
 1

Astrophysical N-Body Simulations of Star Clusters

New Mexico
Supercomputing Challenge

Final Report
April 5th 2010

Team 68
Los Alamos High School

Team Members:

Sam Baty
Peter Armijo

Teachers:

Lee Goodwin
Diane Medford

Project Mentors:

Roy Baty
John Armijo

 2

Report Contents

1.0 Executive summary 3

2.0 Problem definition 4

3.0 Solution method 6

 3.1 Physical Modeling 6

 3.2 Leapfrog Method 8

 3.3 Validation Problems 10

 3.3.1 One-Body Spring Mass System 10

 3.3.2 Two-Body Spring Mass System 11

 3.3.3 One-Dimensional Aerodynamic Drag 12

 3.3.4 Two-Dimensional Aerodynamic Drag 13

4.0 N-Body Problems 15

 4.1 Solar System Simulations 15

 4.2 N-Body Simulations 17

 4.2.1 500-Body Simulations 18

 4.2.2 2,000-Body Simulations 19

 4.2.3 10,000-Body Simulations 20

5.0 Summary and Conclusions 21

6.0 References 23

7.0 Figures 25

8.0 Appendices 43

 8.1 C-Programs for Validation Problems 43

 8.2 C-Programs for N-Body Simulations 47

9. Original Contributions and Acknowledgements 54

 3

1.0 Executive Summary

 This report presents simulations of the formation and evolution of small star

clusters using a direct N-Body method. In this project, Newtonian mechanics and the

Universal Law of Gravitation were combined with the Leapfrog numerical scheme to

simulate the evolution of idealized star clusters. All simulations were performed with

codes written in the computer language C. Sample mechanics problems were developed

to understand and validate the Leapfrog method. The general N-Body code was then used

to simulate a simple model of the Solar System, validating the algorithm. The N-Body

code was applied to model the evolution of small star clusters with 500, 2,000 and 10,000

bodies.

 4

2.0 Problem Definition

 Questions about star clusters are central to understanding many problems in

astronomy and cosmology. In our project we have worked to simulate the formation and

evolution of small star clusters using a direct N-body method to model their gravitational

interactions. Last year for the Supercomputing Challenge our team, Baty and Armijo [1],

developed an N-Body code and simulations of the Solar System using a small number of

bodies. This year we extended our analysis of the Solar System to model star clusters

with up to 10,000 bodies.

 The N-Body computational models use Newtonian mechanics and the Universal

Law of Gravitation. Each star is modeled as a point-mass (or particle) with a prescribed

initial position and velocity. A Leapfrog numerical method has been used to integrate the

equations of motion based on Euclidean geometry and Newton’s Universal Law of

Gravitation. All simulations were performed with codes written in C. Simulations have

been run on both Mac and PC platforms with both Apple and Microsoft operating

systems. All final simulations for this report were run on a Mac with an OS 10.6

operating system.

 In Section 3.0 the solution method is outlined and several basic problems in

Newtonian mechanics are solved to develop and apply the Leapfrog integrator. The

numerical solution of spring-mass problems and aerodynamic drag problems are

presented. These problems were studied in order to understand how the Leapfrog

integrator works and how to validate the numerical results. The mechanics problems

helped us to develop coding techniques for the N-Body problems.

 5

 Section 4.0 applies the Leapfrog method to N-Body problems. A 15-body model

of the Solar System is simulated with the Sun, the eight Planets, the Moon, Jupiter’s four

main moons and Pluto. These simulations are compared with the results from our earlier

simulations with a fourth-order Runge-Kutta scheme, [1], and found to be in good

agreement. Our new N-Body code, based on the Leapfrog method, is then applied to

larger N-Body problems. Simulations with 500, 2,000 and 10,000 bodies have been

successfully completed. A random number generator was applied to specify all initial

data for these simulations.

 Section 5.0 summarizes the results of the project. Conclusions from the

moderately large N-Body simulations are highlighted in this section.

 6

3.0 Solution Method

 The physical model developed in our project is based on the classical mechanics

of rigid bodies. Each body is idealized as a point-mass or particle in three-dimensional

space, which is allowed to move in time as a complete system of N-Bodies evolves. This

section of the report outlines the basic physical assumptions and develops the

mathematical equations required to numerically simulate the motion of moderately large

N-Body problems.

