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1.0 Executive Summary 

 
 
 This report presents simulations of the formation and evolution of small star 

clusters using a direct N-Body method. In this project, Newtonian mechanics and the 

Universal Law of Gravitation were combined with the Leapfrog numerical scheme to 

simulate the evolution of idealized star clusters. All simulations were performed with 

codes written in the computer language C. Sample mechanics problems were developed 

to understand and validate the Leapfrog method. The general N-Body code was then used 

to simulate a simple model of the Solar System, validating the algorithm. The N-Body 

code was applied to model the evolution of small star clusters with 500, 2,000 and 10,000 

bodies. 
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2.0 Problem Definition 
 
 Questions about star clusters are central to understanding many problems in 

astronomy and cosmology. In our project we have worked to simulate the formation and 

evolution of small star clusters using a direct N-body method to model their gravitational 

interactions. Last year for the Supercomputing Challenge our team, Baty and Armijo [1], 

developed an N-Body code and simulations of the Solar System using a small number of 

bodies. This year we extended our analysis of the Solar System to model star clusters 

with up to 10,000 bodies. 

 The N-Body computational models use Newtonian mechanics and the Universal 

Law of Gravitation. Each star is modeled as a point-mass (or particle) with a prescribed 

initial position and velocity. A Leapfrog numerical method has been used to integrate the 

equations of motion based on Euclidean geometry and Newton’s Universal Law of 

Gravitation. All simulations were performed with codes written in C. Simulations have 

been run on both Mac and PC platforms with both Apple and Microsoft operating 

systems. All final simulations for this report were run on a Mac with an OS 10.6 

operating system. 

 In Section 3.0 the solution method is outlined and several basic problems in 

Newtonian mechanics are solved to develop and apply the Leapfrog integrator. The 

numerical solution of spring-mass problems and aerodynamic drag problems are 

presented. These problems were studied in order to understand how the Leapfrog 

integrator works and how to validate the numerical results. The mechanics problems 

helped us to develop coding techniques for the N-Body problems. 
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 Section 4.0 applies the Leapfrog method to N-Body problems. A 15-body model 

of the Solar System is simulated with the Sun, the eight Planets, the Moon, Jupiter’s four 

main moons and Pluto. These simulations are compared with the results from our earlier 

simulations with a fourth-order Runge-Kutta scheme, [1], and found to be in good 

agreement. Our new N-Body code, based on the Leapfrog method, is then applied to 

larger N-Body problems. Simulations with 500, 2,000 and 10,000 bodies have been 

successfully completed. A random number generator was applied to specify all initial 

data for these simulations. 

 Section 5.0 summarizes the results of the project. Conclusions from the 

moderately large N-Body simulations are highlighted in this section.  
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3.0 Solution Method 
   
 The physical model developed in our project is based on the classical mechanics 

of rigid bodies. Each body is idealized as a point-mass or particle in three-dimensional 

space, which is allowed to move in time as a complete system of N-Bodies evolves. This 

section of the report outlines the basic physical assumptions and develops the 

mathematical equations required to numerically simulate the motion of moderately large 

N-Body problems.  

 Section 3.1 reviews the simple kinematics equations for a point-mass with 

constant acceleration and introduces the Universal Law of Gravitation. In Section 3.2 the 

constant acceleration kinematics equations are restricted to short time intervals to predict 

the velocity and position of point-masses. These equations are then used to define the 

Leapfrog numerical integration scheme. 

 Section 3.3 applies the Leapfrog numerical scheme to four classical mechanics 

problems: one- and two-body spring mass systems, and one- and two-dimensional 

aerodynamic drag problems. In these problems, both linear and non-linear forces are 

considered, to validate the numerical method.  

 

3.1 Physical Modeling 

 The constant acceleration mechanics equations are developed in almost all 

elementary physics books. Following Meriam [2], the basic kinematics equations in 

three-dimensions are given by  

v = v0 + a t,                               (1) 

x =  x0 + v0 t + a t2/2,                            (2) 
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where v and x are the velocity and position vectors, and v0 and x0 are the initial velocity 

and position vectors. Moreover, t represents the time of interest and a represents a 

constant acceleration vector. In this report, all vectors are written in bold face and are 

three-dimensional. The present study was preformed in Cartesian coordinates using the 

notation: x = (x, y, z), v = (u, v, w) and a = (ax, ay, az). These equations are further 

discussed in the texts of Serway and Faughn [3], and Williams, et al. [4]. 

