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Executive Summary 

 One of the biggest threats American citizens and service members face abroad is attack via an 

improvised explosive device (IED). While, American soldiers have recently developed better methods 

and protocols for detecting these devices before they can detonate, they often still pose as a significant 

risk to the bomb squads that are tasked with neutralizing them. In response to this, experts are now 

looking at using shaped charges to drive jets of incompressible fluids, like water, into IEDs in order to 

break up the components of the bomb without initiating a dangerous secondary explosion. My objective 

was and, as this project will continue into next year, is to discover what types of liquid shaped charges 

will produce the longest, best-penetrating jet for breaking up shielded IEDs (i.e. IEDs that are placed in 

cars, storage containers, etc.). I researched and intend to implement a 3-dimensional, purely Lagrangian, 

finite element, hydrodynamic code in order to model the jets produced by various shapes of liquid 

charges. Specifically, my code will utilize a mid-point type integration scheme coupled with a 

predictor/corrector solution strategy in order to yield an explicit, iterative algorithm that will accurately 

modeling a fluid under explosive pressure. The entirely Lagrangian simulation environment of my code 

will significantly reduce the time required to compute this model as it eliminates the complex and 

cumbersome remapping step of contemporary arbitrary Lagrangian-Eulerian (ALE) codes. This may at 

first seem ill posed for the modeling of liquid shaped charges, due to the high deformation/shock 

physics that they involve, but recent experiments with fully-Lagrangian ballistic penetration 

environments that apply remeshing libraries have proven otherwise [2]. With the application of mesh 

healing and optimization packages like HealMesh, I will be able to effectively avoid extreme mesh 

distortion and thereby preserve a stable time step size in a purely Lagrangian simulation environment.  

 

 

 



Statement of Problem 

 The objective of this project is to provide a computational test lab in which one can experiment 

with different shapes of liquid liners for directional charges. To this end, this project concerns itself with 

developing a computer code that is able to model explosively driven fluids with a high degree of 

accuracy. 

Introduction 

 A hydrodynamic code requires an enormous breadth of complex ideas and disciplines to make it 

work. From advanced physics to numerical integration, hydrocodes are built on a framework that spans 

the academic efforts of many scientists and mathematicians over many years. Whole papers have been 

written upon a just single aspect of a hydrocode. As such, this paper cannot hope, in so few pages, to 

thoroughly and completely cover every single topic involved in the construction of my hydrocode. 

Instead, I will try to present basic explanations and sketch proofs of the most important concepts 

underlying my code. Undoubtedly, I will leave some minute details out, for which the reader may 

consult my sources. 

Initial Principal of Lagrangian Hydrodynamics 

Whether one is modeling a truss in a bridge, air moving over an airplane wing, or a fluid driven 

by an explosion there are certain identities that all materials, from a continuum perspective, must obey 

and by which we can model them [4]. These identities are provided by Langrangian continuum 

mechanics and are derived from the initial axiom that: given some domain  that represents the 

material (reference) configuration of a continuum body in  (where  is the number of 

dimensions), there exists a diffeomorphism  (i.e. a smooth, invertable map between manifolds) that 



gives the current configuration of such body  at any time . Even more strictly, can be defined 

in mathematical notation as 

, 

where  is the position vector for a fixed, material point in the reference configuration and  is the 

position vector for that same point in the current configuration. Physically however, the map  is 

simply the deformation of a material body through time where the change in volume of the body due to 

the deformation is defined as  

                                                               , 

where  is the Jacobian determinant  of the material gradient of [1]. 

Governing Equations 

The langrangian map can be thought of as moving some control mass from one 

configuration/ volume to another. Therefore, Reynold’s transport theorem 

  

can be applied in order to describe the time rate of change of the integral of some kinematic scalar 

variable , where   is the velocity and  is the unit vector normal to boundary of the current 

configuration. In combination with the master balance law: 



                 , 

where is the flux of and is to source/sink term, these two relations yield a system of 

equations or conservation laws [3] that, after simplification and localization, read 

 

Here, is the reference density, is the current density, is the body force, is the velocity, 

is the Cauchy stress (a symmetric tensor), is the total energy where

, is the internal energy,  is the energy source term, and is the heat 

flux [1]. (It is important to note that body forces will be neglected in the actual Lagrangian computation 

of my code because they are very small when compared to the forces exerted on the boundaries of the 

material that I am modeling.) 

The above equations can provide a system by which I can obtain a solution for the position and 

velocity of an explosively-driven liquid, but first they must first be closed with two additional equations. 

