
1

To Kill a Flocking Bird

New Mexico
Supercomputing Challenge

Final Report
April 6, 2010

Team 70

Los Alamos High School

Team Members

Peter Ahrens
Stephanie Djidjev
Vicky Wang
Mei Liu

Teacher

Lee Goodwin

Project Mentors

Christine Ahrens
James Ahrens

2

Table of Contents

TO KILL A FLOCKING BIRD 1

TABLE OF CONTENTS 2
1.0 EXECUTIVE SUMMARY 3
2.0 STATEMENT OF THE PROBLEM 4
3.0 DESCRIPTION OF THE METHOD USED TO SOLVE THE PROBLEM 5
3.1 THE NETLOGO FLOCKING MODEL 5
3.2 EVALUATION AND GOODNESS FUNCTIONS 6
3.4 BRUTE FORCE PARAMETER STUDY 10
3.5 OTHER SEARCH METHOD IMPLEMENTATIONS 10
4.0 RESULTS 12
5.0 CONCLUSIONS 15
6.0 SIGNIFICANT ORIGINAL ACHIEVEMENT 16
7.0 WORK PRODUCTS 16
7.1 FLOCKING WITH GOODNESS FUNCTIONS 16
7.2 BRACKETING 24
7.3 STEEPEST DESCENT 28
7.4 GENETIC 33
8.0 BIBLIOGRAPHY 37
9.0 ACKNOWLEDGEMENTS 38

3

1.0 Executive Summary

This project explores which search techniques work best to optimize the parameters of a flocking

model. Flocking is a natural phenomenon of many independent agents (birds) making decisions

that lead to the group acting as a whole. The parameters used to control flocking are the angle at

which a bird turns to get closer to his neighbors, the angle at which a bird turns to align itself

with the rest of the flock and the angle at which a bird turns to get away from his neighbors if he

is too close. NetLogo was used to develop an algorithm to judge qualities of a flock, implement

the search techniques, run the search techniques and gather the data for comparison. The search

techniques used were brute force (a test of all the possible combinations of parameters), genetic

algorithms (a random search variant modeling natural selection), bracketing (dividing the search

space iteratively), and steepest descent (searching locally and proceeding in the most promising

direction to the solution from a random starting point in the search space). To evaluate a flock, a

goodness function was created from the following functions: average distance to center, average

difference in birds’ distance to center, the average difference in the spacing of each bird to its

nearest neighbor, and the average difference the birds’ headings. A visual analysis of the brute

force parameter study showed a diagonal gradient through the search space. The other search

methods were tested, and compared based on the quality of the flocks produced, the reliability of

the search, and the time efficiency. The results showed that the steepest descent technique had

good performance and produced the best result.

4

2.0 Statement of the problem

Flocking is a natural phenomenon of many independent agents making decisions that lead to the

group acting as a whole. Some examples of flocking behavior happen frequently in nature and

they serve different purposes. Fish may exhibit flocking behavior to make themselves look

bigger and ward off predators. Birds exhibit flocking behavior when they migrate. They rotate

out of the front position in the flock and thus conserve energy breaking the wind. Elephants also

exhibit flocking behavior for a different purpose. The larger elephants form a ring around the

smaller, weaker elephants in an attempt to keep them safe from predators. Their flocks do not

move much.

Flocking occurs in the manmade world as well. Flocking can be seen in strategic military

formations and it can also be seen in traffic patterns (people tend to follow one another on large

freeways). The principles of flocking can be applied to collision detection in robotic domains.

Robots are usually programmed to avoid other robots or obstacles (unless they are battle bots).

Flocking principles can also be applied to military applications with computer driven vehicles.

An interesting thing about flocking is that a computer can model it. Each decision-making

entity, an “agent”, begins in a random position, then using the location of its neighbors, makes

decisions as to where to move itself. These decisions are usually called cohesion, alignment

and separation. To cohere, an agent will move itself closer towards its neighbors. To align, an

agent will align its heading with that of its neighbors. To separate, an agent will move itself

away from its neighbors if it is too close. If these decisions are carefully balanced, the agents in

the model will form a flock after a number of time steps. Balancing these decisions is a

challenge and the flock quality is directly dependent upon the balance. Measuring the quality of

the flock is a subjective process. Not everyone will agree that the quality of a flock is the same.

Usually the flocking decisions cohere, align, and separate are the parameters of the flocking

model. How would you find the best parameters? The only certain way to do this would be to

5

test them all in all their combinations (thousands), and evaluate the resulting flocks using a

function that tells you the quality of the flock or if it is a flock. This is a brute-force method of

optimizing the parameters. This is computationally intensive and inefficient in its use of time,

but it is the most accurate way of finding the best parameters.

Many common search techniques used widely in computer science can be used for finding

parameters, however not all of them are best suited towards flocking. Flocking can be

unpredictable and time-intensive to search through and thus not all search techniques will

perform the same. This project aims to find out which common search techniques will perform

the best, be the most accurate and be most reliable in finding the optimal parameters to a flocking

model. Others who are building or using flocking models can use this research.

3.0 Description of the Method Used to Solve the Problem

The method used to solve the problem of finding the best parameter search method started with a

simple flocking model. This model was modified the model to evaluate the “goodness” of the

flock by using goodness functions created by the team. After testing the goodness function

visually, a brute-force method was used to understand the search space. Three search methods

were then developed and tested, to find which produced the best parameter combination. The

brute-force and other search methods were compared using statistics.

3.1 The NetLogo Flocking Model

A NetLogo model of flocking was found in the sample models included with NetLogo.

NetLogo® was chosen because it is perfectly suited to flocking models. NetLogo® is an agent-

based program and it is iterative. There is a graphical user interface and a display that shows the

agents flocking and the time steps so far. The original code did not include any plots and all the

parameters were controlled by sliders (the user). There were no flock quality evaluation

functions included. In this model, the agents look like birds and flocked in a direction (they are

moving as they flock), which is similar to the way that birds flock. The agents will be referred to

as birds hereafter.

6

Picture 1: On the left, a flocking behavior is seen, on the right, there is no flocking.

