Parallel Computing Models

Tom Robey and Bob Robey

@ Why parallel? - A history
@ Parallel Strategies

@ Scalability

@ Performance Model

Supercomputing Challenge Kickoff 2009-2010
October 25-26, 2009




Nothing Doubles Forever

@ Computers emphasized faster clock speeds
(Dr. Dobbs, January 1994)

® Memory capacity doubles every 1.5 years
® CPU performance doubles every 2 years
@ Data-bus width doubles every 5 years

® DRAM chip speed doubles every 7 years

@ But clock speeds are no longer the driver of
performance gains




Switch to Parallel Computing

@ Move from vectorized Cray supercomputers
to massively parallel machines

@ Move from faster PC clock speeds to multi-
core

@ Cheaper to make many processors than a
single very fast processor




Parallel Hardware

@ Cheap processors
@ Expensive low-latency communication

@ Wiring fo all other processors does not scale
@ Early work focused on efficient mesh topology

(ring, tree, hypercube, etc.)
@ Tunneling fechnology made communication mesh
irrelevant (mesh exercise) ’

@ Dynamic topology




Memory Topology

@ Three primary memory architectures
@ shared memory
@ distributed memory
@ memory hierarchies (cache, memory, disk)

- Access Speed Scalable  |Synchronization| Bottleneck
-

Message
Passing

Distributed




Modern Architectures

@ Multi-core nodes (shared memory)

@ Specialized functions (CPU and GPU)

@ Hierarchical memory (cache, memory, disk)

@ Distributed memory for nodes




What is the Parallel Paradigm?
(Parallel Software)

@ Decompose the task into smaller tasks

@ Assign the smaller tasks to processors to work
on simultaneously

@ Coordinate work and communicate when
necessary

@ Not all problems have the same amount of
parallelism

@ Solving problems on a parallel machine requires
that we consider new approaches fto programming




Computer Language Philosophies

@ Fortran

@ Single purpose code with a moderate amount
of development time

@ Relies on the compiler to optimize the code

@ C/C++

® Complex, multi-purpose code with a high
amount of development time

@ Optimizing code is up to the programmers




Parallel Strategies

@ Data Parallel (High Performance Fortran,
SplitC) - split the data amongst the
processors and let the compiler handle the
communication

@ Message Passing (MPI, PVM) - the
programmer handles the communication

@ Object-Oriented - distribute objects
@ Task Parallelism - GPU

@ Distributed Computing - CORBA, Web
Services




Team Strategies

Your supercomputing tfeam is much like a parallel
computer, dividing up the work and hoping to accomplish
more than a single person in a limited time frame.

@ Think about the types of parallel strategies listed
on the previous slide. Which strategies is your
supercomputing feam employing?

@ Which tasks are inherently serial?

@ What communication is required by your team's
strategy?




Scalability

@ Amdahl’s Law (Strong Scaling)- Limits of scaling for
a fixed size problem

o Gustafson’s Law (Weak Scaling) - Increase the
amount of work with the number of processors

S¢(p) = p-a(p-1)

S - speedup
p - number of processors
& - serial fraction




Is Scalability Important?

@ Scalability is about getting a result in less time

® Many parallel problems will not fit in the memory
of a single processor

@ A parallel program is not just a serial program
that has been ported; parallel programs often can
do more physics than a serial program

@ For some applications, distributed computing
provides convenience o the users even if it does
not result in speedup




Asymptotic Notation
(Big O notation)

@ Used when we are only interested in the behavior
of a function as the independent variables get
large.

@ If f(x) is a sum of several terms, the one with
the largest growth rate is kept, and all others
omitted.

@ If f(x) has constants as part of terms, they are
omitted.

@ Example: f(x) = 6x% + 4x + 2 = O(x?)




Isoefficiency Analysis

@ A generalization of Amdahls Law and Gustafsons Law

n - size of an input
p - number of processors
W - sequential execution time of the best sequential

algorithm
To(W,p) - parallel overhead such as communication time
Tp - parallel execution time using p processors

Start by calculating Tp. Then the parallel overhead is

To(W,p) = pTp - W




If the scalability condition

TO(WIP) = O(W)

can be met then algorithm on that architecture is cost

optimal. The isoefficiency function is the equation

W = KTO(W/ P)

where K is a constant.




Communication Times

Communication times for a hypercube architecture. ts is

message start up time, tv is 1/bandwidth, m is message
size, and p is the number of processors.

One-to-all broadcast,
All-to-one reduction

Communication Time

min((ts + tw) log p, 2(ts log p + twm))
All-to-all broadcast,

All-to-all reduction tolog p + twm(p - 1)

All-reduce min((ts + twm) log p, 2(ts log p + twm))

Scatter, Gather ts log p + tum(p - 1)




Isoefficiency Example

Consider a problem of adding n numbers on p processors.

Non-cost optimal solution
Assuming p and n are powers of 2, then the parallel time is

T, = O((n/p)log p + n/p) = O((n/p) log p)

where n/p is the local computation and (n/p)log p is the
communication.

