

Finalist Reports

2011-2012

www.supercomputingchallenge.org

http://www.supercomputingchallenge.org/

Printed in cooperation with
Los Alamos National Laboratory

High Performance Computing Group (HPC-3)
and

New Mexico Public Education Department

Cover: The Intersection of Lines to Find Points
Team 87 from Melrose High School

Randall Rush, Quinton Flores,
Jon Tello, and Kaleb Broome

Teachers Allen Daugherty and Rebecca Raulie
Winner in the Technical Poster Competition

Notification: These final reports are presented in an abridged form, leaving out actual
code, color, and appendices where appropriate. Complete copies of most of the final
reports are available from the archives of Supercomputing Challenge web site:
http://www.supercomputingchallenge.org .

1

New Mexico Supercomputing Challenge
2011 – 2012 Finalist Reports

Table of Contents

About the New Mexico Supercomputing Challenge
For more information, please visit our website at
 http://www.supercomputingchallenge.org …………………………………………… 2

2011—2012 Challenge Awards ……………………...…………………………. 4

Scholarship winners ………………………………………….…………………. 8

Sponsors ………………………………………………………………………… 10

Participants …………………………………………………………………….. 11

Judges………………………………………………………………….………... 17

Finalist Reports ………………………………………………………………… 19

1. Detection of Alzheimer’s Disease Plaque in a Transgenic Mouse Brain Using

Image Analysis of SPION-Enhanced Magnetic Resonance Images
Manzano High School, Team 82

2. Computer Simulation of Dark Matter Effects on Galaxy Rotation,
 Los Alamos Middle School, Team 72
3. Optimizing Community Detection, La Cueva High School, Team 56
4. The Impact of Forest Fires on Water Resources,
 Desert Academy, Academy for Technology and the Classics,
 Santa Fe High School, Team 2
5. Language Acquisition in Computers, Desert Academy, Team 36
6. Duel of the Fuel, Edgewood Elementary, Team 41
7. Warehouse Layout and Picking Simulation,
 Los Alamos High, Team 64
8. ExcellAnts, Los Alamos High School, Team 66
9. Simulation of Multi-Agent Based Scheduling Algorithms for Waiting-line
 Queuing Problems, Los Alamos Middle School, Team 73
10. Ant Colony Conundrum,
 Saturday Science and Math Academy, Team 118

http://www.supercomputingchallenge.org/

2

Supercomputing Challenge Vision

The Vision of the Supercomputing Challenge is to be a nationally
recognized program that promotes computational thinking in
science and engineering so that the next generation of high school
graduates is better prepared to compete in an information-based
economy.

Supercomputing Challenge Mission

The Mission of the Supercomputing Challenge is to teach teams of
middle and high schools students how to use powerful computers to
analyze, model and solve real world problems.

About the Supercomputing Challenge

The Supercomputing Challenge (the Challenge) is an exciting program that offers a truly unique
experience to students in our state. The opportunity to work on the most powerful computers in
the world is currently available to only a very few students in the entire United States, but in
New Mexico, it is just one of the benefits of living in the "Land of Enchantment."

The Challenge is a program encompassing the school year in which teams of students complete
science projects using high-performance supercomputers. Each team of up to five students and a
sponsoring teacher defines and works on a single computational project of its own choosing.
Throughout the program, help and support are given to the teams by their project advisors and
the Challenge organizers and sponsors.

The Challenge is open to all interested students in grades 6 through 12 on a nonselective basis.
The program has no grade point, class enrollment or computer experience prerequisites.
Participants come from public, private, parochial and home-based schools in all areas of New
Mexico. The important requirement for participating is a real desire to learn about science and
computing.

Challenge teams tackle a range of interesting problems to solve. The most successful projects
address a topic that holds great interest for the team. In recent years, ideas for projects have come
from Astronomy, Geology, Physics, Ecology, Mathematics, Economics, Sociology, and
Computer Science. It is very important that the problem a team chooses is what we call "real
world" and not imaginary. A "real world" problem has measurable components. We use the term
Computational Science to refer to science problems that we wish to solve and explain using
computer models.

Those teams who make significant progress on their projects can enter them in the competition
for awards of cash and scholarships for the individuals and computer equipment for the school.
Team trophies are also awarded for: Teamwork, Best Written Report, Best Professional
Presentation, Electronic Search & Browse, Creativity and Innovation, Environmental Modeling,
High Performance, Science is Fun and the Judges' Special Award, just to name a few.

3

The Challenge is offered at minimal cost to the participants or the school district. It is sponsored
by a partnership of federal laboratories, universities, and businesses. They provide food and
lodging for events such as the kickoff conference during which students and teachers are shown
how to use supercomputers, learn programming languages, how to analyze data, write reports
and much more.

These sponsors also supply time on the supercomputers and lend equipment to schools that need
it. Employees of the sponsoring groups conduct training sessions at workshops and advise teams
throughout the year. The Challenge culminates with an Expo and Awards Ceremony in the
spring at Los Alamos National Laboratory.

History

The New Mexico High School Supercomputing Challenge was conceived in 1990 by former Los
Alamos Director Sig Hecker and Tom Thornhill, president of New Mexico Institute of Mining
and Technologynet Inc., a nonprofit company that in 1985 set up a computer network to link the
state's national laboratories, universities, state government and some private companies. Sen.
Pete Domenici, and John Rollwagen, then chairman and chief executive officer of Cray Research
Inc., added their support.

In 2001, the Adventures in Supercomputing program formerly housed at Sandia National
Laboratories and then at the Albuquerque High Performance Computing Center at the University
of New Mexico merged with the former New Mexico High School Supercomputing Challenge to
become the New Mexico High School Adventures in Supercomputing Challenge.

In 2002, the words "High School" were dropped from the name as middle school teams had been
invited to participate in 2000 and had done well.

In the summer of 2005, the name was simplified to the Supercomputing Challenge.

In 2007, the Challenge began collaborating with the middle school Project GUTS, (Growing Up
Thinking Scientifically), an NSF grant housed at the Santa Fe Institute.

4

2011—2012 Challenge Awards

• Albuquerque Manzano High School student takes top
award in 22nd New Mexico Supercomputing Challenge

Computer algorithm for image analysis
of Alzheimer’s plaques

LOS ALAMOS, New Mexico, April 24,
2012—Jordan Medlock of Albuquerque’s
Manzano High School took the top prize
in the 22nd New Mexico Supercomputing
Challenge for his computer algorithm that
automates the process of counting and
analyzing plaques in magnetic resonance
images of persons diagnosed with
Alzheimer’s disease. The program vastly
speeds up the process of identifying the very small and difficult to see plaques.
For his project, "Detection of Alzheimer’s Disease Plaques in a Transgenic Mouse Brain Using
Image Analysis of SPION-Enhanced Magnetic Resonance Images," Medlock received a check
for $1,000.

Los Alamos Middle School student Cole Kendrick took second place for his project, "Computer
Simulation of Dark Matter Effects on Galaxy Collisions." Kendrick received a check for $500.
He also received the $100 Crowd Favorite Award chosen by teachers and students and the Best
Presentation Award. Kendrick took the top prize in last year’s Supercomputing Challenge for his
computer program to model the rotation of a galaxy including dark matter.

The Albuquerque La Cueva High School team of Alexandra Porter, Stephanie Djidjev and
Lauren Li took third place for their project "Optimizing Community Detection." The trio also
received the Women in Science and Engineering Award. The third place team members each
receive $250.

Seven other teams were finalists in the yearlong competition culminating in Tuesday’s awards
ceremony in Los Alamos. These finalist teams received plaques and banners for their school;
team members also each received $50.

The Supercomputing Challenge is open to any New Mexico high-school, middle-school, or
elementary-school student. More than 200 students representing about 60 teams from schools
around the state spent the school year researching scientific problems, developing sophisticated
computer programs, and learning about computer science with mentors from the state’s national
laboratories and other organizations.

The goal of the yearlong event is to teach student teams how to use powerful computers to
analyze, model, and solve real-world problems. Participating students improve their

http://www.supercomputingchallenge.org/

5

understanding of technology by developing skills in scientific inquiry, modeling, computing,
communications, and teamwork.

Each finalist team received plaques for their school trophy cabinets plus a large banner for their
gym and $50 for each student.

The New Mexico EPSCoR Climate Change/Water Resources award goes to Team 94 from the
New Mexico School for the Arts. Their title is Water You Waiting For Santa Fe? Team members
are Mohit Dubey, Samuel Thompson, Milada Guenther, and Noah Caulfield. Their sponsor is
Acacia McCombs and mentor is Stephen Guerin.

Team 37 from Desert Academy won an award for Modeling an Ecosystem which was presented
by the New Mexico Museum of Natural History and Science. Their title is Depletion of Aquifer
Levels in the Lower Rio Grande. Team Members are Jeremy Hartse, Taylor Bacon. Their
sponsors are Jocelyne Comstock and Jeff Mathis.

Team 102 from Pinon Elementary won the Visualization prize from New Mexico Institute of
Mining and Technology, sponsored by Dr. Lorie Liebrock. Ryan Swart from Pinon Elementary
won with his project Visualizing the Tree of Life.

Team 17 from Aspen Elementary School won the Best Agent Based Modeling Project award.
Their title is A Devil Worth Saving. Team Members are Thomas Chadwick, Gabriel Holesinger,
Tazler Smith, Sabio Thompson and Jack Vandenkieboom. Their sponsor was Mrs. Martens, and

6

mentors were Mark Chadwick, Jeff Hay, Terry Holesinger, Sabina Johnson, John
Vandenkieboom and Lynn Wysocki-Smith.

Team 101 from Pinon Elementary received the Community Impact Award for their projected
titled The Bullying Effect. Team Members are Jordan Bailey and Ruby Selvage. Their mentors
are Alison Bailey and Kim Selvage.

Team 38 from Down to Earth School was awarded the Newcomer Award for being a exceptional
first year team. Their project was titled Polystyrene Versus Down to Earth. Team Members are
Ella Kirk, Simone Hill, Ruby Zeuner, Addie Clemens, and Hailey Manlowe. Their Sponsors are
Maia Chaney, Shanon Muelhausen, and Nathan Shay.

Team 4 from AIMS@UNM won the Magellan Award for their multi-grade level collaboration.
Their project is Modeling the Flow of the Interstellar Medium Within Localized Sectors of Space
and Team Members are Louis Jencka, Randall van Why, Nico Ponder, Stefan Klosterman, and
Jake Kileen. Their Sponsor is Mr. Harris. They also won the Cray High Performance Computing
Award.

The Best Web-based Presentation of a Final Report award was shared between Teams 74 from
Los Alamos Middle School for their project titled Haptic Feedback: Controlling Robots with
Touch, with team members Connor Bailey and Nate Delgado and sponsor Pauline Stephens and
mentor Rob Cunningham, and Team 101 from Pinon Elementary received the Community
Impact Award for their projected titled The Bullying Effect, team Members are Jordan Bailey and
Ruby Selvage. Their mentors are Alison Bailey and Kim Selvage.

Team 87 from Melrose High School won the Best Technical Poster Award. Their project is titled
The Intersection of Lines to Find Points. Team Members are Randall Rush, Quinton Flores, Jon
Tello, and Kaleb Broome. Their teachers are Allen Daugherty and Rebecca Raulie. Their graphic
becomes the front cover for the 2012-2013 Final Reports which will be published for the Kickoff
in October 2012.

Teamwork Award from CHECS, the New Mexico Council for Higher Education
Computing/Communication Service, went to Team 58, Las Cruces Young Women in Computing
and their title is Utopia. Their team members are Marie Ellis, Samantha McGuinn, Hiba Muhyi,
Noor Muhyi, Cindy Yeh. Their sponsors were Rachel Jensen, Rebecca Galves, and they were
mentored by Jen Dana and Stephanie Marquez.

The Sandia National Labs Creativity and Innovation Award goes to Team 36, Desert Academy,
Language Acquisition in Computers. Team members are Megan Belzner, Sean Colin-Ellerin and
the teacher sponsors are Jocelyne Comstock and Jeff Mathis. Their Mentor is Jorge Roman.

Drew Einhorn received the Service Award for his continued support in old and new endeavors
including the schedule for the kickoff and the wiki implementation.

7

The Graphical Poster award went to Team 77, Los Alamos Mid School. This design will become
next year's logo and will appear on t-shirts, the website and teacher bags. Their teacher sponsor
is Pauline Stevens and her student is Claire DeCroix.

The Science Rocks award went home with Team 107, Rio Rancho Cyber Academy, Reverse
Osmosis Team Members: Stuart Perara, Trinity Medley and their Sponsor: Harry Henderson.

Team 2, a joint team from Desert Academy, Santa Fe High School and Academy for Technology
and the Classics received the LANL Environmental Modeling Award for their project, "The
Impact of Forest Fires on Water Resources." Team members are Sara Hartse, Hugo Rivera, and
Nico Cruz and their sponsor is Jocelyne Comstock.

Edgewood Elementary School Team 41 received the Best Researched award from the Council
for Higher Education Computing/Communication Services for their report, "Duel of the Fuel."
Team members include Ethan Hintergardt, Chase Podzemny, Emily Robinson, Keith Stevens,
and Pete Talamante and their sponsors are Carol Thompson and Jennifer Wiggins, and their
mentors are Wayne Bitner and Joaquin Roibal.

The Jeff Bingaman Middle School Award went to Los Alamos Middle School Team 73 for the
project, "Simulation of Multi-Agent Based Scheduling of Algorithms for Waiting-line Queuing
Problems." Team members are Steven Chen and Andrew Tang and their sponsor is Pauline
Stephens and their mentor is Hsing-bung (HB) Chen.

The Python Programming Award went to Los Alamos High School Team 66 for their project
"ExcellAnts.” Team members are Peter Ahrens and Dustin Tauxe and their sponsor is Lee
Goodwin and mentors are James Ahrens and Christine Ahrens.

This year's Teacher Recognition Awards are in memory of Peggy Larisch, pioneer
Supercomputing Challenge teacher from Silver High School. Students nominate teacher sponsors
for recognition. This year's winners are Maia Cheney, Down to Earth School, Silver, Jocelyne
Comstock, Desert Academy and Rebecca Galves, a Director of the Young Women in Computing
at New Mexico State University.

The Challenge's management team Consult honored UNM Grad student Reffat Sharmeen as she
facilitated at the kickoff, reviewed proposals and interim reports online, attended three face to
face evaluations and judged teams at the Expo.

Five attendees at the Awards Ceremony received crisp $100 bills that were given out as random
door prizes.

8

This year the Challenge was given $10,000 from LANL's Division of Computer, Computational,
and Statistical Sciences Division for scholarship awards. An additional $10,000 came from
LANS, $5000 came from Abba Technologies/Hewlett Packard, $500 from the Challenge for the
Willard Smith Scholarships and $15,700 was given by in-state colleges and universities. Students
receiving scholarships were:

Name High School College
Daniel Washington Sat Sci & Math Acad MIT
Stephanie Djidjev La Cueva Berkeley
Jordan Medlock Manzano UNM
Megan Belzner Desert Academy MIT
Jennifer Hu LC YWiC NMSU
Cindy Yeh LC YWiC NMSU
Noor Muhyi LC YWiC NMSU
Willie Fong ATC NMT
Bethany Tanner SODA NMT
Randy Van Why AIMS@UNM NMT
Jeremiah Marquez Artesia ENMU
Josh Trujillo Artesia OU
Peter Ahrens Los Alamos Berkeley

9

Dustin Tauxe Los Alamos CSU
Alanna Tempest Miyamura High Stanford
Max Bond Monte del Sol UNM
Devin Hayes CEPi1 CNM
Billy Amershek CEPi1 CNM
Louis Jencka AIMS@UNM NMT
Stefan Klosterman AIMS@UNM NMT
Samantha McGuinn LC WYiC NMSU

NCWIT (National Center for Women and Information Technology) Aspirations in Computing
recognized junior and senior girls for their computing-related achievements. Awardees were
selected for their computing and IT aptitude, leadership ability, academic history and plans for
post-secondary education. The winners in New Mexico are Taylor Bacon, Desert Academy,
Santa Fe, Stephanie Djidjev, La Cueva High, Albuquerque, Sara Hartse, Desert Academy, Julissa
Hunte, V. Sue Cleveland High, Rio Rancho, Alexandra Porter, La Cueva High, and Falisha
Trujillo, Jemez Valley High School. Irene Lee, Challenge Board President and Principal
Investigator for Project GUTS and Guts Y Girls at Santa Fe Institute, was named the Educator
Winner. The Challenge was pleased to host these awards and noted that four of the six young
women have participated in the Challenge.

Three special guests joined the celebration: Henry Neeman, Executive Director, Research
Computing & Services Director, OU, Supercomputing Center for Education & Research
(OSCER). The University of Oklahoma Information Technology Adjunct Assistant Professor,
School of Computer Science. The audience Skyped with Uri Wilensky, Principal Investigator
from Northwestern University's Center for Connected Learning and Computer-Based Modeling,
the home of NetLogo. Team 12 from Artesia High won the Best NetLogo award for their
emergency egress model. Senator Jeff Bingaman gave a congratulatory message to the
participants via video that was played during the Awards Ceremony.

Now in to its 23rd year, the Challenge is open to any New Mexico high-school or middle-school
student. Over the past year, teams from schools around the state researched scientific problems,
developed sophisticated computer programs, learned computer science with mentors from the
state's national laboratories and other organizations, and had the opportunity to run their
programs on some of the world's most powerful computers.

The goal of the year-long event was to increase knowledge of science and computing; expose
students and teachers to computers and applied mathematics; and instill enthusiasm for science
in middle- and high-school students, their families and communities. Participating students
improve their understanding of technology by developing skills in scientific inquiry, modeling,
computing, communications and teamwork.

More information on the New Mexico Supercomputing Challenge can be found at
http://www.supercomputingchallenge.org online, while final student reports are available at
http://www.supercomputingchallenge.org/archive/11-12/finalreports online.

http://www.supercomputingchallenge.org/
http://www.supercomputingchallenge.org/archive/11-12/finalreports

10

Sponsors
The Supercomputing Challenge is sponsored by Los Alamos and Sandia national laboratories
and Los Alamos National Security, LLC.

Educational partners include The Center for Connected Learning/NetLogo, New Mexico Council
for Higher Education Computing/Communication Service (CHECS), Eastern New Mexico
University, MIT StarLogo, New Mexico Computing Applications Center, New Mexico EPSCoR,
New Mexico Highlands University, New Mexico Institute of Mining and Technology, Northern
New Mexico College, New Mexico Public Education Department, New Mexico State University,
NMSU-Dona Ana Community College ,San Juan College, Santa Fe Community College, Santa
Fe Complex, Santa Fe Institute, Swarm Development Group, the University of New Mexico and
the UNM Center for Advanced Research Computing.

Abba Technologies/HP, Google RISE, Intel Corporation, Lockheed Martin, Los Alamos
National Laboratory Foundation, Synergy Group, The Math Works, Vandyke Software Inc., and
Wolfram Research, Inc. are “Gold” commercial partners. “Silver” commercial partners are,
Gulfstream Group and bigbyte.cc and Technology Integration Group. “Bronze” commercial
partners are Albuquerque Journal, Cray Inc., Fourth Watch Software, Innovate Educate NM,
Lobo Internet Services, New Mexico Business Weekly, New Mexico Technology Council, PY
Multimedia Services, Redfish Group, and Sun Microsystems.

About Los Alamos National Laboratory (http://www.lanl.gov)

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic
science on behalf of national security, is operated by Los Alamos National Security, LLC, a team
composed of Bechtel National, the University of California, The Babcock & Wilcox Company,
and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear
stockpile, developing technologies to reduce threats from weapons of mass destruction, and
solving problems related to energy, environment, infrastructure, health, and global security
concerns.

http://www.lanl.gov/

11

Teams Finishing the Challenge and submitting final reports:

Team 1, Academy for Technology and the Classics/Monte del Sol/The MASTERS Program,
Cellular Automata Based Tsunami Simulation
Team Members: Max Benjamin Bond, Erik William Nelson, Arlo James Barnes, William
Christopher Fong
Mentor: Nick Bennett

Team 2, Desert Academy, Academy for Technology and the Classics, Santa Fe High School,
The Impact of Forest Fires on Water Resources
Team Members: Sara Hartse, Hugo Rivera, Nico Cruz
Sponsor: Jocelyne Comstock

Team 4, AIMS@UNM, Modeling the Flow of the Interstellar Medium Within Localized Sectors
of Space
Team Members: Louis Jencka, Randall van Why, Nico Ponder, Stefan Klosterman, Jake Kileen
Sponsor: Mr. Harris

Team 5, Alamogordo High, Go With the Flow
Team Members: Pascal Rößner, Seth Hollis
Sponsor: Mr. Simon, Mr. Myoshi, Mentor: Bob Robey

Team 12, Artesia High School, DON'T PANIC!!! EMERGENCY EGRESS
Team Members: Madison Mutchler-Ramsey, Joshua Trujillo, Jeremiah Marquez
Sponsors: Randall Gaylor, Jose Quiroz, Mentor: Nick Bennett

Team 14, Aspen Elementary School, Roundabout Efficiency
Team Members: Christopher Koh, Do Vo, Jesse Prime
Sponsors: Mrs. Thomas, Mrs. Vandenkieboom, Mentors: Mike Prime, Duc Vo

Team 15, Aspen Elementary School, Self-recovery of a distributed system after a large
disruption
Team Members: Victor Popa-Simil, Henry Poston
Sponsor: Mrs. Thomas, Mentor: Liviu Popa-Simil

Team 16, Aspen Elementary School, Handling Failures: Supercomputers playing Telephone
Team Members: Alex Ionkov, Andrei Popa-Simil
Sponsor: Kathryn Thomas, Mentor: Latchesar Ionkov

Team 17, Aspen Elementary School, A Devil Worth Saving
Team Members: Thomas Chadwick, Gabriel Holesinger, Tazler Smith, Sabio Thompson, Jack
Vandenkieboom
Sponsor: Mrs. Martens, Mentors: Mark Chadwick, Jeff Hay, Terry Holesinger, Sabina Johnson,
John Vandenkieboom, Lynn Wysocki-Smith

12

Team 18, Aspen Elementary School, Mom, are we there yet?
Team Members: Ignacio Rougier, Joshua Vigil, Kye Jones, Donald Poston
Mentor: Esteban Rougier

Team 22, Creative Education Preparatory Institute #1, Hydrogen Fuel Cell
Team Members: Devin Hayes, Billy Amershek, Dillon Kuhr
Sponsor: Jerry Esquivel, Mentor: Mrs. Velarde

Team 31, Chaparral High, Space Junk: Problem of the Future
Team Members: Sofia Bali, Crystal Zamora, Gabriela Marchan, Susana Bali
Sponsors: Rebecca Galves, Hadi Sharifi

Team 35, Cleveland High School, Modeling Changes in Aquifer Water-Levels in New Mexico
Due to the Imbalance between Discharge and Recharge
Team Members: Ben Fowler, Korbyn Spooner
Sponsor: Debra Loftin, Mentor: Nick Bennett

Team 36, Desert Academy, Language Acquisition in Computers
Team Members: Megan Belzner, Sean Colin-Ellerin
Sponsors: Jocelyne Comstock, Jeff Mathis, Mentor: Jorge Roman

