
Artificial Intelligence used in a Battle Simulation

New Mexico
Supercomputing Challenge

Final Report
April 7, 2010

Team #73
Los Alamos Middle School

Team Members
George Barnum
Mohit Dubey
Ben Liu

Teacher
Clara Vigil

Mentor
Bob Robey

Artificial intelligence is the field of computer science, which programs machines to do human-
like tasks. Through AI, scientists can solve problems or complete tasks that cannot be done by human
intelligence alone. The program for the machines intelligence is usually based on an algorithm, a
system of finite steps that solve problems.

AI was first discussed during a meeting at Dartmouth College in 1956. Many famous scientists
were there including John McCarthy, Marvin Minsky, and Herbert Simon who helped pioneer AI.
Throughout the next 40 years, the scientists working on AI had many breakthroughs and pitfalls.
Finally, in the 1990s and 2000’s, artificial intelligence achieved its greatest successes. Using modern
day computers people could use intelligent machines to do new things and solve many unsolved
problems.

Today, artificial intelligence is applied to very many things we do. One major on is computer
science, where researchers use algorithms to simply run computers and give them the ability to run
applications (Microsoft Word, Firefox, etc.) and do tasks (Spell check, run a search of computer
documents, etc.). AI is also commonly used in video games to make them more fun and interactive.
Banks use AI to invest in stocks, balance funds, and organize staff operations. Companies use
intelligent machines to do tasks, which could be dangerous or time-consuming. Lastly, AI can be used
to simulate battle to help plan strategies and decrease collateral damage, which we were trying to do
with our program.

To model our battlefield we used C++ with a graphics library called Allegro to visualize the
data. The battlefield was grid based and the movement of the units was made turn based because we
were not very experienced in C++. We decided to try to simulate a relatively small number of units for
the same reason. By altering the variables in the program we would create different situations and
repeatedly test the AI we created. However, we could not finish our goal in the available time.

We first made a simple movement program that would move two units across the screen when
the arrow keys were pressed and switch between the two with the space bar (labeled Red Side
Movement loop in the code in the Appendix). Then we tried to make another two units move towards
the red units and stop when they were adjacent to them (labeled Blue Side Movement loop), but when
we tried to run the code with that, the program became unresponsive and crashed.

We had planned to have the artificial intelligence navigate around buildings and pick the best
way through varying terrain. We were going to have it calculate each unit's path to the target with an A*
search, an algorithm that compares the cost of moving to a space with the distance from that space to
the goal, and run a test on each square that it would be going through to see if it would run into
anything or get too close to an enemy unit and if it did it would make small changes to its path and
recheck it for speed.

We would like to thank Bob Robey for helping us with our code problems and giving us advice.

Appendix

int rsx = 0;
int rsy = 0;
int rsxi = 0;
int rsyi = 1;
int rsm = 3;
int rsmi = 3;
int rsh = 3;
int rshi = 3;
int bsx = 25;
int bsy = 0;
int bsxi = 25;
int bsyi = 1;
int bsm = 3;
int bsmi = 3;
int bsh = 3;
int bshi = 3;
int tx = 0;
int ty = 0;
int txi = 0;
int tyi = 0;
int tt = 0;
int sol = 0;
int turn = 0;
int space_bar_down = 0;
int left_press = 0;
int right_press = 0;
int down_press = 0;
int up_press = 0;
int enter = 0;
volatile long speed_counter = 0;

void increment_speed_counter()
{
 speed_counter++;
};
END_OF_FUNCTION(increment_speed_counter);

int main(int argc, char *argv[]){
 FILE * fout;
 allegro_init(); // Initialize Allegro
 install_keyboard(); // Initialize keyboard routines
 install_timer(); // Initialize the timer routines
 install_mouse();
 LOCK_VARIABLE(speed_counter);
 LOCK_FUNCTION(increment_speed_counter);
 install_int_ex(increment_speed_counter, BPS_TO_TIMER(60));
 set_color_depth(16);

 set_gfx_mode(GFX_AUTODETECT, 640,480,0,0);
 BITMAP *buffer = create_bitmap(640,480);
 BITMAP *redsoldier = NULL;
 BITMAP *bluesoldier = NULL;
 redsoldier = load_bitmap("redsoldier.bmp",NULL);
 bluesoldier = load_bitmap("bluesoldier.bmp",NULL);
 while(!key[KEY_ESC]){
 while(speed_counter > 0){
 if (turn == 0){ //Red Side ovement loop
 clear_keybuf();
 if(key[KEY_SPACE]){
 if(space_bar_down==0) {
 sol=(sol<1)? 1: 0;
 space_bar_down = 1;
 }
 }//key space
 if (sol==0){
 if (rsm>0){
 clear_keybuf();
 if(key[KEY_DOWN]){
 if(down_press==0){
 if(rsy < 18)rsy++;
 down_press = 1;
 rsm--;
 }//down_press
 }//KEY_DOWN
 clear_keybuf();
 if(key[KEY_UP]){
 if (up_press==0){
 if(rsy > 0)rsy--;
 up_press = 1;
 rsm--;
 }
 }
 clear_keybuf();
 if(key[KEY_RIGHT]){
 if (right_press == 0){
 if(rsx < 25)rsx++;
 right_press = 1;
 rsm--;
 }
 }
 clear_keybuf();
 if(key[KEY_LEFT]){
 if(left_press == 0){
 if(rsx > 0)rsx--;
 left_press = 1;
 rsm--;
 }//left_press

