

A.2 Software/Tools . 36

A.3 Acknowledgments . 36

B Glossary 37

C User Guide 37

3

List of Figures

1 Diagram of an aquifer[8]. 8

2 Example of the three common types of mathematical models for the semi-variogram

with the same range/sill. 10

3 The di�erential of the variance of error with respect to the weights. Kriging seeks to

minimize this variance to �nd the 'best' estimator. 11

4 'Normal' Gaussian Distribution. The mean is the interpolated value. 12

5 Computationally �nding experimental semi-variogram. 13

6 Screen capture of the plot section of the window showing an optimal experimental

semi-variogram, created from sample data. 13

7 Illustration of concept behind Givens Rotation. The i axis is rotated so as to make

point P lie upon it, zeroing its j′ coordinate. 15

8 Algorithm developed to randomly iterate through unknowns. Elements are swapped

to the back part of the array as they are randomly selected from the front part. . . . 18

9 Variation on the random iteration algorithm, grouping 'failed' elements in the front

to be retried after all the others have been iterated over. 19

10 Break down of Givens Rotation to be done in parellel on the GPU where rows 1 and

2 are those a�ected by the current rotation. 21

11 wxFormBuilder workspace . 25

12 The x-z plane for the 2D grid. The y coordinates are set based upon the value at

each point. 26

13 An RGB Cube - a graph of the colors with the red, green, and blue components on

each axis. 27

14 A cropped screen capture of a 3D terrain generated for sample data. 28

15 An example of the heightmap rendered for the same sample data as the terrain. . . . 28

16 Two dimensional cross-section of boreholes with di�erent elevations. 30

17 Location of the boreholes from the case study. 31

18 Semi-variogram of each of the data sets for the two boreholes. These are focused on

the y direction as there is only one known point in the x direction. 32

19 Height maps produced for inverse distance weighting interpolation between boreholes.

From top to bottom they are: resistivity, total porosity, SGR, and e�ective porosity. 33

20 Visual results of small section of borehole interpolated with kriging. 33

21 Data inserted . 37

22 Semivariogram plotted, mathematical models chosen 38

23 Model type, range and sill, scales, interpolation method, number of runs selected . . 38

24 Final screen with a terrain map . 39

25 Left->Height Map, Right->Terrain . 39

4

Executive Summary

This project sought to develop a windows-based application to perform geostatistics, with a focus

on its application to �nding aquifers and other groundwater sources. Geostatistics is a branch of

applied statistics used to calculate plausible values to �ll the gaps in fragmented data sets. It

depends on the idea of spatial correlation - that values located proximately are more likely to be

similar. The application in hydro-geology was chosen because of New Mexico's dependency on

groundwater; a case study was set up and real world data acquired from local boreholes.

This project encompassed an impressive feat of coding, incorporating C++, wxWidgets, OpenGL,

and OpenCL. C++ is used for the computational and to interface with the user-interface done with

wxWidgets. Visualization was done using OpenGL, and the beginning stages of optimization uti-

lized OpenCL to run on the graphics processor.

While this project is not the �rst computer programming to be accomplished in the �eld of

geostatistics, this project is a foundation for future studies. In the course of the year, several

original algorithms were developed as well as integration of established methods, resulting in a

working application that can reliably perform geostatistics of small problems. The case study on a

real problem was partially successful and provided invaluable insights into future work.

5

1 Introduction

1.1 Problem Statement

A lack of complete data is a common problem faced across many �elds of study. The solution is

to estimate these unknowns, but making an accurate approximation becomes much more complex

than simple means. The practice of this approximation is more di�cult than the simplicity of the

theory behind it. Geostatistics is a branch of statistics that can be used to make reliable predictions.

It is based on the theory that data proximately located is more likely to be related. If the data is

related then the unknowns can be approximated because the distance between data points would

tell one how similar they should be.

Geostatistics is an e�ective method of �lling in these �gaps� to logically create plausible data for

the unknown points. This can be important especially in computer modeling where data is needed

for every point, geostatistics can simplify the process.

The application of geostatistics to the discovery of aquifers was chosen because of New Mexico's

shortage of water. Water is a very valuable commodity in the drier and more polluted regions of

the world and the easier discovery of more water sources would help many people. To �nd new

groundwater sources in such large expanses of land by testing every mile or every half mile would

be di�cult and ine�cient. Using geostatistics to �ll in gaps in the landscape will allow geologists

and hydrologists to take far fewer samples and come up with more correct results. This will lessen

the time and expense of �nding groundwater sources, bene�ting both economic and hydrological

issues.

1.2 Objective

The purpose of this project was to write a windows-based program to perform geostatistics. The

program was designed to approximate unknown values and show the detail of the terrain values

in both color and height. There are many possible applications for geostatistics, and thus the

usefulness of the program. The focus is on using a geostatistical model to �nd aquifers without

taking inordinately large numbers of samples for a given area. To accomplish this goal a profusion

of code had to be written for the many di�erent facets of the program. The initial code to estimate

the data using geostatistics was written in C++, the user interface was generated in wxFormbuilder

(creating wxWidgets C++ code), and the graphics were rendered with OpenGL. The team wished to

create a working program utilizing all three di�erent programming languages that would accurately

predict unknown values for a data set. These unknowns pertain to aquifer data so as to �nd more

groundwater sources and alleviate problems in New Mexico and the rest of the world.

The program should reduce the time and money spent on geological surveying by a sizable

margin and can be changed minimally to be applied to other problems.

1.3 Backround

1.3.1 Geostatistics

Geostatistics is a branch of statistics used to predict unknown values at speci�c locations, using the

concept of spatially correlated data. That is, two values physically near each other are more similar

6

than two values farther apart. For example, in soil composition, samples taken closer together are

more likely to be made up of similar minerals.

Geostatistics, originating in mining for the discovery of precious stones and metals, was �rst

recognized as a reputable �eld theory in the 1960s in the French work �Theory of Regionalized

Variables� which paved the way for inspirational work in the new discipline. Many changes were

made to the math used in geostatistics and eventually it became applicable to many di�erent �elds

besides mining. Now such employments as picture reconstruction and epidemiology are utilizing

geostatistics[2].

To understand how geostatistics works one must understand the theories at the heart of the

process. The Theory of Regionalized Variables states that it is possible to make a model of the

spatial structure from known data and then use those known values to estimate the unknown ones[6].

The unknowns can be estimated because of the theory that data is spatially correlated. These are

the underlying precepts behind geostatistics; the theories that make all others possible.

These postulates are used to determine the value of a given property in speci�c materials. This

is done by applying the Theory of Regionalized Variables. There are two parts to regionalized

variables:

• a random aspect, the unpredictable variation from point to point

• a structured aspect, the prevalent regional trend

The random aspect is the deviation from the normal that will throw o� an approximation whereas

the structured aspect is the normal trend which allows for the use of geostatistics in the estimations

of unknown values.

Like most �elds, there is some specialized language used in geostatistics. These terms will be

de�ned as they appear, but are also described in the glossary (Appendix B on page 37)

1.3.2 Aquifers

The chosen application was locating aquifers. Backround information was needed to discover what

characteristics to search for as an indication of an aquifer.

An aquifer is an underground layer of water-bearing permeable rock (Figure 1), which can be

tapped by a well. The above diagram shows how the location of the water table is relative to the

surface and to the surrounding geological points. An aquifer is a valuable commodity as a water

source because, by de�nition, it readily transmits water to wells and springs. This means that it

will be not be stagnant and undrinkable. Also because of the location of aquifers underground,

the water cannot evaporate before its use. Unfortunately, aquifers are di�cult to locate and can

be contaminated. Aquifers are more likely to be closer to the surface because of the porous and

permeable rocks there. Porosity refers to a rock's ability to retain water, while permeability is

the capability of a porous rock to permit the �ow of �uids through it[12]. The permeability and

porosity generally decrease for larger distances from the surface since the cracks and �ssures in a

become diminished and close up as a result of the pressure of the rock overhead. However, this is

not always the case and usable aquifers have been found in all surface depths[8].

More valuable results can be garnered from porosity and permeability because they are more

reliable variables to use in a geostatistics model. This is because porosity and permeability more

extensively a�ect the rock's ability to be a potable resource[8].