 Equations (1) and (2) are used to find the velocity and position, respectively, of a 

point-mass. By providing initial data in the form of velocity and position we can predict 

the motion and location of a particle at any future time.  These equations are valid only 

when the acceleration is constant. 

 Newton’s Universal Law of Gravitation for an N-Body problem is given by the 

following equation: 

Fi = - G Σ mi mj (xi - xj) / (| xi - xj |3),                      (3) 

where G is the gravitational constant, mi and mj are the masses of the N-Bodies, and xi 

and xj are the positions of the masses mi and mj, respectively. The summation in Equation 

(3) is taken over the index j when j is not equal to i. This gives the resulting gravitational 

force on the ith body. Also in Equation (3) the length of the kth position is given by  

| xk | = (xk
2 + yk

2 + zk
2)1/2.                  (4) 

 In Equations (3) and (4): i, j, k = 1, …, N. The Universal Law of Gravitation is discussed 

in detail in Aarseth [5]. 

 The Universal Law of Gravitation, given in Equation (3), is related to the motion 

of the ith body using Newton’s 2nd Law:  

Fi = mi ai.              (5) 
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Combining Equations (3) and (5) yields the N-Body equation of motion: 

ai = - G Σ mj (xi - xj) / (| xi - xj |3).                     (6) 

In our project, a variation of Equation (6) is used to simulate the motions and positions of 

large numbers of point-masses. 

 

3.2 Leapfrog Method 

 To model an N-Body system, Equation (6) is used to approximate the acceleration 

of the ith body on a small time interval, ∆t. On such a small time interval, the acceleration 

given by Equation (6) is assumed to be constant, which reduces the problem to the 

kinematics model of Equations (1) and (2). To see how this works, let  

ai = ∆vi / ∆t.              (7) 

Solving Equation (7) for ∆vi gives  

∆vi = ai ∆t.                  (8) 

Next, recalling that  

∆vi = vi – v0i,              (9) 

yields  

vi = v0i  + ai ∆t,           (10) 

which is Equation (1). Likewise, if we let 

vi = ∆xi / ∆t,             (11) 

where, ∆xi = xi – x0i, so that 

xi =  x0i + vi ∆t.                                (12) 
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For an average (constant) acceleration Equation (12) may be shown to be equivalent to 

Equation (2). 

 From Reference [6], the Leapfrog method is defined by: 

vk+1/2  = vk-1/2  + ak ∆t,            (13)  

xk+1  = xk + vk+1/2 ∆t,            (14) 

where k is the time index. Equations (13) and (14) are solved in time, calculating the 

positions and velocities at shifted half-time steps. This shift gives the integration method 

the name Leapfrog, because the position and velocity are calculated alternately at every 

half-time step. Equations (13) and (14) are the same as Equations (10) and (12) with the 

modification for the alternating half-time step. The Leapfrog scheme is also known as 

Verlet integration.  

 The Leapfrog method was used in our project because it provides an optimum 

balance of accuracy and computing efficiency. This method is a fixed time step method 

that minimizes the total computational error in energy, Heggie and Hut [7]. The Leapfrog 

scheme is a second order accurate numerical method. The scheme was chosen over other 

integration methods such as a Runge-Kutta method, Burden and Faires [8], because of 

computational efficiency. The Leapfrog scheme is useful for qualitative physics modeling 

on long time intervals.  

 The Leapfrog scheme may be extended to a variable time step scheme by 

factoring in the slope of the acceleration or the mechanical jerk, Hut, et al. [9]. A variable 

time step integration scheme allows the N-Body interactions to occur with relative 

accuracy, in a single simulation, while the interactions are on very different physical time 
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scales.  The practical implementation of a variable time step Leapfrog method is a 

research activity and was not completed in the present project. 

 

3.3 Validation Problems 

3.3.1 One-Body Spring Mass System  

 Our first validation problem consisted of simulating the motion of a one-body 

spring mass system. Using Hooke’s Law, Serway and Faughn [3],  

F = - k x,            (15) 

and Newton’s 2nd Law, Equation (5), the equation of motion is given by  

m a = - k x.            (16) 

In Equations (15) and (16), k is the spring constant. Equation (16) may be written solving 

for acceleration in the form: 

a = - (k/m) x.                       (17) 

Equation (17) is combined in the Leapfrog method given by Equations (13) and (14) to 

provide a computational model of the one-body spring mass system. At each time step 

Equation (17) is used to approximate the acceleration. 

