
Handling Failures:
Supercomputers

playing Telephone
New Mexico

Supercomputing Challenge
Final Report
April 1, 2012

Team Number 16
Aspen Elementary

Team Members: Sponsor:
Alex Ionkov
Andrei Popa-Simil Kathryn Thomas

Mentor:
Latchesar Ionkov

Table of Contents

Executive Summary! 3

Introduction! 4

Problem Definition! 5

Solution! 5

Results ! 8

Conclusion! 10

References ! 10

Acknowledgments ! 10

Appendix 1: Source Code ! 11

Appendix 2: NetLogo ! 15

2

Executive Summary
There are many ways for supercomputers to break. One example is when the
links between the supercomputer nodes break in a way that allows the nodes to
communicate, but corrupts the info packets that are sent over them. This is what
we will study with our model and experiment. A supercomputer is a machine
made out of nodes and links. Nodes do the calculations and communicate with
other nodes over the links by sending info packets. Info packets (also known as
infos or messages) are small packets of data The problem that we are trying to
work on is that the information send over the links sometimes gets corrupted. We
created a model of a supercomputer and studied how the number of links be-
tween the nodes, and the number of broken links affects the ratio of corrupted
info packets. Our experiments have shown that: as expected the less broken
links the corruption rate is lower, the more number of links the less corruption
rate. We did not get to adding the error-checking and recovery algorithms that
would make the info stay healthy but made the environment more realistic. We
are planning to work on adding that next year.

3

Introduction
Supercomputers are the fast calculating machines that are used to solve very
hard problems. So what happens when one gets broken from the inside by hav-
ing it's info packets corrupted? This is what we will model and experiment, if
there is a way to reduce the corruption rate.

A supercomputer is a computer at the frontline of current processing capacity,
particularly speed of calculation. A supercomputer is a machine made out of
nodes and links between them. Nodes are small computers that do the calcula-
tions and send info packets to other nodes over the links. Info packets (also
known as infos or messages) are small packets of data.

We based our project on the game telephone (but making some changes). In the
game telephone (or chinese whispers) there as many players as possible line up
such that they can whisper to their immediate neighbors but not hear any players
further away. A phrase will be told by the judges and the first player whispers it as
quietly as possible to his or her neighbor. The neighbor then passes on the mes-
sage to the next player to the best of his or her ability. The passing continues un-
til it reaches the player at the end of the line, who says to the judges the mes-
sage he or she received. The game has no winner but the entertainment comes
from comparing the original and final messages. Intermediate messages can be
compared too. As well as providing amusement, the game can have educational
value. It shows how easily information can become corrupted by indirect commu-
nication. The game has been used in schools to simulate the spread of gossip
and its supposed harmful effects. It can also be used to teach young children to
moderate the volume of their voice, and how to listen attentively; in this case, a
game is a success if the message is transmitted accurately with each child whis-
pering. It can also be used for older or adult learners of a foreign language,
where the challenge of speaking comprehensibly, and understanding, is more dif-
ficult because of the low volume.

Another use is to model data transmission in supercomputers. Some supercom-
puters function this way. Each node passes the message to it's neighbor node
and goes on like that until the message or "info" reaches the final or destination
node.

4

Problem Definition
The problem that we are trying to work on is that the information sent by the
nodes in a supercomputer sometimes gets corrupted. The links on which the info
packet went on were faulty. This is important because supercomputers are used
for many things, for example: quantum physics, weather forecasting, climate re-
search, oil and gas exploration, and molecular modeling. Incorrect data can con-
fuse the scientists and make their work harder. We are trying to create a model a
supercomputer so we can study info packet corruption. By running experiments
with different input variable values, we can try to find solutions for the problem.
We will experiment until we have found inputs that will reduce the corruption ratio
as far down as we can make it.

Solution
We created a model of a supercomputer in NetLogo. Our model consists of
nodes and links between them. We also have infos, which represent the data
packets that are send from the nodes to other nodes.

In our model, each node is connected to some (but not all) of the other nodes. If
an info is sent to a node that is not connected to the sending node, the info
needs to pass over multiple nodes and links.