7

Figure 1: Diagram of an aquifer[8].

An aquifer can become contaminated as a result of human interference. Every time the water

in an aquifer is used in a well, the level of the water table goes down and the water will be replaced

with precipitation, known as recharge. The area in which an aquifer can bene�t from the recharge

is called a recharge zone. The larger an aquifer's recharge zone, the more wells can be drilled from

it and the more often people can pump water for them. However, the larger an aquifer's recharge

zone is the more opportunity for the aquifer to be contaminated. If an aquifer is contaminated it

cannot be used thus creating a water shortage problem for its patrons.

Humanity's interference with the water table can also result in an aquifer's water pressure

decreasing at an alarming rate[8]. If one were to pump too much water out of a well without

allowing it its recharge period then surrounding wells could also go dry. This creates a problem

for rural communities that depend on groundwater, making aquifers very sought-after resources[5].

Aquifers are a solution to the dire problem of acquiring water in the drier, more rural regions of the

world. The case study of this project seeks to make them available by predicting their locations.

2 Mathematical Models

Geostatistics can be outlined with two main goals: to identify the spatial properties of the variable

and to estimate gaps in incomplete data from the surrounding samples. These purposes are related,

as characteristics of the spatial structure can be used to estimate unknowns. This is done by

1) constructing a semi-variogram, and 2) interpolating through the use of either inverse distance

weighting or kriging.

2.1 Semi-variogram

The idea of spatial correlation discussed in the introduction to geostatistics is fairly intuitive. It

makes sense that a value close to the unknown will be more similar to it than a value farther away.

The semi-variogram is a way to quantify the variance in the values over space. It is fundamental

to the idea of spatial correlation, and a crucial part of geostatistics.

8

The semi-variogram is unique for each material. Looking at many pairs of data at points about

the same distance apart can provide an expected di�erence in value for a given distance. Described

mathematically it is[2]:

γ ∗ (h) =
∑

[y (x)− y (x+ h)]2

2n

where γ (h) is the semi-variogram1 as a function of distance h between the data points,

y (x) and y (x+ h) are the values at locations x, and x plus the distance h,

and n is the number of pairs of samples with distance h separating them.

These points are plotted with distance on the horizontal axis and semi-variogram on the vertical

axis.

There are several speci�c terms associated with the semi-variogram. The distance at which the

graph plateaus is called the range of in�uence, or simply the range. Any points farther apart than

the range are completely uncorrelated, and thus are not helpful in accurately interpolating a value.

The semi-variogram at that point is referred to as the sill. In experimental semi-variograms, it is

possible that there will be a discontinuity at the origin called a nugget. In theory, this should not

happen because the value at a point is equal to its own value; however, measurement errors and a

random in�uence between the points can cause a nugget.

One of the things a semi-variogram can reveal about the data it represents is its isotropy. The

material can be isotropic, meaning the spatial correlation is equal independent of the direction. If

direction is an in�uence, it is anisotropic. Wood is a great example of this. There is a greater range

so the relation extends much farther along the grain than against it.

There are several types of mathematical models which can be matched to the semi-variogram

obtained from the data. A simple semi-variogram can be represented by a single type, but they can

be combined for more complexity. Three of the most commonly used mathematical models are[2]:

Spherical

γ(h) =

C
(

3
2
h

a
− 1

2
h3

a3

)
h ≤ a

C h > a

Exponential

γ(h) = C

[
1− exp

(
−h
a

)]
Gaussian

γ(h) = C

[
1− exp

(
−h

2

a2

)]

2.2 Interpolation

There are several di�erent approaches to interpolating. Generally, this is done with the general

equation for a weighted average shown below:

1The distinction between the variogram, 2γ (h), as opposed to the semi-variogram is important, and not always
clear if semi-variograms are inattentively called just variograms.

9

Figure 2: Example of the three common types of mathematical models for the semi-variogram with
the same range/sill.

F (x, y) =
n∑

i=1

wifi

which basically says that the value of the unknown point is a summation of the values of the

points it is being interpolated from times its weight. The di�erences occur in determining the

weights.

2.2.1 Inverse Distance Weighting

One of the simplest methods is Inverse Distance Weighting (IDW). The weights are purely dependent

on the distance. The inverse of the distance for each of the points within range is found. If a point

is 4 units from the unknown, it would be 1
4 . Then they must be summed and scaled to one. So the

weight of each point is:

wi =
d−1

i∑n
j=1 d

−1
j

where d is the distance for each point i of n points. The distances can be scaled to provide

larger weights in some directions than others as determined in the semi-variogram this is discussed

in more detail in Section 3.3. This method works fairly well for its simple approach and is a good

comparison method to the kriging.

2.2.2 Kriging

Kriging is an interpolation method unique to geostatistics. It works by �nding the �best� estimate.

An explanation of how this is done will be given in terms of an unknown value T at a point A, as

adapted from Practical Geostatistics[2].

If the value at the closest point is used as an estimation of T , it will incur an estimation error

ε which is a measure of the di�erence between T and the estimated value T∗:

10

ε =| T − T∗ |

Assuming there is no local trend, as the number of estimations increases towards in�nity, the

average error will approach zero. So, theoretically:

ε = 0

The reliability of an estimator is rated by the spread of the errors. A 'good' estimator has errors

consistently close to zero. If they range more widely, than the estimator is unreliable. The spread

can be measured by the standard deviation of the estimation error - the standard error.

Consider the de�nition of standard deviation σ, the square root of the variance.

σ2 =

∑
(X − µ)2

N
, the average of the squares of the di�erence from the mean. In case of the

variance of errors, it follows that:

= average of (ε− ε)2

= average of ε2, since ε = 0

= average of (T − T∗)2

It is impossible to calculate these values directly since the actual value is unknown. A closer

look at the de�nition provides a solution. The value of the point closest to point A is used for the

estimator, and should vary from the actual value dependent on the distance from A. This expected

di�erence is described by the variogram exactly, the average of the squared di�erences. Thus, the

mathematical semi-variogram chosen to represent the spatial structure can be used to estimate the

di�erence (multiplying by two yielding the variogram). So, �nally, the variance of the errors is:

σ2
ε = 2γ(h)

As the estimate grows more complex with the addition of other points, the variance of errors is

given as a weighted average of the variogram of each of them.

σ2
ε = 2

n∑
i=1

wiγ̄ (Pi, A)

Figure 3: The di�erential of the vari-

ance of error with respect to the

weights. Kriging seeks to minimize this

variance to �nd the 'best' estimator.

γ̄ (Pi, A) is the average semi-variogram, as de�ned by

the mathematical curve, between interpolation point P

and the point being estimated, A. Kriging is unique in

that it directly seeks to �d the 'best' estimate - that hav-

ing the smallest estimation variance. The only values free

to be altered are the weights of the weighted average, so

the estimation variance is being minimized with respect

to the weights. A minimum can be found by setting the

di�erential equal to zero (i.e. the slope is zero as in Figure

3):

∂σ2
ε

∂wi
= 0 i = 1, 2, 3, 4...n

11

While this will provide weights for the desired mini-

mum, the sum of the weights must also be explicitly set

to one so the related estimator will be a whole.

∑
wi = 1

This added constraint consequently over-determines the system of equations - n weights, or

variables, and n+ 1 equations. A Lagrangian Multiplier is introduced to balance this out. Rather

than simply the estimation variance to be minimized, it is the term:

σ2
ε − λ

(∑
wi − 1

)
When the sum of the weights is equal to one,

∑
wi − 1 = 0, thus nullifying the λ and taking

the smallest variance as de�ned. The expanded system equations for three points is de�ned as:

w1γ(P1, P1) + w2γ(P1, P2) + w3γ(P1, P3) + λ = γ(P1, A)

w1γ(P2, P1) + w2γ(P2, P2) + w3γ(P2, P3) + λ = γ(P2, A)

w1γ(P3, P1) + w2γ(P3, P2) + w3γ(P3, P3) + λ = γ(P3, A)

w1 + w2 + w3 = 1

On the left side of the equation are the weights times the variance between each point with

each other point, and on the left is the variance between said point and the unknown. The system

of equations follows the same pattern for any number of points used to interpolate. Solving these

equations is a computational problem addressed in Section 3.2.