 Following Kreyszig [10], the exact solution to Equation (17) is 

 x(t) = A cos[ωt] + B sin[ωt],          (18) 

where ω = (k/m)1/2. Figures 1 and 2 compare the position and velocity of the Leapfrog 

solution (red) to the exact solution (green) assuming the parameters k = m = 1 and the 

initial data x0 = 1.0 and v0 = 0.0, respectively. These initial conditions imply A = 1.0 and 

B = 0.0. Figure 3 shows the absolute error between the numerical solution and the exact 

solution for the step size ∆t = π/100. The maximum absolute error in position (red) is ~ 
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0.047 and the maximum absolute error in velocity (green) is ~ 0.031.  The C-program 

implementing the numerical solution of Equation (17) is listed in Appendix 8.1.   

 

3.3.2 Two-Body Spring Mass System 

 Our second validation problem consisted of simulating the motion of a two-body 

spring mass system. The spring mass system consists of two masses, m1 and m2, 

restrained by three springs to move horizontally on a frictionless surface. Each spring is 

assumed to have the spring constant k. Following Greenberg [11], the equations of 

motion are given by   

F1 = - 2 k x1 + k x2,           (19) 

F2 = k x1 – 2 k x2,              (20) 

where x1 is the position of m1, and x2 is the position of m2. Equations (19) and (20) come 

from a free body diagram. Applying Newton’s 2nd Law to these equations produces, 

a1 = - (2 k/m1) x1 + (k/m1) x2,         (21) 

a2 = (k/m2) x1 – (2 k/m2) x2.          (22) 

Equations (21) and (22) are combined in the Leapfrog method given by Equations (13) 

and (14) to provide a computational model of the two-body spring mass system. This 

problem was our first example of a system of equations.  

 From Greenberg [11], the exact solution to Equations (21) and (22) is 

x1(t) = 0.5 cos[t] + 0.5 cos[ωt],             (23) 

x2(t) = 0.5 cos[t] - 0.5 cos[ωt],          (24) 

for m1 = m2 = 1 and  ω = (3)1/2, assuming the initial conditions x01 = 1.0, and x02 = 0.0, 

and v01 = v02 = 0.0.  
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 Figures 4 and 5 compare the positions of the Leapfrog solution (red) to the exact 

solution (green). Figures 6 and 7 compare the computed velocities (red) with the exact 

velocities (green). Figures 8 and 9 show the absolute errors in the positions as a function 

of time. For this example the step size was ∆t = π/200. The C-program implementing the 

numerical solution of Equations (21) and  (22) is listed in Appendix 8.1.   

 

3.3.3 One-Dimensional Aerodynamic Drag  

 Our third validation problem consisted of simulating the nonlinear, free-fall 

motion of a gravity bomb in one-dimension with aerodynamic drag. Aerodynamic drag, 

D, is defined as the scalar function 

D = (1/2) ρ V2 Cd A,           (25) 

where ρ is the air density, V is the speed, Cd is the drag coefficient, and A is a reference 

area, Anderson [12]. Using a free body diagram, the acceleration for a falling body of 

mass m is given by  

az = (1/2m) ρ V2 Cd A – g.          (26) 

From Equation (26) the speed of a falling object may be shown to be  

v(t) = -VT tanh (g t / VT),          (27) 

where VT is the terminal velocity: 

VT = (2mg / ρCdA)1/2.          (28) 

Equations (26), (27) and (28) are discussed in Reference [13]. 

 The Leapfrog scheme of Equations (13) and (14) is combined with Equation (26) 

to simulate the speed of a gravity bomb. For our calculations, approximate values were 

used for a GBU-28, Reference [14]. Here m = 2091 kg and A = 0.213 m2. The drag 
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coefficient is approximated as Cd = 0.75 for transonic flow, Hoerner [15]. This simulation 

assumes a constant air density of 1.0 and an initial altitude of 12192 m (40,000 ft). 

 Figure 10 compares the speed computed with the Leapfrog scheme (red) and the 

solution given by Equation (27) for the step size ∆t = 0.01. The simulation also computed 

the position of the bomb to estimate the terminal speed. Here the computed speed at 

ground level was 394.5 m/s in comparison to the terminal speed of 506.7 m/s. Figure 11 

shows the absolute error for the speed as a function of time. The C-program 

implementing the numerical solution of Equation (26) is listed in Appendix 8.1. 

