Bug Class
or
Writing Production Quality Code

2009-2010 Supercomputing Challenge Kickofft,
Oct 25-26, 2009
Sacramento, NM
Bob Robey, Lori Liebrock

Production Quality
vs Class Assignments

* Supercomputing projects need more production
quality than class assignments

- Memory leaks limit iterations and cause
programs to “freeze”

— Buggy routines crash randomly due to memory
OVETrwrites

— Repeated runs give different results due to
uninitialized memory

* Don't expect to learn all the techniques all at once — it

takes many years.
‘-——-_—_—__—J.

Types of Bugs

* Memory Overwrites

— Declare var x[10], write to x[1 to 20]
* Uninitialized Memory

- Declare x[10], read before set
* Memory Leaks

- Memory allocated, but not freed

Invalid frees

— Mixed types of malloc/free, new/delete, or

1d/2d
e e

Correctness Tools (Linux Bias)

* Lint tools or static code analyzers

 Bounds Checkers -- Fortran and Java built-in

* Memory leak tools

— Dmalloc, http://dmalloc.com — malloc lib

brobey@orcrist: ~/fworkspace/Buggy/Debug

replacement

File Edit View Terminal

1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136:
1256012136: 1:
brobey@orcrist:

1:

: max unused memory space:

1
1
1
1
1
1
1
1
1
1
1:
1:
1
1: top 10 allocations:
1
1
1
1
1
1
1
1

1.

Help
basic-block 4096 bytes, alignment 8 bytes

: heap address range: 8x7fa33e44a000 to @x7fa33ed44ep00,

user blocks: 1 blocks, 4888 bytes (24%)
admin blocks: 3 blocks, 12288 bytes (75%)
total blocks: 4 blocks, 16384 bytes

: heap checked 2

: alloc calls: mallec 1, calloc @,
: alloc calls: recalloc @, memalign @, valloc @
: alloc calls: new 8, delete 8

realloc 6, free @

current memory in use: 168 bytes (1 pnts)
total memory allocated: 168 bytes (1 pnts)
max in use at one time: 160 bytes (1 pnts)
max alloced with 1 call: 168 bytes

96 bytes (37%)

total-size count in-use-size count
168 1 160 1
160 1 160

source
../buggy.c:29
1 Total of 1

: Dumping Not-Freed Pointers Changed Since Start:

16384 bytes

not freed: '@x7fa33ed44dfe8|sl' (168 bytes) from '../buggy.c:29'
total-size count source

160 1 ../buggy.c:29

160 1 Total of 1

ending time = 1256012136, elapsed since start = 0:00:00

~/workspace/Buggy/Debugs |

http://dmalloc.com/

Correctness Tools (Linux Bias)

* Uninitialized memory

— Some compilers (rare)

— Valgrind, http://valgrind.org (with alleyoop gui

frontend) (= AlTeyoop = [/BUgay] ===

File Edit 5Settings Tool Help

= =

Run K Open 5ave

Error contains $| | | | j;lear

P Memcheck, a memory error detector.

P Invalid write of size 8

I Process terminating with default action of signal 11 (SIGSEGV)

[* ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 8 from 1)

http://valgrind.org/

Productivity Tools

e Make

— Dependency driven language, only compiles
files with a newer date.

* Revision Control — CVS or Subversion
— Important for team code development

» Ctags — variable cross-reference

Tools — Free Sources

* Comprehensive list at
http://www.thefreecountry.com

— Includes compilers, libraries, utilities and tools

— Many old commercial tools are now available
free and are listed here

— Use sparingly, you could spend a lifetime
trying all the listings

http://www.thefreecountry.com/

Debuggers

Not just for “debugging”

Good practice 1s to step through newly written code to
see 1f 1t goes through the expected paths

Critical for object-oriented programs because of
jumping from routine to routine

Can check that allocate/deallocates work correctly

Stop at end of routine and look for any still allocated
arrays

Debuggers (cont)

* Open-source are limited

— gdb 1s text based, difficult to use

— Gui frontends to gdb like ddd, xxdbg, or insight
are weak

— sdm 1n eclipse workbench adequate, but buggy

* Integrated Development Environments (IDE),
Workbenches, Windows, MacOS

— May have adequate debuggers depending on
language, platform, etc

— e — — - —

Totalview Student Program

o iec 101001 327tk ttf3_listl

commercial debugger

Much better quality and
more powerful

Has a student program for
free

Has powerful enhancements
like parallel debugging,
gpu debugging

Replay engine (recorded
debugging) great for
instruction

File Edit Wiew Group Process Thread Action Point Debug Tools

Window Help

A CHNEW| s 3§ 3
GO Halt Kill Restart|Mext Step Out Run To| Prev
===S=C=C=C=—==CS=0C Process 1 (24551): be_tif3_listl (Stopped) =

(NI Threac 1 (24551) (Stopped) <Trace Trap>
I

Stack Trace

Group (Control)

E

Stack Frame

UnStep Caller BackTo Live

FP=hffe28d8 |4 ||Function "main":

FP=hffe2023 argo:
Argv:

Local variables:
slist:
shashtable:

main,
_ libc_start_main,

0x00000001 (1)
0xbffe2968 - O=x000000

Registers for the frame:

esz: 0x00000061 (97)
— zecx: 0x0804b720 (134526752)

L_L-

(class struect_to_list
{class hashtable_to_l:

Function main in t<_ 3 _listl .coe

GmAar . T3 1Te 7 A MNA01 3 !

i

3| g

40 class list element_t {

41 int 1dx;

42 const uchar t *walue;

43 list_element t *next;

44 public:

485 int get_idxiwoid) { return idx;)
46 const uchar £ *get_wvalueiwvoid) { return walue;}
47 list _element_t *get_nextiwoid) { return next; }
48 list_element_t (int idx .