2.3 Sampling from Gaussian Distribution

If the goal of the interpolation is not to be accurate but to generate a sample set of data to be

used, than it may be desired to address the random aspect of a regionalized variable. To give

the impression of a degree of random variance in each point, a Gaussian Distribution is randomly

sampled.

Figure 4: 'Normal' Gaussian Distribution. The

mean is the interpolated value.

The interpolation gives the mean of the dis-

tribution, or the most likely value, but the value

is free to vary from this. The magnitude of

this variance is based on the variance of the un-

known to the closest point as determined from

the semi-variogram. This is more of a stylistic

choice, and results in unknowns interpolating

from farther a�eld points having a larger ran-

dom element. This sampling is set up as the

mean (µ) - or most likely value - as being the

12

interpolated estimator. The standard deviation

(σ) is the square root of the variance found from the closest point. Values closer to the mean are

more likely to be sample because of the bell shape of the curve, and the smaller the variance the

smaller the range of possible values.

3 Computational Model

Since our program is windows based, the computational method is much more segmented. Each

part is driven by user generated events (e.g., clicking buttons, typing).

After the data is input, there is a vector array of the grid points whose values are unknown.

The user can interact with a plot to create a semi-variogram from the known data.

3.1 Semi-variogram

Figure 5: Computationally �nding

experimental semi-variogram.

The program must calculate both experimental and mathe-

matical semi-variograms. The experimental semi-variogram

is somewhat simpli�ed because the data is already broken up

into equally spaced points. It did not take long to develop the

basic method that was used. For convenience, the equation

will be repeated here.

γ (h) =
∑

[y (x)− y (x+ h)]2

2n

Part of the process is actually simpli�ed because the data

is already divided into equally spaced points. Each row or

column begins at the �rst element and �jumps� over h points.

If the values at both points are known, the semi-variogram is

calculated.

This process is continued by incrementing up the row by

one until there are no longer enough elements to skip h. Then h is increased.

Figure 6: Screen capture of the plot section of the window showing an optimal experimental semi-
variogram, created from sample data.

13

3.2 Solution of Kriging Equations

The kriging equations involved a more complex solution than IDW, using matrices to solve for all

of the unknowns in the system. The added constraint on the sums makes the system of equa-

tions overdetermined, meaning there are more equations than variables. QR decompositions are a

common solution for least squares problems with over-determined systems of equations[3].

QR factorization of the coe�cient array was used to solve for the weights, and was computed

using Givens rotations. QR factorization of a square matrix A ∈ Rn×n2 is given by A = QR, where

Q is orthogonal and R is upper triangular. The de�nitions of these special types of matrices are as

follows:

A square matrix Q ∈ Rn×n is orthogonal if QTQ = QQT = In, meaning its inverse is also its

transpose3. An upper triangular matrix, also called right triangular, is also square (n×n), with all

the entries below the main diagonal zero:

U =

u1,1 u1,2 u1,3 · · · u1,n

0 u2,2 u2,3 · · · u2,n

0 0
. . .

. . .
...

0 0 0
. . . un−1,n

0 0 0 0 un,n

Givens rotations can be used for selectively zero elements, and calculate the decomposition

of a matrix into its Q and R factors. Multiplication by a rotation matrix4 performs a rotation in

Euclidean space. To visualize a matrix geometrically, consider each column to be a set of coordinates

to de�ne the location of a point. Multiple points create a set of columns, a matrix, with each row the

coordinates in the same dimension. So the matrix

[
cos θ − sin θ
sin θ cos θ

]T

performs a counterclockwise

rotation of an angle θ about the origin of an x-y-plane - or alternatively viewed as the rotation of

the coordinate system axes in the opposite direction. A rotation can be performed on a larger scale

by expanding the previous rotation matrix to:

G(i, j, θ) =

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · sin θ · · · 0
...

...
. . .

...
...

0 · · · − sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

which is an identity matrix with the following substitutions: gii = cos θ, gij = sin θ, gji = − sin θ,
gjj = cos θ. The only rows a�ected are i and j, the others will remain the same, and thus may be

2This denotes the vector space of all real n-by-n matrices, essentially saying any matrix with the given dimensions.
3The transpose of a matrix is denoted with a superscript T.
4It should be noted that rotation matrices are orthogonal and have a determinant of one.

14

Figure 7: Illustration of concept behind Givens Rotation. The i axis is rotated so as to make point
P lie upon it, zeroing its j′ coordinate.

ignored.

A Givens rotation sets the angle to rotate the axis so the selected point lies on it, zeroing out

the value of the other coordinate. If x ∈ Rn, and y = G(i, j, θ)Tx, then, by matrix multiplication:

yk =

xi cos θ − xj sin θ k = i

xi sin θ + xj cos θ k = j

xk k 6= i, j

yj can be forced to be zero when it lies on the perpendicular axis. Figure 7 illustrates the right

triangle created by the previous axis and the new one that should run through point P (xi, xj).
This creates the desired angle of rotation. By directly using the de�nitions of the trigonometric

functions used in the rotation, calculation of θ can be bypassed entirely. The Pythagorean Theorem

(c2 = a2 + b2)gives the length of the hypotenuse, and the sides of the triangle are known from the

coordinates.

cos θ =
adj

hyp
=

xi√
x2

i + x2
j

sin θ =
opp

hyp
=

−xj√
x2

i + x2
j

Substitute these de�nitions into the expression for yj :

xi sin θ + xj cos θ

−xj√
x2

i + x2
j

xi +
xi√

x2
i + x2

j

xj

−xjxi + xixj√
x2

i + x2
j

= 0

And they result in zero because the �rst term of the numerator has a negative, making them

additive inverses. This only happens in the speci�c case that was intentionally set up.

15

These Givens rotations can be used to �nd the QR factorization used to solve a matrix equation

Ax = b. Each element of the coe�cient matrix A where i is greater than j would be zeroed, creating

an upper triangular matrix.

From the de�nitions of sine and cosine and the Pythagorean Theorem, they can be found as:

cos θ =
j

h
=

xi√
x2

i + x2
j

and sin θ =
i

h
=

−xk√
x2

i + x2
j

Now the matrix equation has been put into the form Ux = b, it can be solved using back

substitution. For a 2-by-2 example:[
u1,1 u1,2

0 u2,2

][
x1

x2

]
=

[
b1

b2

]
The bottom row has only one unknown, since the other variable is zeroed, and can be solved

directly. Once that value is known, it can be substituted up into the next row so there is again

only one unknown which can then be found. Starting at the bottom row, the unknown x's can be

solved for sequentially:

u2,2x2b2 is solved algebraically to be x2 = b2/u2,2

u1,1x1 + u1,2x2 = b1is x1 = (b1 − u1,2x2)/u1,1

This back substitution can be represented by[3] :

xi =

b−
n∑

j=i+1

ui,jxj

ui,i

This process provides the values of the weights in the weighted average. The corresponding code

for a coe�cient matrix A, right hand vector B, andmatrix size n, as based o� of the psuedo code

in Matrix Computations[3] is given in Listing 1. The solutoin is stored in vector x.