The parameters used to control the decisions the birds made in this model are max-cohere-turn,

max-align-turn, max-separate-turn and minimum-separation. Max-cohere-turn designates

the maximum angle a bird can turn to cohere. It is the same with max-align-turn and max-

separate-turn; they are also the maximum angle a bird can turn to make a flocking decision (align

or separate). Minimum-separation is the distance between birds that signals that they need to

turn away from each other. Originally, minimum separation was thought a parameter to be

optimized, but was then understood to be a preference, as it designates how big a flock will be,

which does not affect flock quality.

3.2 Evaluation and Goodness Functions

The first step was to develop a way to evaluate the flock. The goal was to have one goodness

function that would tell how good the flock was. The goodness function used turned out to be an

average of several evaluation functions. The evaluation functions developed were mean

distance to center, mean deviation of agents’ distance to center, the mean deviation in the

spacing of each agent to its nearest neighbor, and the mean deviation of the agents’

headings.

7

In order to evaluate the goodness of the flock, it was necessary to calculate the center of the

flock. Although it was initially difficult to calculate the center of the birds in a boundless

domain, a center of mass algorithm [7] was used. Using this algorithm, a center bird was

created. It is enlarged for better visibility. Since it is the biggest bird of them all, it is colored

yellow in honor of Big Bird. The center bird represents the center of the flock and its heading is

the average heading of the flock.

The first evaluation function we developed was quite simple. It was the mean distance to center,

which is exactly what the name implies. It is the average of all the distances from each bird to

the center bird.

mean distance to center =
(xn − xc)2 + (yn − yc)2()

n= 0

pf

∑
pf

Equation 1: Where pf is the population of the flock, xn is the x-coordinate of the nth bird, xc is

the x-coordinate of the center, yn is the y-coordinate of the nth bird, and yc is the y-coordinate of

the center.

It indicates how clustered the birds are. A low value means the birds are clustered close to the

center. A high value means they are spread out over the whole domain. A zero value indicates

the birds are all in the same position (in a dot). This function was not used in the final code,

because if the model is optimized completely to this function, the birds will be centered in a tiny

dot.

The second evaluation function developed was the mean deviation of the birds’ distance to

center. This evaluation function measures the deviations in the distances between each bird and

the center bird. This measurement will show how spread out and randomly spaced (within the

flock) the birds are in relation to the center and each other.

8

mean deviation of distance to center =
abs((xm − xc)2 + (ym − yc)2 − mean distance to center)()

m= 0

pf

∑
pf

Equation 2: Where pf is the population of the flock, xm is the x-coordinate of the mth bird, xc is

the x-coordinate of the center, ym is the y-coordinate of the mth bird, and yc is the y-coordinate

of the center.

A low value indicates less deviation, which means the birds are more ordered. A high value

indicates clumping (multiple clusters of birds) and a non-optimal flock. A zero value

(theoretical max optimization) means the birds are either in a circle centered around the center

bird or all at the center point, but since this is usually never achieved, it make this an overall

useful evaluation function.

The third evaluation function developed was the mean difference in heading. This is what the

name implies. It measures the average deviations in each birds’ heading compared to the

average flock heading.

mean heading deviation =

(arctan
sin(hi)

i= 0

pf

∑

cos(hj)
j= 0

pf

∑

− hn)
n= 0

pf

∑

pf

Equation 3: Where pf is the population of the flock, hn is the heading of the nth bird, hi is the

heading of the ith bird, and hj is the heading of the jth bird.

While this function does not exactly measure how good a flock is spatially, it does show that the

flock is not bumping into each other or going different directions. A low value indicates the

birds are all heading in the same direction. A high value indicates the birds are running into each

other in a central flock, not flocking, or going different directions. A zero value (theoretical max

9

optimization) means they are all going the same direction exactly, which does not necessarily

indicate a good flock, but it does mean the birds are not running into each other.

The fourth evaluation function developed is the mean difference in spacing between each bird

and its nearest neighbor.

mean spacing distance =
(xl − xnn)2 + (yl − ynn)2()

l= 0

pf

∑
pf

Equation 4: Where pf is the population of the flock, xl is the x-coordinate of the lth bird, xnn is

the x-coordinate of this bird’s nearest neighbor, yl is the y-coordinate of the lth bird, and ynn is

the y-coordinate of the birds nearest neighbor.

mean spacing deviation =

abs((xq − xnn)2 + (yq − ynn)2 − mean spacing distance)()
q= 0

pf

∑
pf

Equation 5: Where pf is the population of the flock, xq is the x-coordinate of the qth bird, xnn is

the x-coordinate of this bird’s nearest neighbor, yq is the y-coordinate of the qth bird, and ynn is

the y-coordinate of the birds nearest neighbor.

It measures the mean difference in the distances between these birds and the birds closest to it.

This function is very effective at measuring even spacing. A low value indicates the birds have

evenly spaced themselves in relation to each other. A high value indicates the birds are either

clumping or not flocking. A zero value indicates the birds are in an isometric dot pattern or a dot

in the center of the screen.

All of these evaluation functions have shortcomings if used exclusively, but if averaged, they

produce an accurate measurement of the quality of a flock. The average of these evaluation

functions is our goodness function. After time was spent studying the effectiveness of the

functions visually, the functions were weighted at the values in Table 1.

10

Evaluation Functions Weight

Mean distance to center 0.7

Mean deviation in the distances to center 0.75

Mean deviation in spacing between birds 1.0

Mean deviation of the agents’ headings 1.0

Table 1. Weighting of evaluation functions within goodness function.