This is a screenshot of our NetLogo model:

5

Breeds and Links

Nodes

Our model has a breed called nodes. The nodes represent the supercomputer’s
nodes. In our model, they are drawn in a circle.

Connections

Connections link two nodes and represent the network connections in the super-
computers. In our model we used NetLogo’s unidirectional links. The connections
can be either broken, or healthy. If an info passes through a broken connection, it
gets corrupted and its content is changed.

Infos

The info breed represents the messages that are passed from one node to an-
other. The infos have many breed variables. They are described in the table be-
low.

6

Name Description

start node that sends the info

finish node that should receive
the info

data content of the info

location current location of the info

original-data original content of the info

We can find out if the info was corrupted by comparing the data variable to the
original-data variable.

Input variables
Our model has 7 input variables. We can use them to run different experiments
and study the corruption problem.

Number-of-nodes

We can use this input variable to change the size of the supercomputer. We can
model supercomputers with 3 nodes up to 30 nodes.

Broken-links

We can use this input variable to change the number of broken links.

Links-per-node

This input variable specifies the number of links connecting each node to other
nodes. It can be a value from 2 to 10.

Always-broken-links

In real supercomputers the links can be flaky and not broken forever. If this
switch is off, a link is broken for some time, then gets healthy and another ran-
dom link is broken.

7

Alphabet-size

This input variable defines how may different values can each character of the
content have. If the number is 26, the content of the info can be a random word
of letters. If the number is the smallest value 2, the content is something like
bbbaba.

Message-size

This input variable defines the size of the info content. If the message size is 4,
the content is a random four character word.

Info-num

This input variable specifies how many infos are currently being send from one
node to another.

Our program creates some infos with random start and finish nodes, and content
values. Each step of the simulation tries to move the infos closer to the finish
node. If there is more than one connection, we pick the one that links to a the
node that is closest to the finish. If the connection is broken, the program
changes one random character from the message.

Results
Figures 1, 2, 3, and 4 show the experiments that we did. The common parame-
ters for all experiments were:

• number of nodes: 30

• alphabet size: 21

• message size: 21

• number of infos: 3

8

Figure 1:
broken links: 3
links-per-node: 2

Figure 2:
broken links: 6
links-per-node; 2

Figure 3:
broken links: 3
links-per-node: 4

Figure 4:
broken links: 6
links-per-node: 4

9

As expected the less number of broken connections we have, the less of the
infos will get corrupted. If there are more connections between the nodes, the
corruption rate is lower. We experimented with different alphabet sizes (results
not included) and found that the smaller the alphabet size is, the lower the cor-
ruption rate is. The number of nodes affected the corruption rate by giving the
infos less places to go.

Conclusion
Our simulation showed that the info/infos can be corrupted very fast resulting to
losing data. We have made the right experimenting environment to study the su-
percomputer data corruption. If we extend this project, we will add error-checking
and recovery algorithms. Another feature we would like to add is to detect which
links are faulty and not send data over them.

References
1. Cyclic redundancy check,

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

2. Error detection and correction,
http://en.wikipedia.org/wiki/Error_Control_Coding

3. Supercomputer, http://en.wikipedia.org/wiki/Supercomputer

4. Computer network, http://en.wikipedia.org/wiki/Computer_network

5. Telephone, http://en.wikipedia.org/wiki/Chinese_whispers

6. Netlogo Dictionary, http://ccl.northwestern.edu/netlogo/docs/dictionary.html

Acknowledgments

We would like to thank to Latchesar Ionkov for being our mentor and Supercom-
puting Challenge program for helping us to learn computer programming.