49 const uchar_t *walue_,

50 list element t *next)

51 ;o idm(idx_), walue(walue). next(next) {:;}
52 3; /* list_element t */

E3

54 ! class struct to_list t {

EE public:

=1 class struct to_list iterator t;

57 private:

58 list_element t *head;

58 friend class struct_to_list iterator_t;

60 public:

Bl class struct to list iterator t {

]

[

£

2

Action F'oints] F'rgcesses] Th[eads]

1 tx tEF3 listl. coowd3l madin+lxded

EE T
A

¥

T A R O R A RS

Thoughts on Debugging

e The primary difference between a programmer right out of college
and one with five years' experience 1s the ability to debug
programs. [robelle.com]

» Start with small problems that can be easily checked by hand.
[drpaulcarter.com]

* As soon as we started programming, we found to our surprise that it
wasn't as easy to get programs right as we had thought.
Debugging had to be discovered. I can remember the exact instant
when I realized that a large part of my life from then on was

going to be spent in finding mistakes in my own programs.
[Wilkes, Maurice]

Thoughts on Debugging (cont.)

* Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as
possible, you are, by definition, not smart enough to debug
it. [Brian W. Kernighan]

e Bloody instructions, which, being taught, return
To plague the inventor ...
[William Shakespeare, Macbeth, act 1, scene 7]

* If debugging is the process of removing bugs, then

programming must be the process of putting them 1n.
[Edsger W. Dijkstra]

—_————————-—_———_——-J .

Basic Debugging

* Breakpoints — set a breakpoint by clicking in the left margin of
a line. Hit the go button and the program will run to that
point

 Basic Motion

— Next, or Step Over — progress one line statement
forward in current routine

— Step or Step Into — move one line forward but drop into
subroutine if that 1s the next line

— Step Out — move forward until the line just after the
exit of the current subroutine

— Run to — highlight a line and run to will move the
program forward to that point

Exercise

Start up Eclipse. If you have a different C workbench, you
can use that instead.

Create a new project called Buggy. Import the file
buggy.c

Compile. Switch to Debug perspective. Hit debug icon.
Wait until job launches. Be patient, it 1s slow.

Use next button “Z* to run to the next line. Observe the
variables 1n the upper right window. Open up the x
array by clicking on the P (2 x . Notice that x is not
initialized. Try initializing 1t by adding ={0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0} to the declaration of the
x array. Compile and run again. Is it initialized now?

Exercise (cont.)

e Line 26, a = x[10]; is a read out-of-bounds. x 1s an array of 10,
but in C that is from 0 to 9. What does the debugger show
that a 1s assigned? Do you think this 1s reliable and
repeatable?

e Line 27 is a write out-of-bounds. What does the debugger
show?

» At line 31, there 1s a subroutine call. When the cursor is at that
line, click on step into 3. Use next to go a few times
through the loop. It will take a long time to go 100
iterations, so use step return | @ | to get out of the routine.

Exercise (cont.)

* Set a breakpoint by right clicking in the left margin of the
source at the line where you want to set the breakpoint. Use
the resume [|p= to run to the breakpoint.

* Try adding =NULL to declaration of pointer b (*6o=NULL).
Move b=NULL; after the free. Try stepping through with
the debugger now.

* Line 37 writes to an array that 1s already freed. Note in the
upper window after stepping through it that it shows a
segmentation fault.

Exercise (cont)

* Fix the problem on line 37 (easiest to comment out
with two backslashes — /b/3] = 1.0;

* Right click on the main job in the upper window and
select terminate and relaunch. Now step through
and see what happens with the invalid free
statements.

 How many errors crashed the program? How many
were detected by the compiler? The debugger?

Debugger — Documentation

e GDB - http://dirac.org/linux/gdb

* Totalview —
http://www .totalviewtech.com/support/documentation.html

http://dirac.org/linux/gdb
http://www.totalviewtech.com/support/documentation.html

Appendices

Linux setup (64 bit Ubuntu)

*Eclipse for C programs
o Install Eclipse by running the eclipse-cpp-galileo-SR1-linux-gtk-x86 64
installer
o Install Java by running the jdk-6ul6-nb-6 7 1-linux-ml.sh installer
o Install compilers and supporting tools with the package manager
* build-essential

Windows Setup

Eclipse for C programs
Install Wascana by running the Wascana installer
Add to system path by opening up control panel, search for system environment and
adding to the end of the path
,C:\Program Files (x86)\GnuWin32\bin;C:\Program Files (x86)\Wascana\mingw\bin
When setting up the compiling in Eclipse
Add to GCC C Compiler:Directories
"C:\Program Files (x86)\GnuWin32\include"
Add to MinGW C Linker:Libraries
Library search path
"C:\Program Files (x86)\GnuWin32\lib"

	Slide 1
	Slide 2
	Types of Bugs
	Slide 4
	Correctness Tools
	Productivity Tools
	Slide 7
	Debuggers
	Slide 9
	Totalview
	Quotes
	Slide 12
	Slide 13
	Exercise
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Appendices
	Slide 20
	Slide 21