3.4 Brute Force Parameter Study

Before any search methods were run, a brute force search was done to understand the search

space better. To do this, a NetLogo tool called “Behavior Space” was used. It is a tool designed

to run parameter searches and similar tasks. It ran the flocking code for 200 iterations for each

combination of the input parameters on a thirty-bird flock. For minimum-separation, the value

was a constant 0.75. Note that minimum separation is just a preference for how big the end flock

should be. For a 30-bird flock, .75 is a sufficient minimum separation, accounting for a 72-

square-unit domain. For max- {cohere, align and separate}-turn they were increments of 1

between 0 and 10. Those were the original ranges offered by the interface to the original

flocking code and anything outside that range produces a bad flock. Even though the parameters

for the angles could be from 0 to 180, the goal is to optimize between 0 and 10. Each parameter

combination was run once. The Behavior Space tool output a comma-separated file containing

which combination of parameters was used and what the goodness function value was for that

combination of parameters. This file was read into Microsoft Excel, edited to remove irrelevant

data, saved as comma-separated file again, renamed to a “.particle” (ParaView compatible) file

and read into ParaView [11] for analysis by visualization.

3.5 Other Search Method Implementations

Three parameter search methods were to be used: bracketing, steepest descent and genetic

algorithms. These search methods were chosen because they are some of the most widely used

and applicable to flocking.

11

A framework was used in all three optimizations to make the search methods comparable and for

code reuse. The framework consisted of the general parameter search steps: generate, evaluate

and select. The generate step takes in a tuple of parameter combination and parameter bounds

(call it a “state”) and generates multiple states to be tested. These states are tested in the next

step, evaluation. To evaluate, the flocking model is run for a set number of iterations and the

result of the goodness function is coupled to each state. Finally, in the select step, the state with

the best goodness function is selected and if the simulation is allowed to continue, it is fed back

into the generate step, otherwise, this last state is the output. Each search method has its own

stopping criteria.

The first parameter search technique implemented was bracketing [9]. This technique divides

the search space in half and finds the best half, then uses the best half as the starting point for the

next iteration, until the remaining half is small enough. In the generate step of bracketing, for

each parameter, the min and the max were averaged to produce Point B. The average of the min

and Point B, Point A, was calculated and the average of Point B and the max, Point C was

calculated. A list of all the possible combinations of Point A and Point C for all four parameters

is generated. To evaluate, the simulation is run for a specified number of iterations and the

goodness function result is coupled with the parameter combination used. To select, the

parameter combination with the lowest goodness function value is selected. For each parameter,

if Point A was better, then the max is set as Point B. If Point C was better, the min is set at Point

B. These min and max values are used for the next iteration. The stopping condition developed

for this search technique was that after four iterations of gen-eval-select, it would stop. After

four iterations, the values were precise enough for the parameter range used (0 to 10 for each

parameter).

The second parameter search technique implemented was steepest descent [8, 9]. This

technique starts at a random point in the search space and evaluates the local surrounding search

space, then proceeds one step towards the most promising direction. To generate in the steepest

descent parameter search method, all the possible combinations of each parameter value being

incremented one step up or one step down are generated. Step size was set at .05 times the max

value for that parameter. Each of these combinations is evaluated like in bracketing and each

12

combination is coupled with its goodness function value. To select, the best combination is sent

back as input to the generate step. It stops when it generates a flock with a goodness function

value under 0.1. This is the value deemed “good-enough.”

The third search technique implemented is a genetic algorithm [1, 8]. It works by considering

parameters to be genes that can be mutated, starting with organisms with randomly generated

genes, evaluating them and choosing the organism with the best value to live, and others to die

and be replaced by a mutation of the genes of the best organism. The generate step takes a pre-

selected list of the worst in the flock, changes their parameters to be that of mean of the best

birds and applies a mutation to that. The evaluate step runs like in the previous search

techniques. To select, the best in the flock are selected and sent on to the generate stage. It stops

when it generates a flock with a goodness function value under 0.1. This is the value deemed

“good-enough.”

4.0 Results

The purpose of the experiment was to find the optimal parameter search technique for flocking.

Therefore, a brute force study was run to understand the search space. Subsequently, the various

parameter search techniques were run, evaluated and compared.

13

Figure 1. The parameter search space discovered via brute-force. Sphere radii and color

represent goodness values.

In Figure 1, the results of the brute-force parameter study are shown. The radii of the spheres are

inversely proportionate to the goodness value (the lower the goodness value, the better the flock,

the bigger the spheres the better the flock). Different parameters are shown on each axis (cohere,

align and separate). The colors also signify goodness, with red being the best flock, blue being

the worst. The figure shows that when cohere and align are approximately equal in value, a better

goodness value is found. From this figure, a parameter search space with a diagonal gradient can

be seen.

.

14

Figure 2. Search space as interpolated surface cube.

Using the same test harness, Behavior Space, each parameter search technique was run ten times

and the outputs saved to a file. The outputs included the time it took to run each search, the

parameters to the flocking run, the average goodness function value, and the number of “gen-

eval-select” steps. Using this data, and the code written, the number of evaluations (200-

timestep flocking runs) is calculated.

Results Brute Force Bracketing Genetic Steepest
Descent

Time (Min) ~150 8.79850 2.06589 2.93913
Reliability 100% 70% 90% 100%
Goodness 0.03559 0.05466 0.08721 0.06869

Evaluations 1331 32 8.0 28.8
Table 2. Comparison of parameter search techniques.

15

• Time – The average time in minutes it takes for the search to come to a verdict.

• Reliability – The percentage of successful runs (runs having a goodness function under

0.1 in at least 30 iterations of the search).

• Goodness – The output flock goodness of each successful run of the search technique.

For the bracketing, genetic and steepest descent, this is an average of the 10 runs output.

• Evaluations – The average number of 200 iteration flocking tests that are run (in

successful runs).

5.0 Conclusions

The comparison of parameter search techniques shows that steepest descent is the most overall

useful search technique, but each has its strengths and weaknesses.

Steepest descent is most “reliable” (as defined above) most likely because the parameter search

space appears to be devoid of local minima and has a broad gradient for steepest descent to

follow. It also has very good performance.

Bracketing was the least reliable, but the average goodness value of its output parameter

combination is the closest to brute-force output. It performance is worse than steepest descent

and genetic, but still much better than brute-force. Bracketing’s reliability appeared to be

impacted negatively by inadequate sampling of the search space due to the position of the

gradient.