10

http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/Error_Control_Coding
http://en.wikipedia.org/wiki/Error_Control_Coding
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Chinese_whispers
http://en.wikipedia.org/wiki/Chinese_whispers
http://ccl.northwestern.edu/netlogo/docs/dictionary.html
http://ccl.northwestern.edu/netlogo/docs/dictionary.html

Appendix 1: Source Code

breed [nodes node]
breed [infos info]
undirected-link-breed [connections connection]

connections-own [broken]
infos-own [location start finish data original-data]

globals [
 alphabet
 info-template
 broken-info-num
 total-info-num
 info-ratio
 current-broken-links
]

to setup
 ;; (for this model to work with NetLogo's new plotting features,
 ;; __clear-all-and-reset-ticks should be replaced with clear-all at
 ;; the beginning of your setup procedure and reset-ticks at the end
 ;; of the procedure.)
 __clear-all-and-reset-ticks
 set-default-shape nodes "computer server"
 create-nodes number-of-nodes
 layout-circle sort turtles (world-width / 2 - 1)
 ask turtles [set size 4]
 link-nodes
 set alphabet substring
 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
0123456789-,.<>:[]{}!@#$%^&*()+=" 0 alphabet-size
 ;tick
 set info-template substring
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
0123456789-,.<>:[]{}!@#$%^&*()+=
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
0123456789-,.<>:[]{}!@#$%^&*()+=" 0 message-size
end

to link-nodes
 ask nodes [

11

 let id who + 1
 repeat links-per-node / 2 [

 if id > (number-of-nodes - 1) [
 set id 0
]
 create-connection-with node id
 set id id + 1
]
]
 setup-broken-links
end

to setup-broken-links
 repeat broken-links [
 break-link
]
end

to break-link
 let dostop false
 while [not dostop] [
 ask one-of connections [
 if broken = 0 [
 ifelse always-broken-links [
 set broken 1000000000000000
]
 [
 set broken 1 + random 60
]
 set shape "default1"
 set color yellow
 set dostop true
]
]
]
 set current-broken-links current-broken-links + 1
end

to-report best-link [finish-id]
 let new-location 0
 let dist 10000000
 let id who
 ask connection-neighbors [
 let d abs(finish-id - who)

12

 if d < dist [
 set new-location self
 set dist d
]
]
 report (list new-location link-with new-location)
end

to info-step
 if location = finish [
 if data != original-data [
 set broken-info-num broken-info-num + 1
 set info-ratio broken-info-num / total-info-num
]
 die
 stop
]
 let finish-id [who] of finish
 let l [best-link finish-id] of location
 let next-node first l
 let next-link last l
 set location next-node
 let new-data data
 ask next-link [
 if broken > 0 [
 let pos random (length new-data)
 let lpos random length alphabet
 set new-data replace-item pos new-data (item lpos alphabet)
]
]
 set data new-data
end

to check-broken-links
 ask connections [
 if broken > 0 [
 set broken broken - 1
 if broken <= 0 [
 set broken 0
 set color white
 set shape "default"
 set current-broken-links current-broken-links - 1
]
]
]

13

 repeat broken-links - current-broken-links [

 break-link
]
end

to go
 ask infos [
 info-step
]
 check-broken-links
 if count infos < info-num [
 repeat info-num - count infos [
 new-info one-of nodes one-of nodes random-data
]
]
 tick
end

to-report random-data
 let di info-template
 let pos 0
 while [pos < message-size] [
 let lpos random length alphabet
 set di replace-item pos di (item lpos alphabet)
 set pos pos + 1
]

 report di
end

to new-info [s en d]
 create-infos 1 [
 set start s
 set finish en
 set data d
 set original-data d
 set color white
 set size 2
 set shape "square"
 set location s
 move-to location
 set total-info-num total-info-num + 1
]
end

14

Appendix 2: NetLogo
NetLogo is a programming language written by Uri Wilensky in 1999. He wrote it
in Scala with some Java in it. He based Netlogo on the programming language
Logo, and thus having Logo in it’s name. Net in NetLogo comes from Netlogo’s
ability to make networks. It was made to be "low threshold and no ceiling," that is
to enable easy entry by novices and yet meet the needs of high powered users.
For more information go to http://en.wikipedia.org/wiki/NetLogo or
http://ccl.northwestern.edu/netlogo/.

15

http://en.wikipedia.org/wiki/NetLogo
http://en.wikipedia.org/wiki/NetLogo
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