To(W,p) = pTp - W = O(nlog p) - O(n) = O(nlog p)

The scalability condition cannot be met so the problem is
not cost optimal.




Cost optimal solution
For this algorithm the parallel execution ftime is

T, = O(n/p) + O(log p) = O(n/p + log p)

Then the overhead time is

To(W,p) = pTp - W = O(plog p)

The scalability condition

O(plog p) = O(n)

or that the parallel algorithm is cost optimal as long as n
= O(plog p).




Performance Curve

@ This curve assumes that the problem size does not
change as we add nodes

: 2
Time (S) 10 Line of salability
slope = -1

Line of linear
speed-up

4f 8 161 32 64 w128 1056 ©12
1/np(max)  Number of Nodes




Matrix-Vector Multiply Introduction

@ Matrix-vector multiply can either be thought of as
@ N vector-products of the rows of A with x
@ linear combination of the columns of A defined by




Matrix-Vector Multiply Introduction
(Cont.)

@ Method 1 - distribute blocks of rows of A and the
entire x-vector to each processor

@ Method 2 - distribute blocks of columns of A and
blocks of the x-vector fo each processor

Method 1 Method 2




Matrix-Vector Multiply
Performance Model

Compute T, for Method 1 and Method 2. Use the chart
for communication times. The code in the following slide
may help. What does the scalability condition say for
each method?




Matrix-Vector Multiply MPI Code

program main

integer diml, dim2, dim3

parameter (dim1=80, dim2=10, dim3=diml*dim2)
include “mpif.h”

integer ierr, rank, size, root

real a(diml, diml), apart(dim3), ypart(dimil), y(dimi),
& x(dim1),xpart(dim2)

root = 0

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

write(**) 'START process ', rank




if (rank .eq. root) then
do j=1,diml
x(j) = 1.0
do i=1,diml
a(i,j) = i+j
enddo
enddo
endif

call MPI_SCATTER(a, dim3, MPI_REAL, apart, dim3, MPI_REAL, root,
& MPI_COMM_WORLD, ierr)
call MPI_SCATTER(x, dim2, MPI_REAL, xpart,dim2, MPI_REAL, roof,

& MPI_COMM_WORLD, ierr)
do i=1,dim2

do j=1,diml
if (i .eq. 1) ypart(j) = 0.0

ypart(j) = ypart(j) + xpart(i)*apart((i-1)*diml+j)
enddo

enddo

call MPI_REDUCE(ypart, vy, diml, MPI_REAL, MPI_SUM, root,
& MPI_COMM_WORLD, ierr)

write (%*) 'FINISH process *, rank

call MPI_FINALIZE(ierr)

end




Matrix-Vector Multiply HPF Code

! An example program to evaluate V = X*A where V and X are vectors of length
! M and A is an MxN matrix

! Distribute array A by block columns. Place X and V on all processors

implicit none

integer NPROCS

parameter (NPROCS = 3)

IHPF$ processors, dimension(NPROCS) ::

real AM,N), X(M), V(N)
IHPF$ distribute (*block) onto PROCS :: A
IHPF$ distribute (block) onto PROCS :: V

intrinsic dot_product, matmul




! Vector-matrix product using

! 1) Fortran 90 matmul formulation

I 2) Fortran 90 vector formulation

! 3) Fortran 90 element-wise formulation

! Matrix (matmul) formulation.
V = matmul(X,A)

! Vector formulation
IHPF$ independent, new(I)
doI=1IN

V(1) = dot_product(X, A(:1))
enddo

! Do-loop formulation
IHPF$ independent, new(I)
do I=1N

V(I) = 0.0

do J=1,M

V(1) = X(@)*ATI) + V(1)

enddo

enddo




Matrix-Vector Multiply HPF Comments
@ Specify the number of processors with the HPF
PROCESSORS directive

@ Distribute the matrix A and the vector X in blocks over
the processors. The vector V is on each processor

@ The processors each have a block of columns and a
block of the elements of size approximately N/NPROCS
and compute the elements of V that are on each

processor

@ The alternative codes use a Fortran 90 vector notation
or the traditional Fortran 77 (and 90) Do-loop notation

® The HPF INDEPENDENT directive is a hint to the HPF
compiler that there are no loop iteration dependencies--
the directive is not needed in the vector formulation as
Fortran 90 states there are no dependencies by
definition




Matrix-Vector Multiply Execution Plot

Number of Nodes

Number of Data Elements = 1000, 4000




Matrix-Vector Multiply Conclusions

@ Method 1 and Method 2 have approximately the
same floating-point overhead

@ Method 1 is superior to method 2 since it sends n/p
instead of n data values




Conclusions

@ Parallel programming is hard

@ Knowing what you are trying to achieve (less time,
bigger problem, more physics, its cool, etc.) in a
parallel program is an important start

@ Different ways of organizing data and

communications can have very different results

@ It helps to have a performance model before
creating a parallel program

@ If the data does not agree with the performance
model, why does it behave differently than
expected?