Team 37, Desert Academy, Depletion of Aquifer Levels in the Lower Rio Grande
Team Members: Jeremy Hartse, Taylor Bacon
Sponsors: Jocelyne Comstock, Jeff Mathis

Team 38, Down to Earth School, Polystyrene Versus Down to Earth
Team Members: Ella Kirk, Simone Hill, Ruby Zeuner, Addie Clemens, Hailey Manlowe
Sponsors: Maia Chaney, Shanon Muelhausen, Nathan Shay

Team 41, Edgewood Elementary, Duel of the Fuel
Team Members: Ethan Hintergardt, Chase Podzemny, Emily Robinson, Keith Stevens, Pete
Talamante
Sponsors: Carol Thompson, Jennifer Wiggins, Mentors: Wayne Bitner, Joaquin Roibal

Team 45, Escalante High, Flu on a Plane
Team Members: Aaron Edwards, Levi Dryden, Tanner Warren, Cameron Garcia, Jonathon
Lamb, Lucas Dryden
Sponsors: Yolanda Koontz, LeAnne Salazar

Team 49, Freedom High School, Water, Water Everywhere
Team Members: Chris Marroquin, Seth Morgan, Jake Wright
Sponsor: Richard Foust, Mentor: Joe Vertrees

Team 50, Grants High School, Project Troll
Team Members: Nicholas Kemp, Devin Lowther, Jacob Alford, Tanner Bond
Sponsor: Samuel Daunt, Mentor: Peter Yanke

13

Team 53, Jackson Middle School, Testing the Amount of Rainfall Affecting Animal Life
Team Members: Randie Terrill, Adam Greenwood
Sponsor: Mrs. Karen Glennon, Mentors: Christopher Koch, Nick Bennett

Team 54, Jackson Middle School, What are the effects of Massive rainfall in a desert
environment?
Team Members: Aidan O’Hara, Nolan Fisk
Sponsor: Mrs. Karen Glennon, Mentors: Nick Bennet, Roger Critchlow, Janet Penevolpe

Team 56, La Cueva High School, Optimizing Community Detection
Team Members: Alexandra Porter, Stephanie Djidjev, Lauren Li
Sponsor: Samuel Smith

Team 57, La Cueva High School, Modeling of Predator-Prey Relationships
Team Members: Robert McDaniels, Dennis Huang, Eli Echt-Wilson
Sponsor: Sam Smith

Team 58, Las Cruces Young Women in Computing, Utopia
Team Members: Marie Ellis, Samantha McGuinn, Hiba Muhyi, Noor Muhyi, Cindy Yeh
Sponsors: Rachel Jensen, Rebecca Galves, Mentors: Jen Dana, Stephanie Marquez

Team 59, Las Cruces Young Women in Computing, 9/11 AND ITS HAZARDOUS EFFECTS
Team Members: Connie Hu, Jennifer Hu, Analyssa Martinez, Arianna Martinez, Marisa Salazar
Sponsors: Becca Galves, Rachel Jensen, Mentors: Janie Chen Alyssa Soliz

Team 60, Little Earth School, Leatherback Sea Turtles: A Step to Protection
Team Members: Rowan Dwyer, Fatima Gutierrez, Lynn Robey, Weston Smith
Sponsor: Juli Curtis, Mentors: Tom Robey, Susan Gibb

Team 61, Little Earth School, Mexican Gray Wolf
Team Members: Busayo Bird Maquebela, Sean Shepherd
Sponsor: Julie Curtis, Mentors: Tom Robey

Team 62, Los Alamos High School, Threshold of Collapse
Team Members: Samuel R. Baty, Peter J. Armijo
Sponsor: Lee Goodwin, Mentors: Dr. Don Tucker, Dr. Roy Baty

Team 63, Los Alamos High School, Parallel Data Mining Using Multi-Core Computing
Team Members: Samuel Wang, Daniel Wang, Xiaoyu Deng, Ben Liu
Sponsors: Lee Goodwin, Wyatt Dumas
Mentors: HB Chen, HsingHui Liu, Hailin Deng

Team 64, Los Alamos High School, Warehouse Layout and Picking Simulation
Team Members: Sudeep Dasari, David Murphy, Colin Redman
Sponsor: Lee Goodwin, Mentors: Elizabeth Cooper

14

Team 66, Los Alamos High School, ExcellAnts
Team Members: Peter Ahrens, Dustin Tauxe
Sponsor: Lee Goodwin, Mentors: James Ahrens, Christine Ahrens

Team 68, Los Alamos High School, Using Genetic Algorithms to solve complex optimization
problems
Team Member: Alexander Swart
Sponsor: Mr. Goodwin, Mentors: Pieter Swart

Team 72, Los Alamos Middle School, Computer Simulation of Dark Matter Effects on Galaxy
Collisions
Team Member: Cole Kendrick
Sponsor: Brian Kendrick, Mentor: Brian Kendrick

Team 73, Los Alamos Middle School, Simulation of Multi-Agent Based Scheduling Algorithms
for Waiting-line Queuing Problems
Team Members: Steven Chen, Andrew Tang
Sponsor: Pauline Stephens, Mentor: Hsing-bung (HB) Chen

Team 74, Los Alamos Middle School, Haptic Feedback: Controlling Robots with Touch
Team Members: Connor Bailey, and Nate Delgado
Sponsor: Pauline Stephens, Mentor: Rob Cunningham

Team 77, Los Alamos Middle School, Investigating the Use of Hydroelectric Power
Team Member: Claire DeCroix
Sponsor: Pauline Stephens, Mentor: David DeCroix

Team 80, Los Alamos Middle School, Investigating Post Los Conchas Fire Erosion and
Potential Control Methods
Team Member: Phillip Heikoop, Hayden Walker, Greyson Venhaus
Sponsor: Pauline Stephens

Team 81, Manzano High School, Stayin’ Alive
Team Members: Brendyn Toersbijns, Spenser Gomez-Nelson
Sponsor: Karen Glennon, Mentor: Christopher Alme

Team 82, Manzano High School, Detection of Alzheimer’s Disease Plaques in a Transgenic
Mouse Brain Using Image Analysis of SPION--‐Enhanced Magnetic Resonance Images
Team Member: Jordan Medlock
Mentor: Laurel Sillerud

Team 83, Manzano High School, Air Traffic Control: The Next Step!
Team Members: Tommy Soudachanh, Khiem Tang, Ian Wesselkamper
Sponsor: Steve Schum

15

Team 85, Melrose High School, Pasture-ization
Team Members: Ethan Wright, William Boughan
Sponsors: Mrs. Raulie, Mr. Daugherty, Mentor: Mike Daugherty

Team 87, Melrose High School, THE INTERSECTION OF LINES TO FIND POINTS
Team Members: Randall Rush, Quinton Flores, Jon Tello, Kaleb Broome
Sponsors: Allen Daugherty, Rebecca Raulie

Team 89, Mesa Middle School, The Effect of Immigration on American Economy
Team Members: Leonel Herrera, Andon Jones, Karina Velazquez
Sponsors: Tracie Mikesell

Team 90, Miyamura High School, New Methods for Electronic Security
Team Members: Alanna Tempest, Joshua Tavares
Sponsor: Andrew Ng, Mentor: John Donahue

Team 91, Miyamura High School, Measurement of Earthquakes
Team Members: Tabitha Hallock, Sridivya Komaravolu, Kirtus Leyba, Jeffrey Young
Sponsor: Andy Melenchek

Team 92, Navajo Preparatory School, The Variables Associated with Livestock and
Their Relationship with Navajo Nation Grazing Policies Research
Team Members: Bruce Wood Jr., Damon Clark
Sponsor: Mavis Yazzie

Team 94, New Mexico School for the Arts, “Water You Waiting For,” Santa Fe?
Team Members: Mohit Dubey, Samuel Thompson, Milada Guenther, Noah Caulfield
Sponsor: Acacia McCombs, Mentor: Stephen Guerin

Team 101, Pinon Elementary, The Bullying Effect
Team Members: Jordan Bailey, Ruby Selvage
Mentors: Alison Bailey, Kim Selvage

Team 102, Pinon Elementary, Visualizing the Tree of Life
Team Member: Ryan Swart
Sponsor: Mrs. Chrien, Mentor: Pieter Swart

Team 103, Quemado High School, San Agustin Water Crisis
Team Members: Justin Miller, Sam Eberle, Hank Edwards, Nicole Martin
Sponsor: Tim Angelus

Team 104, Red Mountain Middle School, Don’t Waste Your Water Embrace Your Water
Team Members: Cristian Sanchez, Jarrod Harrington, Damian Crabb
Sponsor: Guyla Miller

16

Team 106, Rio Rancho Cyber Academy, Deadly Dose
Team Members: Sierra Venegas, Jocelyn Tansey, Monika Nadzins
Sponsor: Harry Henderson

Team 107, Rio Rancho Cyber Academy, Reverse Osmosis
Team Members: Stuart Perara, Trinity Medley
Sponsor: Harry Henderson

Team 108, Robertson High, Wind vs. Solar
Team Members: Jacob Bakarich, Victoria Gomez, Jacob Ratzlaff
Sponsor: Mike Boyle

Team 109, Sandia Preparatory, hybrid scramjet engine
Team Member: Alex Burd
Sponsor: Neil McBeth

Team 118, Saturday Science and Math Academy, Ant Colony Conundrum
Team Members: Daniel Washington, Rachel Washington, Muhammad Musleh
Sponsor: Debra Johns, Mentor: Wayne Witzel

Team 121, School of Dreams Academy, Rock, Paper, Scissors Analogy
Team Member: Bethany Tanner
Sponsor: Creighton Edington, Mentor: Elizabeth Finley

Team 125, School of Dreams Academy, Operation Mother Bird
Team Members: Danielle Garcia, Kyle Wheeler
Sponsor: Creighton Edington, Mentor: Elizabeth Spenly

Team 131, St. Pius X High School, The Perfect Poker Player?
Team Members: James Bunch, Luis Rivera, Thien-Nam Dinh, Ethan Sabay
Sponsor: Diana Perea, Mentor: Christopher Alme

Team 132, Taos High School, Impact of Air Force Training Flights Over Taos and Northern
New Mexico
Team Members: Rodolfo Garcia, Daniel Kroning, Melissa Pacheco, Christian Evans
Sponsor: Tracy Galligan

Team 142, Sandia Prep and La Cueva High School, Model of a Human Bloodstream
Team Members: Eli Echt-Wilson, Corey Miner
Sponsors: Nadine Miner, Randy Wilson, Mentor: John Miner

Team 1002, Academy for Technology and the Classics, Pollution and Its Effects on the Santa Fe
River
Team Members: Sabrina A. Cook, Alicia Sandoval
Mentors: Su Gibbs, Irene Lee

17

Judges

Janeen Anderson, Acaji, Inc.
Ed Angel, Santa Fe Complex
Claudia Aprea, Northern New Mexico College
Dorothy Ashmore, Sandia National Laboratories
Nick Bennett, Grass Roots Consulting
Jon Brown, New Mexico Institute of Mining and Technology
Kent Budge, Los Alamos National Laboratory
Chuck Burch, University of New Mexico
Jesse Crawford, New Mexico Institute of Mining and Technology
Jorge Crichigno, Northern New Mexico College
Roger Critchlow, File Systems Lab
Shaun Cooper, New Mexico State University
Larry Cox, Los Alamos National Laboratory
Mike Davis, Cray Inc.
Sharon Deland, Sandia National Laboratories
Hailin Deng, Los Alamos National Laboratory
John Donahue, University of New Mexico/CAaNES
Juergen Eckert, University of South Florida
Catherine Ertz, National Center for Women & Information Technology
Drew Einhorn, Fourth Watch Software
Bruce Gale, Los Alamos National Laboratory
John Paul Gonzales, Santa Fe Institute
Jeff Grantham, New Mexico Institute of Mining and Technology
Stephen Guerin, Redfish Group
Terri Hansen, New Mexico State University
Lisa Harris, Los Alamos National Laboratory
Klaus Heinemann, University of New Mexico
Clint Hubbard, Albuquerque Police Dept
David Janecky, Los Alamos National Laboratory
Elizabeth Marie Kallman, University of New Mexico
Morris Kaufman, Department of Energy
Brian Keller, City of Clovis
Larry Kilham
Sue King, Los Alamos National Laboratory
Larry Landis, Fourth Watch Software
Carene Larmat, Los Alamos National Laboratory
Tom Laub, Sandia National Laboratories
Maximo Lazo, Science Applications International Corporation
Irene Lee, Santa Fe Institute/Project GUTS
Miguel Leyba, University of New Mexico
Lorie Liebrock, New Mexico Institute of Mining and Technology
Debbie Limback, San Juan College
Nico Marrero, New Mexico Institute of Mining and Technology
Shasta Marrero, New Mexico Institute of Mining and Technology

18

Cleve Moler, The MathWorks
Rocky Navarrete, New Mexico State University
Henry Neeman, Oklahoma University Supercomputing Center
Paul Nelson, City of Clovis
James Overfelt, Sandia National Laboratories
Kathy Pallis, Los Alamos National Laboratory
Alfredo Perez, Northern New Mexico College
Eunice Perez, New Mexico Institute of Mining and Technology
Dana Roberson, Department of Energy
Nayeli Ramirez, Eastern New Mexico University-Roswell
Eric Renz-Whitmore, New Mexico Technology Council
Doug Roberts, RTI International
Bob Robey, Los Alamos National Laboratory
Rachael Robey, Los Alamos High
Anthony Schroeder, Eastern New Mexico University
Shawn Secatero, New Mexico State University-Grants
Bilal Shebaro, University of New Mexico
Matthew Solano, New Mexico Highlands University
Ramesh Shakamuri, New Mexico Institute of Mining and Technology
Reffat Sharmeen, University of New Mexico
Willard Smith, Tennessee State University
Shannon Steinfadt, Los Alamos National Laboratory
Julianne Stidham, Los Alamos National Laboratory
Janice Stockard, Eastern New Mexico University
Patrick Talou, Los Alamos National Laboratory
Michael Trahan, Sandia National Laboratories
Dennis Trujillo, New Mexico State University
Greg Valdez, Sandia National Laboratories
Eleanor Walther, Sandia National Laboratories
Tim Warren, San Juan College
Jennifer Watkins, Los Alamos National Laboratory
David West, New Mexico Highlands University
Scott Wilson, University of New Mexico
Edwin Wuieve, New Mexico Institute of Mining and Technology
Peter Yanke, BX Internet
Janelle Zamie, Eastern New Mexico University

Do you want to become a supporter of the Supercomputing Challenge? Please email us at
consult@challenge.nm.org for details.

Running	 title:	 Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	

	

Detection	 of	 Alzheimer’s	 Disease	 Plaques	 in	 a	 Transgenic	

Mouse	 Brain	 Using	 Image	 Analysis	 of	 SPION-‐Enhanced	

Magnetic	 Resonance	 Images.	

	

	
New	 Mexico	 Supercomputing	 Challenge	

Final	 Report	

	

	

April	 4,	 2012	

	

	

Team	 82	

Manzano	 High	 School	

	

	

	

	
Team	 Member:	 Jordan	 E.	 Medlock	

Mentor:	 Laurel	 Sillerud,	 PhD,	 University	 of	 New	 Mexico,	 Department	 of	

Biochemistry	 and	 Molecular	 Biology	

	

	

	

Correspondence:	 jordanemedlock@gmail.com	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 2	

TABLE	 OF	 CONTENTS	

1. Abstract	 	 	 	 	 	 	 	 	 	 3	
	 	

2. Introduction	 	 	 	 	 	 	 	 	 4	
2.1. Alzheimer’s	 Disease	 	 	 	 	 	 	 	 4	
2.2. Diagnosing	 Alzheimer’s	 Disease	 	 	 	 	 	 6	
2.3. Magnetic	 Resonance	 Images	 	 	 	 	 	 6	
2.4. SPIONs	 	 	 	 	 	 	 	 	 8	
2.5. Image	 Analysis	 	 	 	 	 	 	 	 10	

	
3. Problem	 Statement	 	 	 	 	 	 	 	 12	

	
4. Methods	 	 	 	 	 	 	 	 	 	 13	

4.1. Subjects	 	 	 	 	 	 	 	 	 13	
4.2. Magnetic	 Resonance	 Images	 	 	 	 	 	 13	
4.3. Image	 Analysis	 	 	 	 	 	 	 	 14	

4.3.1. Programming	 Language	 	 	 	 	 	 14	
4.3.2. Pre-‐Processing	 the	 Image	 	 	 	 	 	 14	
4.3.3. Processing	 the	 Image	 	 	 	 	 	 16	
4.3.4. Filtering	 Non-‐Plaque	 Findings	 	 	 	 	 22	
4.3.5. Parallel	 Processing	 	 	 	 	 	 	 22	

	
5. Results	 	 	 	 	 	 	 	 	 	 23	

	
6. Conclusion	 	 	 	 	 	 	 	 	 24	

	
7. Discussion	 	 	 	 	 	 	 	 	 26	
	
8. Acknowledgements	 	 	 	 	 	 	 	 28	
	
9. Bibliography	 	 	 	 	 	 	 	 	 29	
	
10. Appendix	 	 	 	 	 	 	 	 	 	 33	

10.1. MATLAB	 Code	 	 	 	 	 	 	 	 33	
10.2. Sample	 Data	 Set	 for	 Transgenic	 Mouse	 Treated	 with	 SPIONs	 	 51	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 3	

1.	 ABSTRACT	

	

Alzheimer’s	 disease	 is	 a	 debilitating	 and	 fatal	 brain	 disorder,	 which	 impacts	 millions	

of	 older	 adults.	 	 Currently,	 it	 is	 only	 definitively	 diagnosed	 using	 histological	 analysis	

of	 plaques	 and	 neurofibrillary	 tangles	 in	 the	 brain,	 post	 mortem.	 	 Magnetic	

resonance	 imaging	 techniques	 can	 be	 used	 to	 identify	 Alzheimer’s	 plaques,	 but	 the	

identifiable	 plaques	 are	 very	 small	 and	 difficult	 to	 see	 in	 the	 image.	 	 This	 makes	

diagnosing,	 monitoring,	 and	 treating	 the	 disease	 very	 difficult.	 	 Contrast	 agents	 are	

being	 developed	 to	 increase	 the	 conspicuity	 of	 the	 plaques	 in	 magnetic	 resonance	

images,	 although	 this	 still	 means	 days	 of	 counting	 the	 plaques	 by	 hand.	 	 This	

computerized	 algorithm	 automates	 the	 process	 of	 counting	 and	 analyzing	 the	

plaques	 in	 magnetic	 resonance	 images.	 	 Alzheimer’s	 plaques	 can	 be	 counted	 in	

approximately	 five	 seconds	 with	 this	 program,	 rather	 than	 a	 month	 of	 counting	

plaques	 manually.

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 4	

2.	 INTRODUCTION	

	

	 2.1	 Alzheimer’s	 Disease	

	

Alzheimer’s	 Disease	 (AD)	 is	 a	 fatal,	 degenerative	 brain	 disease	 that	 causes	 a	

reduction	 in	 both	 cognitive	 functioning	 and	 memory.	 	 People	 with	 AD	 also	

experience	 progressive	 changes	 to	 their	 personality,	 behavior	 and	 judgment.	 	 AD	

primarily	 impacts	 adults	 over	 the	 age	 of	 65.	 	 According	 to	 The	 Alzheimer’s	

Association	 (2011),	 AD	 is	 the	 most	 common	 form	 of	 dementia,	 with	 a	 prevalence	 of	

approximately	 5.4	 million	 people	 with	 the	 diagnosis	 in	 the	 United	 States	 as	 of	 2011.	 	

AD	 not	 only	 affects	 the	 people	 who	 suffer	 from	 the	 disease	 but	 millions	 of	 family	

members	 are	 impacted	 by	 the	 necessity	 to	 provide	 care	 for	 their	 loved	 ones.	 	 On	

average,	 one	 in	 eight	 Americans	 over	 age	 65	 has	 been	 diagnosed	 with	 AD.	 	 As	 the	

U.S.	 population	 continues	 to	 age,	 due	 to	 improvements	 in	 medical	 care	 and	

environmental	 conditions,	 The	 Alzheimer’s	 Association	 projects	 that	 by	 2050	 there	

could	 be	 11	 to	 16	 million	 people	 in	 the	 U.S.	 with	 AD.	 	 	

Alzheimer’s	 Disease	 is	 characterized	 by	 a	 loss	 of	 neurons	 in	 the	 cerebral	

cortex.	 	 Evidence	 of	 the	 increased	 formation	 of	 plaques	 and	 neurofibrillary	 tangles	

in	 the	 brains	 of	 patients	 with	 AD	 has	 been	 found	 under	 microscopy.	 These	 plaques	

and	 neurofibrillary	 tangles	 are	 generally	 found	 in	 the	 hippocampus,	 the	 entorhinal	

cortex,	 the	 basal	 forebrain,	 and	 the	 amygdala	 (Bouras	 et	 al.	 1994).	 	 The	 AD	 plaques	

are	 deposits	 of	 regularly	 ordered	 fibrillar	 aggregates	 composed	 of	 amyloid-‐beta	

peptides	 (Aβ)	 of	 36-‐43	 amino	 acids	 located	 in	 the	 brain	 around	 neurons.	 	 Aβ	 is	 a	

peptide	 from	 an	 amyloid	 precursor	 protein	 (APP),	 a	 critical	 element	 for	 neuronal	

growth	 and	 post-‐injury	 repair	 (Turner	 et	 al.	 2003).	 	 	 Neurofibrillary	 tangles	 are	

composed	 of	 tau	 proteins	 in	 a	 hyper-‐phosphorylated	 state	 (Shin	 et	 al.	 1991).	 	 AD	 is	 a	

protein	 mis-‐folding	 disease,	 produced	 by	 abnormally	 folded	 Aβ	 peptides	 and	 tau	

proteins;	 however,	 the	 cause	 of	 this	 process	 is	 unknown	 (Hashimoto	 et	 al.	 2003).	 	 	

The	 following	 figures	 show	 a	 representation	 of	 Aβ	 plaques	 near	 neurons	 and	

neurofibrillary	 tangles	 within	 the	 nucleus	 of	 the	 neuron,	 followed	 by	 a	 histological	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 5	

image	 of	 the	 brain	 of	 a	 transgenic	 Alzheimer’s	 mouse	 with	 the	 presence	 of	 visible	

plaques:	

	
Figure	 1.	 Representative	 image	 of	 Aβ	 plaques,	 from	 www.alz.org.	 	

	

	

	

	

	

	

	

	

Figure	 2.	 Histological	 image	 of	 Aβ	 plaques,	 from	 Sillerud	 et	 al.	

	

Neuroinflammation	 is	 also	 present	 in	 the	 brains	 of	 patients	 with	 AD.	 	