Listing 1: Matrix Solver using Givens Rotations

void GeoData : : QRGivens (double ∗∗A, double ∗B, i n t n , double ∗x) {

double c , s , tau , tau2 ;

i n t i , j , k ;

f o r (j = 0 ; j < n ; j++) {

f o r (i = n−1; i > j ; i−−) { // loop to zero a l l e lements in lower t r i a n g l e

/∗ Determine v a r i a b l e s f o r r o t a t i on ∗/
i f (A[i] [j] == 0 . 0) { // a l r eady 0 − don ' t change

c = 1 . 0 ;

s = 0 . 0 ;

}

e l s e i f (abs (A[i] [j]) > abs (A[j] [j])) {

tau = −A[j] [j] /A[i] [j] ;

s = 1 .0/ sq r t (1.0+SQ(tau)) ;

c = s ∗ tau ;
}

e l s e {

tau = −A[i] [j] /A[j] [j] ;

c = 1 .0/ sq r t (1.0+SQ(tau)) ;

s = c∗ tau ;
}

16

f o r (k = 0 ; k < n ; k++) { // perform ro t a t i on on elements in two

a f f e c t e d rows

tau = A[j] [k] ;

tau2 = A[i] [k] ;

A[j] [k] = c∗ tau − s ∗ tau2 ;
A[i] [k] = s ∗ tau + c∗ tau2 ;

}

/∗ Same ro t a t i on done on r i gh t hand s o l u t i o n vec to r ∗/
tau = B[j] ;

tau2 = B[i] ;

B[j] = c∗ tau − s ∗ tau2 ;
B[i] = s ∗ tau + c∗ tau2 ;

}

}

/∗ Back sub s t i t u t i o n s t o r e s s o l u t i o n in x ∗/
f o r (j = n−1; j >=0; j−−) {

x [j] = B[j] ;

f o r (i = n−1; i > j ; i−−) {

x [j] −= x [i]∗A[j] [i] ;

}

x [j] /= A[j] [j] ;

}

}

3.3 Anisotropy

Anisotropy is the property of being directionally dependent (as opposed to being isotropic). In

geostatistics, this means having di�erent spatial correlation in di�erent directions. Wood is a good

example of this characteristic. It is evident, even to the human eye, that it has a higher degree of

correlation along the grain than against it. This might not be so apparent in the various qualities of

di�erent substances. Therefore, anisotropy must be identi�ed using the semi-variogram. The plots

of the experimental semi-variograms for the two directions will have di�erent ranges of in�uence.

The solution is to make the ranges appear to be the same. This means adjusting the measure-

ments so that one 'unit' in the semi-variogram may be 5m horizontally and 25m vertically.

The calculations rely on a distance method to calculate how far one point is from another. This

is simple since they use a coordinate system. The distance formula is:

d =
√

(x2 − x1)2 + (y2 − y1)2

If the formula is modi�ed, it can account for the scaling of measurement. If s is the scale factor,

in the form of a decimal percent (i.e. to have half the range, s would be 0.5), then the new formula

can be expressed as:

d =
√

[sx (x2 − x1)]2 + [sy (y2 − y1)]2

The magnitude of the distance in each direction is scaled before the rest of the distance formula

is performed. This scaling e�ect has also been applied to relative distances in the two directions. If

it is one foot from one cell to the next horizontally, but two feet vertically, than the ratio is included

17

in the scale to make it a default of isotropic - the point above the unknown really is twice as far

away as the one to the right of it.

3.4 Sampling from Gaussian Distribution

The Gaussian Distribution was fairly simple to set up with the use of a method from Numerical

Recipes in C [9]. Once the interpolated value is set, the nearest point is found by searching through

the list of points in range and the variance computed for the distance. The random sample returned

from the method can be applied to the speci�c case.

double a , b ;

a = est imate . getValue () ;

b = GetVariogram (est imate , GetClosestPoint (e s t imate)) ;

r e turn a + gaussRandom () ∗b ;

The method gaussRandom() returns a sample from a Gaussian Distribution with a zero mean

and unit variance. Multiplication by b stretches the curve horizontally and adding a shifts it

horizontally.

Since this sampling was not important to the focus of this project, it has not been tied completely

into the user interface: there is not an option in the window for it. The code needed to compute

it is completed, but the method to apply it to each of the unknowns by choice of a user was not

updated with the other code changes.

3.5 Multiple Points and Runs

Thus far, the discussion has been limited to the interpolation of a single point. To �nd all of the

unknowns, they are ordered randomly to be calculated. This sequence is important because the

points are interdependent - once an estimated value is found it is used in the interpolation of others.

Figure 8: Algorithm developed to randomly

iterate through unknowns. Elements are

swapped to the back part of the array as they

are randomly selected from the front part.

Because of the random element of order, the an-

swers will vary between runs, making it necessary to

run multiple times. This repetition and integration

of results, in the form of a mean, has been auto-

mated.

An algorithm had to be developed to randomly

iterate through an array of the unknown points.

Each element is a structure which contains the index

of the unknown and a sum of the answers - which can

then be divided by the number of runs to �nd the

mean.

This is all done in a single array. A random index

between zero and the maximum size of the array is

chosen. Once the interpolation has taken place and

added to the sum, the element is switched with the

last element. The next random index is chosen, but

this time excluding the �nal element which has al-

ready been found - that is between zero and one less

18

than the array size. This next element is switched

with the second to last element, creating a segment at the end of the array of the elements that

have already been used. The next random element is searched for between zero and the maximum

minus the number of completed elements.

This algorithm works �ne until the problem of failures to calculate the points arises. If there

are no points within the range of the current unknown, it has nothing to interpolate from. It must

be skipped until later when more points have been calculated.

3.6 Optimization

Large scale problems are the norm in practical computing, calling for faster calculations to curb

the lengthy run-times. Due to the sectionalized nature of the code, these beginning stages of

optimization have been done within the separate methods. Later work may attempt to make this

more streamlined in order to further improve the speed.

3.6.1 Variation on Random Iteration Algorithm

Figure 9: Variation on the random iteration algo-

rithm, grouping 'failed' elements in the front to

be retried after all the others have been iterated

over.

Though it is not necessarily characteristic of

large problems, sparse data can become com-

putationally expensive in the random iteration

through the unknown points. In the original

method outlined on Section 3.5, if a point fails

- that is there are no points in range from which

to interpolate - the unknown is left where it is

in the array and the count of �nished elements

does not increase. This works when there is

ample data and these types of points are rare.

Another point is picked and eventually it will

be successfully calculated as the points around

it are found.

In a set of sparse data, however, there are

so many points with nothing in range that the

random index could continually hit these points

and no progress would be made. An alterna-

tive algorithm was created, which, while it does

not ensure equal chances in determining the

random path, prevents already failed elements

from being selected again before more points

are �lled in. This prevents repetitive sampling

which may waste computation time.

This was accomplished by setting o� ele-

ments at the beginning of the array, similar to

the one on the end. If the calculation of the unknown at a random index is successful - that is there

were points in range to interpolate from - it is swapped into the back section of the array. If it fails,

19

it is swapped into the front. Random indices are always selected from between the two boundaries

of the separated sections by �nding a random number for the range and o�setting it from the front:

index = rand() % (size−i−front) + front;

Once the boundaries converge, leaving no unknowns in the middle which have not been iterated

over, the front boundary is reset to the beginning of the array. This puts all the previously failed

elements in the middle to be retried. This continues until all the elements have been successfully

completed and moved to the back - or if the boundaries converge with no new successfully com-

pleted unknowns, indicating the elements that are left are impossible to calculate with the current

parameters.

The variation on the algorithm is implemented in the following fashion:

Listing 2: General Use Implementation of Variation of Random Iteration Algorithm

su c c e s s = 0 ;

f r on t = 0 ;

s i z e = array . s i z e () ;

for (i = 0 ; i < s i z e ; i++) { // i t e r a t o r to determine when a l l elements are completed

i f (f r on t == s i z e − i) { //check i f the boundaries have converged

i f (su c c e s s < 1) // i f there have been no successes here , the r e s t are imposs ib l e

send e r r o r

f r on t = 0 // re se t boundary and success count

su c c e s s = 0

}

index = rand () % (s i z e−i−f r on t) + f r on t // in C++, f ind random index between

boundaries

i f (c a l c u l a t i o n r e tu rn s s u c c e s s f u l) {

swap array [index] with array [s i z e−i −1]
su c c e s s++

}

else { // i f the ca l cu l a t i on f a i l e d

swap array [index] with array [f r on t]

i−− //compensate for automatic increment of i , i t wasn ' t suc ce s s f u l

f r on t++ //move up boundary of f ront sec t ion

}

}

Since there are potential consequences in the order of the random path, this alternative is only

used with the selection of a sparse data option in the application window.

3.6.2 Transferring Matrix Solver to the GPU

The Givens Rotation QR decomposition was parallelized using OpenCL to send it to the Graphic

Processor Unit (GPU). Large problems continued to use inordinate amounts of time without reach-

ing completion. A smaller sized test problem was run to identify which methods were most com-

putationally expensive. A signi�cant 55.56% of the total time was spent in the QRGivens method

(the solver for the kriging equations), which was also much larger than the next largest at 7.41%.

This made the matrix solver a clear target for optimization.

