
Java-Based Wireless Robot

New Mexico
Supercomputing Challenge

Final Report
April 7, 2010

Team 81 - Manzano High School

Team Members
Phillip Atencio
Dustin Chavez
Nathan Hassler

Nick Ratzer
David Young

Teacher Sponsor / Project Mentor

Mr. Stephen Schum

Table of Contents

Executive Summary

Introduction

Research and Science Background

Project Overview

Results

Conclusions

References and Acknowledgements

Appendix:
 pBasic 2.5 Computer Code
 Java Computer Code

Executive Summary:

 The purpose of our project was to design, assemble and program two small robots

-- a pBasic-stamp Boe-Bot and a Javelin-stamp Java-Bot to utilize LED’s, “whiskers”,

photo resistors, and IR pairs to perform various maneuvers and environmental detection

tasks, such as detecting and monitoring light, objects, and distances to objects, etc. .

Then we intended to add a small solar panel to make the Java-Bot solar-powered and add

wireless communication with the Java-Bot.

A real-world robot executes essential tasks in hard to reach or dangerous

environments. Robots look for life in burning buildings, they detect dangerous gases and

chemicals in hazardous environments or spills, they monitor radiation, they study far

away planets and moons (Examples: Mars Explorer Rovers) and, in general, they can

access and provide sensory input for a variety of physical parameters in various remote

environments. Once the robots are assembled and functional, scientists and technicians

can communicate programs of instructions to the robots and retrieve data via wireless

technology. Furthermore to reduce the high costs and time demands of rechargeable

batteries, solar panels can be added to provide electrical power to the robot.

During fall 2009, in our Manzano High School class, Pre-Engineering

Electronics, we learned and solved problems for the basic physics topics of velocity,

force, work, power, electric charge, electric fields, DC voltage, DC current, resistance,

Ohms Law, DC series and parallel circuits, and the power formula (P = I V). Then we

spent the past five months assembling and programming a mini-robot with Basic

computer programs to make the robot do a variety of maneuver on a flat surface and to

detect motion and light.. In doing so, we learned some Basic programming techniques

with variables, counter, for loops, etc.

 From January through April, we assembled and programmed a similar

Java-based robot to maneuver, plus to perform various maneuvers and to detect light,

shadows, and objects. Next we will also add the wireless component to communicate

programs to the robot and to return data from the robot. Our Java programs will also

output retrieved data to the display. Furthermore we will add small solar panels with

sufficient area to power the robot, hopefully during both natural sunlight and interior

lighting conditions

Introduction

Over the past several months, our group has worked on programming and

assembling a pBasic-based mini-robot and a Javelin-based mini robot that will complete

various complex tasks that a real world robot would normally carry out. Our basic

knowledge of programming began with the pBASIC code and evovled to Javelin (Java-

based) code. We wrote programs and assembled the circuit board and robot hardware to

perform various maneuvers and environmental detection tasks, such as detecting and

monitoring light, objects, and distances to objects. Then we modified the programs and

hardware to allow the Boe-Bot and Java-Bot to successfully navigate a complex maze.

This took much of the prior programming and wiring knowledge to achieve an escape

from the maze.

Research and Science Background

 Our endeavor began last fall with a review of the foundations of physics – motion,

forces, work, energy, power, static electricity and DC electricity. Upon completion of our

Basic stamp and Javelin stamp robots, we spent much time learning about circuit

diagrams and DC current.

Figure 1. LED Pulse Timing Diagram (Parallax, Inc. “Robotics2_2.pdf”)

Figure 2. LED Circuit Schematic (Parallax, Inc. “Robotics2_2.pdf”)

 Figure 3. Photoresistor RC Circuits Schematic (Parallax, Inc. “Robotics2_2.pdf”)

Figure 4. IRED Source IR Detector Diagram (Parallax, Inc. “Robotics2_2.pdf”)

Figure 5. IRED Source IR Detector Diagram (Parallax, Inc. “Robotics2_2.pdf”)

Project Overview:

 After we became well versed with comprehending circuit diagrams, we developed

the pBASIC program for the Boe-Bot and assembled a pBASIC-stamp Boe-Bot to

complete various tasks such as detecting light, objects and distance to objects using

LED’s, IRED’s and IR detectors and “whiskers”. Then we wrote a pBasic 2.5 program

(See Appendix.) to allow the Boe-Bot to successfully navigate a complex maze with

multiple turns and corners as well as descending a 45 degree angle, and various obstacles.

(See Figures 1 and 2 below.) Other Boe-Bot programs included photo resistors for light

detection, use of “whiskers” for object detection, an LED on/off switch, a pair of left and

right IRED sources and IR detectors for distance and object detection, and a “shadow

bot” program where one shadow Boe-Bot was able to follow a leading Boe-Bot. (We

found on You-Tube a video of 28 shadow-bots following one lead-bot!!)

Fig 6. Team 81 Boe-Bot Assembled with Whiskers for Object Detection

Fig 7. Team 81 Boe-Bot Attempting to Get Out of the Maze

For the past three months, we have been learning Javelin (a Java-based code)

from a Javelin manual for a, Java-Bot, which has a Javelin stamp located on the circuit

board. And we have been assembling the circuit components on the Java-Bot for the

LED, IRED and IR detector, photo resistors, and “whiskers”. Within the next few weeks,

we expect to have the Java-Bot accomplish the same tasks as those stated above for the

Boe-Bot. This includes programming the Java-Bot to successfully navigate our complex

maze.

