
Smart Grid
New Mexico

Supercomputing Challenge
Final Report

Team 75

Los Alamos Middle School (LAMs)

Team Members -

• Colin Redman

• Michael Englert Erickson

• Sudeep Dasari

Teacher -

• Clara Vigil

Project Mentors -

• Andrew Erickson

• Jim Redman

• Venkat Dasari

Page 2

Executive Summary: The project that we did this year is on the Smart Grid.

The Smart Grid is an electric grid that can communicate with household appliances and

reschedule nonessential appliances around times of peak load. We have examined

benefits of deploying smart grid type of control technologies in a semi-urban community

like our hometown Los Alamos New Mexico. Peak load is the daily power surge. It

happens between four o’clock to nine o’clock pm in Los Alamos New Mexico. It is

caused when most commuters arrive at their home and turn on most if not all of their

appliances. By rescheduling nonessential appliances and adding price benefits we can

drastically reduce peak load.

We created an agent based model that uses an applet simulation to uses vectors

to store instances for houses. Because conventional agent based models, such as

NetLogo, can’t handle a very large number of agents simultaneously we have decided

to develop and use our own agent-based model in Java environment. This Java

environment was created in Eclipse. In this report we present and discuss the objectives

and the results of the model. For example, our simulations indicate that deployment of

smart grid together with even the simplest of control strategies can save energy use by

as much as five% and “shave-off” the peak load use in excess of thirteen%. We

recognized through the simulation that bad control strategies coupled with incomplete

understanding of grid conditions can result in unstable operating conditions. For

example, all the appliances can shut-off at the same time resulting in grid voltage

overshooting safety limits. Or all the appliances could turn on at the same time which

will result in a collapse of the grid. Our team programmer managed to fix most of the

Page 1

problems plaguing our simulation but there are still a few left. He will work hard to fix the

final problems with our program for the Expo.

Page 2

Introduction: During a typical day between 5:00 pm to 9:00 pm there is a peak

in the amount of power used by appliances when people return from work and rush to

finish dinner and other daily jobs. In the figure below in our results (Figure 1) red-line

illustrates typical power use profile in Los Alamos. In Los Alamos that peak occurs at

about 8:00 PM and can be as high as 16 MW compared to average power consumption

of 13 MW during the day. During peak load inefficient backup generators or “peakers”

are used to compensate for the sudden increase in power demand. In addition these

peak loads can also result in excess energy loss due to Ohmic losses (that is heating of

the electric wires by current as given by I2R equation)

Smart Grid’s goal is to reduce this power peak by transferring power used by

noncommercial appliances to other parts of the day (like at night). The Smart Grid works

by using the zigbee system. Every appliance would be hooked up to the zigbee

network. The zigbee system connects all appliances in a house and then each house in

the community is connected to the city grid system. This network allows appliances to

communicate with each other and with the grid. This way allows appliances in a

household to continuously monitor the grid condition in terms of its voltage and

determine when the other appliances on the zigbee network are on or off. When

appliances recognize that peak conditions are reaching, then they can turn themselves

off completely or operate at reduced consumption. Communication between appliances

is essential otherwise all of them can shutdown at the same time leading to unstable

grid conditions. Our hypothesis is that such a smart control strategy will greatly reduce

the peak load.

Page 3

Description: Our project’s goal is to accurately simulate the advantages of

Smart Grid. Our team programmer has chosen agent-based modeling approach for the

simulation. We have selected Los Alamos County as the model community. In the

model we created several thousands of dots (or agents) that form the community (In LA

for example we have approximately 9000 residential users). Each individual dot has its

own figures for ID, color, and power usage. Each dot is assigned a specific amount of

appliances and types of appliances. We will create a simulated Smart Grid and use a

graph from LANL on the average dumb grid power use. The Smart Grid simulation

should show less power usage during peak load than the LANL graph did. In our

simulation the Smart Grid will allow each appliance to use zigbee to communicate with

one another and distribute the amount of energy used over the day.

Commonly available agent-based models, such NetLogo, can’t accommodate

these many agents in one simulation. They also do not provide flexibility and control we

desired. So we developed our own agent-based model in the Java environment.

Page 4

The Program: The program is an applet which uses vectors to store instances of

objects and information for the paint program. There is one primary class or object in

the simulation which is the house. The house stores it's usage information and has

methods for the other appliances that can be moved away from peak times. The main

class tells the house objects when they can use energy. During the simulation the

buildings are red-scaled to show energy use, allowing the energy use to be easily

visible.