Inflammation	 is	 found	 in	 many	 disease	 processes	 throughout	 the	 body	 and	 may	 be	

an	 indicator	 of	 tissue	 damage	 or	 an	 immunological	 response.	 	 Aβ	 plaques	 are	

encased	 in	 microglial	 cells;	 this	 is	 an	 indication	 that	 inflammation	 is	 present	

(Kreutzberg,	 1995).	 	 The	 microglial	 cells	 are	 a	 type	 of	 macrophage	 found	 in	 brains;	

they	 are	 responsible	 for	 engulfing	 and	 digesting	 pathogens.	 The	 process	 by	 which	

these	 plaques	 and	 tangles	 cause	 atrophy	 and	 degeneration	 of	 the	 cerebral	 cortex	

may	 be	 related	 to	 neuroinflammation	 and	 microglial	 cells	 (Aloisi,	 2001).	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 6	

AD	 has	 been	 found	 to	 have	 a	 genetic	 cause	 in	 some	 individuals.	 	 Several	 genes	

have	 been	 found	 that	 produce	 proteins	 that	 enable	 AD	 development	 in	 humans.	 	 A	

gene	 has	 been	 located	 within	 chromosome	 21	 that	 is	 found	 to	 produce	 APP	 in	

different	 populations.	 	 A	 gene	 in	 chromosome	 14	 is	 transcoded	 into	 presenilin	 1	 	

(PS-‐1),	 and	 a	 gene	 in	 chromosome	 1	 is	 transcoded	 into	 presenilin	 2	 (PS-‐2).	 Mice	

were	 created	 that	 expressed	 APP,	 PS-‐1,	 PS-‐2,	 or	 tau	 protein	 genes.	 	 Most	 transgenic	

mice	 used	 in	 research	 are	 APP/PS-‐1	 bigenic	 mice	 because	 they	 develop	 Aβ	 plaques	

and	 show	 symptoms	 similar	 to	 AD,	 such	 as	 progressive	 memory	 loss.	 	 However,	

these	 mice	 do	 not	 develop	 neurofibrillary	 tangles,	 which	 may	 impact	 the	 predictive	

ability	 of	 the	 research	 (Ashe,	 2001).	 	 Transgenic	 mice	 that	 are	 created	 with	 tau	

protein	 genes	 exhibit	 neurofibrillary	 tangles	 but	 do	 not	 show	 signs	 of	 dementia.	 	

	

2.2	 Diagnosing	 Alzheimer’s	 Disease	

	

Currently,	 AD	 is	 diagnosed	 through	 clinical	 findings	 of	 neuropsycholgical	

symptoms,	 such	 as	 language	 and	 memory	 loss,	 using	 assessments	 of	 intellectual	

functioning.	 	 Other	 cerebral	 pathologies	 and	 possible	 causes	 for	 the	 dementia	 must	

be	 excluded	 to	 make	 a	 differential	 diagnosis	 of	 AD	 (Mendez,	 2006).	 	 Neuroimaging,	

such	 as	 computed	 tomography,	 magnetic	 resonance	 imaging,	 single	 photon	 emission	

computed	 tomography,	 and	 positron	 emission	 tomography	 are	 used	 to	 exclude	

other	 causes	 for	 memory	 loss.	 	 In	 order	 to	 confirm	 the	 diagnosis,	 though,	 post-‐

mortem	 brain	 tissue	 is	 analyzed	 histologically	 for	 signs	 of	 Aβ	 plaques.	 	

Neuroimaging	 techniques	 are	 not	 readily	 available	 to	 directly	 diagnose	 AD	 or	 to	

monitor	 the	 disease’s	 progression,	 in	 vivo.	 	 	

	

2.3	 Magnetic	 Resonance	 Imaging	

	

Magnetic	 Resonance	 Imaging	 (MRI)	 is	 a	 radiological	 technique	 used	 to	

visualize	 internal	 structures	 of	 the	 body.	 	 This	 technology	 employs	 a	 magnetic	 field	

to	 magnetize	 and	 align	 the	 magnetic	 poles	 of	 the	 nuclei	 within	 some	 cells	 in	 the	

direction	 of	 the	 MRI	 field.	 	 Tissues	 within	 the	 body	 return	 to	 their	 non-‐magnetized	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 7	

state	 at	 different	 rates,	 called	 their	 relaxivity	 rate,	 which	 allows	 the	 MRI	 to	 translate	

the	 information	 into	 images	 that	 reflect	 identifiable	 tissues	 such	 as	 bone,	 muscle,	

and	 structures	 within	 the	 brain	 (Squire,	 1997).	 	 Most	 often,	 MRIs	 use	 1-‐3	 Teslas	 (T),	

which	 is	 a	 unit	 of	 measuring	 magnet	 strength.	 	 T1-‐weighted,	 T2-‐weighted,	 and	 T2*-‐

weighted	 MRIs	 are	 standards	 in	 use	 for	 clinical	 and	 research	 purposes.	 	 T1-‐weighted	

scans	 provide	 images	 with	 darker	 water	 and	 brighter	 fat,	 which	 provides	 good	 gray	

matter	 and	 white	 matter	 contrast	 for	 images	 of	 the	 brain.	 	 T2-‐weighted	 scans	 show	

dark	 fat	 and	 bright	 water,	 which	 is	 well	 suited	 to	 show	 inflammation.	 	 T2*	 scans	

increase	 the	 contrast	 for	 certain	 types	 of	 tissues	 (Squire,	 1997).	

	

	
Figure	 3.	 	 Para-‐sagittal	 MRI	 of	 the	 head,	 from	 Wikipedia	 Commons.	

	

MRI	 has	 many	 practical	 uses	 in	 medicine,	 and	 it	 is	 frequently	 used	 to	 observe	

the	 structure	 of	 brains	 without	 harm	 to	 the	 patient.	 	 An	 MRI	 AD	 detection	 method	

would	 be	 greatly	 applicable	 for	 in	 vivo	 measurement	 of	 the	 progression	 of	 the	

disease.	 	 It	 has	 been	 possible	 to	 see	 the	 plaques	 in	 the	 brain	 in	 vivo	 with	 MRI;	

however,	 they	 are	 so	 small,	 around	 50	 micrometers	 (μm),	 that	 many	 hours,	 very	

high	 resolution	 imaging	 (<100	 μm),	 and	 high	 magnetic	 fields	 (>9T)	 are	 required	 to	

identify	 Aβ	 plaques	 (Dhenain	 et	 al.,	 2009).	 	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 8	

	

2.4	 SPIONs	

	

Superparamagnetic	 iron	 oxide	 nanoparticles	 (SPIONs)	 have	 been	 studied	 as	 a	

means	 of	 increasing	 the	 magnetic	 susceptibility	 of	 the	 plaques	 in	 the	 brain	 in	 order	

to	 view	 them	 in	 lower-‐powered	 MRI	 fields	 (Sigurdsson,	 2008).	 	 SPIONs	 have	 an	 iron	

oxide	 core	 that	 is	 coated	 with	 a	 variety	 of	 other	 organic	 or	 inorganic	 materials.	 	 The	

superparamagnetic	 quality	 of	 SPIONs	 is	 characterized	 by	 a	 high	 relaxivity	 time,	 the	

time	 it	 takes	 to	 reach	 zero	 magnetization	 when	 not	 exposed	 to	 a	 magnetic	 field.	 	 This	

is	 characterized	 by	 a	 relaxation	 time	 τ:	

	

𝜏 = 𝜏!𝑒
!"
!!! 	

	

where	 τ	 is	 time	 (10-‐9),	 K	 is	 the	 anisotropy	 energy	 (20,000J/m3	 for	 iron	 oxide),	 V	 is	

the	 volume	 of	 the	 particle,	 κB	 is	 the	 Boltzmann	 constant,	 and	 T	 is	 the	 temperature	

(Hofmann-‐Amtenbrink	 et	 al.,	 2009).	 	 The	 high	 relaxivity	 time	 of	 SPIONs	 compared	 to	

the	 brain’s	 relatively	 low	 relaxivity	 time	 enables	 the	 MRI	 to	 readily	 visualize	 the	

differences	 in	 structures.	 	 When	 a	 SPION	 is	 coated	 with	 organic	 material,	 such	 as	 a	

peptide	 or	 protein,	 the	 median	 diameter	 of	 the	 nanoparticles	 is	 50-‐160	 nanometers	

(Hofmann-‐Amtenbrink	 et	 al.,	 2009).	 	 Anti-‐APP	 conjugated	 SPIONs	 and	 anti-‐Tau	

conjugated	 SPIONs	 selectively	 target	 Aβ	 plaques	 and	 bind	 to	 them	 in	 order	 to	

increase	 their	 conspicuity	 in	 MR	 images.	 	 These	 SPIONs	 have	 been	 shown	 to	

specifically	 recognize	 Aβ	 plaque	 in	 brains,	 which	 is	 consistent	 with	 histological	

studies	 (Sillerud	 et	 al.).	 	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 9	

	
Figure	 4.	 Structure	 of	 SPION	 particle	 coated	 with	 peptides,	 from	 Hofmann-‐

Amtenbrink	 et	 al.	 2009	

	

Gadolinium	 contrast	 agents	 have	 been	 used	 successfully,	 ex	 vivo,	 to	 identify	

Aβ	 plaques;	 however,	 they	 leak	 toxic	 Gd3+	 ions,	 which	 harm	 patients	 and	 cannot	 be	

used	 in	 vivo	 (Podulso	 et	 al.,	 2004).	 	 Highly	 invasive	 methods,	 such	 as	 injections	 of	

ozone,	 must	 also	 be	 introduced	 to	 allow	 the	 Gadolinium	 to	 cross	 the	 blood-‐brain	

barrier	 (BBB).	 	 Because	 neuroinflamation	 in	 the	 brains	 of	 patients	 with	 AD	

compromises	 the	 BBB,	 a	 contrast	 agent	 must	 be	 created	 that	 is	 small	 enough	 to	

cross	 the	 BBB	 without	 using	 these	 invasive	 techniques.	 	 SPIONs	 are	 non-‐toxic	

(Brambilla	 et	 al.,	 2011);	 the	 ferric	 iron	 in	 the	 SPION	 is	 a	 normally	 occurring	 element	

in	 the	 body	 and	 is	 not	 harmful	 when	 injected,	 and	 it	 is	 small	 enough	 to	 cross	 the	

BBB.	 	 This	 allows	 the	 SPIONs	 to	 be	 used	 to	 count	 plaques	 in	 vivo,	 in	 MR	 images.	

SPION-‐treatment	 has	 allowed	 AD	 researchers	 to	 count	 plaques	 in	 vivo;	

however,	 counting	 the	 plaques	 is	 a	 long	 and	 labor-‐intensive	 process.	 	 In	 Sillerud	 et	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 10	

al.,	 the	 researchers	 took	 days	 to	 count	 plaques	 in	 an	 MR	 image	 of	 a	 single	 mouse	

brain.	 	 It	 was	 necessary	 for	 the	 researchers	 to	 find	 the	 difference	 between	 the	

intensities	 of	 the	 plaque	 and	 the	 brain.	 	 They	 computed	 the	 difference	 in	 standard	

deviations	 between	 the	 intensity	 of	 the	 suspected	 plaque	 and	 its	 surrounding	 pixels.	 	

If	 the	 standard	 deviation	 was	 less	 than	 2.5,	 the	 region	 could	 not	 be	 considered	

plaque.	 	 The	 process	 of	 determining	 whether	 each	 darker	 region	 of	 the	 brain	 could	

be	 considered	 took	 many	 hours	 for	 each	 plaque.	 	 A	 process	 to	 automate	 the	 analysis	

of	 the	 image	 would	 allow	 both	 researchers	 and	 physicians	 to	 more	 quickly	 gather	

necessary	 information.	 	 Researchers	 could	 gather	 the	 data	 for	 studies	 related	 to	 the	

treatment	 of	 AD	 faster;	 improving	 the	 speed	 treatments	 are	 available	 to	 the	 people	

who	 need	 them	 most.	 	 Physicians	 treating	 people	 with	 AD	 could	 use	 an	 automated	

process	 to	 diagnose	 AD	 earlier	 and	 help	 monitor	 the	 process	 of	 the	 disease	 in	

individuals.	 	 	

	

2.5	 Image	 Analysis	

	

Computerized	 algorithms	 are	 created	 to	 extract	 meaningful	 data	 from	 an	

image.	 	 Automating	 the	 image	 analysis	 can	 produce	 quantifiable	 and	 replicable	 data	

and	 reduce	 the	 time	 needed	 when	 compared	 to	 manual	 analysis.	 	 Image	 analysis	

algorithms	 utilize	 different	 methods	 including	 machine	 learning,	 digital	 geometry,	

and	 signal	 processing.	 	 Previous	 studies	 have	 used	 machine	 learning,	 a	 subcategory	

of	 artificial	 intelligence,	 to	 analyze	 MR	 images	 in	 order	 to	 locate	 plaque-‐like	 areas	

within	 the	 body	 (Nattkemper,	 et	 al.	 2005).	 	 Artificial	 intelligence	 and	 machine	

learning	 require	 many	 data	 sets	 of	 recognizable	 points	 to	 extrapolate	 data	 from	 an	

image.	 	 In	 machine	 learning,	 plaques	 are	 first	 marked	 and	 enumerated	 in	 an	 image	

where	 the	 locations	 of	 the	 plaques	 have	 already	 been	 established	 manually.	 	 Then,	

the	 program	 creates	 parameters	 through	 trial	 and	 error	 until	 all	 of	 the	 regions	

specified	 by	 the	 algorithm	 match	 with	 the	 established	 plaques.	 	 However,	 when	

analyzing	 an	 image	 with	 less	 than	 approximately	 10,000	 reference	 points	 the	

correlation	 between	 manual	 and	 automated	 results	 is	 low.	 	 Artificial	 intelligence	

requires	 large	 data	 sets	 to	 learn	 to	 unambiguously	 identify	 plaques	 (Bishop,	 2006).	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 11	

When	 analyzing	 a	 single	 brain	 with	 668	 plaques,	 machine	 learning	 will	 not	 provide	

accurate	 information.	

Signal	 processing	 uses	 arithmetic	 operations	 on	 discrete	 signals	 to	 create	 a	

desired	 output:	 the	 identification	 of	 plaques	 in	 the	 brain	 (Lim,	 1995).	 	 The	 entire	 MR	

image	 is	 considered	 the	 signal,	 which	 is	 measured	 by	 the	 intensity	 of	 the	 pixels.	 	

Specifically,	 the	 plaques	 need	 to	 be	 differentiated	 from	 the	 brain	 and	 the	 noise	 that	

is	 overlaid	 on	 the	 image	 during	 the	 MRI	 process.	 	 Signal	 processing	 is	 a	 clear,	

mathematical	 system	 that	 provides	 exact	 data	 from	 complicated	 images.	 	 However,	

when	 using	 a	 signal	 processing	 image	 analysis	 algorithm	 with	 MR	 images	

complications	 arise.	 	 The	 intensities	 of	 the	 pixels	 are	 uneven	 throughout	 the	 image,	

which	 makes	 it	 difficult	 to	 use	 the	 same	 plaque-‐finding	 parameters.	 	 Because	 of	 the	

magnetic	 field	 used	 in	 the	 MRI,	 the	 images	 vary	 from	 top	 to	 bottom	 and	 from	 center	

to	 edges.	 	 With	 signal	 processing,	 though,	 the	 image	 can	 be	 flattened	 and	 the	 plaques	

can	 be	 thresholded	 and	 identified.	

	

	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 12	

3.	 PROBLEM	 STATEMENT	

	

Problems	 still	 exist	 with	 the	 visualization	 of	 Aβ	 plaques	 in	 humans,	 in	 vivo,	 to	

allow	 for	 the	 diagnosis	 and	 treatment	 of	 AD	 in	 the	 early	 stages.	 	 A	 variety	 of	

neuroimaging	 techniques	 have	 been	 used	 to	 try	 to	 visualize	 the	 plaques.	 	 In	 MR	

images,	 the	 Aβ	 plaques	 cannot	 be	 readily	 seen	 without	 a	 contrast	 agent.	 	 When	 a	

contrast	 agent	 is	 introduced	 (SPIONs)	 the	 plaques	 are	 numerous	 and	 time	

consuming	 to	 count	 by	 hand.	 	 It	 can	 take	 up	 to	 a	 month	 for	 a	 researcher	 to	 count	 the	

plaques	 in	 a	 single	 transgenic	 mouse	 brain.	 	 If	 a	 quick	 computational	 solution	 can	 be	

found	 to	 count	 and	 analyze	 plaques	 in	 vivo,	 in	 MR	 images,	 it	 would	 save	 many	 hours	

of	 time,	 which	 instead	 could	 be	 spent	 monitoring	 and	 treating	 AD.	 	 With	 a	

computational	 solution,	 many	 brains	 can	 be	 analyzed	 in	 a	 single	 day.	 	 My	 hypothesis	

is	 that	 the	 number	 of	 Aβ	 plaques	 found	 with	 a	 signal	 processing	 computer	 algorithm	

will	 correlate	 with	 the	 data	 found	 by	 manually	 counting	 the	 plaques	 in	 SPION-‐

enhanced	 MR	 images	 of	 transgenic	 mouse	 brains.	

	

	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 13	

4.	 METHODS	

	

	 4.1	 Subjects	

	

All	 animal	 procedures	 were	 approved	 by	 the	 University	 of	 New	 Mexico	

(UNM)	 Institutional	 Animal	 Care	 and	 Use	 Committee.	 	 The	 animal	 procedures	 were	

completed	 by	 the	 UNM	 Biochemistry	 and	 Molecular	 Biology	 Department.	 	 The	

transgenic	 mouse	 used	 in	 this	 research	 was	 received	 from	 Jackson	 Laboratory	 in	

Bay	 Harbor,	 Maine.	 	 The	 mouse	 was	 a	 six-‐week-‐old,	 double	 transgenic	 Alzheimer’s	

Disease	 mouse	 (B6C3-‐Tg	 (APPswe,PSEN1dE9)	 85Dbo/Mmjax).	 	 There	 were	 two	

transgenes	 in	 the	 mouse:	 one	 was	 the	 mouse/human	 chimeric	 Aβ	 (A4)	 precursor	

protein	 (APPswe;	 K595N/M596L),	 and	 the	 other	 was	 a	 deletion	 of	 exon	 9,	 which	

corresponds	 with	 early	 onset	 Alzheimer’s	 Disease.	 	 After	 20	 weeks	 of	 age,	 Aβ	

peptide	 and	 human	 presenilin	 were	 detected	 in	 the	 mouse.	 	 By	 12	 months,	

astrocytosis	 was	 measured	 in	 the	 mouse,	 with	 significant	 cognitive	 impairment	 by	

13	 months.	 	 	 For	 14	 months,	 the	 mouse	 was	 given	 ad	 libitum	 access	 to	 food	 and	

water.	 	 Then,	 the	 mouse	 was	 treated	 with	 7.07	 μg	 of	 anti-‐tau	 SPION	 and	 1.52	 μg	 of	

anti-‐APP	 SPIONs	 by	 vein	 injection	 in	 the	 tail	 and	 killed	 24	 hours	 later.	 	 The	 brain	

was	 quickly	 harvested	 and	 fixed	 in	 buffered	 formalin	 for	 three	 days.	 	 The	 brain	 was	

stored	 in	 2%	 agarose	 gel	 and	 3mM	 NAN3,	 then	 held	 at	 4˚C	 until	 it	 was	 used	 for	 MRI	

analysis.	 	

	

	 4.2	 Magnetic	 Resonance	 Images	

	

The	 MRI	 studies	 were	 conducted	 at	 the	 UNM	 Biomedical	 Research	 and	

Integrative	 Neuroimaging	 Center	 at	 4.7	 T.	 	 Dr.	 Laurel	 Sillerud	 provided	 the	 MR	

images	 to	 this	 team.	 	 The	 optimal	 sequence	 for	 plaque	 detection	 was	 a	 T2-‐weighted	

image	 with	 slight	 T2*-‐weighting.	 	 A	 192	 x	 1024	 pixel	 (px)	 receive-‐only	 surface	 coil	

was	 used,	 and	 each	 pixel	 had	 a	 60µm	 width.	 	 The	 MRI	 produced	 32	 coronal	 image-‐

slices,	 each	 120	 μm	 wide.	 	

	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 14	

	 4.3	 Image	 Analysis	

	

	 4.3.1	 Programing	 Language	 	
Many	 factors	 were	 considered	 in	 determining	 the	 programming	 language	 to	

use	 in	 processing	 the	 MR	 images	 for	 this	 study.	 	 MATLAB	 has	 a	 strong	 focus	 on	

matrix	 manipulations	 and	 a	 large	 set	 of	 image	 processing	 tools.	 	 Because	 the	 MR	

images	 are	 stored	 as	 a	 matrix	 of	 integer	 values,	 MATLAB	 has	 the	 ability	 to	 modify	

those	 images	 using	 its	 matrix	 manipulation	 tools.	 	 Established	 image-‐processing	

algorithms	 are	 available	 in	 MATLAB	 to	 locate	 object	 boundaries	 in	 binary	 images	

and	 extrapolate	 data	 from	 these	 boundaries,	 which	 would	 provide	 information	

regarding	 the	 edge	 and	 location	 of	 the	 Aβ	 plaques	 in	 the	 images.	 	 MATLAB,	 in	

contrast	 to	 C,	 C++,	 or	 Java,	 has	 boundary	 finding,	 matrix	 manipulation,	 and	 parallel	

processing	 tools	 without	 the	 need	 for	 a	 third	 party	 application-‐programming	

interface	 or	 the	 need	 to	 reinvent	 the	 processing	 tools	 by	 writing	 the	 entire	 code.	 	 In	

a	 field	 of	 multiple	 programming	 languages,	 MATLAB	 was	 determined	 to	 be	 the	 most	

applicable	 to	 this	 study.	

	

4.3.2	 Pre-‐Processing	 the	 Image	

Thirty-‐two	 MR	 images	 were	 generated,	 each	 containing	 one	 MRI	 slice	

(1024x192	 px),	 in	 the	 Digital	 Imaging	 and	 Communications	 in	 Medicine	 (DICOM)	

standard	 format.	 	 DICOM	 is	 a	 prominent	 means	 of	 formatting	 images	 in	 the	 scientific	

and	 medical	 communities.	 	 ImageJ,	 an	 image	 processing	 application,	 was	 used	 to	

convert	 the	 DICOM	 images	 into	 uncompressed	 Tagged	 Image	 File	 Format	 (TIFF),	 a	

recognizable	 MATLAB	 format,	 without	 any	 loss	 of	 resolution.	 	 After	 converting	 the	

images	 to	 TIFF,	 each	 file	 included	 32	 sub-‐files	 of	 MRI	 slices.	 	 MATLAB	 read	 each	 slice	

individually	 as	 a	 16-‐bit	 unsigned	 integer	 matrix	 of	 gray	 scale	 pixels.	 	 This	 program	

then	 used	 a	 built-‐in	 MATLAB	 function	 to	 convert	 the	 16-‐bit	 integer	 image	 into	 a	 64-‐

bit	 floating-‐point	 number	 matrix	 to	 enable	 operations	 that	 require	 precise	 outputs.	 	

A	 cell	 array	 was	 then	 created	 with	 the	 matrices	 from	 each	 MRI	 slice	 within	 it.	

	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 15	

	
Figure	 5.	 	 MR	 image	 of	 10th	 slice	 in	 SPION	 treated	 Tg	 mouse	 brain	

	

	 The	 first	 step	 in	 finding	 Aβ	 plaques	 within	 the	 images	 was	 to	 define	 the	

perimeter	 of	 the	 brain,	 thus	 ensuring	 any	 future	 findings	 are	 within	 the	 brain	 itself.	 	