Although the genetic search technique is intriguing and its performance was better than the other

three techniques, it average goodness value of its output parameter combination was the worst of

the four. Since this technique was the only one that incorporated randomness, that may have

affect its output goodness negatively.

16

6.0 Significant Original Achievement

The most significant original achievement that was made by Team 70 was understanding the

parameter search space. This is important to all of those interested in flocking, as the search

space is very important to the search techniques run on it. Furthermore in order to understand the

search space, the team made original contributions in equations to evaluate the flock.

7.0 Work Products

The code for the Behavior Space was stored with the NetLogo model. Each search technique

has a different code base, but the goodness functions are identical. Code from original model is

marked. BehaviorSpace code could not be included as it is stored in a GUI.

7.1 Flocking with Goodness Functions

breed [centers center]

globals [
 vision
 mean-minimum-separation
 mean-max-separate-turn
 mean-max-cohere-turn
 mean-max-align-turn

 flock-center-x
 flock-center-y

17

 avg-spacing
 avg-flock-heading
]

turtles-own [
 minimum-separation
 max-separate-turn
 max-cohere-turn
 max-align-turn
 flockmates ;; agentset of nearby turtles
 nearest-flockmate ;; closest one of our flockmates
 nearest-neighbor ;; closest turtle
 other-turtles ;; turtles that are not the turtle in question

 dist-center ;; the distance between the turtle and the center of the flock
 dev-heading ;; difference between heading of turtle and the average heading
 dev-spacing ;; difference between spacing from turtle to nearest neighbor and the average diff
spacing
 dev-dist-center ;; difference between distance from turtle to center and the average distance
from turtle to center

 dist-nearest-neighbor
]

to setup ; this function modified from original code by team 70
 clear-all
 crt Population
 [set color yellow - 2 + random 7 ;; random shades look nice
 set size 1.5 ;; easier to see
 setxy random-xcor random-ycor]
 crt 1
 [set breed centers
 set color blue
 set size 3.0
 setxy random-xcor random-ycor]
 ask turtles
 [set minimum-separation 1.0
 set max-separate-turn 1.5
 set max-cohere-turn 5.0
 set max-align-turn 3.0]
 set vision 36.0
end

to go
 ask turtles [

18

 update-flocking-vars
 flock]
 ;; the following line is used to make the turtles
 ;; animate more smoothly.
 repeat 5 [ask turtles [fd 0.2] display]
 ;; for greater efficiency, at the expense of smooth
 ;; animation, substitute the following line instead:
 ;; ask turtles [fd 1]
 ask centers [do-center-stuff]
 ifelse centering
 [ask centers
 [ride-me]]
 [reset-perspective]
 tick
 if ticks mod update-delay = 0
 [ask turtles [
 update-colors
 update-plots
 update-goodness-fxn-vars
 update-parameters]]
end

;;; UPDATES

to update-plots
 set-current-plot "Mean Heading Deviation"
 set-current-plot-pen "heading"
 plotxy ticks mean-dev-heading
 set-current-plot "Mean Deviation Dist To Center"
 set-current-plot-pen "STD DEV"
 plotxy ticks mean-dev-dist-center
 set-current-plot "Mean Dist To Center"
 set-current-plot-pen "distance"
 plotxy ticks mean-dist-center
 set-current-plot "Mean Spacing Deviation"
 set-current-plot-pen "difference"
 plotxy ticks mean-dev-spacing
 set-current-plot "Average"
 set-current-plot-pen "avg-fxn"
 plotxy ticks average-flock-goodness
end

to update-colors
 if Pretty-Colors
 [set color approximate-rgb ((dist-center / 36) * 255) 0 (255 -((dist-center / 36) * 255))
 ask centers

19

 [set color yellow]]
end

to update-flocking-vars
 find-other-turtles
 find-flockmates
 find-nearest-neighbor
 find-flock-center-x
 find-flock-center-y
 find-avg-flock-heading
end

to update-goodness-fxn-vars
 find-dev-dist-center
 find-dev-heading
 find-dev-spacing
 find-dist-center
end

to update-parameters
 set mean-minimum-separation mean [minimum-separation] of turtles
 set mean-max-separate-turn mean [max-separate-turn] of turtles
 set mean-max-cohere-turn mean [max-cohere-turn] of turtles
 set mean-max-align-turn mean [max-align-turn] of turtles
end

;;; TURTLE QUALITY FUNCTIONS

to find-dev-dist-center
 set dev-dist-center abs (mean-dist-center - dist-center)
end

to find-dev-heading
 set dev-heading abs (avg-flock-heading - heading)
end

to find-dev-spacing
 set dist-nearest-neighbor distance nearest-neighbor
 set dev-spacing abs((mean[dist-nearest-neighbor] of turtles) - dist-nearest-neighbor)
end

to find-dist-center
 set dist-center distancexy flock-center-x flock-center-y
end

to-report average-turtle-goodness

20

 report (((1 * dev-heading / 360) + (1 * dev-spacing / 36) + (0.75 * dev-dist-center / 36) + (0.7 *
dist-center / 36)) / 4)
end

;;; FLOCK QUALITY FUNCTIONS

to-report average-flock-goodness
 report (((1 * mean-dev-heading / 360) + (1 * mean-dev-spacing / 36) + (0.75 * mean-dev-dist-
center / 36) + (0.7 * mean-dist-center / 36))/ 4)
end

to-report mean-dist-center
 report mean [dist-center] of turtles
end

to-report mean-dev-heading
 report mean [dev-heading] of turtles
end

to-report mean-dev-dist-center
 report mean [dev-dist-center] of turtles
end

to-report mean-dev-spacing
 report mean [dev-spacing] of turtles
end

;;; FLOCK CHARACTERISTICS

to find-flock-center-x
 let r-i (max-pxcor / (2 * pi))
 let x-i map [r-i * cos(((? * 2 * pi) / max-pxcor) * (180 / pi))] [xcor] of turtles
 let z-i map [r-i * sin(((? * 2 * pi) / max-pxcor) * (180 / pi))] [xcor] of turtles
 let tube-avg-i-x mean x-i
 let tube-avg-i-z mean z-i
 set flock-center-x ((atan (tube-avg-i-z) (tube-avg-i-x)) * (pi / 180)) * (max-pxcor / (2 * pi))
end

to find-flock-center-y
 let r-j (max-pycor / (2 * pi))
 let y-j map [r-j * cos(((? * 2 * pi) / max-pycor) * (180 / pi))] [ycor] of turtles
 let z-j map [r-j * sin(((? * 2 * pi) / max-pycor) * (180 / pi))] [ycor] of turtles
 let tube-avg-j-y mean y-j
 let tube-avg-j-z mean z-j
 set flock-center-y ((atan (tube-avg-j-z) (tube-avg-j-y)) * (pi / 180)) * (max-pycor / (2 * pi))
end