Page 5

Results: In Los Alamos county our existing grid (or “dumb grid”) reaches peak

use conditions at approximately 8 PM as residences (or agents) turn on their

appliances. This peak is as high as 16000 kilowatts. In dumb grid setting we baselined

our agent-based community to closely resemble LA County power use (see Red Line in

Figure 1 below). After that we turned on our smart grid setting. Smart watts (or energy

usage under smart grid setting or shown as blue line). We can clearly see that smart

controls have resulted in lowering the peak substantially. According to our computer

program the smart grid was able to save on average 637.09 kilowatts which is about 4%

of the total use. Reduced energy use and heating losses contributed to lowered energy

consumption. The computer model was able to efficiently and effectively redistribute

around 1779 kilowatts from the peak load which is a 13% reduction. These results

demonstrate that smart grid technologies can result in good energy savings and peak

reductions. Of course in our simulation we assumed 100% residential participation in

smart grid, less participation does not result in such greater savings.

The red line in the graph above, which is the original grid we are on now, shows

a clear peak. The blue simulated line, although it still increases slowly towards the time

of high usage, is much more efficient because it allows the power to be spread across

the course of the day. The bottom graph (below) shows the amount of power received

for the amount sent above. At the peak usage time there is much more power wasted

because the equation for power loss (P = i²r) is not a linear equation. In the original grid

Page 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

Smart Grid vs. the Dumb Grid

Smart w atts
Average Dumb w atts

Hour

W
at

ts

almost 2 mega watts (2 million watts) are lost during the peak load times, and all this

energy would have to be resent, causing more loss.

Conclusion: We concluded that smart grid implementation can indeed both

save energy and reduce peak load in Los Alamos and communities similar to LA

County. Agent-based modeling approach can be used to accurately simulate smart

grid functionality.

There are several limitations in our “proof-of-principle” model. For example, we

used semi-biased random sampling for representing agent behavior and assumed

100% participation of all residential users. In reality pricing of electricity may not drive

Page 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

Resistance Comparison

The Amount Received

Hour

W
at

ts

such high participation. We plan to refine our model to examine impacts of less than

perfect participation. We have also not done a very good job at modeling electrical

transients (for example, voltage fluctuations). In the future we propose to use a better

electrical model together with queuing theory to turn off and on the appliances.

Acknowledgment and Resources: We would like to thank Andrew Erickson,

Jim Redman, and Venkat Dasari for their help and support in this project. Also the LANL

report on the smart grid was an invaluable research tool for us.

Page 8

Grid2.java
import java.applet.Applet;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Image;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.util.Vector;

import javax.swing.Timer;

public class Grid2 extends Applet implements MouseListener {
// Create the vectors that store the information about the houses and the

// painting

Vector houses = new Vector();
Vector paint = new Vector();

// The total amount used by the grid every hour (used later)

int gridUseage = 0;

// The population of the town

int popSize = 82000;

// The number of people living in each house

double peoplePerHouse = 2.5;

// The size of the Applet

Page 9

int size = 200;

// How scaled each dot is

int sizeFacter = 3;

// How long the simulation has run

int day = 0;

// How long it should run for before stopping

int daysRun = 50;

// The normal (average) power hourly per house in watts

int powerPerHouseNorm = 7000;

// The maximum power used in an hour in a house in watts

int powerPerHouseMax = 0;

// The normal power used by the grid.

int norm = (int) ((popSize / peoplePerHouse) * powerPerHouseNorm);

// The hour of the day

int hour = 1;

// Color of the grass; changes day / night

int grassColor = 0;

int[] finalUse = (new House()).hourlyUsage;

int finalTotalUse;

// Frames per second, if 1000 or over it will go multi-threaded.

Page 10

int fps = 33;

// Number of houses

int housesNumb = 0;

// Are the graphics on?

boolean graphics = false;

// This will be displayed on the applet

String display = "";

// Both are for double-buffing (to make the screen change smoothly)

Image offscreenImage;

Graphics offscreenGraphics;

// Called by the timer

ActionListener taskPerformer = new ActionListener() {

public void actionPerformed(ActionEvent evt) {
passTime();

}

};

class SmartThread extends Thread {

SmartThread(int sleep) {

// Just letting us know

System.out.println("Thread created");

Page 11

}

// Run the thread

public void run() {
while (day < daysRun) {

passTime();