In short, these equations must give my mathematical algorithm a method of finding the Cauchy stress 

tensor in terms more the more clearly variables of density and internal energy. Therefore, these 

equations take the form of a constitutive equation  

 



that is dependent upon the state/class of the body, where  is the pressure and  is the 

identity matrix, and an equation of state  

 

which is specifically dependent upon the material being modeled [4]. For the purposes of this code, I will 

only consider the above mentioned the fluid constitutive equation because I am only modeling liquids. 

Numerical Formulation  

Due to the fact that a computer has finite amount of memory, the above equations must be 

discretized in both space and time in order to form a problem that can be evaluated computationally. 

My code will leverage finite element approximations for the spatial dicretizations (because of their high 

degree of resolution) and use an iterative predictor/corrector strategy to approximate the kinematic and 

thermodynamic variables in time. This choice of algorithm leads to the following computational 

derivation of the above mentioned conservation laws: 

 

 

 



where , , , and are the kinematic and thermodynamic trial and test function 

spaces, respectively, that give piece-wise linear approximations for kinematic variables and piecewise 

constant approximations for thermodynamic variables. Here, subscripts are used to indicate a certain 

variable at either half the time step or the next time and the symbol  indicates the algorithmic stress 

tensor, including both thermodynamic pressure and artificial viscosity to deal with the Gibbs 

phenomenon resulting from shocks. These equations are then iterated, in local matrix form using an 

Adams-Bashforth scheme, until second order accuracy is achieved and the simulation is advanced [1].  

Mesh Optimization 

As stated before, the posed computational problem involves high deformation. Consequently, 

the Lagrangian mesh cannot simply be advanced through time because its distortion will reduce the 

time step of the computational solution to impractical sizes. For it to be accurate, my hydrocode must 

have some instrument to account for and eliminate deformation-induced distortions within a Lagrangian 

mesh. To this end, it will employ the software library HealMesh. 

HealMesh is a software package that provides functionality for mesh healing and optimization 

by implementing a suite of hillclimbing methods. This means that each method of HealMesh sweeps 

over the Lagrangian mesh and investigates local changes; if a proposed change improves the quality of 

the mesh then it is accepted. These local changes are divided into two categories: geometric 

transformations/moving nodes, and topological transformations/changing connectivities [2].  

Before discussing the geometric and topological optimization however, it is necessary to specify 

the mesh quality metrics in HealMesh that my code will use. Metrics give the creiteria and mathematical 

basis for mesh optimization and, from the results of previous codes using HealMesh, I have decided to 



use the condition number metric and the mean ratio metric. These metrics are algebraic, meaning that 

they are functions of the Jacobian matrix  of the map , and are given by 

                                                             , 

where  is the condition number metric and  is the mean ration metric. The matrix  

becomes singular as the element volume vanishes and so these metrics can be thought of as measuring 

distance from singular matrices. The advantage to these metrics is that they are sensitive to all types of 

distortions within the mesh and have continuous derivatives. This allows optimizations to utilize 

gradient methods(detailed below) and operate with a simple set of only two metrics [2]. 

 The geometric optimization methods in HealMesh first sweep over all interior movable nodes 

that have neighboring elements with poor quality and assemble a complex of the connectivity of all the 

vertices, edges and faces of the elements surrounding those nodes. This complex is then broken down 

into simplicies, subsets, for which the norms of the quality metrics are optimize, equalizing the 

connectivities for distorted nodes. Because of my previous choice of metrics that are differentiable, the 

far more efficient, quasi-Newton, Broyden–Fletcher–Goldfarb–Shanno (BFGS) method can be applied to 

optimize the norm— decreasing the time it takes a geometric mesh optimization method to run [2]. 

 For topological optimizations, HealMesh sweeps over the mesh in the same hill-climbing 

method used for geometric optimization and adds or removes edges and faces in m-n flips (replaces m 

elements with n elements). These m-n flips produce a new local set of elements for which new metrics 

are determined. If these new metrics are an improvement then the changes are adopted. Furthermore, 

if an element is so severely distorted that a simple flip cannot markedly improve its condition number or 

mean ratio metrics, then the element can be removed by composite sequences of flips such as 2-3, 3-2, 

2-2, and 4-4 [2]. 



Conclusion 

 Having to teach myself all the afore mentioned material, I failed to actually write a successful 

hydrodynamic code this year. I did, however, develop a plan, that I will implement next year, for an 

accurate and fast algorithm that will solve my computational problem. My efforts this year didn’t result 

in a hydrocode, but they gave me the tools to construct one next year. 
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