A	 mask,	 which	 is	 a	 boolean	 image,	 was	 created	 to	 find	 the	 edge	 of	 the	 brain	 in	 order	

to	 differentiate	 the	 brain	 from	 the	 noise	 outside	 of	 the	 brain.	 	 To	 accomplish	 this,	 the	

image	 is	 displayed	 using	 the	 MATLAB	 image	 viewing	 and	 editing	 feature.	 	 Then,	 a	

freeform	 Region	 of	 Interest	 (ROI)	 tool	 was	 used	 to	 draw	 an	 outline	 around	 the	 brain.	 	

The	 selection	 is	 turned	 into	 an	 ROI	 object,	 then	 a	 mask.	 	 In	 this	 mask,	 the	 region	

outside	 of	 the	 ROI	 object	 is	 coded	 as	 zeros,	 while	 the	 region	 inside	 (the	 brain)	 is	

coded	 as	 ones.	 	 Later	 in	 the	 process	 this	 mask	 is	 used	 to	 filter	 out	 non-‐plaque	

findings.	 	 	

	

Figure	 6.	 Freeform	 region	 of	 interest	 around	 brain	 in	 10th	 slide	

	
Figure	 7.	 Boolean	 mask	 of	 brain	 in	 10th	 slide	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 16	

4.3.3	 Processing	 the	 Image	

On	 the	 MR	 image	 Aβ	 plaques	 appear	 as	 dark	 spots,	 or	 less	 intense	 regions,	 in	

the	 brain	 several	 pixels	 wide.	 	 However,	 there	 are	 numerous	 darker	 areas	 within	 the	

image	 that	 are	 not	 plaques.	 	 To	 differentiate	 plaques	 from	 non-‐plaque	 features	 or	

noise,	 a	 plaque-‐finding	 algorithm	 was	 created.	 	 Only	 plaques	 with	 a	 z-‐score	 greater	

than	 5	 standard	 deviations	 (σ)	 away	 from	 the	 mean	 are	 considered,	 because	 this	

ensures	 that	 there	 is	 no	 chance	 that	 a	 specific	 region	 is	 hypointense	 solely	 from	

noise.	 	 The	 z-‐score	 of	 each	 pixel	 is	 calculated	 by	 dividing	 the	 intensity	 of	 the	 pixel	 by	

the	 standard	 deviation	 of	 the	 noise.	 	 The	 standard	 deviation	 is	 the	 average	 distance	

from	 the	 mean	 pixel	 intensity,	 found	 using	 the	 formula	 below	 where	 n	 is	 the	 number	

of	 pixels,	 μ	 is	 the	 average	 intensity	 of	 the	 group	 of	 pixels,	 and	 xi	 is	 the	 intensity	 of	 the	

pixel.	 	

	

1
𝑛 (𝑥! − 𝜇)!

!

!!!

	

	

The	 standard	 deviation	 of	 the	 noise	 was	 found	 by	 defining	 a	 forty-‐by-‐forty	 grid	 of	

pixels	 on	 the	 upper	 left	 corner	 of	 the	 image,	 because	 they	 are	 the	 pixels	 furthest	

from	 the	 brain.	 	 The	 larger	 the	 standard	 deviation	 of	 the	 noise	 the	 less	 likely	 the	

pixel	 represents	 noise.	 	 Then,	 the	 image	 is	 divided	 by	 the	 standard	 deviation	 of	 the	

noise	 to	 create	 a	 z-‐score	 image,	 or	 an	 image	 where	 every	 pixel’s	 intensity	 represents	

its	 difference	 from	 the	 average	 noise	 intensity.	 Finding	 the	 standard	 deviation	

allows	 the	 images	 to	 be	 standardized	 so	 that	 every	 brain	 can	 be	 analyzed	 using	 the	

same	 parameters.	 	 	

	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 17	

	
Figure	 8.	 SPION-‐enhanced	 Aβ	 plaques	 in	 MR	 image	 of	 10th	 slice	

	

	
Figure	 9.	 Z-‐score	 intensity	 graph	 of	 a	 row	 of	 pixels	 in	 10th	 slice;	 red	 arrow	 points	 to	

small	 hypointense	 region/plaque	 (row	 runs	 through	 upper	 plaque	 in	 Figure	 9)	

	

The	 MR	 images	 have	 an	 uneven	 intensity	 distribution,	 so	 the	 image	 cannot	 be	

analyzed	 using	 the	 same	 parameters	 throughout	 the	 image	 without	 normalizing	 the	

intensities	 first.	 	 The	 intensity	 of	 the	 magnetization	 during	 the	 MRI	 is	 greatest	 at	 the	

top	 of	 the	 image	 and	 reduces	 with	 distance	 of	 the	 brain	 from	 the	 MRI	 machine.	 	 The	

standard	 deviation	 and	 intensity	 of	 the	 image	 at	 the	 top	 is	 different	 than	 it	 is	 on	 the	

bottom,	 as	 it	 is	 in	 the	 center	 versus	 the	 edges.	 	 Initial	 attempts	 to	 correct	 for	 this	

difference	 using	 a	 method	 of	 flattening	 the	 entire	 image	 increased	 the	 standard	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 18	

deviation	 of	 the	 noise	 and	 resulted	 in	 no	 findings.	 	 To	 account	 for	 the	 uneven	

intensities,	 the	 program	 divided	 the	 image	 into	 one-‐pixel-‐wide	 rows	 and	 treated	

each	 row	 as	 a	 separate	 image;	 however,	 the	 center	 of	 the	 image	 it	 is	 still	 more	

intense	 than	 at	 the	 edges.	 	 It	 was	 determined	 that	 the	 intensity	 of	 the	 signal	 of	 the	

brain	 itself	 could	 be	 flattened	 without	 impacting	 the	 noise	 outside	 of	 the	 brain.	 	 The	

program	 used	 the	 mask	 to	 allow	 only	 the	 part	 of	 the	 row	 that	 contains	 the	 brain	 to	

be	 flattened,	 without	 flattening	 the	 noise.	 	 Then,	 the	 row	 was	 recombined	 with	 the	

noise,	 leaving	 the	 brain	 flat	 with	 the	 same	 original	 standard	 deviation	 while	 the	

noise	 is	 at	 a	 different	 intensity	 level.	 	

The	 image	 of	 the	 brain	 was	 flattened	 using	 a	 Gaussian	 filter,	 which	 blurs	 the	

image	 and	 then	 subtracts	 the	 blurred	 image	 from	 the	 original.	 	 A	 Gaussian	 blur	 uses	

a	 Gaussian	 distribution	 to	 modify	 the	 intensity	 of	 each	 pixel	 based	 on	 the	 pixels	

around	 it.	 	 The	 equation	 for	 the	 Gaussian	 distribution	 is:	 	 	

	

𝐺 𝑥,𝑦 =
1

2𝜋𝜎! 𝑒
!!

!!!!
!!! 	

	

where	 G	 is	 the	 pixel	 intensity	 at	 (x,	 y),	 x	 and	 y	 are	 the	 horizontal	 and	 vertical	

locations	 of	 the	 pixel	 respectively,	 and	 σ	 is	 10	 so	 that	 the	 program	 could	 have	 a	

sufficiently	 blurry	 image	 to	 use	 as	 a	 background	 shape.	 	 The	 Gaussian	 blur	 image	 is	

just	 the	 background	 shape	 of	 the	 image,	 meaning	 that	 when	 the	 Gaussian	 blur	 image	

is	 subtracted	 from	 the	 original	 image	 the	 background	 shape	 is	 removed,	 leaving	 only	

the	 intensities	 as	 they	 relate	 to	 the	 background	 shape.	

	

	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 19	

	
Figure	 10.	 A:	 A	 mesh	 graph	 of	 intensity	 of	 the	 MR	 image	 before	 it	 is	 flattened	

B:	 Mesh	 graph	 of	 the	 intensity	 of	 the	 MR	 image	 after	 flattening	 	

C:	 Same	 as	 B	 but	 viewed	 as	 an	 image	

	

	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 20	

The	 values	 of	 the	 intensities	 of	 the	 brain	 were	 then	 centered	 at	 zero,	 so	 the	

intensity	 of	 the	 pixels	 represents	 a	 difference	 from	 the	 average	 value	 of	 the	 brain.	 	

To	 accomplish	 this,	 the	 average	 value	 of	 the	 noise	 was	 found	 by	 using	 a	 built-‐in	

MATLAB	 mean-‐finding	 function.	 	 The	 resulting	 number	 is	 then	 subtracted	 from	

every	 value	 in	 the	 array,	 resulting	 in	 the	 noise	 being	 centered	 at	 zero.	 	 Using	 the	

mask,	 the	 program	 found	 the	 average	 intensity	 of	 only	 the	 brain,	 and	 not	 the	 noise.	 	

	

	
Figure	 11.	 Z-‐score	 intensity	 graph	 of	 a	 row	 from	 10th	 slice	 after	 the	 brain	 was	

centered	 at	 zero	

	

Because	 the	 plaques	 have	 a	 lower	 intensity	 than	 the	 brain,	 the	 intensities	

were	 inverted	 so	 that	 the	 plaques	 will	 have	 greater	 values	 than	 the	 brain	 itself.	 	 The	

program	 then	 thresholded	 the	 image	 at	 5,	 creating	 a	 binary	 image	 with	 values	

greater	 than	 5	 represented	 by	 1	 and	 values	 less	 than	 5	 are	 represented	 by	 0.	 	 This	

binary	 image	 represents	 every	 pixel	 that	 has	 a	 distance	 of	 5σ	 from	 the	 average	 value	

of	 the	 signal,	 based	 on	 whether	 the	 pixel	 value	 is	 1	 or	 0.	 	 	 The	 areas	 that	 remain	 of	

this	 image	 are	 the	 plaques	 and	 the	 large	 areas	 in	 or	 outside	 the	 brain	 that	 are	 less	

intense	 than	 the	 brain	 itself.	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 21	

	
Figure	 12.	 Inverted	 row	 with	 red	 line	 at	 5	 where	 the	 image	 will	 be	 thresholded;	 one	

plaque	 is	 shown	 above	 the	 threshold	 while	 there	 are	 multiple	 other	 spikes	 in	 the	

graph	 above	 5	

	

	 The	 binary	 image	 was	 then	 converted	 into	 a	 list	 of	 regions.	 The	 MATLAB	

function	 bwboundaries	 found	 the	 coordinates	 of	 every	 pixel	 inside	 a	 highlighted	

region	 and	 the	 area	 of	 that	 region.	 	 The	 program	 then	 used	 the	 coordinates	 found	

from	 bwboundaries	 to	 find	 the	 z-‐score	 of	 the	 corresponding	 area	 in	 the	 image.	 	 A	

list	 was	 then	 compiled	 containing	 each	 perspective	 plaque’s	 coordinates	 in	 x,	 y,	 z,	

their	 z-‐score	 relative	 to	 the	 brain,	 their	 size	 in	 pixels,	 and	 a	 metric	 describing	 how	

close	 to	 circular	 they	 are,	 by	 calculating	 the	 ratio	 !
! !"

	 where	 P	 is	 the	 perimeter	 of	

the	 finding	 and	 A	 is	 the	 area	 in	 pixels	 (See	 sample	 data	 set	 in	 Appendix).	

	
Figure	 13.	 Binary	 image	 of	 findings	 in	 10th	 slide	 before	 filtering	 non-‐plaque	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 22	

4.3.4	 Filtering	 Non-‐Plaque	 Findings	

The	 compiled	 list	 of	 regions	 now	 contains	 many	 values	 that	 are	 not	 plaque,	

including	 components	 of	 the	 brain,	 which	 are	 dark	 relative	 to	 the	 rest	 of	 the	 brain.	 	

To	 distinguish	 plaques,	 the	 program	 filters	 the	 list	 of	 findings	 according	 to	 their	 size,	

z-‐score,	 and	 position.	 	 A	 parameter-‐sweeping	 script	 was	 used	 to	 find	 optimum	 upper	

and	 lower	 size	 thresholds	 as	 well	 as	 the	 minimum	 z-‐score.	 	 The	 parameter-‐sweeping	

program	 found	 that	 the	 optimum	 minimum	 size	 threshold	 is	 three	 pixels	 in	 area,	 the	

optimum	 maximum	 size	 threshold	 is	 ten	 pixels	 in	 area,	 and	 a	 minimum	 z-‐score	

threshold	 is	 5σ.	 	 These	 parameters	 yielded	 the	 greatest	 possible	 correlation	

between	 the	 manual	 results	 and	 the	 automatic	 results	 created	 in	 this	 program.	

	

4.3.5	 Parallel	 Processing	

	 In	 order	 to	 increase	 the	 speed	 and	 efficiency	 of	 the	 program,	 a	 built-‐in	

MATLAB	 structure	 parfor was	 used.	 	 This	 structure	 iterates	 over	 a	 set	 of	 values,	

running	 the	 contents	 simultaneously	 and	 independently	 on	 all	 processors	 and	

threads.	 	 The	 parfor structure	 allowed	 this	 program	 to	 run	 in	 around	 5	 seconds	

on	 a	 quad-‐core,	 8-‐thread,	 Intel	 i7	 processor.	

	

	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 23	

5.	 RESULTS	

	

To	 compare	 the	 manual	 results	 to	 the	 automated	 results,	 a	 MATLAB	 script	

was	 written	 that	 created	 a	 matrix	 of	 the	 number	 of	 plaques	 per	 slice	 for	 the	 manual	

results	 versus	 the	 number	 of	 plaques	 per	 slice	 by	 the	 program.	 	 From	 these	 arrays	 a	

scatter	 plot	 was	 made	 to	 compare	 the	 two	 data	 sets.	 	 The	 correlation	 coefficient	 that	

resulted	 from	 the	 comparison	 between	 the	 automatic	 results	 and	 the	 manual	 results	

is	 0.68,	 which	 is	 a	 sufficiently	 large	 coefficient	 of	 correlation	 to	 be	 considered	

representative	 of	 the	 number	 of	 plaques	 in	 a	 brain.	 	 The	 automated	 results	 produced	

1,723	 possible	 plaques	 in	 the	 brain	 while	 the	 manual	 results	 contained	 668	 plaques,	

which	 is	 a	 difference	 of	 1,055	 plaques.	 	 	

	

	
Figure	 14.	 Scatter	 plot	 of	 Sillerud	 et	 al.	 manual	 results	 vs.	 automated	 plaques	 per	

slice	

	
	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 24	

6.	 CONCLUSION	

	

Alzheimer’s	 disease	 is	 a	 deadly	 brain	 dysfunction	 that	 impacts	 millions	 of	

older	 adults.	 	 Currently,	 physicians	 diagnose	 AD	 by	 neuropsychological	 evaluation	

and	 the	 ruling	 out	 of	 other	 possible	 causes	 for	 dementia.	 	 A	 definitive	 diagnosis	 can	

only	 come	 after	 the	 patient’s	 death	 with	 histological	 examination	 of	 the	 brain	 to	

identify	 plaques	 and	 neurofibrillary	 tangles.	 	 There	 are	 no	 diagnostic	 tools,	 in	 use,	

that	 can	 provide	 a	 diagnosis	 of	 AD	 while	 the	 patient	 is	 still	 alive.	 	 MRIs	 provide	

information	 regarding	 the	 volume	 and	 structure	 of	 the	 brain	 but	 the	 plaques	 are	 so	

small	 and	 difficult	 to	 identify	 that	 prohibitively	 strong	 MRI	 fields	 are	 necessary	 to	

view	 them.	 	 Recently,	 SPIONs	 have	 been	 introduced	 as	 a	 contrast	 agent	 that	 can	 be	

coated	 with	 organic	 material	 that	 will	 specifically	 bind	 to	 Aβ	 plaques	 to	 increase	

their	 conspicuity	 when	 viewing	 the	 MR	 images.	 	 When	 subjects	 are	 injected	 with	 the	

SPIONs,	 the	 plaques	 become	 visible	 on	 MRI	 and	 can	 be	 counted.	 	 Researchers	 at	

UNM	 are	 counting	 the	 plaques	 in	 MR	 images	 of	 transgenic	 mouse	 brains	 through	 a	

laborious	 manual	 process	 for	 each	 possible	 plaque.	 	 An	 automated	 means	 of	 locating	

and	 counting	 these	 plaques	 has	 not	 been	 available.	 	 Now,	 researchers	 and	 clinicians	

can	 use	 this	 signal	 processing	 image	 analysis	 algorithm	 to	 vastly	 decrease	 the	 time	

necessary	 to	 analyze	 each	 brain.	

The	 correlation	 of	 0.68	 between	 the	 automated	 results	 and	 the	 manual	

results	 indicate	 a	 moderately	 high	 accuracy	 of	 the	 quantity,	 positions,	 intensities,	

sizes,	 and	 shapes	 of	 Aβ	 plaques	 in	 SPION-‐enhanced	 MR	 images	 of	 AD	 transgenic	

mouse	 brains.	 	 Because	 of	 this	 correlation,	 the	 relative	 amounts	 of	 plaques	 in	 the	

brain	 can	 be	 predicted	 from	 the	 number	 of	 plaques	 in	 the	 automated	 results.	 	 The	

results	 from	 this	 study	 can	 be	 used	 as	 a	 reasonable	 replacement	 for	 human	 labor	

when	 counting	 Aβ	 plaques	 in	 SPION-‐treated	 patients	 and	 comparing	 them	 between	

other	 automated	 results.	

This	 signal	 processing	 algorithm	 found	 1,723	 plaques	 while	 the	 manual	

results	 found	 668	 plaques.	 	 The	 probable	 reason	 for	 an	 increase	 in	 plaques	 from	 the	

automated	 results	 is	 that	 the	 algorithm	 picked	 up	 more	 regions	 in	 the	 brain	 that	

have	 similar	 visual	 properties	 as	 plaques,	 but	 are	 not	 plaques,	 such	 as	 the	 ventricles	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 25	

and	 the	 corpus	 colossum	 in	 certain	 slices.	 	 The	 additional	 findings	 may	 also	 be	

related	 to	 improved	 accuracy	 with	 a	 computerized	 algorithm	 in	 finding	 plaques	 that	

are	 difficult	 to	 visualize.	 	 The	 correlation	 of	 findings,	 however,	 indicates	 an	 accurate	

representation	 of	 the	 differences	 in	 quantity	 between	 slices.	 	 This	 allows	 for	 a	 true	

comparison	 using	 this	 algorithm	 between	 different	 brains.	 	 It	 would	 not	 provide	 an	

accurate	 comparison	 between	 the	 data	 gathered	 manually	 on	 a	 brain	 and	 the	 data	

gathered	 by	 this	 program	 on	 another	 brain.	 	 	 It	 is	 critical	 that	 the	 algorithm	 provide	

an	 accurate	 representation	 of	 the	 difference	 in	 the	 number	 of	 plaques	 per	 brain,	

while	 the	 absolute	 number	 is	 less	 important.	

With	 the	 accuracy	 of	 these	 results,	 this	 program	 also	 ran	 in	 approximately	

five	 to	 ten	 seconds	 for	 a	 brain.	 	 When	 comparing	 this	 time	 to	 analyze	 an	 MR	 image	 to	

the	 days	 it	 is	 currently	 taking,	 it	 becomes	 more	 practical	 to	 use	 this	 computer	

algorithm.	 	 The	 program	 is	 a	 more	 viable	 tool	 for	 measuring	 plaque	 density	 than	 the	

previous	 method	 of	 marking	 and	 counting	 the	 plaques	 by	 hand.	 	 A	 program	 that	 can	

be	 run	 concurrently,	 in	 10	 seconds,	 as	 the	 MRI	 data	 is	 being	 collected	 would	 make	

the	 diagnosis	 and	 treatment	 of	 AD	 a	 quick	 and	 seamless	 process.	 	 This	 automated	

process	 can	 also	 give	 more	 quantitative	 information	 of	 not	 only	 the	 number	 of	

plaque	 and	 their	 intensities	 but	 also	 values	 that	 cannot	 be	 found	 by	 hand,	 such	 as	

size	 and	 roundness.	 	 These	 will	 give	 researchers	 and	 clinicians	 new	 data	 points	 to	

reference,	 more	 data	 that	 they	 can	 use	 to	 determine	 the	 efficacy	 of	 drugs	 or	 the	

progression	 of	 the	 disease	 in	 patients.	 	 	

This	 program	 is	 the	 culmination	 of	 many	 researchers	 looking	 for	 faster	 and	

more	 efficient	 means	 of	 diagnosing,	 monitoring,	 and	 treating	 AD.	 	 Not	 only	 will	

faster	 results	 allow	 physicians	 to	 diagnose	 AD	 after	 an	 MRI,	 it	 will	 also	 allow	 for	 the	

physician	 to	 monitor	 the	 progress	 of	 the	 disease	 and	 efficacy	 of	 the	 treatment	

modalities.	 This	 program	 will	 also	 save	 many	 researchers	 the	 time	 and	 money	 that	 it	

would	 take	 to	 count	 plaques	 by	 hand,	 allowing	 for	 the	 expedited	 research	 of	 future	

drugs	 and	 treatments	 for	 AD.	 	 Giving	 researchers	 and	 physicians	 a	 tool	 to	 expedite	

this	 process	 is	 the	 most	 significant	 original	 achievement	 of	 this	 project.	

	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 26	

7.	 DISCUSSION	

	

	 Developing	 this	 program	 has	 been	 a	 trying	 and	 rewarding	 experience.	 	 I	 was	

able	 to	 use	 the	 knowledge	 I	 have	 gathered	 from	 learning	 a	 variety	 of	 programming	

languages	 including	 C++,	 Java,	 MATLAB,	 and	 others	 to	 develop	 a	 strong	 knowledge	

of	 what	 it	 takes	 to	 make	 a	 scientific	 application.	 	 Since	 beginning	 to	 participate	 in	 the	

Supercomputing	 Challenge,	 during	 my	 freshman	 year,	 I	 have	 learned	 that	 I	 enjoy	

coding	 and	 do	 it	 at	 every	 opportunity.	 	 At	 this	 time,	 I	 am	 working	 on	 several	

computationally	 intense	 coding	 projects	 to	 develop	 iOS	 and	 web	 applications.	 	 I	 am	

grateful	 that	 this	 challenge	 has	 opened	 up	 the	 opportunities	 to	 pursue	 coding	 and	

application	 development.	 	

This	 particular	 program	 has	 failed	 many	 times.	 	 I	 tried	 over	 twenty	 different	

ideas	 for	 how	 the	 program	 should	 work;	 every	 time	 something	 went	 wrong,	 and	 I	

decided	 to	 make	 it	 simpler.	 	 I	 started	 in	 the	 middle	 of	 last	 summer	 with	 an	 extremely	

complex	 300+	 line	 algorithm	 that	 did	 not	 work.	 	 This	 experience	 showed	 me	 that	 a	

huge,	 complex	 algorithm	 was	 the	 wrong	 approach	 to	 take.	 	 Then,	 once	 my	 program	

seemed	 to	 be	 running	 perfectly	 I	 found	 the	 plaques	 per	 slice	 correlation	 compared	

to	 Dr.	 Sillerud’s	 manually	 gathered	 results	 was	 negative,	 and	 I	 had	 to	 completely	

redesign	 the	 algorithm	 again.	 	 This	 project	 has	 taught	 me	 to	 be	 patient	 and	 start	

simply	 and	 work	 my	 way	 toward	 more	 complexity.	