The speed-up gained by operating on a GPU is mainly due to to the parallel computation - the

same process is done on multiple data elements simultaneously[7]. The speed of calclulations on the

GPU make loading data the primary concern. The coe�cient and right hand vector of the matrix

equation are passed in globally. For every rotation, only two rows are a�ected, as discussed in the

description of Givens Rotations (Section 3.2) . Thus the rows can be loaded into local memory by

20

pairs, providing faster access.

Figure 10: Break down of Givens Rotation to be done in parellel on the GPU where rows 1 and 2
are those a�ected by the current rotation.

Parallelization can only be used where the values are independent of eachother. Once the

coe�cients of the rotation are found, they can be applied to each of the elements individually - that

is in parallel. This break down is shown in Figure 10. The current kernel implementation is shown

in Listing 3.

Listing 3: OpenCL Givens Rotation Kernel

#de f i n e A(j , i) Coe f f [j ∗npadded+i] . s0

#de f i n e SQ(a) ((a) ∗(a))
__kernel void QRGivensGPU_kern(

const i n t npadded ,

const i n t n ,

__global f l o a t 2 ∗ BX,

__global f l o a t 2 ∗ Coeff ,

__local f l o a t ∗ row1 ,

__local f l o a t ∗ row2 ,

__local f l o a t ∗ B)

{

i n t giX = get_global_id (0) ;

i n t tiX = get_local_id (0) ;

i n t ngX = get_globa l_s ize (0) ;

i n t ntX = get_loca l_s i z e (0) ;

f l o a t c , s , tau , tau2 ;

i n t i , j , k ;

i f (giX < n) { //Only f o r p r o c e s s o r s that were not added f o r padding

B[giX] = BX[giX] . s0 ;

f o r (j = 0 ; j < n ; j++) {

row1 [giX] = A(j , giX) ; //Each proc e s s o r s e t s va lue in row1 from

corre spond ing A

f o r (i = n−1; i > j ; i−−) {

21

row2 [giX] = A(i , giX) ;

b a r r i e r (CLK_GLOBAL_MEM_FENCE) ; //Force wait u n t i l a l l p r o c e s s o r s

are done

/∗ Set r o t a t i on va lue s ∗/
i f (row2 [j] == 0 .0 f) {

c = 1 .0 f ;

s = 0 .0 f ;

}

e l s e i f (f abs (row2 [j]) > fabs (row1 [j])) {

tau = −row1 [j] / row2 [j] ;
s = 1 .0 f / sq r t (1 . 0 f+SQ(tau)) ;

c = s ∗ tau ;
}

e l s e {

tau = −row2 [j] / row1 [j] ;
c = 1 .0 f / sq r t (1 . 0 f+SQ(tau)) ;

s = c∗ tau ;
}

/∗ Perform ro t a t i on on each element − p a r a l l e l ∗/
tau = row1 [giX] ;

tau2 = row2 [giX] ;

row1 [giX] = c∗ tau − s ∗ tau2 ;
row2 [giX] = s ∗ tau + c∗ tau2 ;
/∗ Perform ro t a t i on on appropr ia t e e lements o f s o l u t i o n vec to r ∗/
i f (giX == i | | giX == j) {

tau = B[j] ;

tau2 = B[i] ;

}

b a r r i e r (CLK_GLOBAL_MEM_FENCE) ;

i f (giX==j) B[j] = c∗ tau − s ∗ tau2 ;
i f (giX==i) B[i] = s ∗ tau + c∗ tau2 ;

A(i , giX) = row2 [giX] ; //Put updated va lues to the c o e f f i c e n t array

}

A(j , giX) = row1 [giX] ;

}

/∗ Back subs t i tu t e , putt ing answer in to second vec to r component o f BX ∗/
b a r r i e r (CLK_GLOBAL_MEM_FENCE) ;

f o r (j = n−1; j >=0; j−−) {

f o r (i = n−1; i > j ; i−−) {

B[j] −= B[i]∗A(j , i) ;
}

B[j] /= A(j , j) ;

}

BX[giX] . s1 = B[giX] ;

}

}

22

4 Code

4.1 Overview and Structure

This is a large project and, especially with the GUI, there is a signi�cant amount of code with

a complex structure. There are several key parts that will be discussed in more detail in the

next sections. This project was written primarily in C++, but also incorperated several di�erent

packages: wxWidgets (and its add-ons), OpenGL, and OpenCL.

The wxWidgets code which creates the windowing is generated using wxFormBuilder, but it is

not used directly. In fact, the programmer should not hand edit it at all. Instead, a child class

is created, inheriting the frame design and objects within in. It is in this class that the methods

called on each event are implemented. The role of each class will be clari�ed with a description of

their place in the structure and their methods.

AdamsAleAppGui is the �le generated by wxFormBuilder, and actually contains several classes

for the frame and each of the dialogs. Each one creates the window with the layout as designed

in wxFormBuilder, but nothing is functional.

AdamsAleApp is the �main� class in the application. It calls the constructor of the frame displays

it, and sets up the continuous rendering. Though these are its only tasks, they are important

because external code (from the windowing) is needed to initialize the application.

AdamsAleAppFrame is the class inherited from the frame produced by the generated code.

While the parent class has the layout, it is this class's job to �ll in designated spaces such as

the GLCanvasPane. It makes the original design functional by animating the controls, that

is, de�ning what should be done for di�erent user inputs. The frame has access to all of the

objects within it, so it can retrieve data from inputs, display values, and call the methods

of more complex objects (GLCanvasPane, PlotCtrlPane). The �command events� generated

by clicking buttons, selecting menu items, etc., are directed to here. In wxFormBuilder,

corresponding methods for each event can be set. These methods are de�ned here, generally

calling on more speci�c methods in other classes. Otherwise, it calls dialogs and has all the

�le I/O.

GeoData was developed later to hold all of the variables and methods on the computational

side of the application. It is purely computational, with no references to any of the user

interface. When a new model is created or a �le opened, an instance of the class is created

and values passed in. The frame can then call any of the methods: from the semi-variogram

to interpolating points.

GLCanvasPane is the pane in the window reserved for the visualization. An instance of this class

is created as part of the constructor of the frame. The pointer to the data class is passed into

this class after the unknowns have been interpolated so it has access to the values of each

point.

PlotCtrlPane comes from the wxWidgetsAddition wxPlotCtrl with additional methods for its

speci�c use in plotting semi-variograms.

23

The sizes of these classes may be estimated by the number of lines in each of their �les5:

File Line Count

AdamsAleApp 93

AdamsAleAppFrame 432

AdamsAleAppGui 763

DataPoint 65

GeoData 460

GLCanvasPane 301

PlotCtrlPane 184

Total 2311

There is an immense amount of code, and it cannot be recorded here in its entirety; major

sections are included in pertinent sections. It is all online in the repository used during its de-

velopment and can be viewed at: http://code.google.com/p/adams-ale/source/browse/#svn/

trunk/AdamsAle.

4.2 WxWidget Windowing

The windowing and user interaction were a signi�cant part of the program. Since there are so many

di�erent options in geostatistics, this format allows a user to choose the method that best �ts the

speci�c problem. The majority of the wxWidget C++ code was generated with wxFormBuilder,

saving the time needed to write out the simple code by hand. The rest of the code has been

integrated into this main application window as functions.

Figure 11 is a screen capture of the workspace in which the user interface is created. On the

left is the hierarchy in which the elements of the page can be easily arrangedwithout disturbing

the rest of the window. In the middle is a preview of the window the programmer is creating. On

the far right is the �properties and events� window. The �properties� tab allows the programmer

to set the size, labels, and properties of the object that was just created, while the �events� tab

lets the programmer set the methods for the object. For example, the programmer can write

�OnMouseClick� enable that object to be used when it is clicked on by a mouse by adding matching

code later on. This object can now be used because it has a function. WxWidgets is used for

creating the windowing in which a the program can operate. This tool allows the programmer to

create a window with relative ease. It creates most of the 'cosmetic' code, while it only requires the

programmer to write the code to animate the controls. This eliminates a lot of lines a programmer

must write by hand. wxWidgets is also very useful for programmers using more than one platform

as it is virtually the same on a PC and Mac - though this has not been attempted with this project

. Tabbed windows allow more information to be seen on the same page. Using wxWidgets along

with wxFormBuilder was a good choice because of the relative ease. because of the relative ease of

using it. In wxFormBuilder, the programmer starts with a frame, which is a basic window. Then a

sizer is added. Sizers organize the window and lay out the graphs and similar objects. After a sizer

there are virtually endless possibilities from which the programmer can choose: toolbars, graphs,

data tables, and graphics panes to be �lled by other programmers.