 

3.3.4 Two-Dimensional Aerodynamic Drag  

 Our fourth validation problem consisted of simulating the nonlinear, free-fall 

motion of a gravity bomb in two-dimensions with aerodynamic drag. The acceleration of 

a free falling body in two-dimensions is given by the equations:   

ax = - (1/2m) ρ u | v | Cd A,         (29) 

az = - (1/2m) ρ w | v | Cd A – g,         (30) 

where | v | is the magnitude of the velocity vector. The vertical direction, z, is orientated 

so that down is negative, and w < 0. These equations and analytical approximations of 

their solutions are discussed in Gaude [16].  

 The Leapfrog scheme of Equations (13) and (14) is combined with Equations (29) 

and (30) to simulate the planar motion of a gravity bomb. The two-dimensional 

simulations repeated the analysis of the GBU-28 from Section 3.3.3 using the same 

physical parameters. This is a nonlinear problem that does not have an exact solution. 

Therefore, our first simulation duplicated results of the one-dimensional, free-fall 
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problem of Section 3.3.3 by setting the horizontal velocity to zero. This suggested that 

the code was working correctly.  

 Our second simulation was preformed for the initial velocity, v = (268.2, 0.0) m/s 

(600 mph) and initial position x = (0.0, 12192.0) m. Figure 12 shows the horizontal 

position (downrange) of the bomb as a function of time. Moreover, Figure 13 shows the 

altitude of the bomb as a function of time. This simulation was performed for the step 

size ∆t = 0.01. While the results of this simulation could not be checked mathematically, 

the predicted values seem reasonable for the velocity and length scales of the problem. 

The C-program implementing the numerical solution of Equations (29) and (30) is listed 

in Appendix 8.1.  
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4.0 N-Body Problems 

 The next step in our project was to combine the acceleration of Equation (6) from 

the Universal Law of Gravitation with the Leapfrog method of Equations (13) and (14) to 

simulate example N-Body problems. Each body is idealized as a point mass that is 

allowed to move in space as a function of time. This section of the report outlines the N-

Body numerical experiments that were performed. 

 Section 4.1 gives the results of a 15-Body model of the Solar System. These 

simulations are examples of an application of the general N-Body algorithm developed 

for this project. The results for the Solar System match the basic quantitative results for 

the motion of the planets. 

 Section 4.2 then applies the general N-Body Leapfrog algorithm to three 

moderately large N-Body experiments: 500-Bodies, 2,000-Bodies, and 10,000-Bodies. 

The computational expense of the N-Body algorithm is examined. Simulations are 

preformed with different time step sizes and softening constants. 

 

4.1 Solar System Simulations 

 The first gravitational N-Body problem was to repeat a model of the Solar System, 

including the Sun, nine planets, the four major moons of Jupiter, and the Earth’s Moon. 

This model used the Leapfrog scheme and accurately simulated the orbits of these bodies 

in comparison to published NASA data, Williams [17]. The results for the complete Solar 

System were calculated using large time steps, ranging up to two hours, because the 

orbits of some of the planets have very long periods around the sun. The code was used to 

simulate time periods of up to approximately 300 years. All simulations assumed 
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physical units of Moon masses (7.350 x 1023 kg), hours and kilometers. 

 In the simulations, we accounted for several physical differences in the geometry of 

the orbits of the planets. For instance, the orbits of both Mercury and Pluto are at an angle 

relative to the orbits of the other planets. Mercury’s orbit is at a 7° angle and Pluto’s is at 

a 17° angle. These angles were modeled to simulate the geometric differences in 

Mercury’s and Pluto’s orbits, so the calculations reflect these geometric effects correctly. 

Pluto’s orbit intersects Neptune’s orbit at two points. Figures 14 and 15 show the orbits 

of the inner and outer planet about the Sun, respectively. The Leapfrog integration 

scheme produced simulations that were in good qualitative agreement with our 

simulations from last year using a fourth-order Runge-Kutta scheme, Baty and Armijo 

[1]. 