21

to find-avg-flock-heading
 set avg-flock-heading atan sum [sin heading] of turtles
 sum [cos heading] of turtles
end

;; code from here on was not written by group 70

;;; FLOCKING

to flock ;; turtle procedure
 if any? flockmates
 [find-nearest-flockmate
 ifelse distance nearest-flockmate < minimum-separation
 [separate]
 [align
 cohere]]
end

to find-flockmates ;; turtle procedure
 set flockmates other-turtles in-radius vision
end

to find-other-turtles
 set other-turtles other turtles
end

to find-nearest-neighbor
 set nearest-neighbor min-one-of other-turtles [distance myself]
end

to find-nearest-flockmate ;; turtle procedure
 set nearest-flockmate nearest-neighbor
end

;;; SEPARATE

to separate ;; turtle procedure
 turn-away ([heading] of nearest-flockmate) max-separate-turn
end

;;; ALIGN

to align ;; turtle procedure
 turn-towards average-flockmate-heading max-align-turn
end

22

to-report average-flockmate-heading ;; turtle procedure
 ;; We can't just average the heading variables here.
 ;; For example, the average of 1 and 359 should be 0,
 ;; not 180. So we have to use trigonometry.
 ;; Theoretically this could fail if both sums are 0
 ;; since atan 0 0 is undefined, but in practice that's
 ;; vanishingly unlikely.
 report atan sum [sin heading] of flockmates
 sum [cos heading] of flockmates
end

;;; COHERE

to cohere ;; turtle procedure
 turn-towards average-heading-towards-flockmates max-cohere-turn
end

to-report average-heading-towards-flockmates ;; turtle procedure
 ;; "towards myself" gives us the heading from the other turtle
 ;; to me, but we want the heading from me to the other turtle,
 ;; so we add 180
 report atan mean [sin (towards myself + 180)] of flockmates
 mean [cos (towards myself + 180)] of flockmates
end

;;; CENTER BOID

to do-center-stuff
 setxy flock-center-x flock-center-y
 set heading avg-flock-heading
end

;;; HELPER PROCEDURES

to turn-towards [new-heading max-turn] ;; turtle procedure
 turn-at-most (subtract-headings new-heading heading) max-turn
end

to turn-away [new-heading max-turn] ;; turtle procedure
 turn-at-most (subtract-headings heading new-heading) max-turn
end

;; turn right by "turn" degrees (or left if "turn" is negative),
;; but never turn more than "max-turn" degrees
to turn-at-most [turn max-turn] ;; turtle procedure

23

 ifelse abs turn > max-turn
 [ifelse turn > 0
 [rt max-turn]
 [lt max-turn]]
 [rt turn]
end

; *** NetLogo 4.0.4 Model Copyright Notice ***
;
; This model was created as part of the project: CONNECTED MATHEMATICS:
; MAKING SENSE OF COMPLEX PHENOMENA THROUGH BUILDING OBJECT-BASED
PARALLEL
; MODELS (OBPML). The project gratefully acknowledges the support of the
; National Science Foundation (Applications of Advanced Technologies
; Program) -- grant numbers RED #9552950 and REC #9632612.
;
; Copyright 1998 by Uri Wilensky. All rights reserved.
;
; Permission to use, modify or redistribute this model is hereby granted,
; provided that both of the following requirements are followed:
; a) this copyright notice is included.
; b) this model will not be redistributed for profit without permission
; from Uri Wilensky.
; Contact Uri Wilensky for appropriate licenses for redistribution for
; profit.
;
; This model was converted to NetLogo as part of the projects:
; PARTICIPATORY SIMULATIONS: NETWORK-BASED DESIGN FOR SYSTEMS
LEARNING
; IN CLASSROOMS and/or INTEGRATED SIMULATION AND MODELING
ENVIRONMENT.
; The project gratefully acknowledges the support of the
; National Science Foundation (REPP & ROLE programs) --
; grant numbers REC #9814682 and REC-0126227.
; Converted from StarLogoT to NetLogo, 2002.
;
; To refer to this model in academic publications, please use:
; Wilensky, U. (1998). NetLogo Flocking model.
; http://ccl.northwestern.edu/netlogo/models/Flocking.
; Center for Connected Learning and Computer-Based Modeling,
; Northwestern University, Evanston, IL.
;
; In other publications, please use:
; Copyright 1998 Uri Wilensky. All rights reserved.
; See http://ccl.northwestern.edu/netlogo/models/Flocking
; for terms of use.