	 Next,	 I	 will	 work	 on	 applying	 this	 program	 to	 the	 MRI	 data	 that	 Dr.	 Sillerud	 is	

using	 to	 conduct	 his	 research	 on	 the	 inhibition	 NF-‐κB	 and	 its	 effects	 on	 AD	 as	 well	 as	

pancreatic	 cancer.	 	 I	 am	 also	 looking	 to	 acquire	 a	 larger	 data	 set	 to	 apply	 this	

program	 to.	 	 The	 number	 of	 brains	 I	 have	 available	 to	 analyze	 may	 increase	 my	

ability	 to	 use	 an	 element	 of	 machine	 learning	 in	 the	 algorithm	 to	 decrease	 the	

number	 of	 false	 positives.	 	 When	 this	 program	 is	 applied	 to	 multiple	 brains	 to	 show	

the	 benefits	 of	 drug	 protocols	 in	 decreasing	 plaque	 density,	 Dr.	 Sillerud	 is	 planning	

on	 helping	 me	 publish	 the	 results	 in	 a	 peer-‐reviewed	 journal.	 	 	

I	 am	 also	 looking	 for	 other	 problems	 to	 apply	 my	 program	 to;	 medical	

processes	 that	 need	 a	 large	 number	 of	 objects	 to	 be	 counted	 and	 analyzed.	 	 I	 am	

consulting	 with	 Dr.	 Sillerud	 at	 the	 UNM	 Department	 of	 Biochemistry	 and	 Molecular	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 27	

Biology	 to	 discuss	 possible	 other	 applications	 for	 this	 program.	 	 Possible	

applications	 could	 be	 identifying	 cancer	 cells,	 tumors,	 or	 other	 pathogens.	

	 	 Working	 on	 this	 project	 has	 stimulated	 the	 idea	 of	 studying	 computer	

science	 and,	 more	 specifically,	 image	 processing	 and	 artificial	 intelligence	 because	 it	

is	 such	 a	 fascinating	 emerging	 field.	 	 Biochemistry	 was	 never	 a	 field	 I	 considered	 for	

my	 future	 but	 I	 have	 found	 the	 idea	 that	 my	 program	 may	 help	 alleviate	 personal	

suffering	 through	 research	 exciting.	 	 Completing	 this	 program	 in	 a	 medical	 field	 has	

opened	 up	 the	 possibility	 of	 pursuing	 a	 field	 like	 computational	 biology.	 	 There	 are	

so	 many	 applications	 of	 image	 analysis	 and	 artificial	 intelligence	 in	 the	 medical	 field,	

which	 could	 help	 solve	 the	 problems	 that	 are	 so	 important	 to	 people.	 	 	

	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 28	

8.	 ACKNOWLEDGEMENTS	

	

	 First,	 I	 would	 like	 to	 thank	 Dr.	 Laurel	 Sillerud,	 my	 mentor,	 who	 worked	

continuously	 with	 me	 developing	 the	 algorithm	 and	 teaching	 me	 the	 science	 behind	

what	 he,	 and	 myself,	 were	 working	 on.	 	 It	 has	 been	 an	 amazing	 learning	 experience	

for	 me.	 	 I	 understand	 what	 a	 huge	 opportunity	 it	 is	 for	 me	 to	 work	 in	 such	 a	 field	 this	

early	 in	 my	 school	 career.	 	 It	 has	 been	 an	 unparalleled	 privilege	 for	 me	 to	 be	 a	 part	

of	 his	 team.	

	 Then,	 I	 would	 like	 to	 thank	 the	 entire	 research	 team	 at	 UNM	 Department	 of	

Biochemistry	 and	 Molecular	 Biology	 for	 their	 tremendous	 help	 and	 support	

throughout	 the	 project.	

	 Also,	 I	 would	 like	 to	 thank	 my	 mom,	 Alyx	 Medlock,	 for	 her	 support	 and	 help	

as	 a	 sounding	 board	 in	 problem	 solving	 my	 program.	 	 Not	 to	 mention,	 the	 work	 she	

put	 into	 editing	 this	 paper	 to	 help	 me	 make	 it	 perfect.	 	 She	 was	 invaluable	 in	 helping	

me	 manage	 my	 time	 and	 the	 deadlines	 to	 get	 this	 project	 finished.	

	 Lastly,	 I	 would	 like	 to	 thank	 my	 sponsor,	 Mr.	 Shanley,	 for	 helping	 with	 the	

grammar	 and	 editing	 of	 this	 paper.	

	 	

	 	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 29	

9.	 BIBLIOGRAPHY	

	

Aloisi,	 F.	 (2001).	 Immune	 function	 of	 microglia.	 Glia,	 36,	 165-‐179.	
	
Alzheimer’s	 Association.	 (2011).	 Alzheimer’s	 Disease	 Facts	 and	 Figures.	 Alzheimer’s	

Association,	 Washington,	 D.C.:	 Available	 at	 www.alz.org.	
	
Ashe,	 K.H.	 &	 Zahs,	 K.R.	 (2010).	 Probing	 the	 biology	 of	 Alzheimer’s	 disease	 in	 mice.	

Neuron.	 6,	 631-‐645.	
	
Ashe,	 K.H.	 (2001).	 Learning	 and	 memory	 in	 trasngenic	 mice	 modeling	 Alzheimer’s	

disease.	 Learning	 and	 Memory.	 8,	 301-‐308.	
	
Bachstetter,	 A.D.,	 Xing,	 B.,	 De	 Almeida,	 L.,	 Dimayuga,	 E.R.,	 Watterson,	 D.M.,	 &	 Van	

Eldik,	 L.J.	 (2011).	 Microglial	 p38α	 MAPK	 is	 a	 key	 regulator	 of	
proinflammatory	 cytokine	 up-‐regulation	 induced	 by	 toll-‐like	 receptor	 (TLR)	
ligands	 or	 beta-‐amyloid	 (Aβ).	 Journal	 of	 Neuroinflammation.	 8,	 79.	

	
Benveniste,	 H.	 et	 al.	 (2007).	 Anatomical	 and	 functional	 phenotyping	 of	 mice	 models	

of	 Alzheimer’s	 disease	 by	 microscopy.	 Annals	 of	 the	 New	 York	 Academy	 of	
Sciences.	 1097,	 12-‐29.	

	
Bishop,	 C.M.	 (2006).	 Pattern	 Recognition	 and	 Machine	 Learning.	 	 New	 York,	 NY:	

Springer.	
	
Bouras,	 C.,	 Hof,	 P.R.,	 Giannakopoulos,	 P.,	 Michel,	 J.P.,	 &	 Morrison,	 J.H.	 (1994).	

Regional	 distribution	 of	 neurofibrillary	 tangles	 and	 senile	 plaques	 in	 the	
cerebral	 cortex	 of	 elderly	 patients:	 A	 quantitative	 evaluation	 of	 a	 one-‐year	
autopsy	 population	 from	 a	 geriatric	 hospital.	 Cerebral	 Cortex.	 4,	 138-‐150.	

	
Brambilla,	 D.	 et	 al.	 (2011).	 Nanotechnologies	 for	 Alzheimer’s	 disease:	 Diagnosis,	

therapy,	 and	 safety	 issues.	 Nanomedicine.	 7,	 521-‐540.	
	
Chamberlain,	 R.	 et	 al.	 (2009).	 Comparison	 of	 amyloid	 plaque	 contrast	 generated	 by	

T2-‐weighted,	 T2*-‐weighted,	 and	 susceptibility-‐weighted	 imaging	 methods	 in	
transgenic	 mouse	 models	 of	 Alzheimer’s	 disease.	 Magnetic	 Resonance	
Medicine.	 61,	 1158-‐1164.	

	
Dhenain,	 M.	 et	 al.	 (2009).	 Characterization	 of	 in	 vivo	 MRI	 detectable	 thalamic	

amyloid	 plaques	 from	 APP/PS1	 mice.	 Neurobiology	 of	 Aging.	 30,	 41-‐53.	
	
Fodero-‐Tavoletti,	 A.T.,	 Villemagne,	 V.L.,	 Rowe,	 C.C.,	 Masters,	 C.L.,	 Barnham,	 K.J.,	 &	

Cappai,	 R.	 (2011).	 Amyloid-‐β:	 The	 seeds	 of	 darkness.	 International	 Journal	 of	
Biochemical	 Cell	 Biology.	 43,	 1247-‐1251.	

	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 30	

Games,	 D.	 (1995).	 Alzheimer-‐type	 neuropathology	 in	 transgenic	 mice	
overexpressing	 V717F	 beta-‐amyloid	 precursor	 protein.	 Nature.	 373,	 523-‐527.	

	
Granic,	 I.,	 Dolga,	 A.M.,	 Nijholt,	 I.M.,	 Van	 Dijk,	 G.,	 &	 Eisel,	 U.L.	 (2009).	 Inflammation	

and	 NF-‐𝛋B	 in	 Alzheimer’s	 disease	 and	 diabetes.	 Journal	 of	 Alzheimer’s	
Disease.	 16,	 809-‐821.	

	
Hashimoto,	 M.,	 Rockenstein,	 E.,	 Crews,	 L.,	 &	 Masliah,	 E.	 (2003).	 Role	 of	 protein	

aggregation	 in	 mitochondrial	 dysfunction	 and	 neurodegeneration	 in	
Alzheimer’s	 and	 Parkinson’s	 diseases.	 Neuromolecular	 Medicine.	 4,	 21-‐36.	

	
Herbert,	 L.E.,	 Scherr,	 P.A.,	 Bienias,	 J.L.,	 Bennett,	 D.A.,	 &	 Evans,	 D.A.,	 (2003).	

Alzheimer’s	 disease	 in	 the	 U.S.	 population:	 Prevalence	 estimates	 using	 the	
2000	 census.	 Archives	 of	 Neurology.	 60,	 1119-‐1122.	

	
Hofmann-‐Amtenbrink,	 M.,	 Von	 Rechenberg,	 B.,	 &	 Hofmann,	 H.	 (2009).	

Superparamagnetic	 nanoparticles	 for	 biomedical	 applications.	 In	 M.C.	 Tan	
(Ed.),	 Nanostructured	 Materials	 for	 Biomedical	 Applications	 (pp.	 120-‐149).	
Kerala,	 India:	 Hindawai	 Publishing	 Corporation.	

	
Holmes,	 C.	 (2008).	 Long-‐term	 effects	 of	 Abeta-‐42	 immunisation	 in	 Alzheimer’s	

disease:	 Follow-‐up	 of	 a	 randomized,	 placebo-‐controlled	 phase	 I	 trial.	 Lancet.	
372,	 216-‐223.	

	
Jack,	 C.R.	 et	 al.	 (2004).	 In	 vivo	 visualization	 of	 Alzheimer’s	 amyloid	 plaques	 by	 MRI	

in	 transgenic	 mice	 without	 a	 contrast	 agent.	 Magnetic	 Resonance	 Medicine.	
52,	 1263-‐1271.	

	
Kreutzberg,	 G.W.	 (1995).	 The	 first	 line	 of	 defense	 in	 brain	 pathologies.	 Drug	

Research.	 45,	 357-‐360.	
	
Lim,	 J.S.	 (1990).	 	 Two-‐dimensional	 signal	 and	 image	 processing.	 Englewood	 Cliffs,	 NJ:	

Princtice	 Hall.	
	
Lin,	 M.M.,	 Kim,	 D.K.,	 El	 Haj,	 A.J.,	 &	 Dobson,	 J.	 (2008).	 Development	 of	

superparamagnetic	 iron	 oxide	 nanoparticles	 (SPIONs)	 for	 translation	 to	
clinical	 applications.	 IEEE	 Transactions	 on	 Nanobioscience.	 7,	 298-‐305.	

	
Math	 Works	 (2012).	 www.mathworks.com	
	
McKhann,	 G.	 et	 al.	 (1984).	 Clinical	 diagnosis	 of	 Alzheimer’s	 disease.	 Neurology.	 34,	

939-‐944.	
	
Mendez,	 M.F.	 (2006).	 The	 accurate	 diagnosis	 of	 early-‐onset	 dementia.	 International	

Journal	 of	 Psychiatry	 Medicine.	 36,	 401-‐412.	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 31	

	
Mukherjee,	 S.,	 Dudley,	 J.I.,	 &	 Das,	 D.K.	 (2010).	 Dose-‐dependency	 of	 resveratrol	 in	

providing	 health	 benefits.	 Dose-‐Response.	 8,	 478-‐500.	
	
Mundt,	 A.P	 et	 al.	 (2009).	 Targeting	 activated	 microglia	 in	 Alzheimer’s	 pathology	 by	

intraventricular	 delivery	 of	 a	 phagocytosable	 MRI	 contrast	 agent	 in	 APP23	
transgenic	 mice.	 Neuroimage.	 46,	 367-‐372.	

	
Nattkemper,	 T.W.	 et	 al.	 (2005).	 Evaluation	 of	 radiological	 features	 for	 breast	 tumor	

classification	 in	 clinical	 screening	 with	 machine	 learning	 methods.	 Artificial	
Intelligence	 in	 Medicine.	 34,	 129-‐139.	

	
Niolaev,	 A.,	 McLaughlin,	 T.,	 O’Leary,	 D.,	 &	 Tessier-‐Lavigne,	 M.	 (2009).	 N-‐APP	 binds	

DR6	 to	 cause	 axon	 pruning	 and	 neuron	 death	 via	 distinct	 caspases.	 Nature.	
457,	 981-‐989.	

	
Podulso,	 J.F.	 et	 al.	 (2011).	 Targeting	 vascular	 amyloid	 in	 artierioles	 of	 Alzheimer	

disease	 transgenic	 mice	 with	 amyloid	 β	 protein	 antibody-‐coated	
nanoparticles.	 Journal	 of	 Neuropathology	 &	 Experimental	 Neurology.	 70,	 653-‐
661.	

	
Poduslo,	 J.F.	 et	 al.	 (2002).	 Molecular	 targeting	 of	 Alzheimer’s	 amyloid	 plaques	 for	

contrast-‐enhanced	 magnetic	 resonance	 imaging.	 Neurobiology	 of	 Disease.	 11,	
315-‐329.	

	
Rivere,	 C.,	 Richard,	 T.,	 Quentin,	 L.,	 Krisa,	 S.,	 Merillon,	 J.M.,	 &	 Monti,	 J.P.	 (2007).	

Inhibitory	 activity	 of	 stilbenes	 on	 Alzheimer’s	 beta-‐amyloid	 fibrils	 in	 vitro.	
Bioorganic	 &	 Medicinal	 Chemistry.	 15,	 1160-‐1167.	

	
Selkoe,	 D.J.	 &	 Schenk,	 D.	 (2003).	 Alzheimer’s	 disease:	 Molecular	 understanding	

predicts	 amyloid-‐based	 therapeutics.	 Annual	 Review	 of	 Pharmacology	 &	
Toxicology.	 43,	 545-‐584.	

	
Shin,	 R.W.,	 Iwaki,	 T.,	 Kitamoto,	 T.,	 &	 Tateishi,	 J.	 (1991).	 Hydrated	 autoclave	

pretreatment	 enhance	 tau	 immunoreactivity	 in	 formalin-‐fixed	 normal	 and	
Alzheimer’s	 disease	 brain	 tissues.	 Laboratory	 Investigation.	 64,	 693-‐702.	

	
Sigurdsson,	 E.M.	 et	 al.	 (2008).	 A	 non-‐toxic	 ligand	 for	 voxel-‐based	 MRI	 analysis	 of	

plaques	 in	 AD	 transgenic	 mice.	 Neurobiology	 of	 Aging.	 29,	 836-‐847.	
	
Sillerud,	 L.O.	 et	 al.	 (unpublished).	 SPION-‐enhanced	 MRI	 shows	 that	 inhibition	 of	 NF-‐

𝛋B	 concomitantly	 lowers	 Alzheimer’s	 plaque	 formation	 and	 microglial	
activation	 in	 transgenic	 mouse	 brain.	

	

Image	 Analysis	 of	 Alzheimer’s	 Plaques	 in	 MRIs	 of	 a	 Tg	 Mouse	 	 32	

Sutcliffe,	 J.G.,	 Hedlund,	 P.B.,	 Thomas,	 E.A.,	 Bloom,	 F.E.,	 &	 Hilbush,	 B.S.	 (2011).	
Peripheral	 reduction	 of	 β-‐amyloid	 is	 sufficient	 to	 reduce	 brain	 β-‐amyloid:	
Implications	 for	 Alzheimer’s	 disease.	 Journal	 of	 Neuroscience	 Research.	 89,	
808-‐814.	

	
Taylor,	 R.M.,	 Huber,	 D.L.,	 Monson,	 T.C.,	 Ali,	 A.S.,	 Bisoffi,	 M.,	 &	 Sillerud,	 L.L.	 (2011).	

Multifunctional	 iron	 platinum	 stealth	 immunomicelles:	 Targeted	 detection	 of	
human	 prostate	 cancer	 cells	 using	 both	 fluorescence	 and	 magnetic	 resonance	
imaging.	 Journal	 of	 Nanoparticle	 Research.	 13,	 4717-‐4729.	

	
Tiraboschi,	 P.,	 Hansen,	 L.A.,	 Thal,	 L.J.,	 &	 Corey-‐Bloom,	 J.	 (2004).	 The	 importance	 of	

neuritic	 plaques	 and	 tangles	 to	 the	 development	 and	 evolution	 of	 AD.	
Neurology.	 62,	 1984-‐1989.	

	
Turner,	 P.R.,	 O’Connor,	 K.,	 Tate,	 W.P.,	 &	 Abraham,	 W.C.	 (2003).	 Roles	 of	 amyloid	

precursor	 protein	 and	 its	 fragments	 in	 regulating	 neural	 activity,	 plasticity	
and	 memory.	 Progress	 in	 Neurobiology.	 70,	 1-‐32.	

	
Wang,	 A.,	 Das,	 P.,	 Switzer,	 R.C.,	 Golde,	 T.E.,	 &	 Jankowsky,	 J.L.	 (2011).	 Robust	 amyloid	

clearance	 in	 a	 mouse	 model	 of	 Alzheimer’s	 disease	 provides	 novel	 insights	
into	 the	 mechanism	 of	 amyloid-‐beta	 immunotherapy.	 Journal	 of	 Neuroscience.	
31,	 4124-‐4136.	

	
Waring,	 S.C.	 &	 Rosenberg,	 R.N.	 (2008).	 Genome-‐wide	 association	 studies	 in	

Alzheimer	 disease.	 Archives	 of	 Neurology.	 65,	 329-‐334.	
	
Zhang,	 F.,	 Liu,	 J.,	 &	 Shi	 J.S.	 (2010).	 Anti-‐inflammatory	 activities	 of	 resveratrol	 in	 the	

brain:	 Role	 of	 resveratrol	 in	 microglial	 activation.	 European	 Journal	 of	
Pharmacology.	 636,	 1-‐7.	

	
	 	

Computer Simulation of Dark Matter Effects on

Galaxy Collisions

New Mexico

Supercomputing Challenge

Final Report

April 4, 2012

Team Number 72

Los Alamos Middle School

Team Members:

Cole Kendrick

Teachers:

Brian Kendrick

Project Mentor:

Brian Kendrick

 2

Summary

The main goal of this project is to develop a computer program to model two galaxies

colliding including dark matter mass. The questions this project will answer are: How

will dark matter effect colliding galaxies, how accurately can this be modeled, how big of

an impact does dark matter have on colliding galaxies. Last year, a computer program

was developed to model the effects dark matter had on a galaxy’s rotational curve. That

program was written in C, and this year that program has been modified to fit this year’s

problem. This year, the code has been modified to do two galaxies and include galaxy-

galaxy interactions. Currently, for this model dark matter is being treated by a large mass

point at the center of the galaxy. This model is also using the same computational

methods as last year, the velocity Verlet method (2
nd

 order) is being used for Newton’s

laws of motion. Last year, a nearest neighbor method was implemented. This method is a

much quicker way of solving a n-body calculation without doing full n-body

computation. This method will be described in more detail later on. Andromeda and the

Milky Way (MW) were the main focus of this project, 3 different cases were ran to

determine how much dark matter really affected a collision. All simulations that were ran

had 4000 stars (2000 per galaxy) and a time step (dt) of 200 years. The three cases that

were ran are: (1) Normal mass – the realistic mass values we predict the galaxies to have,

(2) MW has ¼ of Andromeda’s dark matter mass, and (3) Normal mass with same

rotational direction. My main results show that dark matter is needed to keep the galaxies

stable throughout the collision. With case 2, the Milky Way galaxy was torn apart by

Andromeda and eventually orbited it, with the normal mass cases 1 and 3, the galaxies

eventually merge and become an elliptical galaxy over time. Without enough dark matter

mass in each galaxy, the collision will not be stable. My results were compared to

professional simulation results of the Andromeda and Milky Way collision as well as

realistic mass distributions (what we observe).

 3

Table of Contents

Introduction…………………………………… 4

Problem………………………………………… 5

Galaxy Model …………………………………. 6

Results ………………………………………… 9

MPI ……………………………………………. 18

Conclusion…………………………………….. 19

Future Work…………………………………… 19

References……………………………………... 20

Appendix 1…………………………………... 21

Appendix 2…………………………………... 22

Appendix 3…………………………………... 25

 4

Introduction

What is dark matter and why do we need it?

 No one knows what dark matter really is, although it has been one of the many

theories that exist to help explain the flat rotational curve of all galaxies. Dark matter was

first introduced in the 1930’s but many people did not really support it until later in the

1970’s. In the 1970’s people had begun collecting experimental data from galaxies by

taking the brightness of the galaxy. They also made computer programs to test the dark

matter theory. According to Newton’s laws of motion, a galaxy rotation curve should dip

down towards the edge of the galaxy. However, the experimental curve is relatively flat

(see Fig. 1). Dark matter is one of the theories to resolve the difference between the two

curves. Another theory that exists is called MOND (Modified Newtonian Dynamics)

which changes Newton’s laws of gravity to fit the flat rotational curve. By using the dark

matter and MOND theory we can better understand how galaxies function and learn more

about our tiny section of the universe.

 Figure 1: Rotational curves and experimental data for NGC 3198

 5

How are galaxy rotational curves measured?

Galaxy rotational curves are measured from the Doppler shifts of the Hydrogen 21 cm

line. The shift is broken down into red and blue, the red shift is going away and blue shift

is coming towards you.

Problem

 The two main questions my project will answer are: Can I successfully create a

computer model to simulate the effects dark matter has on galaxy collisions? How

accurate will my model be? Dark matter in my model is being treated by using the

Navarro-Frenk-White (NFW) dark matter mass distribution. This distribution is a

spherically symmetric static mass that encompasses the galaxy (Fig. 3). The same basic

simulation methods that were used last year are also being implemented. Newton’s law of

motion F=m a (total force = mass times acceleration) will be used to move the visible

matter (“stars”) in all of my simulations. The force is due to gravity acting between all of

the visible matter plus a large central force at the center of the galaxy due to dark matter.

The force between any two mass points m1 and m2 is given by Newton’s law of gravity

F=G m1m2/r
2
 where G is the universal gravitational constant and r is the distance between

the two points.

Figure 2: Schematic showing the blue and red Doppler shifts which

are used to measure a galaxy’s rotational velocity.