 Section 3.1 reviews the simple kinematics equations for a point-mass with

constant acceleration and introduces the Universal Law of Gravitation. In Section 3.2 the

constant acceleration kinematics equations are restricted to short time intervals to predict

the velocity and position of point-masses. These equations are then used to define the

Leapfrog numerical integration scheme.

 Section 3.3 applies the Leapfrog numerical scheme to four classical mechanics

problems: one- and two-body spring mass systems, and one- and two-dimensional

aerodynamic drag problems. In these problems, both linear and non-linear forces are

considered, to validate the numerical method.

3.1 Physical Modeling

 The constant acceleration mechanics equations are developed in almost all

elementary physics books. Following Meriam [2], the basic kinematics equations in

three-dimensions are given by

v = v0 + a t, (1)

x = x0 + v0 t + a t2/2, (2)

 7

where v and x are the velocity and position vectors, and v0 and x0 are the initial velocity

and position vectors. Moreover, t represents the time of interest and a represents a

constant acceleration vector. In this report, all vectors are written in bold face and are

three-dimensional. The present study was preformed in Cartesian coordinates using the

notation: x = (x, y, z), v = (u, v, w) and a = (ax, ay, az). These equations are further

discussed in the texts of Serway and Faughn [3], and Williams, et al. [4].

 Equations (1) and (2) are used to find the velocity and position, respectively, of a

point-mass. By providing initial data in the form of velocity and position we can predict

the motion and location of a particle at any future time. These equations are valid only

when the acceleration is constant.

 Newton’s Universal Law of Gravitation for an N-Body problem is given by the

following equation:

Fi = - G Σ mi mj (xi - xj) / (| xi - xj |3), (3)

where G is the gravitational constant, mi and mj are the masses of the N-Bodies, and xi

and xj are the positions of the masses mi and mj, respectively. The summation in Equation

(3) is taken over the index j when j is not equal to i. This gives the resulting gravitational

force on the ith body. Also in Equation (3) the length of the kth position is given by

| xk | = (xk
2 + yk

2 + zk
2)1/2. (4)

 In Equations (3) and (4): i, j, k = 1, …, N. The Universal Law of Gravitation is discussed

in detail in Aarseth [5].

 The Universal Law of Gravitation, given in Equation (3), is related to the motion

of the ith body using Newton’s 2nd Law:

Fi = mi ai. (5)

 8

Combining Equations (3) and (5) yields the N-Body equation of motion:

ai = - G Σ mj (xi - xj) / (| xi - xj |3). (6)

In our project, a variation of Equation (6) is used to simulate the motions and positions of

large numbers of point-masses.

3.2 Leapfrog Method

 To model an N-Body system, Equation (6) is used to approximate the acceleration

of the ith body on a small time interval, ∆t. On such a small time interval, the acceleration

given by Equation (6) is assumed to be constant, which reduces the problem to the

kinematics model of Equations (1) and (2). To see how this works, let

ai = ∆vi / ∆t. (7)

Solving Equation (7) for ∆vi gives

∆vi = ai ∆t. (8)

Next, recalling that

∆vi = vi – v0i, (9)

yields

vi = v0i + ai ∆t, (10)

which is Equation (1). Likewise, if we let

vi = ∆xi / ∆t, (11)

where, ∆xi = xi – x0i, so that

xi = x0i + vi ∆t. (12)

 9

For an average (constant) acceleration Equation (12) may be shown to be equivalent to

Equation (2).

 From Reference [6], the Leapfrog method is defined by:

vk+1/2 = vk-1/2 + ak ∆t, (13)

xk+1 = xk + vk+1/2 ∆t, (14)

where k is the time index. Equations (13) and (14) are solved in time, calculating the

positions and velocities at shifted half-time steps. This shift gives the integration method

the name Leapfrog, because the position and velocity are calculated alternately at every

half-time step. Equations (13) and (14) are the same as Equations (10) and (12) with the

modification for the alternating half-time step. The Leapfrog scheme is also known as

Verlet integration.

 The Leapfrog method was used in our project because it provides an optimum

balance of accuracy and computing efficiency. This method is a fixed time step method

that minimizes the total computational error in energy, Heggie and Hut [7]. The Leapfrog

scheme is a second order accurate numerical method. The scheme was chosen over other

integration methods such as a Runge-Kutta method, Burden and Faires [8], because of

computational efficiency. The Leapfrog scheme is useful for qualitative physics modeling

on long time intervals.