24

;
; *** End of NetLogo 4.0.4 Model Copyright Notice ***

7.2 Bracketing

extensions[array]
breed [centers center]

globals [
 vision
 mean-minimum-separation
 mean-max-separate-turn
 mean-max-cohere-turn
 mean-max-align-turn

 flock-center-x
 flock-center-y

 avg-spacing
 avg-flock-heading

 goodness-output

 state
 gen-a
 gen-c
 state-min
 state-max
 state-gen
 state-eval
 current-param

25

 bracket-b
 stopping
 iterations
]

turtles-own [
 minimum-separation
 max-separate-turn
 max-cohere-turn
 max-align-turn
 flockmates ;; agentset of nearby turtles
 nearest-flockmate ;; closest one of our flockmates
 nearest-neighbor ;; closest turtle
 other-turtles ;; turtles that are not the turtle in question

 dist-center ;; the distance between the turtle and the center of the flock
 dev-heading ;; difference between heading of turtle and the average heading
 dev-spacing ;; difference between spacing from turtle to nearest neighbor and the average diff
spacing
 dev-dist-center ;; difference between distance from turtle to center and the average distance
from turtle to center

 dist-nearest-neighbor
]

to setup ; this function modified from original code by team 70
 clear-all
 crt Population
 [set color yellow - 2 + random 7 ;; random shades look nice
 set size 1.5 ;; easier to see
 setxy random-xcor random-ycor]
 crt 1
 [set breed centers
 set color blue
 set size 3.0
 setxy random-xcor random-ycor]
 ask turtles
 [set minimum-separation 0.75]
 set vision 36.0
 set test-time 200
 set iterations 0
 set stopping False
 set gen-a array:from-list [0 0 0]
 set gen-c array:from-list [0 0 0]
 set state-min array:from-list [0 0 0]
 set state-max array:from-list [10 10 10]

26

 set state array:from-list (list (random array:item state-max 0) (random array:item state-max 1)
(random array:item state-max 2))
end

to go
 gen
 eval
 select
 are-we-done?
end

to gen
 set state-gen []
 set current-param 0
 foreach array:to-list state
 [set bracket-b ((item current-param array:to-list state-min) + (item current-param array:to-list
state-max)) / 2
 let state1 array:to-list state
 let state2 array:to-list state
 set state1 replace-item current-param state1 ((bracket-b + (array:item state-min current-
param)) / 2)
 set state2 replace-item current-param state2 ((bracket-b + (array:item state-max current-
param)) / 2)
 array:set gen-a current-param array:item array:from-list state1 current-param
 array:set gen-c current-param array:item array:from-list state2 current-param
 set current-param current-param + 1]
 let possible-state [0 0 0]
 foreach list (array:item gen-a 0) (array:item gen-c 0)
 [set possible-state replace-item 0 possible-state ?
 foreach list (array:item gen-a 1) (array:item gen-c 1)
 [set possible-state replace-item 1 possible-state ?
 foreach list (array:item gen-a 2) (array:item gen-c 2)
 [set possible-state replace-item 2 possible-state ?
 set state-gen lput array:from-list possible-state state-gen]]]
 set state-gen array:from-list state-gen

end

to eval
 set state-eval []

27

 let eval-run 0
 foreach array:to-list state-gen
 [ask turtles [update-flocking-vars]
 set state (array:item state-gen eval-run)
 ask turtles [set max-separate-turn array:item state 0]
 ask turtles [set max-cohere-turn array:item state 1]
 ask turtles [set max-align-turn array:item state 2]
 reset-ticks
 clear-all-plots
 ask turtles [setxy random-xcor random-ycor]
 while [ticks < test-time]
 [ask turtles [
 update-flocking-vars
 flock]
 ;; the following line is used to make the turtles
 ;; animate more smoothly.
 repeat 5 [ask turtles [fd 0.2] display]
 ;; for greater efficiency, at the expense of smooth
 ;; animation, substitute the following line instead:
 ;; ask turtles [fd 1]
 ask centers [do-center-stuff]
 ifelse centering
 [ask centers
 [ride-me]]
 [reset-perspective]
 tick
 if ticks mod update-delay = 0
 [ask turtles [
 update-colors
 update-plots
 update-goodness-fxn-vars
 update-parameters]]]
 ask turtles [
 update-colors
 update-plots
 update-goodness-fxn-vars
 update-parameters]
 set state-eval lput average-flock-goodness state-eval
 set eval-run eval-run + 1]
end

to select
 let i 0
 let best-state 0
 foreach state-eval
 [if min state-eval = ?

28

 [set best-state array:item state-gen i
 set goodness-output ?]
 set i i + 1]
 set current-param 0
 foreach array:to-list best-state
 [set bracket-b ((item current-param array:to-list state-min) + (item current-param array:to-list
state-max)) / 2
 ifelse ? = array:item gen-a current-param
 [array:set state-max current-param bracket-b]
 [array:set state-min current-param bracket-b]
 set current-param current-param + 1]

 set iterations iterations + 1
end

to are-we-done?
 if iterations >= stop-iterations
 [set goodness-output average-flock-goodness
 set stopping True]
end

;;; UPDATES
;; original code previously listed above omitted here for this document

7.3 Steepest Descent

extensions[array]
breed [centers center]

globals [
 vision
 mean-minimum-separation

29

 mean-max-separate-turn
 mean-max-cohere-turn
 mean-max-align-turn

 flock-center-x
 flock-center-y

 avg-flock-heading

 state
 gen-a
 gen-c
 state-min
 state-max
 state-gen
 state-eval
 best-state
 current-param

 stopping
 goodness-output
]

turtles-own [
 minimum-separation
 max-separate-turn
 max-cohere-turn
 max-align-turn
 flockmates ;; agentset of nearby turtles
 nearest-flockmate ;; closest one of our flockmates
 nearest-neighbor ;; closest turtle
 other-turtles ;; turtles that are not the turtle in question

 dist-center ;; the distance between the turtle and the center of the flock
 dev-heading ;; difference between heading of turtle and the average heading
 dev-spacing ;; difference between spacing from turtle to nearest neighbor and the average diff
spacing
 dev-dist-center ;; difference between distance from turtle to center and the average distance
from turtle to center

 dist-nearest-neighbor

]

to setup ; this function modified from original code by team 70
 clear-all

30

 crt Population
 [set color yellow - 2 + random 7 ;; random shades look nice
 set size 1.5 ;; easier to see
 setxy random-xcor random-ycor]
 crt 1
 [set breed centers
 set color blue
 set size 3.0
 setxy random-xcor random-ycor]
 ask turtles
 [set minimum-separation 1.0
 set max-separate-turn 1.5
 set max-cohere-turn 5.0
 set max-align-turn 3.0]
 set vision 36.0
 ask turtles [set minimum-separation 0.75]
 set state-min array:from-list [0 0 0]
 set gen-a array:from-list [0 0 0]
 set gen-c array:from-list [0 0 0]
 set state-max array:from-list [10 10 10]
 set state array:from-list (list (random array:item state-max 0) (random array:item state-max 1)
(random array:item state-max 2))
 set stopping False
 set goodness-output 0
end

to go
 gen
 eval
 select
 are-we-done?
end

to gen
 set state-gen []
 set current-param 0
 foreach array:to-list state
 [let state1 array:to-list state
 let state2 array:to-list state
 set state1 replace-item current-param state1 (array:item state current-param + (increment *
array:item state-max current-param))
 if item current-param state1 < 0