 6

Galaxy Model

The same galaxy model is being implemented into this years code, although this year

there is two galaxies instead of one. My galaxy model is very similar to our solar system,

instead of planets orbiting the Sun, stars orbit the dark matter and black hole of the

galaxy. Also, instead of 8 planets, there are trillions of stars. My galaxy model takes

those stars and represents many stars as one because doing a trillion stars on single

computer will take forever. My galaxy model calculates the mass of the stars by taking

the total mass of the core or disk (Mcore or Mdisk) and dividing that by the number of

stars in the core (N-N0) or disk (N0). The total number of stars is N. The formula in my

 7

model is M = Mdisc/N0 or Mcore/ (N -N0) to get the mass of a star. The figure 4 below

shows how my galaxy model is similar to a solar system.

Nearest Neighbor

The nearest neighbor method is used in all of my calculations, and is a much quicker way

of doing a n-body problem. Nearest neighbor creates a radius around each star and

determines whether or not another star is in that radius. If the star is inside of the radius

then the program stores that stars ID in an index and computes the gravitational force

between it. The nearest neighbor radius size changes over the distance from the center of

the galaxy. Therefore, the radius is small near the center of the galaxy because of the

higher density of stars. On the edge of the galaxy the radius is larger because of the less

dense areas. The optimal range is 1-11 kpc which was determined in my last year’s

project. (See fig. 5 below)

Figure 4: Schematic showing how my galaxy model resembles the solar system.

 8

Collision Model

This year, galaxy to galaxy interactions were added, which is the force behind the

collisions. This year the program was also parallelized using MPI (see pg. 18) whereas

last year the program was parallelized using OpenCL which utilizes the GPU instead of

the CPU. The collision model shows how the interactions between galaxies are

implemented in my model. Figure 6 (below) shows two galaxies colliding. The green

arrow represents core to core interactions which are the dark matter halos. The blue arrow

represents the core to star interactions, and the orange arrow represents the star to star

interactions which is the nearest neighbor method. Each galaxy has internal interactions

and external interactions. The nearest neighbor method that was above is used in both

internal and external interactions.

Figure 5: Schematic showing how the nearest neighbor method works.

 9

Results

 This project has mainly focused on the predicted future collision between the

Andromeda and Milky Way galaxy. Three main simulations were ran: (1) Normal mass

simulation (realistic mass values experimentally measured), (2) Milky Way has ¼ dark

matter mass of Andromeda, (3) Normal mass both galaxies rotate in the same direction.

Since the Milky Way is really far apart from Andromeda, another program placed a point

(which represented the whole galaxy’s mass) and ran a two point simulation until the two

galaxies got within a certain distance (100 kpc). When the two galaxies reached that

distance, the program will use those conditions and use them in the main program as

initial conditions, place the galaxies, and start running the simulation. This method allows

an easy assumption of the galaxies while they are far apart, which saves a lot of

calculation time. Figure 7 (below) shows how the initial conditions were determined.

Figure 6: Interacting forces used in my model between colliding

galaxies

 10

All simulations that were run used a total of 4000 particles (2000 in each galaxy), a 200

year time step (dt), velocity Verlet method, and ran to about 12 billion years. Each

simulation took about 2 days on a 3.0Ghz Intel Core 2 Duo. Figure 8-12 show results

from the normal mass simulation. In the following figures, green represents the Milky

Way and purple represents Andromeda.

Simulation 1

Figure 7: Shows initial separation between two galaxies and how starting

conditions were obtained (MW – green, Andromeda – Purple)

 11

Figure 8: After initial collision, Andromeda has tails on the

edges

Figure 9: After several collisions, Andromeda has a large tail

that extends out into space.

 12

Figure 10: After several collisions, both galaxies slowly

joining and slowing down.

Figure 11: Near end of simulation, both galaxies have basically formed an

elliptical galaxy.

 13

Figure 8 shows the galaxies right after the initial collision, Andromeda starts to form two

tails on either end of the galaxy. In figure 9, after several collisions, the tail extends out

farther into space. This feature matches colliding galaxies viewed from observatories, this

image below shows that this is a realistic feature.

Figures 10 and 11 shows the galaxies slowing down and accumulating stars around the

two central forces which will lead to eventually causing the galaxies will merge and form

an elliptical galaxy because they have about the same visible mass and dark matter mass.

If one galaxy had less dark matter than the results will change. This was proven with

simulation 2 where the Milky Way has ¼ of Andromeda’s dark matter mass.

Simulation 2

 14

Figure 12: After initial collision, Milky Way (green) is getting thrown apart

by Andromeda

Figure 13: Several collisions have taken place, Milky Way has more matter

slung out of the galaxy.

 15

In this simulation (figures 12-14), the Milky Way has ¼ the dark matter mass of

Andromeda. Since the Milky Way has less dark matter mass, its stars are not as compact

and do not remain intact throughout the collision. Early on in the simulation (figure 12)

the Milky Way is already pretty much separated, and scattered. Andromeda remains

stable and compact throughout the collision and is not impacted by the Milky Way at all.

This simulation proves that in order to keep a galaxy stable throughout the collision, it

has to have enough mass. Often if a collision has a large and small galaxy, the small

galaxy will be absorbed or become a satellite galaxy. If two galaxy collide and they have

about the same mass, they will both remain stable and eventually form a large elliptical

galaxy. Both of the galaxies will orbit each other like a binary star. Below are the dark

matter core trajectories for both galaxies. For simulation 1 (figure 15), the two galaxies

orbit each other and become an elliptical like mentioned above, for simulation 2 (figure

16), Andromeda does not move a lot, it stays pretty much in a line whereas the Milky

Way gets thrown around Andromeda and becomes a satellite galaxy to Andromeda.

These two figures show how the galaxies move throughout the simulation.

Figure 14: Milky Way has a smaller central mass, and has ‘clumps’ of stars

further away. Andromeda stays compact and is not really affected.

 16

Figure 15: Shows simulation 1 trajectories, Andromeda and the Milky Way

stay in a compact orbit and form an elliptical.

Figure 16: Shows trajectories for simulation 2, Andromeda is not really

affected but the Milky Way gets slung around Andromeda.

 17

Simulation 3

In simulation 3, the galaxies have the realistic mass values (same as simulation 1) and are

rotating in the same direction. Having different or same rotation does not change the end

result, however it does change how the galaxy collides. Meaning that whether or not they

are rotating in the same direction they will eventually form an elliptical galaxy, they will

just collide different. Figure 17 below shows the two galaxies rotating in the same

direction (both are going counter-clockwise).

Figure 17: Both galaxies are rotating counter-clockwise and are even in

mass.

 18

MPI

MPI (Message-Passing-Interface) is a parallel programming language that is mostly used

on supercomputers. It uses the machines multiple cores to work on one program, making

it run much faster rather than a program that only utilizes one core. An MPI version of

my galaxy model was written to parallelize my code and see how fast multiple cores

would compare to a single core. After running the MPI version and comparing it to the

normal C code, there was about a 50% speed up once the calculation reached about 16-32

thousand stars. Since this ran much faster, this would allow my model to have much more

stars, which would also make it more accurate. Figure 18 (below) shows the amount of

time it takes to do a single time step (with a 200 year dt) with different amounts of stars.

The green line shows a single cpu, the red line shows two cpus using the MPI version of

the code.

Figure 18: Shows the speed up between a MPI version and a normal code. MPI

(red) takes about half the time it takes a single core from 16 – 32 thousand stars

 19

Conclusion

I was able to successfully create a computer simulation of galaxy collisions using C. My

2D simulation results are consistent with many observed galaxy collisions and are also

similar to 3D professional models. My simulation shows that dark matter has large

effects on spiral galaxy collisions: (1) If the two galaxies dark matter halos are similar in

mass, then both galaxies are distorted and eventually merge to form a larger elliptical

galaxy, and (2) If one of the two galaxies dark matter halo is large, then the smaller

galaxy is largely distorted, it orbits the larger one, and it is eventually absorbed. The

larger galaxy remains mostly intact. The third simulation proves that if galaxies rotate in

the same direction, in the end it will give the same result. In conclusion, this project can

be used to help understand how dark matter effects galaxy collisions and what it really is.

Future Work

Future work includes comparing my nearest neighbor model to a full N-body calculation,

replacing my static halo model with interacting/moving dark matter particles, going to

three dimensions, and including gas in my galaxy models.

 20

References

1) Navarro J. F., Frenk C.S, and White S.D. “A Universal Density Profile from

Hierarchical Clustering.” The Astrophysical Journal 490 (1997): 493-508.

2) Begeman, K.G., “HI Rotation Curves of Spiral Galaxies. I. NGC 3198”, Astronomy

and Astrophysics 223 (1989), 47-60.Print.

3) Zwicky, F., “Die Rotverschiebung von extragalaktischen Nebeln”, Helvetica

Physica Acta 6 (1933): 110–127.

4) Milgrom, M., "A modification of the Newtonian dynamics as a possible alternative

to the hidden mass hypothesis". Astrophysical Journal 270 (1983): 365–370.

5) Bennett, J.O., Donahue, M., Schneider, N., and Voit, M., “The Essential Cosmic

Perspective”, Pearson; Addison Wesley, (3
rd

 edition) 2005.Print.

6) Widrow, L.M. and Dubinski, J., “Equilibrium Disk-Bulge-Halo Models for the

Milky Way and Andromeda Galaxies”, The Astrophysical Journal 631 (2005): 838-

855.

7) Barns, J.E. and Hernquist, L, “Dynamics of Interacting Galaxies”, Annual Reviews

of Astronomy and Astrophysics, 30 (1992): 705-742.

8) Withagen, J.C.J.G., “On the Collision between the Milky Way and the Andromeda

Galaxy”, Masters Thesis, Universiteit van Amsterdam, 2008.

9) Dubinski, J., “The Great Milky Way - Andromeda Collision”, in Sky and

Telescope, October 2006, pg. 31.

1

Optimizing Community Detection

New Mexico

Supercomputing Challenge

Final Report

April 3, 2012

Team 56

La Cueva High School

Team Members

Alexandra Porter

Stephanie Djidjev

Lauren Li

Teacher

Samuel Smith

2

Table of Contents

Optimizing Community Detection 1

1.0 Executive Summary 3

2.0 Problem Statement 4

3.0 Background Information 5

4.0 Procedural Overview 7

4.1 Network Setup

4.2 Visualization

4.3 Algorithm Setup

5.0 Results 12

5.1 Efficiency

5.2 Accuracy

6.0 Conclusions 20

7.0 Significant Original Achievement 20

8.0 Future Work 21

9.0 Appendix 22

9.1 Acknowledgements

9.2 Works Cited

9.3 Data

9.4 Program Code

3

1.0 Executive Summary

Earth in itself is a large-scale network. It is a system connecting and overlapping the

individual networks of daily life from communication systems to biological systems. In science,

these networks are used to express connections between different nodes through arcs and paths.

To understand and apply these structures, decomposition is of utmost importance.

Decomposition allows for the breakdown of complex problems into smaller, more manageable

ones, which adds an element of simplicity to the problem. With networks, this process results in

the formation of communities which signifies the connectivity between distinct groups of nodes.

 This project optimizes decomposition by finding the most efficient optimization method

for partitioning of networks with maximum modularity. Java was used to implement and

compare two main techniques: Girvan-Newman Algorithm and Ant Colony Optimization

(ACO). Both algorithms were also tested with a variety of modifications. A Hierarchical Girvan-

Newman Algorithm was implemented. Combinations between the ACO and Probability

Summation as well as between the ACO and Power Iteration was used.

In discovering the most efficient optimization method, this project could be applied to

most networks which naturally divide into communities or modules. Examples of such systems

include transportation, manufacturing, communication, biological, and citation networks.

4

2.0 Problem Statement

What is the most efficient optimization method to maximize the modularity of a

partitioned network?

The purpose of this project is to find an efficient and accurate method of

maximizing the modularity of a partitioned network. Finding the maximum modularity of

a network is extremely useful for any real-life situation the network may represent.

Identifying groups makes it possible for someone to lay efficient connections or place the

nodes in optimal locations.

5

3.0 Background Information

 Networks are systems where sets of nodes are connected through links or edges. These

systems appear in everyday life in the form of power grids, biological networks and pathways,

metabolic networks, the Internet, social networks, and much more. Through the partitioning of

networks in this project, systems are rearranged into communities allowing for further practical

application of networks. For example, partitions within social networks can be used to represent

social groupings based on common traits or interests. Citation network communities reveal

related papers on certain topics, while the communities formed in the World Wide Web represent

related sites. In economic networks, partitioning can reveal elements of vertical disintegration

and groups of similar businesses. In a general sense, these partitions expose information which

would be impossible to see in the big picture. With better understanding of networks through

partitioning, correlations between network topology and function are revealed, and more

efficient applications of networks can be discovered.

 In the real world, the structure of networks is not random. Instead, various recurring

patterns persist through networks. Sometimes patterns are obvious due to different contributing

factors. In some cases, density of connections vary to form clusters or modules. Number of

connections can also vary resulting in different costs of connection between nodes. Link

capacity and structural patterns may also fluctuate. All of these factors involve the structural

property of modularity, a significant characteristic of network topology.

Modularity is the qualitative measurement of the possible partitions within a network. A

network with high modularity has dense connections between some nodes forming communities

(modules) which are usually interconnected with other communities through sparse connections.

Each module can be a dynamic community where there are more connections within modules

6

and fewer between. Examples of modularity exist in many fields. For example, in engineering,

modules form physical components with one-to-one functions. Modules can also represent

platforms and individual content in products. Within social networks, high modularity is

exhibited in cliques, groups (like in social networking sites), and association mutuality. In

nature, biology involves modules in cell clusters, classification, and molecular reactions.

Ecological modules include niches, pathways, and elements of food chains. High modularity is

beneficial in that it allows for resistance to outside attacks, and individual problems are reduced.

Substitutions can also occur with modules leading to flexibility and variety in networks. Finally,

modularity also allows for parallelization. In this project, modularity is used as a measurement of

the accuracy of a network partitioning. Modularity is the number of in-community edges minus

the number of expected in-community edges in a random graph.

7

4.0 Procedural Overview

4.1 Network Setup

 In order to measure the algorithms used in this project, a customizable network creation

system was made. This system allows the user to specify details about a network including the

number of nodes, the number of communities in the network, and the probability of connections

within or between communities. The network is then randomly generated based on these factors.

This method creates networks with predetermined communities so that the accuracy of the

optimization methods can be measured as well as the efficiency.

 Within the network, each node and connection has a weighted value. This is important in

using the network to represent a real situation. For example, in transportation methods such as

roads, airplanes, and ships, each have a unique cost. Furthermore, physical distance is an

important factor in many applications.

4.2 Visualization

 The program developed in the project (shown in Figure 1) displays the network as a

number of circles, each representing a node, and lines connecting them. Positions on the screen

are initially random. A force-based layout algorithm then moves the nodes based on their

proximity to other nodes and their connections.

In the force-based algorithm, each node is treated as an electron and each connection is

treated as a spring. Nodes then repel each other while connections pull nodes together. The force

on each node is calculated using Hooke’s law, which relates to the springs, or connections, and

using Coulomb’s law, which relates to the electron charges. The weight of each node and

8

connection are also factors in determining the forces in the network. A node with high weight,

for instance, repels other nodes with greater force than one with a low weight.

 Program users can customize the criteria used in the visualization. The values of the

constants in Hooke’s law and Coulomb’s law can be adjusted in order to alter the layout. There

are also two options for coloring the network’s connections. Connection colors can be based on

connection weights or the betweenness of the connection. Nodes are colored based on their

weights. Finally, nodes, connections, and their names can be hidden for convenience in viewing

the network. Users can generate random networks or create custom networks, as shown in Figure

2.

Figure 1

9

4.3 Algorithm Setup

All the algorithms used in this project have a similar feature; they calculate weights of the

edges in the network in order to calculate edge betweenness. Edges with a high betweenness

have a high probability to lie within the shortest path that goes from one randomly selected node

to another. All edges are equally weighted at the initiation of each algorithm implementation. As

the algorithm runs, weights are deposited on the edges. Depending on the algorithm, an edge

with either a large or small weight will have high betweenness. Edges with low betweenness are

edges that are within communities, while edges with high betweenness are edges that link

different communities.

The Floyd-Warshall Algorithm calculates shortest path by first assuming that a

connection cost is infinite. It then iterates through possible intermediate connections in order to

find the path with the lowest cost. When all connection weights are equal to one, the shortest

path is the fewest number of connections. This algorithm was implemented in some of the other

algorithms in order to detect communities.

Figure 2

10

The first algorithm used is the Girvan-Newman Algorithm. It first calculates the shortest

path between all possible pair of nodes, using the Floyd-Warshall Algorithm. The number of

times a connection is used as part of a shortest path is summed and the connections most used

have the highest probability of existing between communities.

 The second algorithm used is the Hierarchical Girvan-Newman Algorithm. Using the

Floyd-Warshall Algorithm, it calculates the shortest path between all possible pairs of nodes.

Then, it creates a hierarchy outlining all the edges each pair of nodes needs to go through in the

shortest path. The weight of each edge is compounded into all of the components that comprise

its shortest path. The edges that have the highest weight have the highest probability of existing

between communities.

The final algorithm used is a novel combination between an Ant Colony Optimization

(ACO) and Power Iteration, called the “Power Iteration Ant Colony” algorithm. ACOs are

algorithms based on ant foraging behavior. Ants leave “pheromone” behind each of the nodes

they travel on. The network is initialized with random values of pheromone on every node. Ants

are placed randomly on the network and move from one node to another via the edges. On each

node, it calculates an updated pheromone of that node based on the nodes that are directly

connected to it using the Power iteration algorithm that given a network N, the algorithm will

produce a number bk and a pheromone level p, such that Np = bkp. In the case of two

communities, this algorithm results in either negative or positive pheromone levels. Nodes with

negative pheromone values are in one community, while nodes with positive pheromone values

are in another community. The Power Iteration Ant Colony algorithm can be recursively

implemented to find community structures of more than only two modules, by treating each

newly formed community of nodes as a new network, and dividing that into even more

11

communities. The algorithm stops partitioning further when the new communities internally have

a modularity of zero or less.

12

5.0 Results

5.1 Efficiency

Run Times Varying Number of Nodes

Run times were recorded for partitioning a random network 10 times for increasing

numbers of nodes. The probabilities of connection existence were 0.5 and 0.05 for all networks.

All run times increase as the number of nodes increases. Due to the nature of the multithreading

of the Girvan Newman Algorithm, the multithreaded version is more efficient after the number

of nodes has passed a certain threshold, shown to be approximately 125 nodes for 10 partitions.

The Hierarchical Girvan Newman is significantly slower and run times increase by a larger

factor than for the Girvan Newman as the number of nodes increases. The Power Iteration Ant

Colony Optimization was significantly faster than either of the other algorithms and run times

did not visibly increase as the number of nodes increased.

13

14

Run Times Varying Number of Partitions

 The run times were recorded for partitioning random networks of size 100 nodes with the

same connection probabilities as in Graph 1. In this comparison the number of partitions was

increased. Because 100 nodes is less than the threshold for multithreading to be more efficient

than the linear Girvan Newman Algorithm, the multithreaded times are greater. This study shows

that the run times diverge slightly, with the multithreaded run times becoming larger in relation

to the linear times as the number of partitions increased. The Hierarchical Girvan Newman run

times stayed approximately constant, even decreasing slightly. This is due to the fact the the bulk

of the HGN run time occurs regardless of how many connections in the resulting hierarchy are

actually removed. Based on these results, the HGN becomes more efficient for networks

demanding a large number of partitions to maximize modularity.

15

16

5.2 Accuracy

Girvan-Newman Algorithm

 The Girvan-Newman Algorithm was able to reach maximum modularity for a network

with 2 communities on almost all of the networks tested. As shown in Graphs 3 and 4, the

modularity reached does drop off as communities become less distinct. The modularity reached

is not as high because the algorithm removes connections within communities as well as between

communities.

Hierarchical Girvan-Newman

The Hierarchical Girvan-Newman reached modularities similarly to the Girvan-Newman

Algorithm but showed higher accuracy in the more convoluted networks. Between inside

community probabilities of 0.25 and 0.75, especially, the HGN reached higher modularity than

the Girvan-Newman.

Power Iteration Ant Colony Optimization

The Power Iteration ACO was extremely accurate and consistent. It also showed (on

Graph 3) the unique capability of finding a partition with high modularity on a network that has

uniform likelihood (0.25 probability) of a connection and therefore no predetermined

communities. In Graph 3, the Power Iteration ACO reaches almost exactly a modularity of 0.5

(the modularity of an ideal network of 2 densely connected communities) for all probabilities

tested.

17

18

Real-World Applications

The program was also tested on two real-world networks. The first is a social network,

created with randomly selected “friends,” where connections represent friendships. The network

was partitioned using the Power Iteration ACO. The communities identified were found to be

closely related to factors including grade level and participation in band and orchestra. Node

‘M’, for instance is the only freshman included in the network. ‘A’, ‘B’, ‘C’, ‘H’, and ‘O’ are all

seniors who are members of the band.

 The second network used for testing was a food web. The Power Iteration ACO

was used initially, but too many connections were removed and the result was not useful. The

Hierarchical Girvan-Newman, however, effectively identified two communities. The first,

represented by red nodes, includes all of the birds and mammals. The orange community is

comprised of snakes, spiders, and all of the insects included in the web.

Social Network Partitioned using HGN

Figure 3

19

Figure 4

Figure

Figure

Figure 5

Food Web Partitioned with Power Iteration ACO

Food Web Partitioned with Hierarchical Girvan-Newman

20

6.0 Conclusions

 The multithreaded Girvan-Newman Algorithm was the fastest Girvan-Newman, as

expected. However, the Hierarchical Girvan-Newman was slightly more accurate. The Power

Iteration Ant Colony Optimization was the most accurate when applied to large, convoluted

networks. It was also the fastest algorithm, so it is the best algorithm for partitioning larger

networks. On smaller networks of approximately 15 nodes the HGN is actually the best

algorithm because it reaches the highest modularity and in some instances the Power Iteration

ACO partitions too many connections, therefore failing to effectively identify communities.

7.0 Significant Original Achievement

 The main accomplishment of this project has been the development of the novel Power

Iteration Ant Colony Optimization, a unique combination of two algorithms. The implementation

of a Hierarchical Girvan-Newman algorithm is also original. In addition, a comprehensive

program has been developed to allow users to input network data of any kind and identify a

solution, using these algorithms.

21

8.0 Future Work

Next we plan to extend the Power Iteration Ant Colony algorithm to effectively partition

more than two communities, which the Girvan-Newman and Hierarchical Girvan-Newman

already do. To make this extension, the Power Iteration ACO will use a recursive method to

partition each community into sub-communities. This also allows for parallelization, which we

plan to add. In addition, we plan to add an algorithm to identify the preferable algorithm (HGN

or Power Iteration ACO) for each individual situation.

22

9.0 Appendix

9.1 Acknowledgements

 We would like to thank the organizers of the New Mexico Supercomputing Challenge for

all of their assistance for this project. We would also like to thank David Rogers, Miguel Leyba,

Janeen Anderson, Klaus Heinemann, and Bilal Shebaro for their helpful evaluations.

9.2 Works Cited

Capper, John, and Henrik Nilsson. "Static Balance Checking for First-Class Modular Systems of

Equations." University of Nottingham, United Kingdom, 19 May 2010. Web. 1 Mar. 2012.

<http://www.cs.ou.edu/tfp2010/files/09slides.pdf>.