 The Leapfrog scheme may be extended to a variable time step scheme by

factoring in the slope of the acceleration or the mechanical jerk, Hut, et al. [9]. A variable

time step integration scheme allows the N-Body interactions to occur with relative

accuracy, in a single simulation, while the interactions are on very different physical time

 10

scales. The practical implementation of a variable time step Leapfrog method is a

research activity and was not completed in the present project.

3.3 Validation Problems

3.3.1 One-Body Spring Mass System

 Our first validation problem consisted of simulating the motion of a one-body

spring mass system. Using Hooke’s Law, Serway and Faughn [3],

F = - k x, (15)

and Newton’s 2nd Law, Equation (5), the equation of motion is given by

m a = - k x. (16)

In Equations (15) and (16), k is the spring constant. Equation (16) may be written solving

for acceleration in the form:

a = - (k/m) x. (17)

Equation (17) is combined in the Leapfrog method given by Equations (13) and (14) to

provide a computational model of the one-body spring mass system. At each time step

Equation (17) is used to approximate the acceleration.

 Following Kreyszig [10], the exact solution to Equation (17) is

 x(t) = A cos[ωt] + B sin[ωt], (18)

where ω = (k/m)1/2. Figures 1 and 2 compare the position and velocity of the Leapfrog

solution (red) to the exact solution (green) assuming the parameters k = m = 1 and the

initial data x0 = 1.0 and v0 = 0.0, respectively. These initial conditions imply A = 1.0 and

B = 0.0. Figure 3 shows the absolute error between the numerical solution and the exact

solution for the step size ∆t = π/100. The maximum absolute error in position (red) is ~

 11

0.047 and the maximum absolute error in velocity (green) is ~ 0.031. The C-program

implementing the numerical solution of Equation (17) is listed in Appendix 8.1.

3.3.2 Two-Body Spring Mass System

 Our second validation problem consisted of simulating the motion of a two-body

spring mass system. The spring mass system consists of two masses, m1 and m2,

restrained by three springs to move horizontally on a frictionless surface. Each spring is

assumed to have the spring constant k. Following Greenberg [11], the equations of

motion are given by

F1 = - 2 k x1 + k x2, (19)

F2 = k x1 – 2 k x2, (20)

where x1 is the position of m1, and x2 is the position of m2. Equations (19) and (20) come

from a free body diagram. Applying Newton’s 2nd Law to these equations produces,

a1 = - (2 k/m1) x1 + (k/m1) x2, (21)

a2 = (k/m2) x1 – (2 k/m2) x2. (22)

Equations (21) and (22) are combined in the Leapfrog method given by Equations (13)

and (14) to provide a computational model of the two-body spring mass system. This

problem was our first example of a system of equations.

 From Greenberg [11], the exact solution to Equations (21) and (22) is

x1(t) = 0.5 cos[t] + 0.5 cos[ωt], (23)

x2(t) = 0.5 cos[t] - 0.5 cos[ωt], (24)

for m1 = m2 = 1 and ω = (3)1/2, assuming the initial conditions x01 = 1.0, and x02 = 0.0,

and v01 = v02 = 0.0.

 12

 Figures 4 and 5 compare the positions of the Leapfrog solution (red) to the exact

solution (green). Figures 6 and 7 compare the computed velocities (red) with the exact

velocities (green). Figures 8 and 9 show the absolute errors in the positions as a function

of time. For this example the step size was ∆t = π/200. The C-program implementing the

numerical solution of Equations (21) and (22) is listed in Appendix 8.1.

3.3.3 One-Dimensional Aerodynamic Drag

 Our third validation problem consisted of simulating the nonlinear, free-fall

motion of a gravity bomb in one-dimension with aerodynamic drag. Aerodynamic drag,

D, is defined as the scalar function

D = (1/2) ρ V2 Cd A, (25)

where ρ is the air density, V is the speed, Cd is the drag coefficient, and A is a reference

area, Anderson [12]. Using a free body diagram, the acceleration for a falling body of

mass m is given by

az = (1/2m) ρ V2 Cd A – g. (26)

From Equation (26) the speed of a falling object may be shown to be

v(t) = -VT tanh (g t / VT), (27)

where VT is the terminal velocity:

VT = (2mg / ρCdA)1/2. (28)

Equations (26), (27) and (28) are discussed in Reference [13].