Conclusions

We intend to put a solar panel on the Java Bot so that we can run it without using

batteries. Plus we plan to install wireless communication hardware on the Java-Bot. We

will write Java programs that will be communicated to the Java-stamp on the robot circuit

board wirelessly. And the program will allow the robot to wirelessly communicate back

to the computer the sensory output/data acquired by the various sensors placed on the

robot, while being powered by an aftermarket solar panel. Our greatest hope is to become

well versed with Java, and able to send our robot programs, wirelessly, while it is

running. When we are able to successfully communicate with our robot wirelessly, we

will attempt to complete complex tasks that can be easily applied to “real life”

applications which would be too dangerous for any human being to do. Such applications

include, but are not limited to: detecting smoke, body temperature, and light.

Acknowledgements:

 Our team would like to acknowledge the NM Supercomputing Challenge Program

for 2009-2010 and Mr. Stephen Schum for teaching the Pre-Engineering Electronics

program here at Manzano High School and for helping us problem solve throughout the

duration of the project. We would also like to give a special thanks to the MHS

Administration for supporting the Pre-Engineering Electronics class.

References:

Zitzewitz, et al (2005), Physics: Principles and Problems, Glencoe, Chap 1-11; 20-24

Lindsay, Andy,(2003-2004), Robotics with the Boe-Bot, Parallax, Inc.

Lindsay, Andy,(2002-2006) , Javelin Stamp User’s Manual, Parallax, Inc.

Lindsay, Andy, (1999-2008), Basic Analog and Digital, Parallax, Inc.

Parallax, Inc. (2009), “Robotics2_2.pdf” on Boe-Bot Resources CD, Parallax, Inc.

http://marsrover.nasa.gov/home/ NASA Mars Explorer Rover Home Page

http://marsrover.nasa.gov/home/�

Appendix

pBasic Code: Boe-Bot Get Out of Maze

' -----[Team 81 Boe-Bot Get Out of Maze]--

' {$STAMP BS2} ' Stamp directive.

' {$PBASIC 2.5} ' PBASIC directive.

' -----[Variables]--

pulseCount VAR Byte ' For...next loop counter.

counter VAR Nib ' Counts alternate contacts.

old7 VAR Bit ' Stores previous IN7.

old5 VAR Bit ' Stores previous IN5.

' -----[Initialization]---

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

counter = 1 ' Start alternate corner count.

old7 = 0 ' Make up old values.

old5 = 1

' -----[Main Routine]---

DO

' --- Detect Consecutive Alternate Corners ------------------------

' See the "How EscapingCorners.bs2 Works" section that follows this program.

 IF (IN7 <> IN5) THEN ' One or other is pressed.

 IF (Old7 <> IN7) AND (Old5 <> IN5) THEN ' Different from previous.

 counter = counter + 1 ' Alternate whisker count + 1.

 old7 = IN7 ' Record this whisker press

 old5 = IN5 ' for next comparison.

 IF (counter > 4) THEN ' If alternate whisker count = 4,

 counter = 1 ' reset whisker counter

 GOSUB Back_Up ' and execute a U-turn.

 GOSUB Turn_Left

 GOSUB Turn_Left

 ENDIF ' ENDIF counter > 4.

 ELSE ' ELSE (old7=IN7) or (old5=IN5),

 counter = 1 ' not alternate, reset counter.

 ENDIF ' ENDIF (old7<>IN7) and

 ' (old5<>IN5).

 ENDIF ' ENDIF (IN7<>IN5).

' --- Same navigation routine from RoamingWithWhiskers.bs2 ------------------

 IF (IN5 = 0) AND (IN7 = 0) THEN ' Both whiskers detect obstacle

 GOSUB Back_Up ' Back up & U-turn (left twice)

 GOSUB Turn_Left

 GOSUB Turn_Left

 ELSEIF (IN5 = 0) THEN ' Left whisker contacts

 GOSUB Back_Up ' Back up & turn right

 GOSUB Turn_Right

 ELSEIF (IN7 = 0) THEN ' Right whisker contacts

 GOSUB Back_Up ' Back up & turn left

 GOSUB Turn_Left

 ELSE ' Both whiskers 1, no contacts

 GOSUB Forward_Pulse ' Apply a forward pulse

 ENDIF ' and check again

LOOP

' -----[Subroutines]--

Forward_Pulse: ' Send a single forward pulse.

 PULSOUT 13,850

 PULSOUT 12,650

 PAUSE 20

 RETURN

Turn_Left: ' Left turn, about 90-degrees.

 FOR pulseCount = 0 TO 9

 PULSOUT 13, 650

 PULSOUT 12, 650

 PAUSE 20

 NEXT

 RETURN

Turn_Right:

 FOR pulseCount = 0 TO 9 ' Right turn, about 90-degrees.

 PULSOUT 13, 850

 PULSOUT 12, 850

 PAUSE 20

 NEXT

 RETURN

Back_Up: ' Back up.

 FOR pulseCount = 0 TO 19

 PULSOUT 13, 650

 PULSOUT 12, 850

 PAUSE 20

 NEXT

 RETURN

 ' Send a single forward pulse.

 PULSOUT 13,850

 PULSOUT 12,650

 PAUSE 20

 RETURN

 ' Left turn, about 90-degrees.

 FOR pulseCount = 0 TO 6

 PULSOUT 13, 650

 PULSOUT 12, 650

 PAUSE 20

 NEXT

 RETURN

 FOR pulseCount = 0 TO 6 ' Right turn, about 90-degrees.

 PULSOUT 13, 850

 PULSOUT 12, 850

 PAUSE 20

 NEXT

 RETURN

 ' Back up.

 FOR pulseCount = 0 TO 6

 PULSOUT 13, 650

 PULSOUT 12, 850

 PAUSE 20

 NEXT

 RETURN