  For a fixed time step, the required computational time had to be balanced with the 

accuracy of the simulation. When a fairly large time step was chosen, the simulations 

could breakdown and give unreliable results. As an example, consider a simulation of 

Jupiter and its four major moons: Io, Europa, Ganymede, and Callisto. In the Solar 

System simulations, it was found that a time step greater than a few hours yielded 

simulations that would lose the moons of Jupiter after a few hundred iterations of the 

calculation. This behavior is shown in Figure 16. The error accumulated quickly, 

producing unstable and decaying orbits. This suggested that complex N-Body problems 

require detailed time step parameter studies. Figure 17 shows a stable simulation of the 

orbits of Jupiter’s four major moons about the planet’s trajectory. The C-program for the 

Solar System problem is listed in Appendix 8.2. 
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4.2 N-Body Simulations 
 

 The basic physics and astronomy of star clusters is very complex. Detailed 

references on galactic astronomy may be found in Binney et al. [18] and [19]. Moreover, 

recent work on the N-Body problem may be found in Aarseth et al. [20]. The strategy in 

our project was to define an idealized model and run numerical experiments on an 

increasing number of bodies. The N-Body simulations assumed a total mass of 1 for each 

simulation. Therefore, the mass of each body in a given simulation was 1/N. The 

gravitational constant G in Equation (6) was defined to be 1. Standardized units for N-

Body problems are presented in Heggie and Mathieu [21]. 

 A random number generator was used to define three initial positions in the eight 

octants of space, +/- x, +/- y, and +/- z for each particle. The initial positions were 

multiplied by 10*(3)1/2, which was an arbitrary length scale for the problem. This 

approach generated initial positions in a cube in space of width 20*(3)1/2. The particles 

outside of a sphere of constant radius 10*(3)1/2 were discarded so that the initial 

distribution of particles was spherical. The resulting particles contained in the sphere 

were shifted so that the average of position in each direction about the origin was zero. 

The initial velocity of all the particles was zero. 

 To prevent collision singularities in the numerical model, Equation (6) was 

modified with a softening term ε  

ai = - G Σ mj (xi - xj) / (| xi - xj  + ε |3).                  (31) 
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This term prevents the denominator of Equation (31) from being zero, so that the 

acceleration is undefined. The softening parameter is an artificial fix in the N-Body 

model and its effect must be carefully considered on the results of numerical experiments.  

 To understand the computational expense of our direct N-Body algorithm, 

computational timing studies were performed for N-Body problems up to 10,000 bodies. 

The N-Body C-program was set to perform 100 iterations of the code. Figure 18 shows 

the computational time required to perform the iterations as a function of the number of 

bodies. Roughly the computational time (or expense) increases like N2, where N is the 

number of bodies. The C-program for the arbitrary N-Body problem is listed in Appendix 

8.2. A good reference for the C programming language is by Kernighan and Ritchie [22]. 

 

4.2.1 500-Body Simulations 
 
 For the 500-Body simulation we adjusted the total number of bodies to produce 

500 bodies within the sphere of constant radius. The step size was ∆t = 0.1, and the 

simulation was run to 4,000 iterations. This calculation took on the order of an hour to 

complete. A Gnuplot, [23] animation was generated using 60 frames in time showing the 

x-y coordinates of the evolving 500-Body system. A parametric family of simulations 

was run to study the effect of the softening constants of 0.001, 0.01, 0.1, and 1.0. 

 After the start of the simulation, the system collapses onto itself within a short 

amount of time. A small number of bodies then shoot through the system, not colliding 

with any of the other bodies, to escape the problem. Many of the other bodies collide and 

rebound from the collapsed system. After the system collapses, the majority of the bodies 

are grouped in a tight cluster near the origin of the calculation. This tight cluster slowly 
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evolves in three dimensions with particles leaving and returning to the principal globular 

concentration of mass.  It appears that the system reaches a quasi-equilibrium state after 

about 2,000 iterations of the code. 

 Figure 19 shows the initial positions of the masses in the x and y coordinates. 

Figures 20 through 24 show various stages in the evolution of the cluster in time. All of 

these figures show the data in the x-y coordinate plane. Figure 25 shows the complete 

time history of all 500 bodies for the four different softening constants. These different 

softening constants produce different trajectories and velocities for the rebounding 

particles. The gross features of the cluster are less sensitive to the value of the softening 

constant than the escaping particles. 