 The Leapfrog scheme of Equations (13) and (14) is combined with Equation (26)

to simulate the speed of a gravity bomb. For our calculations, approximate values were

used for a GBU-28, Reference [14]. Here m = 2091 kg and A = 0.213 m2. The drag

 13

coefficient is approximated as Cd = 0.75 for transonic flow, Hoerner [15]. This simulation

assumes a constant air density of 1.0 and an initial altitude of 12192 m (40,000 ft).

 Figure 10 compares the speed computed with the Leapfrog scheme (red) and the

solution given by Equation (27) for the step size ∆t = 0.01. The simulation also computed

the position of the bomb to estimate the terminal speed. Here the computed speed at

ground level was 394.5 m/s in comparison to the terminal speed of 506.7 m/s. Figure 11

shows the absolute error for the speed as a function of time. The C-program

implementing the numerical solution of Equation (26) is listed in Appendix 8.1.

3.3.4 Two-Dimensional Aerodynamic Drag

 Our fourth validation problem consisted of simulating the nonlinear, free-fall

motion of a gravity bomb in two-dimensions with aerodynamic drag. The acceleration of

a free falling body in two-dimensions is given by the equations:

ax = - (1/2m) ρ u | v | Cd A, (29)

az = - (1/2m) ρ w | v | Cd A – g, (30)

where | v | is the magnitude of the velocity vector. The vertical direction, z, is orientated

so that down is negative, and w < 0. These equations and analytical approximations of

their solutions are discussed in Gaude [16].

 The Leapfrog scheme of Equations (13) and (14) is combined with Equations (29)

and (30) to simulate the planar motion of a gravity bomb. The two-dimensional

simulations repeated the analysis of the GBU-28 from Section 3.3.3 using the same

physical parameters. This is a nonlinear problem that does not have an exact solution.

Therefore, our first simulation duplicated results of the one-dimensional, free-fall

 14

problem of Section 3.3.3 by setting the horizontal velocity to zero. This suggested that

the code was working correctly.

 Our second simulation was preformed for the initial velocity, v = (268.2, 0.0) m/s

(600 mph) and initial position x = (0.0, 12192.0) m. Figure 12 shows the horizontal

position (downrange) of the bomb as a function of time. Moreover, Figure 13 shows the

altitude of the bomb as a function of time. This simulation was performed for the step

size ∆t = 0.01. While the results of this simulation could not be checked mathematically,

the predicted values seem reasonable for the velocity and length scales of the problem.

The C-program implementing the numerical solution of Equations (29) and (30) is listed

in Appendix 8.1.

 15

4.0 N-Body Problems

 The next step in our project was to combine the acceleration of Equation (6) from

the Universal Law of Gravitation with the Leapfrog method of Equations (13) and (14) to

simulate example N-Body problems. Each body is idealized as a point mass that is

allowed to move in space as a function of time. This section of the report outlines the N-

Body numerical experiments that were performed.

 Section 4.1 gives the results of a 15-Body model of the Solar System. These

simulations are examples of an application of the general N-Body algorithm developed

for this project. The results for the Solar System match the basic quantitative results for

the motion of the planets.

 Section 4.2 then applies the general N-Body Leapfrog algorithm to three

moderately large N-Body experiments: 500-Bodies, 2,000-Bodies, and 10,000-Bodies.

The computational expense of the N-Body algorithm is examined. Simulations are

preformed with different time step sizes and softening constants.

4.1 Solar System Simulations

 The first gravitational N-Body problem was to repeat a model of the Solar System,

including the Sun, nine planets, the four major moons of Jupiter, and the Earth’s Moon.

This model used the Leapfrog scheme and accurately simulated the orbits of these bodies

in comparison to published NASA data, Williams [17]. The results for the complete Solar

System were calculated using large time steps, ranging up to two hours, because the

orbits of some of the planets have very long periods around the sun. The code was used to

simulate time periods of up to approximately 300 years. All simulations assumed

 16

physical units of Moon masses (7.350 x 1023 kg), hours and kilometers.

 In the simulations, we accounted for several physical differences in the geometry of

the orbits of the planets. For instance, the orbits of both Mercury and Pluto are at an angle

relative to the orbits of the other planets. Mercury’s orbit is at a 7° angle and Pluto’s is at

a 17° angle. These angles were modeled to simulate the geometric differences in

Mercury’s and Pluto’s orbits, so the calculations reflect these geometric effects correctly.