5Line counts are from a single point in time and will vary a little as changes are made. Header �les are included
in the count.

24

Figure 11: wxFormBuilder workspace

There are four di�erent types of sizers: box, staticboxes, grids, and �exgrids. BoxSizers are the

most common and ideal choice for a basic window. They space out the objects that are added to

it equally, placing them either vertically or horizontally. A box sizer was used for the left hand

side of the window. Static boxsizers are the basic variations. GridSizers are important because

they are contain graphs and charts. The bottom and top parts of the window have gridsizers.

All of the rows and collumns must be the same size. FlexGridSizer sizers are grid sizers with the

exception that the programmer can manipulate the dimensions. In this application a FlexGridSizer

is used to display the information on the right hand side of the window. Another important aspect

utilized was sashed windows. Sashed windows allow the window to be stretched making it larger or

smaller. For example, if there are seperate pieces of information such as a graph and dataset, the

sash enables the user to enlarge one of the the two to see more of the other. wxFormBuilder alows

the programmer to create buttons and windows with ease. The program writes all of the 'cosmetic'

code while the programmer creates the little working code.

The user interface was designed to be very intuitive. The process starts with importing data

from a speci�ed borehole. This data is placed in a chart at the top of the screen. It is placed with

two columns on opposite sides of the chart. This data could be porosity, amount of radiation, or

resistivity, depending on the data from the borehole. Once the data has been imported into the

chart, the user chooses the method of interpolation. After the method is chosen, the semi-variogram

is plotted on the PlotCtrlPane graph below the chart. There is a key on the right side of the graph.

In the right vertical portion of the window are many options for formatting the graph. The user can

select from three di�erent mathematical models: gaussian, spherical, and exponential. Once the

user chooses his model the program will generate the plausible points. The user can also choose the

range and sill as well as the scale in the x and y direction. He can also choose the number of times

the program will run. There is a tab for a label named �visual.� In that window a graph created in

OpenGL will appear. The graphic will correspond with di�erent numbers. For example, red would

represent a higher number while blue would represent a lower number. A small user guide has been

25

compiled to show this (Appendix C).

4.3 Computational

The overall structure of the code was dominated by the windowing, so the numerical code was

worked in as methods. Rather than mixing it in with the GUI, all of these methods were collected

into their own class. An instance of this data class is created upon the opening of a new project,

opening �le, or data import. Accessors are primarily used in setting the initial values from user

input or �le I/O, but are then mainly internal because they are only used in computations which are

inside the data class. Computations, such as interpolation, are instigated by a call of the method

in the frame class, and then the values can be accessed for display.

This approach of isolating the computational code is much cleaner and makes changes in the

user interface easier since only method calls must be moved rather than blocks of code. Storing the

data in a data class also allows it to be passed to other parts of the frame. The graphic pane needs

the data to display, and C++ inclusion/dependency makes it di�cult to get the values if they are

an intergal part of the frame.

Details on the implementation on key methods in the computational section of the code is

detailed in Section 3.

4.4 OpenGL Graphics

The data set has been represented visually using OpenGL, an interface to graphics hardware.

OpenGL is complex and powerful, and is used for rendering interactive color images of three di-

mensional objects. There were two di�erent types of views created: a height map and a three-

dimensional terrain. Due to the inexperience of the team members with OpenGL, the programming

guide and tutorials were heavily relied upon[4, 10]. OpenGL creates smooth, aesthetically pleasing

images by automatically blending the programmed colors in the window. It also makes the sizing of

the screen simpler. The distance between a coordinate point on the graph and the origin will stay

in proportion during a change in size of the overall image. This allows the screen to be shrunken,

grown, or put into full screen while keeping the picture the same, which is especially important in

an application setting. There are many other options set in OpenGL: lighting, surface materials,

fog, movement, etc. which are beyond what this project requires.

Figure 12: The x-z plane for the 2D grid.

The y coordinates are set based upon the

value at each point.

In order to access the data to be visualized, the

pointer to the data class which stores that informa-

tion is passed to the GLCanvasPane after the inter-

polation is completed. This prevents anything from

being rendered until after the interpolation is �n-

ished, or if everything is �lled, the �Go� button is

pressed. The dimensions of the grid in number of

cells and maximum and minimum values are also

needed for rendering.

A terrain is a three dimensional surface with

varying heights. It is created by having a two-

dimensional mesh in the x-z plane and storing

26

heights (y coordinates) for each point. Speci�c to

this project, this means taking the two dimensional

slice that is being modeled, and using the values in each cell to set the height. A method is de�ned

to return a height for a given set of two-dimensional coordinates:

f l o a t GetHeight (i n t x , i n t z) { re turn ((data−>GetValue (x , z)−min) /(max − min) − 0 .5 f

) ; }

This takes the value relative to the minimum - which is the lowest point - and �nds where it lies

in the range. This returns a decimal, so subtracting 0.5 centers the object vertically. These heights

are put out in the format of decimals so the programmer must convert them into values.

Figure 13: An RGB Cube - a graph of the colors with

the red, green, and blue components on each axis.

Besides setting the height, the color

of the vertices are also set dependent on

the value of each point. This was more

complicated to do. First a color array is

set up, ranging from blue to red. A red-

green-blue (RGB) cube illustrates how

the color changes from blue to green to

red as di�erent components are added

and subtracted. The color array has

structures for elements to store the red,

green, and blue components of the col-

ors. By setting the length of the color

array proportional to the range of val-

ues, the index of a color can be calculated for a given value.

index

#colors
=

value

max−min

index =
(value)(#colors)
max−min

A method similar to the one for height is de�ned to return that index:

i n t GetColorIndex (i n t x , i n t z)

{ re turn ((data−>GetValue (x , z)−min) ∗NCOLORS/(max−min)) ; }

The next step is to draw the actual surface. This is done with a triangle strip. A triangle strip

takes given vertices and draws triangles for consecutive sets such as{1,2,3},{2,3,4},{3,4,5}. This is

fast because there are fewer three-dimensional vertices that have to be sent to the graphics card.

The method from the terrain tutorial was used for looping through the grid and setting the correct

vertices. The routine used to render the terrain is as follows, with a sample result in Figure 14.

i n t z , x , index ;

i n t s i z i n g = 2 . 2 5 ;

f l o a t s c a l e = 2 .0 f / MAX(width − 1 , l ength − 1) ;

g l S c a l e f (s ca l e , s ca l e , s c a l e) ;

g lT r an s l a t e f (−(f l o a t) (width−1)/2 , −0.5 f , −(f l o a t) (length −1)/2) ;

f o r (z = 0 ; z < length − 1 ; z++) {

glBeg in (GL_TRIANGLE_STRIP) ;

27

f o r (x = 0 ; x < width ; x++) {

index = GetColorIndex (x , z) ;

g lCo l o r 3 f (Rainbow [index] . Red , Rainbow [index] . Green , Rainbow [index] . Blue) ;

g lVe r t ex3 f (x , s i z i n g ∗GetHeight (x , z) , z) ;

index = GetColorIndex (x , z+1) ;

g lCo l o r 3 f (Rainbow [index] . Red , Rainbow [index] . Green , Rainbow [index] . Blue) ;

g lVe r t ex3 f (x , s i z i n g ∗GetHeight (x , z+1) , z+1) ;

}

glEnd () ;

}

Figure 14: A cropped screen capture of a 3D ter-

rain generated for sample data.

The other type of image was taken from the

idea of a heightmap. A heightmap is an im-

age used to store three-dimensional data. It

is essentially the two-dimensional plane with a

range of grayscale to represent height. It is eas-

ier to see the range of data in this heightmap, so

it has been included as a viewing option. The x-

y plane is used in this case, and only the colors

are set, not depth. This allowed the estimations

of the unknown geological values to be shown

in a window for easier intelligence. The values

of the makeup of the land were given speci�c

colors and then graphed in a window to create a two-dimensional model of the landscape.