C.L. Magee, ESD 342 Class 14 Decomposition, Spring 2010. (Massachusetts Institute of Technology:

MIT OpenCouseWare), http://ocw.mit.edu (Accessed March 1, 2012). License: Creative Commons BY-

NC-SA

Daniel E. Whitney, ESD 342 Network Representations of Complex Engineering Systems, Spring 2010.

(Massachusetts Institute of Technology: MIT OpenCouseWare), http://ocw.mit.edu (Accessed March 1,

2012). License: Creative Commons BY-NC-SA

Girvan, M., and M. E. J. Newman. "Community Structure in Social and Biological Networks." PNAS

99.12 (2002): 7821-826. Web. 1 Mar. 2012. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC122977/>.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 1

The Impact of Forest Fires on Water Resources

New Mexico

Supercomputing Challenge

Final Report

April 4, 2012

Team 2

Desert Academy, Academy for Technology and the

Classics, Santa Fe High School

Sara Hartse

Hugo Rivera

Nico Cruz

Teacher: Jocelyne Comstock

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 2

Table of Contents

1.0 Executive Summary

2.0 Background

 2.1 Impact of a Fire on an Ecosystem

 2.2 Describing and Quantifying Fires

2.3 Impact on Water Resources

2.4 Firefighting Techniques

3.0 Fieldwork

 3.1 Pacheco Canyon Fire

 3.2 Determination of Phosphates in Water Samples

4.0 Model

 4.1 Fire

 4.2 Landscape Generation and GIS

 4.3 Watershed Response

 4.4 Scale

4.5 Firefighters

5.0 Data and Results

5.1 Netlogo Experiments

6.0 Conclusions

6.1 Improvements

6.2 In Summary

7.0 Appendix

 Acknowledgments

Bibliography

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 3
1.0 Executive Summary

 We intend to investigate the impacts that forest fires can have on the water resources

of forest environments that human populations are dependent on. Apart from the general

environmental disruption caused by forest fires, human water sources can be contaminated or

otherwise compromised. For example, forest fires dramatically change the land cover of an

area, lending to concerns about flash flooding, erosion and water quality. Based on factors such

as tree density, moisture, land slope and weather, different forest types are more susceptible

to damaging forest fires than others. The model is in Netlogo.

The model was model was created with a cellular automata, empirical method and

incorporates several factors such as wind, elevation, and fuel type to in an attempt to

accurately portray how a forest fire spreads. The model makes basic assumptions about the

likelihood of given patches igniting based on established, empirical observations (for example; a

fire burns longer with more fuel, it is suppressed by moisture, it is biased by air currents factors

like wind and elevation). The model also incorporates GIS elevation data of various landscapes,

including the region where the Pacheco Canyon fire burned in the summer of 2011. A final

aspect of the project examined the optimization of firefighting tactics within our model.

Throughout the course of this project we collected field data and data from our model.

The fieldwork was done in the regions burned by the Pacheco fire: water samples were

analyzed and the landscape was observed. Many experiments were conducted within the

model, including tests on the variables of windspeed, elevation, moisture and fuel density. Data

was collected about the area burned and the debris levels of bodies of water.

The model was tested against the behavior of the Pacheco fire, and will not precise it did

follow similar patterns. The data from this model illustrated a strong impact of windspeeds and

elevation profiles upon debris levels.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 4
 2.0 Background

 Dry weather and drought convert green vegetation into dry, flammable fuel; strong

winds spread fire quickly over land; warm temperatures encourage combustion. When fuel,

oxygen, and heat are all present, all that is needed is a spark to ignite a blaze that could last for

weeks and possibly destroy acres of woodlands.

On average, more than 100,000 wildfires, also called wildland fires or forest fires, clear 4

million to 5 million acres of land in the U.S. every year. In recent years, wildfires have burned up

to 9 million acres of land per year. A wildfire moves at speeds of up to 14 miles an hour,

consuming everything in its path.

2.1 Impact of a Fire on an ecosystem

 A forest fire is a dynamic,

predictable, yet still uncertain,

natural process. A forest fire can

have numerous positive and

negative effects on an ecosystem. It is

important to balance these effects

properly in order to ensure a

sustainable ecosystem. Forest fires

have the potential to have a

tremendous impact on the water

resources of an ecosystem. The

impacts are various interrelated

mechanisms including effects on soil

chemistry, soil physical properties,

soil biological response, the

hydrological cycle and water quality. As

illustrated in figure 1 (below), all of these systems are highly complex, tying together the

physical, biological and chemical aspects of an ecosystem as well as the properties of its upper

and lower ground layers.

figure 1: Immediate and long-term responses to forest fires

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 5
2.2 Describing and Quantifying Fires

 To begin quantifying and modeling these impacts, it is necessary to start defining

different types of fire and their potential impacts on an ecosystem. A broad way of defining the

role of a fire within an environment is through defining a particular fire regime. This is useful for

examining the role of fires within certain vegetation types, especially the likelihood of land

types to have certain fire types. The fire regime types are as follows:

● Understory fire regime: A regime type that is most likely to have a fire type that is

considered non-lethal and in which about 80% of the vegetation survives the fire and

the vegetation type remains fairly unchanged. It applies to vegetation types which

include many fire resistant wood types.

● Stand replacement fire regime: This regime type has the potential to have a fire which is

lethal to the majority of the vegetation where about 80% dies off as a result of the fire.

It applies to fire susceptible forests, woodlands, shrublands and grasslands.

● Mixed fire regime: A regime which supports fires whose severity varies between lethal

stand replacement and non-lethal understory. This is the most common type as

temporal and spatial variation in parts of an ecosystem often results in a wide disparity

of potential impact.

● Non-fire regime: A landscape type in which a fire is not at all likely to occur.

Another important aspect to be addressed when trying to quantify the impact of a fire is a

measure of the magnitude of the fire, specifically the intensity or severity of it. Intensity and

severity are defined as two different aspects of fire measurement with different values for

assessing impacts of fires.

 Intensity refers to a measurement of the rate of heat released from a fire. A quantifiable

measure of intensity comes from an equation known as Byram's definition of fireline intensity.

Byram's equation is as follows;

I=Hwr

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 6

Where I is the intensity of the fireline (the front of the fire and measured in kW/m/s), H

is the heat yield value of the fuel source (in kW/kg), w is the mass of the fuel consumed (in

kg/m2) and r is the rate at which the fire is spreading (in m/s) (also known as the Fire Behavior).

 The measurement of fire intensity is useful in predicting the extent and magnitude of a

burn. For example, intensity has been shown to be directly proportional to flame length, and

flame length is used for predicting possible damage a fire may inflict on buildings. The depth of

burn of a fire is the measure of how deeply the fire burned or how deeply lethal levels of heat

reached into the organic soil horizon (the layer of soil that includes the majority of plant and

other biological matter). Depth of burn is the main factor of importance when determining the

impact on soil and water resources. It relates to the amount of bare mineral soil exposed to

erosion, the depth at which chemical changes may occur and the microbial populations which

may be affected. It is important for examining how erodible land becomes and how

hydrological recovery process is changed. Another types of fire measurement is Severity, which

differs from intensity in that it is concerned with above and below ground heat pulses. It is the

concept which relates intensity and depth of burn. Severity incorporates a two-dimensional

quantification of fire magnitude, accounting for both above- and below-ground heat level.

2.3 Impact on Water Resources

Forest fires can impact water resources in several different ways. Fires can shower

water sources with debris. This extra sediment can slow or damage water filtration processes

and increase the resources needed to produce clean drinking water (Meixner and Wohlgemuth,

24). The debris can also change the chemical makeup of the water. For example, large amounts

of ash and burned material have been shown to raise nutrient levels, especially phosphorus and

nitrogen (Meixner and Wohlgemuth, 25).

It is also an observed phenomena that forest fires are often be responsible for increased

watershed response, namely flooding and mudslides. These natural occurrences are

threatening to human safety, and can disrupt water resources by, for example, wiping out a

dam. This relationship between fire severity and erosion potential is demonstrated in

Illustration 2, which shows the relationship between fire severity and the magnitude of

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 7
watershed response. Essentially the graph shows that as fires become more severe (that is to

say, they become more intense and

have a higher depth of burn) and time

passes, the potential for a large scale

watershed response becomes greater.

Studies in the Santa Monica

mountains have found that erosion

rates in a burned watershed can be up

to 50-100 % greater than a vegetated

one. Forest fires can also have the

impact of creating a larger amount of

so-called 'hydrophobic soils', a soil

type that becomes impermeable to

water, preventing it from soaking in

and causing the vital resource to

simply slide off the surface (Ainsworth

and Doss).

2.4 Firefighting Techniques

When a forest fire is spotted, teams are immediately dispatched to fight the flames. The

first thing they do, when available, is to establish a fire line. They do this by removing all

vegetation (fuel) that could assist the fire. This is an attempt to allow the fire to die out slowly

before it reaches any other fuel sources. After cutting off the fuel, firefighters must use tools

such as shovels, picks, chainsaws, and hoses to prevent the fire from spreading further.

Illustration 1: An approximation of the magnitude and the
timing of watershed response to fires of varying severity,
including wildfire and the lower section corresponding to
prescribed burns (Neary, Ryan and DeBano, 16).

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 8
3.0 Fieldwork

By looking at real world data, we can incorporate more realistic parameters into our

model for better results. We are examining one major fire that happened recently: the Pacheco

Canyon Fire. We determined phosphate levels in the surrounding water sources.

Picture 1: A picture taken showing the Nambe River drainage at a region burned in
the Pacheco Canyon Fire.

3.1 Pacheco Canyon Fire

 On June 18th, 2011, a wildfire started in the Santa Fe National Forest, about 9 miles

north of the city of Santa Fe. The fire burned an estimated 10,250 acres in about 10 days,

primarily in the Nambe River drainage, as seen in Map 1. As part of the background research for

the modeling and analysis of our subject, we decided to collect field data about this particular

fire. The primary analysis shows how the fire affected the water quality in the Nambe River and

other small rivers approximately four months later.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 9

The water samples (see Picture 2) were obtained on October 9th and 10th 2011, 3.5

months after the fire. They were collected from four separate locations. Two samples were

collected from two upper sections of the Nambe River at points upstream of the burned regions

(Samples A and B), and two samples were collected from water sources downstream of the

burned region, one from the main Nambe River (Sample D) and other from the Rio Capulin

(Sample C).

 There were immediately clear distinctions between the water samples collected

upstream of the fire as opposed to those which would have flowed through burned regions.

Judging from the appearance, the water from upstream was very clear and had little to no

visible particulate matter. Samples C and D were very cloudy and dark with comparatively large

quantities of particulate matter.

 Chemical analysis was performed on the water samples in the form of a test for

phosphate levels. Phosphate is often observed to appear in elevated levels in water after forest

fires, and is attributed to ash and other debris being washed into the water due to erosion.

Elevated phosphate levels can cause growth explosions in aquatic plants, which subsequently

leads to reduced oxygen levels, making water uninhabitable for aquatic organisms.

3.2 Determination of Phosphates in Water Samples

 The basis of this experiment is to add a reagent to the water samples; it reacts with any

phosphates present causing them to be visible as blue precipitates. A standard is created where

this reagent is mixed with a water with a known quantity of phosphate. This standard makes it

possible to estimate the concentrations in the samples being tested (Schumann).

The reagent is composed of the following:

● 50mL H2SO4 solution

● 5mL potassium antimonyl tartrate (K(SbO)C4H4O6·0.5H2O) solution

● 15ml ammonium paramolybdate (NH4)6Mo7O24·4H2O) solution

● 30mL ascorbic acid solution

 The standard solution is composed of distilled water and potassium phosphate dibasic

(KH2PO4), they are adequately diluted to make solutions with phosphorous concentrations of

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 10

10, 5, 2.5, 1, 0.5, 0.2, 0.1 and 0 ppm. 25 drops of each solution are placed in a well culture plate

and then 4 drops of the reagent are added to each well. As expected, there was a clear trend of

darker blue in the solutions of the highest concentrations, those with little phosphorus were

almost clear and the solution with no phosphorus was completely clear. Next four samples of

25 drops each are taken from each water sample (A, B, C and D) and placed in a 16 well culture

plate (taking four samples from each sample is designed to minimize random error) and four

drops of the reagent is added to each well.

 After the reagent was added, samples A and B remained quite clear and Samples D and

C turned a faint blue. D and C were not as dark as the standards of 10, 5, 2.5 or 1 ppm, but

appeared to be fall somewhere between 0.5 and 0.2 ppm. These results of this test indicate

that the samples taken from rivers that flowed through burned areas acquired measurably

higher levels of phosphorus than those that were not exposed to fire debris.

Map 1: The burned region of the Pacheco Canyon fire. The shading represents
progression over time. Sample locations A, B, C, and D are also labeled.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 11
 There are certain sources of error

associated with this experiment, an

important one being that this test was not

performed until several weeks after the

water samples were collected. It is possible

that the prolonged storage in containers

could have changed the water chemistry.

However, all the samples were stored

identically, so any change would have

affected them all equally. Another source of

error was that the comparison of the water

colors was purely observational. This was

somewhat accounted for by having two

different people unfamiliar with the

experiment examine the samples (their

observation correlated with those expressed

previously). However, this subjectivity could

further be improved upon by taking pictures

of the standard and samples and using

software to more accurately compare the

colors.

 However, taking all the errors into account, it can still be reasonably asserted that there

was certainly a difference in the phosphorus levels between the samples, with those that were

taken downstream of the burned region having measurably higher amounts. This correlates

with our predictions. These results are of further interest because these samples were not

taken until 3.5 months after the fire and the fact that the effects of the fire are both visible (in

the cloudiness of the water) and measurable (in the phosphorus levels) is indicative of the long-

term environmental impacts of forest fires.

Picture 2The four water samples taken from various
locations upstream and downstream of the Pacheco
Canyon fire. Starting at upper left and moving
clockwise, they came from the Rio Capulin (C), the
upper Nambe River (A, from Puerto Nambe), the upper
Nambe (B, from Nambe Lake), and the lower Nambe
(D).

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 12

3.3 Observation of the Landscape

 There was further observation

performed at the locations the

samples were taken from. Picture 3

shows the location that Sample A was

taken from. The water is very clear and

there does not appear to be evidence

of any serious erosion. However, the

snow cover does make it difficult to

determine the erosion levels. Picture 4

was shot at the location Sample D was

taken from. It is clear from the image

that the water is much cloudier than

that of the Upper Nambe. Another

major difference is the apparent

erosion: the banks of the river appear

washed out and the the accumulation

of broken branches and other debris

indicate that flooding has occurred.

Picture 3: The upper Nambe River, the location where
Sample A was taken.

Picture 4: The lower Nambe River, the location where
Sample D was obtained.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 13

4.0 Model

 The model was constructed in Netlogo. Various elements of the code are described in

the following.

4.1 Fire

 The fire is based on a cellular automata/empirical modeling method. A cellular automata

model is characterized by a series of local interactions between cells, based on a global set of

transition rules, on a latticed, 2 dimensional grid (Bodroži and Stipani). This model makes use of

Moore's neighborhood (the eight neighbors that touch a 'cell' or a 'patch) and simulates the

spread of fire from one patch to another every time step. The model is more empirical or

statistical than physical. This means that the rules governing the spread of fire are based on

acknowledged probable fire behavior and a simple energy balance rather than a theoretical

model which would be based on mathematically established physical principles. A physical

model would have the advantage of being able to process a larger range of input variables and

might be considered to be more accurate. An empirical model, for our purposes, has the

advantage of flexibility and a simpler design process that is based on qualitative research.

 The fire spreading model is based on five primary variables; fuel, moisture, elevation,

wind-speed and wind-direction. Every patch in the program has a value for fire, fuel, moisture

and elevation. All of these values fall upon a sliding scale. Fuel is necessary for a fire value to

exist in a patch, the higher the fuel value, the larger the fire value becomes, but at the

beginning of each timestep the fuel is depleted based on the fire value. A value for moisture

also is subtracted from the fire value, representing the ease with which dryer materials are

burned. Moisture and fuel do not determine which patch the fire spreads to, that is done based

on wind-direction, wind-speed and elevation. Global variables determines the wind-direction

and wind-speed. At the beginning of each timestep, every patch with a fire value larger than

zero examines its eight neighbors. It selects the one with lowest value for the number:

 random((abs(pdirection - wind-direction)* wind-speed) - elevation)

 Essentially, the patch most likely to be chosen is the one that has the heading (relative

to the original patch) that is closest to that of the wind and that has the highest elevation. The

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 14
selected patch ignites. The weight of the wind-direction in this equation is dictated by the value

for wind-speed. This means that as the wind-speed increases, the fire is more likely to spread in

the direction of the wind and when speed is very low, the fire is much more influenced by the

elevation, burning uphill.

Here are examples of the fire model at its simplest, the pink square at (0,0) represents

the starting point of the fire and the orange arrow points in the direction of the wind. Green

patches still have fuel, black have neither fuel nor fire and red have some level of fire, brighter

being higher. Moving clockwise, the images have: fuel only, wind and fuel, elevation and fuel.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 15
In addition to fire spread, the model also keeps track of the fire's intensity, based on the

intensity equation:

I = Hwr

H, heat yield is calculated as the ratio of fuel to moisture in every patch. w, weight is

determined by keeping track of the total number of patches burned. r, is found by dividing the

total area burned by the time since the fire started.

4.2 Landscape Generation and GIS

We used a randomized, procedural generation algorithm to create the test landscapes. The

basic rules for the model are described here. First, all patches are set to either maximum or

minimum elevation. Then, patch elevation is diffused evenly. Following this, 'origin patches'

bring their neighbor's elevation level closer to their own height. Origin patches are picked

randomly according to the 'elevation-roughness' variable; it ranges from 0% to 100% of the

patches. In this model, 70% to 99% are used as default values for elevation-roughness. After

this, grass is added according to biome type, patch fuel amount, and soil health. Lakes are then

added to all patches below 1200 if altitude is set to lower or mountainous, or all patches below

5500 if upper are transformed into

water. Trees are added according to

tree density, if it is 95%, then 95% of

dry patches are assigned a tree.

Finally, rivers are made. Agents 'carve'

rivers by making one or three patches

in their path deeper and full of water,

then smooth the surrounding dry

land.

The biome types (Savanna,

which is seen to the left, Temperate,

Rainforest and Swamp) do not directly correspond to data for these land types. Instead, they

represent relative moisture and fuel levels. For example, the Savanna land type is the driest of

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 16
the four, followed by Temperate, Rainforest and Swamp. The Savanna land type also has the

lowest fuel levels of the four, designed to represent a primarily grass based biome. The

Rainforest and Temperate have high fuel levels, representing a high density of trees.

In the Netlogo model, GIS data can be used to create a landscape. This data must come

in the form of a grayscale heightmap. A heightmap represents elevation data in an image file by

assigning low elevation values to a certain range of colors, and high elevations to another range

of colors. Our model uses dark grays to represent low altitudes, and light grays to represent

high altitudes. Any grayscale image is acceptable input. After the elevation data is parsed by the

patches, grass and trees are created. Patches below a user-defined elevation are turned into

water. The images below are examples of a GIS heightmap and the corresponding Netlogo

Model

4.3 Watershed Response

The watershed response in this model is represented by modeling the “debris levels” of

the bodies of water in the given landscape. This is done by making any patch that no longer has

fuel generate an agent. The agent travels as far downhill from its location as possible. If it

happens to end up in a river, the debris-level of that patch is raised by one. The total pollution

value for the model is calculated by summing the debris levels of all the river patches and

dividing by the total number of river patches. This gives the value which for average debris-level

per patch. In the model, the debris is represented by pink patches which appear after the fire

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 17
has ended. The aspect of the model is

designed to replicate the effects of a

rainstorm on a burned landscape by

calculating how much much debris could be

expected to be washed into a given body of

water after a fire.

4.5 Scale

The scale of the dynamically

generated landscape model’s scale is

roughly based on ‘1 patch = 1 square meter’

scale. This means that the default grid (128 x 128 patches) is very close to being 4 acres in total.

The timestep for measurement purposes is 1 tick = 1 minute. This is not an ideal timestep, but it

is a reasonable approximation for our purposes. The timestep would be more important if the

data being collected pertained to burn time, but the primary variables are area burned and

debris levels, both unaffected by time. This scale does not remain the same for GIS landscapes

4.6 Firefighters

On of the goals of this project was to examine the ways fire damage might be mitigated

with the protection of water resources in mind. One way fire damage is controlled is through

firefighting. While not currently implemented in the main model, we developed another

Netlogo model that is essentially a genetic algorithm designed to evolve the most successful

firefighting techniques. The way this works is that the model begins with an initial population of

agents with random values assigned for certain variables. The variables control things like the

distance from the fire that an agent begins to ‘dig’ a fireline (this is accomplished by removing

fuel from the patch), the length of the fireline and the direction the agent moves when it

becomes close in proximity to the fire. These variables are designed to do two things; primarily

to protect the agents from being burned by the fire and secondly to minimize the area burned

by the fire. These priorities are reflected by the way further generations or agents are selected.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 18
The process is as follows; when the entire fire has burned out, a new landscape is generated.

The agents are then evaluated and ranked in ‘fitness’ based on how successful they were in

avoiding the fire. The agents who have above average fitness then reproduce, passing their

variable values down to their children and then dying. The children, ideally, represent the most

successful parents and also have small amounts of random mutation, designed to promote

diversity.

5.0 Data and Results

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 19

The primary measurements taken in these tests were the percent of the landscape

burned and the average debris-level per patch. The graphs illustrate the correlation between

the two as well as the impact of different variables on them. The experiments were conducted

within Netlogo, using the Behaviorspace feature. The data processing was done in LibreOffice

Calc.

5.1 Netlogo Experiments

Correlation Between Area Burned and Average Debris Levels

This graph has data taken from numerous trials of different land types and at different

wind speeds (every land type, three repetitions of the windspeeds 0, 5, 10, 15, 20, 25 and 30).

The reason that the majority of the data points are clustered near 0,0 is due to the fact the

Swamp and Rainforest land types were included, and fire had very little effect on them. Overall,

this graph demonstrates a positive linear correlation between debris-level and area burned.

This is supported by the relatively high R2 value of 0.84. The indications of these results are

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 20
logical: the more land that is burned, the higher the average debris-levels will be in the rivers.

The assumption of correlation is maintained throughout the rest of the analysis.

This graph is based on the same trials as the previous graph. It consists of the average

percentage burned of the four landscape types, across a variety of windspeeds. It is clear from

this figure that the impact of burns in the Swamp and Tropical landscapes are fairly negligible

compared to Temperate and Savanna. Because of this, no more tests were performed on the

Swamp and Tropical land types. Instead the tests focused on the land types which had large

burn areas (and subsequently larger average debris-levels.)