Pluto’s orbit intersects Neptune’s orbit at two points. Figures 14 and 15 show the orbits

of the inner and outer planet about the Sun, respectively. The Leapfrog integration

scheme produced simulations that were in good qualitative agreement with our

simulations from last year using a fourth-order Runge-Kutta scheme, Baty and Armijo

[1].

 For a fixed time step, the required computational time had to be balanced with the

accuracy of the simulation. When a fairly large time step was chosen, the simulations

could breakdown and give unreliable results. As an example, consider a simulation of

Jupiter and its four major moons: Io, Europa, Ganymede, and Callisto. In the Solar

System simulations, it was found that a time step greater than a few hours yielded

simulations that would lose the moons of Jupiter after a few hundred iterations of the

calculation. This behavior is shown in Figure 16. The error accumulated quickly,

producing unstable and decaying orbits. This suggested that complex N-Body problems

require detailed time step parameter studies. Figure 17 shows a stable simulation of the

orbits of Jupiter’s four major moons about the planet’s trajectory. The C-program for the

Solar System problem is listed in Appendix 8.2.

 17

4.2 N-Body Simulations

 The basic physics and astronomy of star clusters is very complex. Detailed

references on galactic astronomy may be found in Binney et al. [18] and [19]. Moreover,

recent work on the N-Body problem may be found in Aarseth et al. [20]. The strategy in

our project was to define an idealized model and run numerical experiments on an

increasing number of bodies. The N-Body simulations assumed a total mass of 1 for each

simulation. Therefore, the mass of each body in a given simulation was 1/N. The

gravitational constant G in Equation (6) was defined to be 1. Standardized units for N-

Body problems are presented in Heggie and Mathieu [21].

 A random number generator was used to define three initial positions in the eight

octants of space, +/- x, +/- y, and +/- z for each particle. The initial positions were

multiplied by 10*(3)1/2, which was an arbitrary length scale for the problem. This

approach generated initial positions in a cube in space of width 20*(3)1/2. The particles

outside of a sphere of constant radius 10*(3)1/2 were discarded so that the initial

distribution of particles was spherical. The resulting particles contained in the sphere

were shifted so that the average of position in each direction about the origin was zero.

The initial velocity of all the particles was zero.

 To prevent collision singularities in the numerical model, Equation (6) was

modified with a softening term ε

ai = - G Σ mj (xi - xj) / (| xi - xj + ε |3). (31)

 18

This term prevents the denominator of Equation (31) from being zero, so that the

acceleration is undefined. The softening parameter is an artificial fix in the N-Body

model and its effect must be carefully considered on the results of numerical experiments.

 To understand the computational expense of our direct N-Body algorithm,

computational timing studies were performed for N-Body problems up to 10,000 bodies.

The N-Body C-program was set to perform 100 iterations of the code. Figure 18 shows

the computational time required to perform the iterations as a function of the number of

bodies. Roughly the computational time (or expense) increases like N2, where N is the

number of bodies. The C-program for the arbitrary N-Body problem is listed in Appendix

8.2. A good reference for the C programming language is by Kernighan and Ritchie [22].

4.2.1 500-Body Simulations

 For the 500-Body simulation we adjusted the total number of bodies to produce

500 bodies within the sphere of constant radius. The step size was ∆t = 0.1, and the

simulation was run to 4,000 iterations. This calculation took on the order of an hour to

complete. A Gnuplot, [23] animation was generated using 60 frames in time showing the

x-y coordinates of the evolving 500-Body system. A parametric family of simulations

was run to study the effect of the softening constants of 0.001, 0.01, 0.1, and 1.0.

 After the start of the simulation, the system collapses onto itself within a short

amount of time. A small number of bodies then shoot through the system, not colliding

with any of the other bodies, to escape the problem. Many of the other bodies collide and

rebound from the collapsed system. After the system collapses, the majority of the bodies

are grouped in a tight cluster near the origin of the calculation. This tight cluster slowly

 19

evolves in three dimensions with particles leaving and returning to the principal globular

concentration of mass. It appears that the system reaches a quasi-equilibrium state after

about 2,000 iterations of the code.

 Figure 19 shows the initial positions of the masses in the x and y coordinates.