}

}

}

// The timer

Timer time = new Timer((int) 1000 / fps, taskPerformer);

// Called at the beginning

public void init() {

// Figure out how much energy should be used

int i = 0;
while (i < 24) {

finalUse[i] = finalUse[i] * 8950;

finalTotalUse = finalTotalUse + finalUse[i];

i++;

}

// Resize the applet to the right size

this.resize(size * sizeFacter, size * sizeFacter);
offscreenImage = createImage(getSize().width, getSize().height);

offscreenGraphics = offscreenImage.getGraphics();

// Ensure that vectors will hold everything

Page 12

houses.ensureCapacity((int) (popSize / peoplePerHouse));
paint.ensureCapacity((size ^ 2));

// Let the mouse be detected

addMouseListener(this);

// Create a new world

newWorld();

// Check the frames per second

if (fps < 1000) {
graphics = true;
time.start();

} else {
// If you really want power

threadStarting();

}

// If there are no graphics, shrink the display

if (!graphics) {
this.resize(1, 1);

}

}

// This just paints the applet

public void paint(Graphics g) {
if (graphics) {

for (int i = 0; i < paint.size(); i++) {
String input = (String) paint.elementAt(i);

int y = Integer.parseInt(input.substring(

Page 13

input.indexOf("-") + 1, input.indexOf(":")))

* sizeFacter;

int x = Integer
.parseInt(input.substring(0,

input.indexOf("-")))

* sizeFacter;

// This section here finds the color

String color = input.substring(input.indexOf(":") + 1);

Color c;

if (color.substring(6, 9).equals("grs")) {
c = new Color(Integer.parseInt(color.substring(0,

3)),

Integer.parseInt(color.substring(3, 6))

- (grassColor / 2),
grassColor);

} else {
c = new Color(Integer.parseInt(color.substring(0,

3)),

Integer.parseInt(color.substring(3,
6)), Integer

.parseInt(color.substring(
6, 9)));

// System.out.println(color);

}

offscreenGraphics.setColor(c);

offscreenGraphics.fillRect(x, y, sizeFacter, sizeFacter);

}

offscreenGraphics.setColor(Color.black);

offscreenGraphics.drawString(hour + "", getSize().width - 25, 20);

offscreenGraphics.drawString(day + "", getSize().width - 25, 40);

offscreenGraphics.drawString(display + "", 10,

getSize().height - 25);

Page 14

g.drawImage(offscreenImage, 0, 0, this);
}

}

public void passTime() {

int lastUse = 0;
int totalHourUse = 0;
int debugPowerUseClear = 0;
for (int i = 0; i < houses.size(); i++) {

House house = (House) houses.get(i);

int use;
// Run the house

if (lastUse < house.run(hour, true)) {
use = house.run(hour, true);
debugPowerUseClear++;

} else {
use = house.run(hour, false);

}

// Reset it when the hour is 1

if (hour == 1) {
house.powerUsed = false;
houses .setElementAt(house, i) ;

}

// If there is a new record, write it down

if (use > powerPerHouseMax) {
powerPerHouseMax = use;

}

// Record the usage

totalHourUse = totalHourUse + use;

Page 15

gridUseage = gridUseage + use;

// Paint stats from the paint vector

String paintStats = (String) paint.get(house.place);

String redShade = "";

if ((int) (255 - (155 * (((double) use / (double)
powerPerHouseMax)))) <= 255) {

// if (use / powerPerHouseMax < 1) {

redShade = ""

+ (int) (255 - (155 * (((double) use /
(double) powerPerHouseMax))));

} else {
redShade = "100";

}

paint .set(house. place , paintStats.substring(0, paintStats

 .indexOf(":") + 1)

 + "255" + redShade + redShade) ;

lastUse = use;

}

if (!graphics) {
System.out.println(totalHourUse);

}

// Depending on the time of day make it change light

if (hour <= 7) {
grassColor = 200;

} else if (hour > 7 && hour < 20) {
grassColor = 000;

} else if (hour >= 20) {
grassColor = 200;

}

Page 16

// Pass time

hour++;

if (hour == 25) {

hour = 1;

gridUseage = 0;

day++;

// Just test if it is actually working

if (houses.size() < housesNumb) {
System.out.println("Bad! People don't wash clothes! Only "

+ debugPowerUseClear + " people are good out
of "

+ housesNumb + "!");

}

// When it needs to stop it does

if (day == daysRun) {
time.stop();