31

 [set state1 replace-item current-param state1 0]
 if item current-param state1 > array:item state-max current-param
 [set state1 replace-item current-param state1 array:item state-max current-param]
 set state2 replace-item current-param state2 (array:item state current-param - (increment *
array:item state-max current-param))
 if item current-param state2 < 0
 [set state2 replace-item current-param state2 0]
 if item current-param state2 > array:item state-max current-param
 [set state2 replace-item current-param state2 array:item state-max current-param]
 array:set gen-a current-param array:item array:from-list state1 current-param
 array:set gen-c current-param array:item array:from-list state2 current-param
 set current-param current-param + 1]
 let possible-state [0 0 0]
 foreach list (array:item gen-a 0) (array:item gen-c 0)
 [set possible-state replace-item 0 possible-state ?
 foreach list (array:item gen-a 1) (array:item gen-c 1)
 [set possible-state replace-item 1 possible-state ?
 foreach list (array:item gen-a 2) (array:item gen-c 2)
 [set possible-state replace-item 2 possible-state ?
 set state-gen lput array:from-list possible-state state-gen]]]
 set state-gen array:from-list state-gen

end

to eval
 set state-eval []
 let eval-run 0
 foreach array:to-list state-gen
 [ask turtles [update-flocking-vars]
 set state (array:item state-gen eval-run)
 ask turtles [set max-separate-turn array:item state 0]
 ask turtles [set max-cohere-turn array:item state 1]
 ask turtles [set max-align-turn array:item state 2]
 reset-ticks
 clear-all-plots
 ask turtles [setxy random-xcor random-ycor]
 while [ticks < test-time]
 [ask turtles [
 update-flocking-vars
 flock]
 ;; the following line is used to make the turtles
 ;; animate more smoothly.
 repeat 5 [ask turtles [fd 0.2] display]
 ;; for greater efficiency, at the expense of smooth

32

 ;; animation, substitute the following line instead:
 ;; ask turtles [fd 1]
 ask centers [do-center-stuff]
 ifelse centering
 [ask centers
 [ride-me]]
 [reset-perspective]
 tick
 if ticks mod update-delay = 0
 [ask turtles [
 update-colors
 update-plots
 update-goodness-fxn-vars
 update-parameters]]]
 ask turtles [
 update-colors
 update-plots
 update-goodness-fxn-vars
 update-parameters]
 set state-eval lput average-flock-goodness state-eval
 set eval-run eval-run + 1]
end

to select
 let i 0
 set best-state 0
 foreach state-eval
 [if min state-eval = ?
 [set best-state array:item state-gen i
 set goodness-output ?]
 set i i + 1]
 set state best-state
end

to are-we-done?
 if min state-eval < stop-goodness
 [ask turtles [set max-separate-turn array:item best-state 0]
 ask turtles [set max-cohere-turn array:item best-state 1]
 ask turtles [set max-align-turn array:item best-state 2]
 set goodness-output min state-eval
 set stopping True]
end

33

;;; UPDATES
;; original code previously listed above omitted here for this document

7.4 Genetic

extensions[array]
breed [centers center]

globals [
 vision
 mean-minimum-separation
 mean-max-separate-turn
 mean-max-cohere-turn
 mean-max-align-turn

 flock-center-x
 flock-center-y

 avg-spacing
 avg-flock-heading

 outer-birds
 unlucky-turtles
 lucky-turtles

 state
 state1
 state2
 state-min
 state-max
 state-gen
 state-eval
 current-param

34

 goodness-output
 stopping
]
turtles-own [
 minimum-separation
 max-separate-turn
 max-cohere-turn
 max-align-turn
 flockmates ;; agentset of nearby turtles
 nearest-flockmate ;; closest one of our flockmates
 nearest-neighbor ;; closest turtle
 other-turtles ;; turtles that are not the turtle in question
 parents

 dist-center ;; the distance between the turtle and the center of the flock
 dev-heading ;; difference between heading of turtle and the average heading
 dev-spacing ;; difference between spacing from turtle to nearest neighbor and the average diff
spacing
 dev-dist-center ;; difference between distance from turtle to center and the average distance
from turtle to center
 dev-heading-history

 dist-nearest-neighbor
]

to setup ; this function modified from original code by team 70
 clear-all
 crt Population
 [set color yellow - 2 + random 7 ;; random shades look nice
 set size 1.5 ;; easier to see
 setxy random-xcor random-ycor]
 crt 1
 [set breed centers
 set color blue
 set size 3.0
 setxy random-xcor random-ycor]
 ask turtles [set minimum-separation 0.75]
 set vision 36.0
 set current-param 0
 set test-time 200
 set unlucky-turtles no-turtles
 set state-min array:from-list [0 0 0]
 set state-max array:from-list [10 10 10]
 set state array:from-list (list (random array:item state-max 0) (random array:item state-max 1)
(random array:item state-max 2))
 ask turtles [set max-separate-turn (random array:item state-max 0)]