Figures 20 through 24 show various stages in the evolution of the cluster in time. All of

these figures show the data in the x-y coordinate plane. Figure 25 shows the complete

time history of all 500 bodies for the four different softening constants. These different

softening constants produce different trajectories and velocities for the rebounding

particles. The gross features of the cluster are less sensitive to the value of the softening

constant than the escaping particles.

4.2.2 2,000-Body Simulations

 For the next simulations, 2,000 bodies were modeled. Two simulations of this

cluster were run, to study the effect of time step size on the calculations. The first

simulation used a time step size of ∆t = 0.1 and was run for 60,000 iterations. The second

simulation had a step size of ∆t = 0.05 and was run for 120,000 iterations. The first

simulation required approximately 10 hours of computational time, while the second

simulation required approximately 19.7 hours of computational time.

 Both simulations showed the same basic behavior as the 500-Body problem,

where the cluster first collapses on itself and bodies are lost from the system. A central

globular cluster then forms close to the origin of the calculation. This mass concentration

is stable until approximately 36,000 iterations of the code, when the simulation forms a

jet in the center of the concentration of mass. This jet shoots out from the origin of the

 20

simulation and does not return. It is not understood why the jet forms. One possibility is

the buildup of the computational error and the resulting numerical instabilities. Both

simulations predicted the formation of the jet, with the 120,000 iteration simulation

showing it later in the calculation. Figures 26, 27 and 28 show the ∆t = 0.05 simulation at

various times. Figure 29 shows the jetting phenomenon at the end of the calculation.

4.2.3 10,000-Body Simulations

 For our final simulation, a cluster was run consisting of 10,000 bodies. The

beginning behavior of this cluster was similar to the behavior of the 500-Body and 2000-

Body problems. After the initial collapse of the system, the cluster moved apart, creating

two separate globular masses. These two masses then slowly moved away from each

other and interacted with one another by transferring bodies back and forth between

them. The globular masses formed around 1250 iterations of the simulation. It is possible

that these structures are related to the formation of a spiral distribution of particles. This

has not been proved. This simulation was run for 3,000 iterations with a step size of ∆t =

0.1 and took approximately 12.4 hours to complete. Because of the size of the simulation

no attempt to re-run the problem with a smaller step size was made.

 Figures 30 through 33 show the beginning evolution of the 10,000-Body problem.

Figures 34, 35, and 36 show the two globular masses at the end of the simulation (3000

iterations) giving their relative positions in three dimensions. Figure 34, Figure 35, and

Figure 36 show the x-y plane, the x-z plane, and the y-z plane, respectively.

 21

5.0 Summary and Conclusions

 This year our team completed simulations of several sizes of N-Body systems,

with various levels of physical detail. The team converted a 15-Body model of the Solar

System, based on a fourth-order Runga-Kutta scheme, to a model based on a second-

order Leapfrog scheme. To develop and validate the Leapfrog algorithm, the method was

also applied to several mechanics problems with and without exact analytical solutions.

These problems included spring mass systems and aerodynamic drag problems. After it

was determined that the computational scheme was working, the Leapfrog algorithm was

applied to simple models of star clusters with 500, 2,000, and 10,000 bodies.

 Our key conclusions include observations about the results of the direct N-Body

simulations. First, the N-Body problems become harder to simulate as the number of

bodies increases, because the computational expense increases quadratically. Second, N-

Body simulations required careful tracking of the time step size to avoid a degradation of

the simulation. This sort of behavior was seen in one of our Solar System problems with

the moons of Jupiter. Another observation is that large N-Body systems like the cluster

simulations all initially behave like one another. The initial phase of all the large N-Body

simulations consisted of the system collapsing in on itself and bodies shooting through

the origin and out the other side. The differences between the simulations occur later in

the calculations. For example, the 500-Body problem formed one cluster at the origin,

while the 10,000-Body problem created two clusters that interacted with one another.

Moreover, for the 2,000-Body problem, the importance of choosing a time step size to

prevent accumulation errors in the simulation is implied by the formation of the jetting

phenomenon. N-Body simulations demand a careful balance of all of the technical details

 22

in the problem: the time needed to run the computational model, the time step size, the

accuracy of the simulation, and softening method applied to remove collisional

singularities. Each of these details requires in depth consideration and study to

successfully apply and understand the results of an N-Body simulation.