 }//KEY_LEFT
 }//rsm
 }//sol
 else{
 if (rsmi>0){
 clear_keybuf();
 if(key[KEY_DOWN]){
 if(down_press==0){
 if(rsyi < 18)rsyi++;
 down_press = 1;
 rsmi--;
 }//
 }//
 clear_keybuf();
 if(key[KEY_UP]){
 if (up_press==0){
 if(rsyi > 0)rsyi--;
 up_press = 1;
 rsmi--;
 }//up_press
 }//KEY_UP
 clear_keybuf();
 if(key[KEY_RIGHT]){
 if (right_press == 0){
 if(rsxi < 25)rsxi++;
 right_press = 1;
 rsmi--;
 }//right_press
 }//KEY_RIGHT
 clear_keybuf();
 if(key[KEY_LEFT]){
 if(left_press == 0){
 if(rsxi > 0)rsxi--;
 left_press = 1;
 rsmi--;
 }//left_press
 }//KEY_LEFT
 }//rsmi
 }//else
 if(!key[KEY_SPACE])space_bar_down = 0;
 if(!key[KEY_DOWN])down_press = 0;
 if(!key[KEY_UP])up_press = 0;
 if(!key[KEY_RIGHT])right_press = 0;
 if(!key[KEY_LEFT])left_press = 0;

 if(key[KEY_ENTER]){
 //if(enter = 0){
 turn=1;
 rsm=3;

 rsmi=3;
 enter = 1;
 //}//enter
 }//KEY_ENTER
 if(!key[KEY_ENTER])enter = 0;
 }//turn //End Red Side Movement loop
 if (turn == 1){ //Blue Side Movement loop
 tx = rsx;
 ty = rsy;
 if (tt == 0){
 if (bsm > 0){
 if (bsx > (tx + 1)){
 bsx++;
 bsm--;
 }//tx
 if(bsx < (tx - 1)){
 bsx--;
 bsm--;
 }//tx
 if (bsy > (ty + 1)){
 bsy++;
 bsm--;
 }//ty
 if(bsy < (ty - 1)){
 bsy--;
 bsm--;
 }//ty
 if((bsx == (tx - 1)) or (bsx == (tx + 1))){
 tt = 0;
 }
 }//bsm
 else{//
 tt = 1;
 }
 }//tt
 else{
 bsm = 3;
 turn = 0;
 }//else tt
 }//turn //End Blue Side Movement loop
 speed_counter--;
 }//speed_counter

 show_mouse(NULL);
 clear_to_color(buffer, makecol(0,255,0));
 rectfill(buffer, 0, 324,640,480,makecol(0,0,0));
 textout_ex(buffer, font, "Soldier 1", 70, 325,makecol(255, 255, 255), -1);
 textout_ex(buffer, font, "Soldier 2", 70, 345,makecol(255, 255, 255), -1);
 if (rsh > 0){

 rectfill(buffer, 0, 325,20,335,makecol(255,0,0));
 if (rsh > 1){
 rectfill(buffer, 22, 325,42,335,makecol(255,0,0));
 if (rsh > 2){
 rectfill(buffer, 44, 325,64,335,makecol(255,0,0));
 }
 }
 }
 if (rshi > 0){
 rectfill(buffer, 0, 345,20,355,makecol(255,0,0));
 if (rshi > 1){
 rectfill(buffer, 22, 345,42,355,makecol(255,0,0));
 if (rshi > 2){
 rectfill(buffer, 44, 345,64,355,makecol(255,0,0));
 }
 }
 }
 if (bsh > 0){
 rectfill(buffer, 640, 325,620,335,makecol(0,0,255));
 if (bsh > 1){
 rectfill(buffer, 618, 325,598,335,makecol(0,0,255));
 if (bsh > 2){
 rectfill(buffer, 596, 325,576,335,makecol(0,0,255));
 }
 }
 }
 if (bshi > 0){
 rectfill(buffer, 640, 345,620,355,makecol(0,0,255));
 if (bshi > 1){
 rectfill(buffer, 618, 345,598,355,makecol(0,0,255));
 if (bshi > 2){
 rectfill(buffer, 596, 345,576,355,makecol(0,0,255));
 }
 }
 }
 if (rsh > 0){
 masked_blit(redsoldier, buffer,0,0,(rsx*25),(rsy*18),25,18);
 }
 if (rshi > 0){
 masked_blit(redsoldier, buffer,0,0,(rsxi*25),(rsyi*18),25,18);
 }
 if (bsh > 0){
 masked_blit(bluesoldier, buffer,0,0,(bsx*25),(bsy*18),25,18);
 }
 if (bshi > 0) {
 masked_blit(bluesoldier, buffer,0,0,(bsxi*25),(bsyi*18),25,18);
 }
 acquire_screen();
 show_mouse(buffer);

 blit(buffer, screen,0,0,0,0,640,480);
 release_screen;

 }//KEY_ESC
 show_mouse(NULL);
 destroy_bitmap(redsoldier);
 destroy_bitmap(buffer);
 allegro_exit();
 return 0;
}
END_OF_MAIN();