Figure 15: An example of the heightmap rendered

for the same sample data as the terrain.

These graphics can be interpreted as red

spots being the higher numbers with the other

values colored accordingly. The preferable val-

ues and colors for �nding an aquifer will dif-

fer between the graphs of di�erent variables.

In a graph of the porosity of the bore hole a

higher number would be preferable to a lower

because water will be retained in the rock more

if the porosity is higher. However in a graph of

gamma radiation a lower number would be bet-

ter. This explains the lack of a key in the user

interface window: making sense of the values is

really up to the user.

4.5 wxPlotCtrl Graphing

Even though there are several plotting packages available to use with wxWidgets, wxPlotCtrl is

the one supported by wxFormBuilder. It is an interactive xy plot with options such as zooming,

selection of points, and data processing. Many of these functions were hard to access and use owing

to the lack of documentation. Despite this di�culty, an operational graph was created for the

semi-variogram.

PlotCtrlPane is an object within the application frame. Once the semi-variogram is calculated,

28

the data is passed down to be plotted. The x and y directions are separate and distinguished by color

in a key. The experimental semi-variogram is then interactively matched by the user. There are

several options on the left sidebar. The data sets can be scaled to account for anisotropy by entering

a percentage. This calls the function in the PlotCtrl which both performs the scale and saves the

inverse. The next percentage that is entered will �rst use the inverse to revert back to the original

size before applying the new scale. The sill/range of the semi-variogram is set by double clicking

on the graph, which is interpreted by the library as coordinates. These are recorded in variables

and used to calculate the mathematical models which are then added to the plot. These curves

are created by setting the points every whole number, which can cause some misrepresentations

for small horizontal sections. The sill and range can also be set originally from the sidebar. After

they are set � either in the sidebar or with the mouse � the current values are displayed in the

sidebar, updated in the idle loop, which prevents them from being set there again. Other methods

of updating were attempted, but interclass communication and propagation of events has not been

successful so far.

The wxPlotCtrl library also has some automatic functions that were useful. A click and drag of

the mouse will zoom in on the selected section of the plot and can scroll along the axes. The title

and labels can be edited, though they will always be reset.

5 Results

5.1 Case Study

This case study returns to the original application to aquifers: using data from boreholes to deter-

mine if water-bearing rock might be located in the ground between the holes. It is an ideal choice

in some ways, since geostatistics was used in hydro-geology early on in its development. In most

cases, it would be prudent to verify spatial dependence before interpolating, but for the limited

scope of this project it has been assumed. This assumption is supported by the traditionalism of

the �eld.

Regrettably, the two boreholes left to be used after one had to be dismissed were the farthest

apart and proved too challenging for the present version of the program. In spite of these problems,

progress has been made in completing the study and it has provided invaluble insights into what

future work is required.

5.1.1 Data

Data from boreholes in the Los Alamos area were generously provided for use in this project (Section

A.3). There are many di�erent types of information collected from the boreholes; this project deals

with depth, porosity, water �ow, and radiation emission. While porosity or a di�erent variable

can provide valuable information about the locations of aquifers, it really is the combination of

favorable qualities that will indicate a possible aquifer. This is because the perfect geological site

for an aquifer is determined by many di�erent variables acting together for the ideal surroundings.

This

There was data for three boreholes in the Mortandad Canyon area (R-1, R-7, and R-33 located

in Figure 17), but unfortunately, as it was prepared to be imported, it was realized that one did

29

not overlap with the other two depth wise and could not be used at this point. Borehole R-1 was

eliminated and the other two were imported to test the program.

The same section of depth was observed by taking the elevations and depths for the boreholes.

Even though the holes are not at the same elevation, it was possible to �nd an absolute measurement

above sea level by decreasing the gound elevation by the depth of the hole at each point. This lined

up sets of data, making it possible to take a consistant cross-section (Figure 16).

Five di�erent sets of data were provided so that it would be relatively easy to write an import

function to bring the sets into the program. The �rst set of measurements is standard Gamma

Rays in API units. Gamma rays are used to �nd water and the di�erent �uctuations in the rock

patterns. The meters measure incoming gamma rays from radioactive elements in the surrounding

rock. For example, if potassium or uranium are in a rock the water is most likely not there because

they have a large nuclear signature. Since these elements are highly radioactive they will create

quite a large signature and water will not be there because of lack of porosity. Even if there were

porosity, it would be �lled with the radioactive elements. The next type of data received was Deep-

Reading Resistivity in ohm-meters. This basically reads the conductivity and resistivity of the rock

at interval depths. The conductivity and resistivity of the di�erent depths can be used to determine

whether or not the rock holds any potential for water. The third set is a total porosity set which

measures the total amount of pore space in the probed aquifer. This is a less e�ective way to �nd

data because of its using all of the pore space no matter how small. More meaningful is the fourth

data set, e�ective porosity. E�ective porosity allows the probe to only �nd certain sized pores that

allow e�ective �ow of ground water measured by nuclear magnetic resonance (NMR). Last is the

Logarithmic mean of T2. The Logarithmic mean is the average pore size of the probed area and

can be used to tell how useful the aquifer is - the pores must be open enough to be interconnencted.

An import method was then written to bring the data into the application and was then used

as a sample set to test the program with real world data.

Figure 16: Two dimensional cross-section of boreholes with di�erent elevations.

30

Figure 17: Location of the boreholes from the case study.

5.1.2 Semi-variogram

The semi-variogram for the various types of data was successfully plotted. The x direction has only

one point because there is only the single distance from one borehole to the other. The y direction

produced interesting plots which are inluded here in Figure 18. Note the large values of variance

that probably arise when the data covers multiple rock structures. The large di�erences between

them would increase the average variance.

31

Figure 18: Semi-variogram of each of the data sets for the two boreholes. These are focused on the
y direction as there is only one known point in the x direction.

5.1.3 Mixed Success of Interpolated Fields

There were mixed results between inverse distance weighting and kriging. The IDW was able to

complete the interpolation, while kriging returned completely unreasonable numbers. These runs

used the anisotropy and sparse data options and only run for each since the problem is so large.

32

The height maps produced for each data set using IDW are shown in Figure 19.

Figure 19: Height maps produced for inverse distance weighting interpolation between boreholes.
From top to bottom they are: resistivity, total porosity, SGR, and e�ective porosity.

Since these results were only obtained at the end of the project, no attempt at numerical analysis

has been made.

Figure 20: Visual results of small section of bore-

hole interpolated with kriging.

Attempts to run the borehole problems us-

ing kriging continued to be fruitless. Even

though it was �nally capable of �nishing, the

numbers were ridiculously large. In interpola-

tion, results should fall within the range of the

original data, further invalidating those values.

It was theorized that the large variances used

in matching the semi-variogram, coupled with

the scale of the problem, simply overloaded the

methods and caused it to return nonsense. Ul-

timately, a small section of the boreholes was to use instead, and itwas successfully completed when

an much smaller variance was used (Figure 20).

6 Conclusions

There was a lot accomplished in the course of this project, but geostatistics is a complex �eld, so

only the fundamental levels were covered in the available time. The science that was managed to

be incorporated into the project is potentially useful in the a search for aquifers, as shown by the

preliminary results, and was a signi�cant learning experience for all involved.

The results of the case study demonstrated that there are still several adjustments to be made

33

for the program to be a viable tool in large scale problems. For smaller problems, it works well.

This includes several options set by the user for desired e�ects. The user interface still has some

pitfalls if it is not used the way it was designed, but turned out impressively.

Intersting characteristics of the two interpolation methods became apparant through the test

runs. Kriging provides a smoother interpolation in contrast to the 'bull's eye' e�ect of inverse

distance weighting. There are advantages of IDW which were demonstrated in the case study.

Kriging is much more sensitive to the high variances and anisotropy, which likely caused the faulty

results when it was used for the borehole data. IDW can complete this problem, returning results

for similar situations that are not possible with kriging.

More than the cursory attention given to the results from the case study would be required

to determine exactly how accuratly the program predicted possible aquifers. Unfortunately, these

were not completed until the very end of the project, so this analysis was not possible. In and of

itself, simply getting plausible results out of the program is an achievement.