 23

6.0 References

1. Baty, S.R., and Armijo, P.J., Astrophysical N-Body Simulations of Star Clusters,

Supercomputing Challenge, Final Report, 2009.

2. Meriam, J.L., Engineering Mechanics Volume 2: Dynamics, John Wiley & Sons,

1978.

3. Serway, R.A. and Faughn J.S., Physics, Holt, Rinehart and Winston, 2006.

4. Williams, J.E., Metcalfe, H.C., Trinklein, F.E. and Lefler, R.W., Modern Physics,

Holt, Rinehart and Winston, Inc., 1968

5. Aarseth, S.J., Gravitational N-Body Simulations, Cambridge University Press, 2003.

6. Anonymous, Wikipedia Article: en.wikipedia.org/wiki/Leapfrog_integration, Called

upon 3/28/2010.

7. Heggie, D.C. and Hut, P., The Gravitational Million-Body Problem, Cambridge

University Press, 2003.

8. Burden, R.L., and Faires, J.D., Numerical Analysis, 3rd Edition, Prindle, Weber &

Schmidt, 1985.

9. Hut, P., Makino, J., and McMillan, S., “Building A Better Leapfrog,” The

Astrophysical Journal, Volume 443, 1995.

10. Kreyszig, E., Advanced Engineering Mathematics, 8th Edition, John Wiley &

Sons, 1999.

11. Greenberg, M.D., Advanced Engineering Mathematics, 2nd Edition, Prentice Hall,

1998.

12. Anderson, J.D. Jr., Fundamentals of Aerodynamics, McGraw-Hill, 1984.

 24

13. Anonymous, Wikipedia Article: en.wikipedia.org/wiki/Free_fall, Called upon

3/31/2010.

14. Anonymous, Federation of American Scientists Article: www.fas.org/man/dod-

101/sys/smart/gbu-28.htm, Called upon 3/31/10.

15. Hoerner, S.F., Fluid Dynamic Drag, published by Hoerner, 1965.

16. Gaude, B.W. “Solving Nonlinear Aeronautical Problems using the Carleman

Linearization Method,” Sandia National Laboratories SAND2001-3064, September

2001.

17. Williams, D.R., “NASA Planetary Fact Sheets,” nssdc.gsfc.nasa.gov

 /planetary/factsheet, September 2004.

18. Binney, J., and Merrifield, M., Galactic Astronomy, Princeton University Press, 1998.

19. Binney, J., and Tremaine, S., Galactic Dynamics 2nd Edition, Princeton University

Press, 2008.

20. Aarseth, S.J., Tout, C.A., and Mardling, R.A., Editors, T he C ambr idge N-B ody

L ectur es, Springer, 2008.

21. Heggie, D.C., and Mathieu, R.D., “Standardised Units and Time Scales,” in: The Use of

Supercomputers in Stellar Dynamics, Edited by Hut, P. and McMillan S., Springer,

1986.

22. Kernighan, B. W. and Ritchie, D. M., The C Programming Language, 2nd Edition,

Prentice Hall, 1988.

23. Crawford, D., Webpage Article: “gnuplot: An Interactive Plotting Program,”

www.gnuplot.info/docs_4.3/gnuplot.pdf, December 1998

http://www.fas.org/man/dod-101/sys/smart/gbu-28.htm�
http://www.fas.org/man/dod-101/sys/smart/gbu-28.htm�
http://www.gnuplot.info/docs_4.3/gnuplot.pdf�

 25

7.0 Figures

Figure 1. Spring Mass System, Position vs. Time, Leapfrog Solution is red.

Figure 2. Spring Mass System, Velocity vs. Time, Leapfrog Solution is red.

 26

Figure 3. Spring Mass System, Absolute Position & Velocity Errors vs. Time.

Figure 4. 2-Body Spring Mass System, x1 Position vs. Time, Leapfrog Solution is red.

 27

Figure 5. 2-Body Spring Mass System, x2 Position vs. Time, Leapfrog Solution is red.

Figure 6. 2-Body Spring Mass System, v1 Velocity vs. Time, Leapfrog Solution is red.

 28

Figure 7. 2-Body Spring Mass System, v2 Velocity vs. Time, Leapfrog Solution is red.

Figure 8. 2-Body Spring Mass System, x1 Position Absolute Error vs. Time.

 29

Figure 9. 2-Body Spring Mass System, x2 Position Absolute Error vs. Time.