 
 
4.2.2 2,000-Body Simulations 
 
 For the next simulations, 2,000 bodies were modeled. Two simulations of this 

cluster were run, to study the effect of time step size on the calculations. The first 

simulation used a time step size of ∆t = 0.1 and was run for 60,000 iterations. The second 

simulation had a step size of ∆t = 0.05 and was run for 120,000 iterations. The first 

simulation required approximately 10 hours of computational time, while the second 

simulation required approximately 19.7 hours of computational time. 

 Both simulations showed the same basic behavior as the 500-Body problem, 

where the cluster first collapses on itself and bodies are lost from the system. A central 

globular cluster then forms close to the origin of the calculation. This mass concentration 

is stable until approximately 36,000 iterations of the code, when the simulation forms a 

jet in the center of the concentration of mass. This jet shoots out from the origin of the 
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simulation and does not return. It is not understood why the jet forms. One possibility is 

the buildup of the computational error and the resulting numerical instabilities. Both 

simulations predicted the formation of the jet, with the 120,000 iteration simulation 

showing it later in the calculation. Figures 26, 27 and 28 show the ∆t = 0.05 simulation at 

various times. Figure 29 shows the jetting phenomenon at the end of the calculation. 

 
 
4.2.3 10,000-Body Simulations 

 For our final simulation, a cluster was run consisting of 10,000 bodies. The 

beginning behavior of this cluster was similar to the behavior of the 500-Body and 2000-

Body problems. After the initial collapse of the system, the cluster moved apart, creating 

two separate globular masses. These two masses then slowly moved away from each 

other and interacted with one another by transferring bodies back and forth between 

them. The globular masses formed around 1250 iterations of the simulation. It is possible 

that these structures are related to the formation of a spiral distribution of particles. This 

has not been proved. This simulation was run for 3,000 iterations with a step size of ∆t = 

0.1 and took approximately 12.4 hours to complete. Because of the size of the simulation 

no attempt to re-run the problem with a smaller step size was made. 

 Figures 30 through 33 show the beginning evolution of the 10,000-Body problem. 

Figures 34, 35, and 36 show the two globular masses at the end of the simulation (3000 

iterations) giving their relative positions in three dimensions.  Figure 34, Figure 35, and 

Figure 36 show the x-y plane, the x-z plane, and the y-z plane, respectively.  
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5.0 Summary and Conclusions 

 This year our team completed simulations of several sizes of N-Body systems, 

with various levels of physical detail. The team converted a 15-Body model of the Solar 

System, based on a fourth-order Runga-Kutta scheme, to a model based on a second-

order Leapfrog scheme. To develop and validate the Leapfrog algorithm, the method was 

also applied to several mechanics problems with and without exact analytical solutions. 

These problems included spring mass systems and aerodynamic drag problems. After it 

was determined that the computational scheme was working, the Leapfrog algorithm was 

applied to simple models of star clusters with 500, 2,000, and 10,000 bodies. 

 Our key conclusions include observations about the results of the direct N-Body 

simulations. First, the N-Body problems become harder to simulate as the number of 

bodies increases, because the computational expense increases quadratically. Second, N-

Body simulations required careful tracking of the time step size to avoid a degradation of 

the simulation. This sort of behavior was seen in one of our Solar System problems with 

the moons of Jupiter.  Another observation is that large N-Body systems like the cluster 

simulations all initially behave like one another. The initial phase of all the large N-Body 

simulations consisted of the system collapsing in on itself and bodies shooting through 

the origin and out the other side. The differences between the simulations occur later in 

the calculations. For example, the 500-Body problem formed one cluster at the origin, 

while the 10,000-Body problem created two clusters that interacted with one another. 

Moreover, for the 2,000-Body problem, the importance of choosing a time step size to 

prevent accumulation errors in the simulation is implied by the formation of the jetting 

phenomenon. N-Body simulations demand a careful balance of all of the technical details 
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in the problem: the time needed to run the computational model, the time step size, the 

accuracy of the simulation, and softening method applied to remove collisional 

singularities. Each of these details requires in depth consideration and study to 

successfully apply and understand the results of an N-Body simulation.    
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7.0 Figures 

 
Figure 1. Spring Mass System, Position vs. Time, Leapfrog Solution is red. 
 
 

 
Figure 2. Spring Mass System, Velocity vs. Time, Leapfrog Solution is red. 
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Figure 3. Spring Mass System, Absolute Position & Velocity Errors vs. Time. 
 
 

 
Figure 4. 2-Body Spring Mass System, x1 Position vs. Time, Leapfrog Solution is red. 
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Figure 5. 2-Body Spring Mass System, x2 Position vs. Time, Leapfrog Solution is red. 