6.1 Current Status

Despite hard work and good ideas there were many problems in the making of a working program.

There was a memory leak that made the system crash if overly extensive data sets were attempted

to be run. The memory leak was �xed, but large data sets still do not work, returning very large,

faulty answers. Smaller data sets do run through the program and yield successful results. The case

study involving the borehole data was imported into the program and helped to determine whether

the process worked. To hasten the slow computation of the computer program an optimization of

tasks was attempted. It was partially successful and made the program somewhat more e�cient.

The graphics presented many di�culties and much time was spent in �xing them. Getting them

to interface with the C++ was problematic and did not work for a long time. Making the graphic

map three dimensional was a trial. Initially the graphics were being written in OpenGL as rows of

colored boxes that would be colored by their speci�ed values, however that could not be contrived

to work correctly and was discarded in favor of triangle stripping. This worked much better and

the graphics �nally interfaced satisfyingly with the other code.

Fortunately, almost all of the problems encountered in the progress of �Adam's Ale� were dealt

with and eliminated to create a program that does what it was designed for. Hopefully, it will be

able to solve real world problems.

7 Teamwork

When a team has a small number of members, the con�nes of the duties are less well de�ned,

as more work has to be done by fewer people. Team 65 had four members of whom each had a

very speci�cally designated task. This system was designed for e�ciency and e�ectiveness and was

implemented with success. As well as giving each job to the most suitable team member, Team 65

attempted to involve each of their colleagues in their own allocated areas so as to provide instruction

for everyone. The team members not already versed in programming learned the basics of OpenGL,

wxFormbuilder, C and C++. Because of the program's application in geostatistics pertaining to

aquifers, everyone mastered the information on aquifers needed to make this project a success.

34

One of the many ways Team 65 improved on communication was through the utilization of

Google Code, Google Documents, and Google Calendar. Google Code granted the members of the

team working on programming a repository for their specialized parts of the whole. The repository

made the merging of the parts a quick and easy process. Google Documents was a repository for

the members of the team working on the various reports so that the many di�erent parts of the

writing could be done more easily and the other teammates could immediately have the most current

versions of the reports. The individuals of Team 65 are not especially noted for their organizational

skills, however Google Calendar recti�es this matter. It could be said that having their schedule

of events available for regular perusal impressed upon them the responsibilities of remembering

a meeting. Not only would the other teammates be disappointed in the individual if he missed

but would exclude him from the amusing antics Team 65 would routinely engage in while working

diligently.

Overall, Team 65 functioned under very superior working conditions for the entirety of their

project and were extremely pleased in the end result of all their hard work.

8 Recommendations

This project created a solid basis for future studies in the extensive and growing �eld of geostatistics.

The discontinuity of success from small to large problems should be addressed, perhaps in the form

of dividing the problem up into the separate structures. Additions of safe-guards to catch errors

that may occur for incorrect user operations would prevent unexplained crashes. The user should

be supplied with helpful messages to guide them to �x the problem in the input.

E�ciency in a computer program is always to be desired and optimization is the key to a faster

running program and should de�nitely be undertaken to better the program. The operation on

the GPU is still visibly slower than the CPU and requires more work to get any speed-up. This

should be done by parallelizing more sections of the method and balancing the gain of the parallel

processing with the cost of loading the data.

The case study involved in the program introduced the issue of creating an accurate semi-

variogram as only one value could be calculated in the x direction - at the distance between the

boreholes. It seems that this is still a dilemma of the �eld and that the graphing of semi-variograms

from sparse data has yet to be performed in the �eld of geostatistics. If this project managed to

achieve this milestone then many more could follow.

These improvements could take this project to a more complex and hopefully more useful level

of practice.

A References

A.1 Bibliography

References

[1] Gaussian function. Wikipedia, 2009.

[2] Isobel Clark. Practical Geostatistics. Elsevier Applied Science, 1979.

35

[3] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University

Press, Baltimore, Maryland, 3rd edition, 1996.

[4] Bill Jacobs. Opengl video tutorial - terrain. 2008.

[5] Shari Kelley and Peggy Johnson. Frequently asked questions about water. The New Mexico

Bureau of Geology and Mineral Resources, 2009.

[6] G. Matheron. The theory of regionalised variables and its applications. Technical report, 1971.

[7] NVIDIA. OpenCL Programming Guide for the CUDA Architecture, 2.3 edition, Mar. 2009.

[8] Howard Perlman. Water science for schools: Aquifers. United States Geological Survey, 2009.

[9] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical

Recipes in C. Cambridge University Press, New York, 1988.

[10] Dave Shreiner. OpenGL Programming Guide. Addison-Wesley Professional, Upper Saddle

River, New Jersey, 2009.

[11] Julian Smart, Kevin Hock, and Stefan Csomor. Cross-Platform GUI Programming with wxWid-

gets (Bruce Perens Open Source). Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[12] Kimberly J. Swanson. Aquifer characteristics. Water Encyclopedia: Science and Issues, 2009.

A.2 Software/Tools

Several programming tools and other applications were used in the development of this project:

wxWidgets/wxFormBuilder

Eclipse

Totalview

Doxygen

Google Code

Microsoft O�ce and OpenO�ce

LYX

A.3 Acknowledgments

We would like to extend our deepest thanks to the people who volunteered so much of their time

to help us with this project:

Robert Robey, for his general help with everything;

Thomas Robey, for his mentorship in the geostatistics and mathematics;

David Broxton, Danny Katzman, and Ned Clayton of Schlumberger, Inc for providing us with

data, de�nitions, and meeting with us to work through it;

Mary Green, for her advice in geology and hydrology;

Larry Cox and Jorge Crichigno and for their advice and positive comments at the interim

presentation.

36

B Glossary

Anisotropy property of directional dependence; in geostatistics this means that the data has

di�erent spatial correlation in the x and y directions. For example, wood will be more related

along the grain than against it.

Geostatistics a branch of applied statistics that uses the interdependence of spatially correlated

data to interpolate unknown values.

Isotropy property of consistency for all directions, in geostatistics the spatial correlation is inde-

pendent of direction.

Kriging a common method of interpolation in geostatistics that uses a mathematical model of the

semi-variogram.

Nugget (of semi-variogram) magnitude of discontinuity at the origin, usually a result of measur-

ing/sampling errors.

Range (of semi-variogram) distance at which the semi-variogram plateaus and range at which

points are correlated to some degree.

Semi-Variogram the formula and graph of the variation of data over distance, quantifying spatial

correlation.

Sill (of semi-variogram) variance value for distances beyond the range or the value of the plateau

Spatial Correlation the idea of data being related as a function of its location

C User Guide

This program was created to be very user friendly. The window is a very simple design in which

there are three large sections. The �rst section is a tabbed window in which the user can switch

between the visual and the raw data. Below that is the semi-variogram. That is the area in which

the data is graphed. On the right side is a vertical window in which the user can change the

appearance of the semi-variogram. For example, the user can choose the range, sill, a model, the

method of interpolation and the size at which the X and Y values are scaled.

-To start the process, either go to File->Open... or select File->New. Then select the set of

data that is to be implanted or created.

-It will open a window that has the uploaded data; select the set of data.

Figure 21: Data inserted

37

-Once that data set has been opened the chart at top of the window that reads �Raw Data� will

�ll with the selected set of data.

-Plot->Semivariogram, the graph will appear in the bottom section.

-Double click on the knee of the graph. Three more lines will appear, they are the three di�erent

mathematical models.

Figure 22: Semivariogram plotted, mathematical models chosen

-Select one of the models at the right in the �Model Type� scroll box. The model which has

been selected will now be the only one on the graph.

-Choose your method of interpolation, the scale for each X and Y direction, and the number of

runs.

Figure 23: Model type, range and sill, scales, interpolation method, number of runs selected

-Hit �Go!�.

-There are many paths the user can take from this point.

-It is possible to view the data in which the semivariogram has �come up with�.

38

Figure 24: Final screen with a terrain map

-Also, the user can view two di�erent versions of the visual with the �Visual� drop down menu.

Choose between �Height Map� and �Terrain�.

Figure 25: Left->Height Map, Right->Terrain

39