35

 ask turtles [set max-cohere-turn (random array:item state-max 1)]
 ask turtles [set max-align-turn (random array:item state-max 2)]
 set stopping false

end

to go
 gen
 eval
 select
 are-we-done?
end

to gen
if any? unlucky-turtles
 [ask unlucky-turtles
 [set parents (turtle-set one-of lucky-turtles one-of lucky-turtles)
 set color yellow - 2 + random 7 ;; random shades look nice
 set size 1.5 ;; easier to see
 let parent-num1 random-float 1
 ifelse parent-num1 < mutation-likeliness
 [set max-separate-turn (mean-max-separate-turn + (((random -2) * 2 + 1) * ((random-float
1) ^ (1 / mutation-factor)) * array:item state-max 0))]
 [set max-separate-turn ([max-separate-turn] of one-of parents)]
 if max-separate-turn < 0
 [set max-separate-turn 0]
 if max-separate-turn > array:item state-max 0
 [set max-separate-turn array:item state-max 0]
 let parent-num2 random-float 1
 ifelse parent-num2 < mutation-likeliness
 [set max-cohere-turn (mean-max-cohere-turn + (((random -2) * 2 + 1) * ((random-float 1)
^ (1 / mutation-factor)) * array:item state-max 1))]
 [set max-cohere-turn ([max-cohere-turn] of one-of parents)]
 if max-cohere-turn < 0
 [set max-cohere-turn 0]
 if max-cohere-turn > array:item state-max 1
 [set max-cohere-turn array:item state-max 1]
 let parent-num3 random-float 1
 ifelse parent-num3 < mutation-likeliness
 [set max-align-turn (max-align-turn + (((random -2) * 2 + 1) * ((random-float 1) ^ (1 /
mutation-factor)) * array:item state-max 2))]
 [set max-align-turn ([max-align-turn] of one-of parents)]
 if max-align-turn < 0
 [set max-align-turn 0]
 if max-align-turn > array:item state-max 2
 [set max-align-turn array:item state-max 2]]]

36

end

to eval
 ask turtles [update-flocking-vars]
 reset-ticks
 clear-all-plots
 ;ask turtles [set dev-heading-history []]
 ask turtles [setxy random-xcor random-ycor]
 while [ticks < test-time]
 [ask turtles [
 update-flocking-vars
 flock]
 ;; the following line is used to make the turtles
 ;; animate more smoothly.
 repeat 5 [ask turtles [fd 0.2] display]
 ;; for greater efficiency, at the expense of smooth
 ;; animation, substitute the following line instead:
 ;; ask turtles [fd 1]
 ask centers [do-center-stuff]
 ifelse centering
 [ask centers
 [ride-me]]
 [reset-perspective]
 tick
 if ticks mod update-delay = 0
 [ask turtles [
 update-colors
 update-plots
 update-goodness-fxn-vars
 update-parameters]]]
 ask turtles [
 update-colors
 update-plots
 update-goodness-fxn-vars
 update-parameters]
end

to select
 ask centers[set outer-birds other turtles]
 set unlucky-turtles max-n-of naturally-select outer-birds [average-turtle-goodness]
 set lucky-turtles min-n-of (Population - naturally-select) outer-birds [average-turtle-goodness]
end

to are-we-done?
 if average-flock-goodness < stop-goodness
 [set mean-max-separate-turn mean [max-separate-turn] of lucky-turtles

37

 set mean-max-cohere-turn mean [max-cohere-turn] of lucky-turtles
 set mean-max-align-turn mean [max-align-turn] of lucky-turtles
 set goodness-output average-flock-goodness
 set stopping True]
 set goodness-output average-flock-goodness
end

;;; UPDATES
;; original code previously listed above omitted here for this document

8.0 Bibliography

[1] Stephanie Forrest: Genetic Algorithms: Principles of Natural Selection Applied to

Computation, 2007

[2] Isaac Councill, Lee Giles : Random Search For Multiple Layer Perceptron 2005

[3] István Maros : Computational Techniques of the Simplex Method (International Series in

Operations Research & Management Science) 2004

[4] R. Fletcher: Practical Methods of Optimization 2005

[5] Nigel Gilbert: Agent-Based Models in NetLogo (Quantitative Methods in Science) 2008

[6] Nick Bennett, Bob Robey, and Tom Robey :Computational Solution Techniques In

Mathematical Programming

[7] Linge Bai and David Breen: Center of Mass in an Unbounded 2D Environment

[8] Wikipedia – genetic algorithms and steepest descent.

[9] Bob Robey, Tom Robey: Talk on optimization algorithms at Supercomputing Challenge

Kickoff 2009.

[10] The NetLogo flocking model:

 Wilensky, U. (1998). NetLogo Flocking model.

 http://ccl.northwestern.edu/netlogo/models/Flocking.

 Center for Connected Learning and Computer-Based Modeling,

 Northwestern University, Evanston, IL.

[11] ParaView: www.paraview.org.

38

9.0 Acknowledgements

First and foremost, we would like to thank the people of the Supercomputing Challenge. This

project has opened the eyes of everybody on this team about the depths and usefulness of

computer programming. We would like to thank in particular Bob Robey for helping us

formulate an idea for a project.

Secondly, team 70 would like to thank Mr. Goodwin, our sponsor teacher, as he has encouraged

us through this difficult journey and kept us enthusiastic about the task at hand. He has provided

a warm and comforting atmosphere for our team, and the school, to get together and move

forward in our work.

Thirdly, we would all like to thank our sponsors, Christine and Jim Ahrens for their expertise in

computing and data visualization.

Fourthly, we would like to thank all of the judges. The judges took time out of their busy lives to

listen to our proposals and interim reports and give us feedback on what we need to work on.

They gave us positive feedback as well as suggestions for the future to make our project the best

that it could be.

And last but not least, we would all like to thank our families, our moms, dads, sisters, and

brothers.

	To Kill a Flocking Bird
	Table of Contents
	1.0 Executive Summary
	2.0 Statement of the problem
	3.0 Description of the Method Used to Solve the Problem
	3.1 The NetLogo Flocking Model
	3.2 Evaluation and Goodness Functions
	3.4 Brute Force Parameter Study
	3.5 Other Search Method Implementations

	4.0 Results
	5.0 Conclusions
	6.0 Significant Original Achievement
	7.0 Work Products
	7.1 Flocking with Goodness Functions
	7.2 Bracketing
	7.3 Steepest Descent
	7.4 Genetic

	8.0 Bibliography
	9.0 Acknowledgements