 

Figure 6. 2-Body Spring Mass System, v1 Velocity vs. Time, Leapfrog Solution is red. 
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Figure 7. 2-Body Spring Mass System, v2 Velocity vs. Time, Leapfrog Solution is red. 

 

Figure 8. 2-Body Spring Mass System, x1 Position Absolute Error vs. Time. 



 29 

 

Figure 9. 2-Body Spring Mass System, x2 Position Absolute Error vs. Time. 

 

Figure 10. 1-D Free Fall Problem, Leapfrog Solution is red (under green line). 
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Figure 11. 1-D Free Fall Problem, Speed Absolute Error vs. Time. 

 

Figure 12. 2-D Free Fall Problem, Downrange (x Position) vs. Time. 
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Figure 13. 2-D Free Fall Problem, Altitude (z Position) vs. Time. 

 

Figure 14. Solar System, Inner Planet Orbits: Mercury, Venus, Earth (& Moon) & Mars. 
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Figure 15. Solar System, Outer Planet Orbits: Jupiter, Saturn, Uranus, Neptune & Pluto. 

 

Figure 16. Unstable Orbits of Jupiter’s 3 moons: Ganymede, Europa, & Callisto. 
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Figure 17. Stable Orbits of Jupiter’s 4 moons: Io, Ganymede, Europa, & Callisto. 

 

Figure 18. Computational Expense of the N-Body Leapfrog Algorithm. 
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Figure 19. Initial Positions for the 500-Body Problem (x-y Plane). 

 

Figure 20. 500 Iterations of the 500-Body Problem (x-y Plane). 
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Figure 21. 900 Iterations of the 500-Body Problem (x-y Plane). 

 

Figure 22. 1,500 Iterations of the 500-Body Problem (x-y Plane). 
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Figure 23. 2,250 Iterations of the 500-Body Problem (x-y Plane). 

 

Figure 24. 3,000 Iterations of the 500-Body Problem (x-y Plane). 
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Figure 25. Softening of the 500-Body Problem, 3,000 Iterations (x-y Plane). 

 

Figure 26. Initial Positions for the 2,000-Body Problem (x-y Plane). 
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Figure 27. 2,000 Iterations of the 2,000-Body Problem (x-y Plane). 

 

Figure 28. 6,000 Iterations of the 2,000-Body Problem (x-y Plane). 
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Figure 29. 120,000 Iterations of the 2,000-Body Problem (x-y Plane). 

 

Figure 30. Initial Positions for the 10,000-Body Problem (x-y Plane). 
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Figure 31. 800 Iterations of the 10,000-Body Problem (x-y Plane). 

 

Figure 32. 1,000 Iterations of the 10,000-Body Problem (x-y Plane). 
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Figure 33. 1,250 Iterations of the 10,000-Body Problem (x-y Plane). 

 

 

Figure 34. 3,000 Iterations of the 10,000-Body Problem (x-y Plane). 
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Figure 35. 3,000 Iterations of the 10,000-Body Problem (x-z Plane). 

 

Figure 36. 3,000 Iterations of the 10,000-Body Problem (y-z Plane). 
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8.0 Appendices 

8.1 C-Programs for Validation Problems 

 

C-Program 1. 1-D Spring Mass System. 
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C-Program 2. 2-D Spring Mass System. 
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C-Program 3. 1-D Aerodynamic Drag Problem. 
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C-Program 4. 2-D Aerodynamic Drag Problem. 

 

 

 

 



 47 

8.2 C-Programs for N-Body Simulations 

 

C-Program 5 Part 1. Solar System Problem. 
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C-Program 5 Part 2. Solar System Problem. 
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C-Program 5 Part 3. Solar System Problem. 
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C-Program 5 Part 4. Solar System Problem. 



 51 

 

C-Program 6 Part 1. Arbitrary N-Body Solver. 
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C-Program 6 Part 2. Arbitrary N-Body Solver. 
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C-Program 6 Part 3. Arbitrary N-Body Solver. 
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a cluster was shown in the 500-Body problem. The 2,000-Body problem produced the same 

initial behavior as the 500-Body, and then developed a jet, which may be related to a 

numerical instability. Finally, for the 10,000-Body problem, it was shown that the cluster 

evolves into two separate globular mass distributions within the system, which was an 

unexpected result.  
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