Figure 10. 1-D Free Fall Problem, Leapfrog Solution is red (under green line).

 30

Figure 11. 1-D Free Fall Problem, Speed Absolute Error vs. Time.

Figure 12. 2-D Free Fall Problem, Downrange (x Position) vs. Time.

 31

Figure 13. 2-D Free Fall Problem, Altitude (z Position) vs. Time.

Figure 14. Solar System, Inner Planet Orbits: Mercury, Venus, Earth (& Moon) & Mars.

 32

Figure 15. Solar System, Outer Planet Orbits: Jupiter, Saturn, Uranus, Neptune & Pluto.

Figure 16. Unstable Orbits of Jupiter’s 3 moons: Ganymede, Europa, & Callisto.

 33

Figure 17. Stable Orbits of Jupiter’s 4 moons: Io, Ganymede, Europa, & Callisto.

Figure 18. Computational Expense of the N-Body Leapfrog Algorithm.

 34

Figure 19. Initial Positions for the 500-Body Problem (x-y Plane).

Figure 20. 500 Iterations of the 500-Body Problem (x-y Plane).

 35

Figure 21. 900 Iterations of the 500-Body Problem (x-y Plane).

Figure 22. 1,500 Iterations of the 500-Body Problem (x-y Plane).

 36

Figure 23. 2,250 Iterations of the 500-Body Problem (x-y Plane).

Figure 24. 3,000 Iterations of the 500-Body Problem (x-y Plane).

 37

Figure 25. Softening of the 500-Body Problem, 3,000 Iterations (x-y Plane).

Figure 26. Initial Positions for the 2,000-Body Problem (x-y Plane).

 38

Figure 27. 2,000 Iterations of the 2,000-Body Problem (x-y Plane).

Figure 28. 6,000 Iterations of the 2,000-Body Problem (x-y Plane).

 39

Figure 29. 120,000 Iterations of the 2,000-Body Problem (x-y Plane).

Figure 30. Initial Positions for the 10,000-Body Problem (x-y Plane).

 40

Figure 31. 800 Iterations of the 10,000-Body Problem (x-y Plane).

Figure 32. 1,000 Iterations of the 10,000-Body Problem (x-y Plane).

 41

Figure 33. 1,250 Iterations of the 10,000-Body Problem (x-y Plane).

Figure 34. 3,000 Iterations of the 10,000-Body Problem (x-y Plane).

 42

Figure 35. 3,000 Iterations of the 10,000-Body Problem (x-z Plane).

Figure 36. 3,000 Iterations of the 10,000-Body Problem (y-z Plane).

 43

8.0 Appendices

8.1 C-Programs for Validation Problems

C-Program 1. 1-D Spring Mass System.

 44

C-Program 2. 2-D Spring Mass System.

 45

C-Program 3. 1-D Aerodynamic Drag Problem.

 46

C-Program 4. 2-D Aerodynamic Drag Problem.

 47

8.2 C-Programs for N-Body Simulations

C-Program 5 Part 1. Solar System Problem.

 48

C-Program 5 Part 2. Solar System Problem.

 49

C-Program 5 Part 3. Solar System Problem.

 50

C-Program 5 Part 4. Solar System Problem.

 51

C-Program 6 Part 1. Arbitrary N-Body Solver.

 52

C-Program 6 Part 2. Arbitrary N-Body Solver.

 53

C-Program 6 Part 3. Arbitrary N-Body Solver.

 54

9.0 Original Contributions and Acknowledgements

 For this project a number of original contributions have been made. Three moderately

large clusters were studied, 500, 2,000 and 10,000 body problems. The main contributions

were the experimental computational results of these simulations. The initial development of

a cluster was shown in the 500-Body problem. The 2,000-Body problem produced the same

initial behavior as the 500-Body, and then developed a jet, which may be related to a

numerical instability. Finally, for the 10,000-Body problem, it was shown that the cluster

evolves into two separate globular mass distributions within the system, which was an

unexpected result.

 We would like to acknowledge Roy Baty for his assistance through out this project,

as well as John Armijo. Also we would like to thank Mr. Lee Goodwin and Mrs. Diane

Medford for supporting the Supercomputing Challenge at Los Alamos High School. Finally,

the team would like to thank David Kratzer, of Los Alamos National Laboratory, for his

effort in sponsoring the Supercomputing Challenge.