}

}

// Test to repaint

if (graphics) {
repaint();

}

}

// Override the update to make it double-buffered

@Override

public void update(Graphics g) {
paint(g);

Page 17

}

@SuppressWarnings("unchecked")

public void newWorld() {
int x = 0;
int place = paint.size();
housesNumb = 0;

while (x < size) {
int y = 0;
while (y < size) {

if ((x > 10 && x < popSize / peoplePerHouse)
&& (y > 10 && y < Math.sqrt((double) popSize

/ peoplePerHouse)) && housesNumb
< 8950) {

paint.add(x + "-" + y + ":255255255");

place = paint.size() - 1;

House house = new House();
house.place = place;

houses.add(house);

// place--;

housesNumb++;

y++;

paint.add(x + "-" + y + ":255255255");

// house.place = place;

house = new House();
place = paint.size() - 1;

houses.add(house);

house.place = place;

housesNumb++;

Page 18

y++;

paint.add(x + "-" + y + ":" + "218218000");

} else {
paint.add(x + "-" + y + ":" + "100"

+ ((int) (Math.random() * 50L + 200)) +
"grs");

// place = paint.size();

}

y++;

}

x++;

}

}

@Override

public void mouseClicked(MouseEvent me) {

}

@Override

public void mouseEntered(MouseEvent me) {

}

@Override

public void mouseExited(MouseEvent me) {
time.start();

Page 19

display = "";

}

@Override

public void mousePressed(MouseEvent me) {
time.stop();

int xPos = me.getX() / sizeFacter;
int yPos = me.getY() / sizeFacter;

for (int i = 0; i <= houses.size() - 1; i++) {

House house = (House) houses.get(i);

String elementXY = paint.elementAt(house.place).toString()

.substring(

0,

paint.elementAt(house.place).toString()

.indexOf(":"));

if (elementXY.equals(xPos + "-" + yPos)) {

display = house.power + "";

repaint();

i = houses.size();

}

}

}

@Override

public void mouseReleased(MouseEvent me) {

Page 20

time.start();

// display = "";

}

// When speed is wanted, it's for going multi-threaded

public void threadStarting() {

// Cut the graphics off

graphics = false;

// While the number of threads is not right...

for (int i = 0; i < 8; i++) {

// Start another

SmartThread smart = new SmartThread(i * 20);
smart.start();

}

}

}

Page 21

House.java

public class House {
int place;
int power;
int fridgeTemp = (int) ((Math.random() * 10L) + 30);
int freezerTemp = (int) ((Math.random() * 8L) - 7);
int freezerMax = 0;
int fridgeMax = 39;
int reduction = (2000 / 24) + (2800 / 24) + (1500 / 24);
int[] hourlyUsage = { 1271, 1201, 1201, 1201, 1243, 1285, 1368, 1424, 1410,

1452, 1466, 1480, 1494, 1494, 1494, 1494, 1536, 1620, 1718, 1773,

1718, 1606, 1382, 1438 };

int[] yesterUse = {0,
0, 0, 0, 0};

Boolean powerUsed = false;
Boolean fridgeOn = false;
Boolean freezerOn = false;

public int run(int hour, boolean clearedForPower) {

/*

 * Java counts strangely (starts at 0), so subtracting 1 to compensate.

 */

hour--;

power = (int) (((Math.random() * hourlyUsage[hour]*1.97)))-reduction;
while (power<0){

power = (int) (((Math.random() * hourlyUsage[hour]*1.97)))-
reduction;

}

Page 22

fridgeTemp++;

if (fridgeTemp > fridgeMax) {
fridgeOn = true;

} else {
fridgeOn = false;

}

if (fridgeOn) {
fridge();

}

freezerTemp++;

if (freezerTemp > freezerMax) {
freezerOn = true;

} else {
freezerOn = false;

}

if (freezerOn) {
freezer();

}

// There isn't very much power being used and

// the stuff ain't done

if (clearedForPower && !powerUsed) {
dishes();

washer();

powerUsed = true;
}

if (hour == 24 && !powerUsed) {
dishes();

washer();

powerUsed = true;

Page 23

}

yesterUse[hour] = power;

return power;
}

public void fridge() {
fridgeTemp = fridgeTemp - 3;

power = power + 200;

}

public void freezer() {
freezerTemp = freezerTemp - 3;

power = power + 200;

}

public void dishes() {
power = power + 2800;

}

public void washer() {
power = power + 1500;

}

}

Page 24