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 21

This graph is based on the same dataset as the previous two. It illustrates the

differences in burn area between Savanna and Temperate land types. The downward trend of

the area burned with increasing windspeed is immediately clear. This is a consistent trend

throughout the experiments and will be discussed in detail at a later point. This figure also

shows that when windspeeds are 10 or below, the area of Temperate forest burned is

substantially higher than Savanna. However, Savanna passes Temperate at a windspeed of 15

and remains quite close from there on. This could be accounted for by the fact that the

Temperate land type has more fuel, but is wetter than the Savanna and has more rivers. The

higher fuel levels mean that the fires are more sustained and thus have more potential to

speed. The increased larger number of rivers means that in the Temperate land type, higher

windspeeds have a higher probability of putting out the fire along a river.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 22

This graph shows the values for area burned for trials (from the same dataset as the

previous graphs) separated by Wet and Dry. “Wet” landscapes are simply the landscape type

with its average soil-moisture increased by 20% and the average number of rivers increased by

30%. The trend of decreasing area with increasing wind remains and it is also evident that, for

the most part, dry landscapes have larger burn areas. This is what we would expect to see in a

real-world situation. Fire will spread more quickly and persistently when it can more easily

ignite fuel. When a fuel is very moist, or when fuel has been replaced by a body of the water, it

makes sense that a fire would have trouble burning large areas. One notable exception to this

trend are the values when the windspeed is 30. At this point there is no notable difference

between Wet and Dry. This could be an anomaly, or it could speak to the unilateral impact of

very high windspeeds.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 23

The data is this graph was obtained from a series of trials which tested Savanna and

Temperate land types over windspeeds 0 to 30. The graph depicts the average values for debris

levels per patch for each of the windspeeds. The trend, while not completely linear, does seem

to trend towards lower debris levels with higher windspeeds (related, presumably, to the fact

that previous graphs showed lower burned areas with higher windspeeds). The trend is

evidenced by the fact that the majority of the points before 15 fall above the Mean and the

majority of those after fall below. This trend is interesting and says a lot about the nature of our

model. Basically, the higher windspeeds produced much more focused (though more powerful)

fires. Very low windspeeds allow for more homogeneous fire spread, especially along the sides

of watersheds as fire unbiased by wind has a tendency to burn uphill. This leads to larger debris

concentrations for lower windspeeds.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 24

This graph is comprised of averaged data based on an experiment of repetitions of

Temperate land types with different elevation categories at a constant windspeed of 15. The

elevation profiles of Lower, Mountainous and Upper are assigned based both on the average

elevations of the terrain types and on the variation between areas within the landscape. This

means that Upper landscapes have higher elevation levels than Lower and they also have more

variation, with lower corresponding to a flatter, prairie like landscape and Upper to high

mountain ranges. Mountainous is an average of the two.

The results again show the correlation between area burned and debris levels. They also

show a clear correlation between the elevation types and the area burned and a slightly less

dramatic correlation between the elevation types and the debris levels. The Lower elevation

type had less burn area and lower average debris. The next highest was mountainous, although

the debris levels were close to that of Lower. The highest values were found in the Upper

elevation type and they were substantially higher than the others.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 25

This graph consists of data collected from numerous repetition of Temperate land type

at a windspeed of 15 over various ‘Tree Density’ levels. The trend again shows the correlation

between debris level and area burned. Additionally, it is clear that there is a relationship

between the tree density and the debris levels and area burned. The varying density levels

essentially refer to the evenness with which trees are spread across the landscape. The value

assigned to Tree Density reflects the probability of a given patch receiving a full load associated

with a tree (much larger than the value for grass). These results make sense because it is

expected that a fire with access to more fuel would burn more area, and as previously

demonstrated, more burned area means that there will be high debris levels.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 26

This image is the Netlogo processed elevation data for the Santa Fe National Forest,

focusing on the area where the Pacheco Canyon fire burned. The burned region represents a

test exploring the correlation of our model to an actual fire. The starting point (signified by an

orange ‘x’) is close to the starting point of the fire. The progression map from the actual fire is

shown below. The characteristics of the Pacheco fire were that it started in the Nambe river

watershed, initially spread east, uphill towards Santa Fe Baldy and then North, uphill along the

side of the Nambe drainage. Our model by no means produced a perfect replication od the

Pacheco fire. The fire in our model grew larger and did not stay within exactly the same

drainages as the real on. However, considering that we did not account for wind conditions and

the fuel approximation was very rough, our model demonstrated striking similarities. The fire

was ignited and began climbing the sides of the watershed, at the same time burning quickly

uphill towards Santa Fe Baldy. The fire was stopped at points of sharp downhill slope and

burned quickly uphill, slowing as it approached the divide. This model did not include bodies of

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 27
water, but it is evident based on where the fire burned that large amounts of debris would be

expected in the Nambe and Capulin rivers, the rivers our water samples were taken from.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 28
6.0 Conclusions

The results of these experiments point to several important trends, which both

comment upon the validity and usefulness of the model and provide a new perspective on the

subject.

6.1 Improvements

As an empirical model attempting to represent a complex environment, there are

naturally many simplifications. We attempted to isolate variables important to our question,

the primary variables explored were: wind, slope, fuel and moisture. Improvement along the

lines of these variables include the following. The use of GIS data for fuel and moisture profiles

could help standard the fuel assumptions made in the model and help bring them into the real

world. At this stage, the model has a direct correspondence to elevations, but fuel and moisture

are estimated and standardized only relative to each other. Also, method of programming in or

otherwise accounting for various weather patterns could help with both wind variables and

moisture. Additionally, if we wish to establish a more predictive model, it will be necessary to

standardize the scale and timestep.

6.2 In Summary

Despite the simplifications of of this model, we were able to gather interesting and

useful information.

For example, some of the most interesting results have to do with the impact that high

winds have on forest fires and the areas that are burned. Based on trials and observations from

our model, we came to the conclusion that higher wind speeds often result in a smaller area

burned, due to focused fire, heavily influenced by the wind. However, the high windspeeds did

create fires that were a lot more persistent, for example they could pass through very low fuel

areas without going out, where fires with low windspeeds would be stopped. This points to the

fact that a constant windspeed could be a very useful factor in predicting the the direction and

speed of the fire. Wind has the power to dramatically changing the direction of the fire. In some

cases, the high winds forced the fire against natural fire lines, such as rivers or canyons and

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 29
helped to extinguish the fire relatively quickly. Although this would be very negative if, for

example, the fire was being forced towards a town. In our model, the wind direction remained

fairly constant, but in a setting where the this was not the case, this could cause to a highly

unpredictable and dangerous fire.

Another important conclusion of this project is the impact that various elevation profiles

can have on both fire spread and post fire debris. The experiments demonstrated that fires

burning in mountainous regions had great potential to affect water resources. This is something

that has been observed in landscape studies in New Mexico (Veenhuis). The results pointing to

this in our model were partially due to the fact that fires do best when they are burning up

steeper slopes, and therefore are likely to burn more area. In the real world the impact of this

fires on water resources in areas of uniform elevation is magnified due to increased erosion

potential of steeper slopes (which our model did not account for).

The experiments conducted within the GIS terrains, particularly where the Pacheco

Canyon fire burned, showed that would model has some amount of value as predictive tool, at

least as far as behavior with respect to slopes and general fuel profiles.

Currently the firefighter portion of the project has not been completed. There are some

results which have illustrated the value of fire lines as a firefighting technique. More than

anything, the current firefighter program illustrates the principle that single, unconnected,

uninformed firefighters are highly disadvantaged. It has demonstrated the importance not only

of global communication between the firefighters, but of a global appreciation of the behavior

of the entire fire.

The results from these experiments are potentially important to firefighters as well as

humans who live near or depend on water resources that pass through fire zones. This type of

information allows for predictions about the movement and severity of forest fires as well as

the expected post-fire watershed response.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 30
7.0 Appendix

Acknowledgments

We would to thank our parents for their support, our teachers Jocelyne Comstock and Jeff

Mathis, and Stephen Guerin for his advice pertaining to fire models and GIS data.

Bibliography

Ainsworth, Jack, and Troy A. Doss. "Natural History of Fire & Flood Cycles." Natural History of

Fire and Flood Cycles. University of California, Santa Barbara, 18 Aug. 1995. Web. 10 Mar. 2012.

<http://www.coastal.ca.gov/fire/ucsbfire.html>.

Bodroži, Ljiljana, and Darko Stipani. "Forest Fires Spread Modeling Using Cellular Automata

Approach." Web.

<http://marjan.fesb.hr/~ljiljana/radovi/1.6.03.Forest%20fires%20spread%20modeling%20using

%20cellular%20automata.pdf>.

Schumann, Barbara. "Student Activity: Determination of Phosphates in Natural Waters;." The

Woodrow Wilson National Fellowship Foundation. Web. Jan. 2012.

<http://www.woodrow.org/teachers/chemistry/1989/43phosphates.html>.

"Fire Behavior." Fire Fundamentals. Tropical Savannas CRC & Bushfire CRC, 2012. Web. Jan.

2012.

<http://learnline.cdu.edu.au/units/sbi263/fundamentals/behaviour.html>.

Meixner, Tom, and Pete Wohlgemuth. "Wildfire Impacts on Water Quality." Southwest

Hydrology (2004): 24-25. Web. 10 Oct. 2011.

<http://www.swhydro.arizona.edu/archive/V3_N5/feature7.pdf>.

The Impact of Forest Fires on Water Resources
New Mexico Supercomputing Challenge Final Report 31
Neary, Daniel G., Kevin C. Ryan, and Leonard F. DeBano. Wildland Fire in Ecosystems: Effects of

Fire on Soil and Water. 2008. Web. Oct. 2011.

"Pacheco Fire." InciWeb: Incident Information System. 23 July 2011. Web. 20 Nov. 2011.

<http://www.inciweb.org/incident/2344/>.

Veenhuis, Jack E., and Philip R. Bowman. Effects of Wildfire on the Hydrology of Frijoles and

Capulin Canyons in and near Bandelier National Monument, New Mexico. USGS, Nov. 2002.

Web. 24 Mar. 2012.

“Wildfires: Dry, Hot, and Windy.” National Geographic. Web. 29 Mar. 2012

<http :// environment . nationalgeographic . com / environment / natural - disasters / wildfires / >.

http://environment.nationalgeographic.com/environment/natural-disasters/wildfires/
http://environment.nationalgeographic.com/environment/natural-disasters/wildfires/
http://environment.nationalgeographic.com/environment/natural-disasters/wildfires/
http://environment.nationalgeographic.com/environment/natural-disasters/wildfires/
http://environment.nationalgeographic.com/environment/natural-disasters/wildfires/
http://environment.nationalgeographic.com/environment/natural-disasters/wildfires/
http://environment.nationalgeographic.com/environment/natural-disasters/wildfires/
http://environment.nationalgeographic.com/environment/natural-disasters/wildfires/
http://environment.nationalgeographic.com/environment/natural-disasters/wildfires/
http://environment.nationalgeographic.com/environment/natural-disasters/wildfires/
http://environment.nationalgeographic.com/environment/natural-disasters/wildfires/
http://environment.nationalgeographic.com/environment/natural-disasters/wildfires/
http://environment.nationalgeographic.com/environment/natural-disasters/wildfires/

Language Acquisition in Computers

Supercomputing Challenge Final Report
April 2012

Team #36
Desert Academy

Team Members
Megan Belzner
Sean Colin-Ellerin

Teachers
Jocelyne Comstock
Jeff Mathis

Mentor
Jorge Roman

Executive Summary

This project explores the nature of language acquisition in computers, guided by techniques

similar to those used in children. While existing natural language processing methods are

limited in scope and understanding, our system aims to gain an understanding of language

from first principles and hence minimal initial input.

The first portion of our system is focused on understanding the morphology, or word

structure, of language using bigrams which are two-letter sequences within words. The

program was developed first in C++, and then translated into Java to take advantage of

the ability to use non-standard characters. We use frequency distributions and differences

between them to define and distinguish languages. English and French texts were analyzed

to determine a difference threshold of 55 before the texts are considered to be in different

languages. The program was also tested with Spanish texts and found to work with the

same threshold, and the frequency distributions for the individual languages were analyzed.

The second portion of our system focuses on gaining an understanding of syntax, or

sentence structure, of a language using a recursive method. The program uses one of two

possible methods to analyze given sentences based on either sentence patterns or surrounding

words. Both methods have been implemented in C++. Using a minimum of initial input,

the program is able to understand the structure of simple sentences and learn new words.

In addition, we have provided some suggestions regarding future work and potential

extensions of the existing program. We have described how the program might currently

analyze certain sentence constructs along with how the program could be edited to provide

better understanding. We have also made suggestions regarding how to implement a com-

putationally intuitive understanding of semantics, or the meanings of words in a language.

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

Contents

1 Introduction 2
1.1 History . 2

1.1.1 Statistical Parsers . 3
1.1.2 Other NLP Programs . 4

1.2 Common Language Properties . 5
1.2.1 Bigrams . 5
1.2.2 Recursion . 6

1.3 Linguistic Interpretation . 7
1.4 Project Definition . 8

2 Morphology 10
2.1 Algorithm . 10
2.2 Limitations . 12
2.3 Results . 12

3 Syntax 16
3.1 Algorithm . 16
3.2 Limitations . 18
3.3 Results . 19

4 Analysis 22
4.1 Comparison to Existing Programs . 22

5 Extension 24
5.1 Other Sentence Structures . 24
5.2 Semantics . 26

6 Conclusion 30

7 Acknowledgements 31

A Sample Texts 34

B Morphology Code 35

C Syntax Code 37

Page 1 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

1 Introduction

Natural language processing is a wide and varied subfield of artificial intelligence. The

question of how best to give a computer an intuitive understanding of language is one with

many possible answers, which nonetheless has not yet been answered satisfactorily. Most

existing programs work only within a limited scope, and in most cases it cannot realistically

be said that the computer actually understands the language in question.

This project seeks to give a computer a truly intuitive understanding of a given language,

by developing methods which allow the computer to learn the language with a minimum of

outside input, on its own terms. We have developed methods to teach the computer both

the morphology and the syntax of a language, and have provided some suggestions regarding

language acquisition at the semantic level.

1.1 History

The idea of natural language processing originates from Alan Turing, a British computer

scientist, who formulated a hypothetical test, known as the “Turing Test”. The “Turing

Test” proposes that the question “Can machines think?” can be answered if a computer

is indistinguishable from a human in all facets of thought, such as conversation; object

identification based on given properties; and so forth [1]. After Turing’s proposition, many

attempts have been made to create natural language processing software, particularly using

sound recognition, which is currently used in cell-phones, most proficiently in the iPhone

4S Siri system. However, most of these programs do not have high-level semantic abilities,

rather they have a very limited set of operations, for which keywords are assigned. For

example, the Siri system can send an email or text message. When told to send an email

or text message, the software uses these keywords to open a blank e-mail or text message

and when told what is to be written in the e-mail or text message, there is no semantic

Page 2 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

understanding of the message, simply a transcription of the words using voice recognition

[2]. Similarly, there is a lot of software, such as LingPipe, that is able to determine the origin

and basic ‘significance’ of a term or sentence by searching the term(s) on a database for other

uses of the term(s). These programs do not, however, gain a semantic understanding of the

term(s), rather they simply collect patterns of information with association to the term(s)

[3].

1.1.1 Statistical Parsers

There have also been some more technical, less commercially efficacious attempts at natural

language processing, such as statistical language parsers, which have been intricately devel-

oped by many educational institutions. Parsers are a set of algorithms that determine the

parts of speech of the words in a given sentence. Current parsers use a set of human-parsed

sentences that creates a probability distribution, which is then used as a statistical model for

parsing other sentences. Stanford University and the University of California Berkeley use

probabilistic context-free grammars (PCFG) statistical parsers, which are the most accurate

statistical parsers currently used, with 86.36% and 88% accuracy, respectively [4] [5]. The

different parts of speech are separated as in Figure 1.

In Figure 1, NN = noun, NP = noun phrase, S = subject, VP = verb phrase, and the

other symbols represent more specific parts of speech. One can see that the parser splits the

sentence into three parts: the subject noun phrase, the verb phrase, and the noun phrase.

Each of these parts is then split into more parts and those parts into parts, finally arriving

at individual qualifications for each word. The assignment of a given part of speech for a

word is determined by tentatively allocating the part of speech that is most probable for

that word, which is then tested within its phrase (i.e. subject noun phrase, or verb phrase,

etc.), and if the probability remains high then that part of speech is set for the word. These

Page 3 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

Figure 1: Statistical parser tree [4]

parsers are called context-free because the parse of a word is not affected by the other words

in the sentence other than those in its phrase, while the less accurate parsers obtain an

overall probability for a sentence and adjust their parsing accordingly [6].

1.1.2 Other NLP Programs

In addition to statistical parsers, which only determine the syntax of a sentence, some ele-

mentary programs have been written for evaluating the semantics of a given body of text.

There is a system called FRUMP that organises news stories by finding key words in an

article that match a set of scripts and then assigns the article to a certain category, in

Page 4 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

which it is grouped with other articles of similar content. SCISOR summarizes a given news

article by analyzing the events, utilizing three different sets of knowledge: semantic knowl-

edge, abstract knowledge, and event knowledge. As the program sifts through the body

of text, certain words trigger different pieces of knowledge, which are compiled to gain the

best understanding of that word or sequence of words. The resultant meanings can then be

organized and rewritten using similar meanings, equally balanced among the three sets of

knowledge as the original piece of information. Similarly, TOPIC summarizes a given text

by distinguishing the nouns and noun phrases and then analyzing their meaning through a

“thesaurus-like ontological knowledge base”, after which the program uses these equivalent

meanings to rewrite the text [7].

1.2 Common Language Properties

Certain elements of language are commonly used both in natural language processing and the

general analysis of language. These properties include bigrams and recursion, two properties

which play a significant role in this project.

1.2.1 Bigrams

An n-gram is a sequence of n letters. The most commonly used forms of n-grams are

bigrams and trigrams because these offer a specific indication for a set of information, without

signifying extremely rare and complex aspects of the subject. A good example of this is the

use of bigrams in cryptography. A common method of decoding a message that has been

encoded using a keyword, like the Vigenere Cipher encryption, is to calculate the distance

in letters between two of the same bigrams in order to determine the length of the keyword,

and then the keyword itself [8]. If any n-grams are used, where n is greater than or equal

to 4 or even in some cases if n is equal to 3, then the number of same n-grams for a given

Page 5 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

message would be very rare and make determining the length of the keyword increasingly

difficult.

Similarly, in natural language processing, bigrams are used for word discrimination, which

is the understanding of an unknown word based upon bigram correspondence with a reference

list of known words. In addition, word bigrams are used in some lexical parsers, the Markov

Model for bag generation, and several text categorization tools [9].

1.2.2 Recursion

The principle of recursion is an essential aspect of human language, and is considered one

of the primary ways in which children learn a language. For a sentence with a particular

pattern, a word with a specific part of speech can be exchanged for another word of the same

part of speech, indicating that the two words have the same part of speech. For example,

given the sentence: “The boy wears a hat”, it can be determined that “the” and “a” are the

same part of speech by reconstructing the sentence as “A boy wears the hat”. In addition,

the word “boy” can be exchanged for the word “girl”, indicating that these are also the same

type of word, thereby expanding the lexicon of the child.

In addition, the words of a sentence can remain unchanged, while the pattern changes,

thereby introducing a new part of speech. If we have the sentence “The boy wears a hat”

or “A B C A B” if represented as a pattern of parts of speech, we can add a “D” part of

speech by creating a new sentence, “The boy wears a big hat” (A B C A D B). The child

ascertains that “big” must be a new part of speech because no words have previously been

placed between an “A” and a “B”. This method can be repeated for any new part of speech,

as well as embedded clauses such as “The boy, who is very funny, wears a big hat.”

Finally, recursion can be used to indicate the grammatical structures of a language. Let

us examine the following poem:

Page 6 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

When tweetle beetles fight,
it’s called

a tweetle beetle battle.

And when they
battle in a puddle,

it’s a tweetle
beetle puddle battle.

AND when tweetle beetles
battle with paddles in a puddle,

they call it a tweetle
beetle puddle paddle battle.

- Excerpt from Dr. Seuss’ Fox in Socks [10]

The author uses the recursive principle to indicate that “tweetle beetle” can be both a

noun and an adjective, and then repeats this demonstration with “puddle” and “paddle”.

Further, the correct placement of the new noun acting as an adjective is shown to be between

the old string of nouns acting as adjectives and the object noun. Conversely, the poem

illustrates that a noun acting as an adjective can be rewritten as a preposition and an added

clause, e.g “a tweetle beetle puddle battle” can be rephrased as “a tweetle beetle battle in a

puddle” [11]. Thus, the principle of recursion can allow a child to acquire new vocabulary,

new types of parts of speech, and new forms of grammar.

1.3 Linguistic Interpretation

There is a basic three-link chain in the structure of language. Phonetics is the most basic

structure, which is formed into meaning by units, known as words. Units are then arranged

syntactically to form sentences, which in turn forms a more extensive meaning, formally

called semantics [12].

It is fundamental in learning a language that a computer understand the connections in

Page 7 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

the phonetics-syntax-semantics chain, and the structure and computations of each, with the

exception of phonetics. Phonetics and their formulation can be disregarded because these

refer more greatly to the connections of the brain to external sounds, than the core structure

of language. In fact, the entire external world can be ignored, as there need not be an infer-

ence between external objects in their human sensory perception, and their representation

as language, formally known as pragmatics or in Chomskyan linguistics as E-language (Ex-

ternal Language). Instead, the relations between words and meaning, intricately augmented

by the semantics created by their syntactically accurate formed sentences, is the only form

of language necessary, denominated contrastingly as I-language (Internal Language) [12].

Noam Chomsky argues that I-Language is the only form of language that can be studied

scientifically because it represents the innate structure of language [7]. Language similar

to this form can be found in humans who are literate in a language, yet can not speak it.

Therefore, due to the increase in structure, the lack of external representation in natural

language processing may be more advantageous than one might think.

1.4 Project Definition

This project examines the nature of language acquisition in computers by implementing

techniques similar to those used by children to acquire language. We have focused primarily

on morphology and syntax, developing methods to allow a computer to gain knowledge of

these aspects of language. We have developed programs in both C++ and Java.

Regarding morphology, the program is able to analyze the word structure of given lan-

guages and distinguish between languages in different samples of text using bigram frequen-

cies, and we have examined the usefulness and limitations of this method in the context of

existing methods. Using this technique we have developed computationally understandable

definitions of English, French and Spanish morphologies. We have also described and par-

Page 8 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

tially implemented a novel technique for understanding the syntax of a language using a

minimum of initial input and recursive methods of learning both approximate meanings of

words and valid sentence structures. Finally, we provide suggestions for future work regard-

ing the further development of our methods for understanding syntax as well as potential

methods for gaining a rudimentary understanding of semantics.

Page 9 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

2 Morphology

To analyze the morphology of a given language, bigrams can be used to define and compare

languages. Since the frequency distribution of a set of bigrams is unique to a given language

(across a large enough sample text), this can be used as an accurate identifier of a language

with minimal effort.

2.1 Algorithm

The program was initially developed in C++ then translated to Java to take advantage

of non-standard characters, and is set up in two main portions. The first step involves

generating a table of frequency values from a file, and the second step is to compare the two

tables and determine the level of similarity.

To generate a frequency table, a two-dimensional numerical array is created from the set

of valid characters such that the array includes a space for every possible bigram, with the

initial value for each being set to zero. For each word from the input file, the program checks

each pair of letters, adding one to the corresponding position in the bigram frequency table.

Once the end of the file is reached, each frequency count is divided by the total number of

bigrams found times 100 to give a percentage frequency. This process is shown in Figure 2.

This produces an array similar to Table 1, which can be analyzed separately to examine

common and uncommon bigrams for a given language, or compared with another text’s table

to distinguish between languages as detailed below.

After the frequency tables are created for each file, the two must be compared to deter-

mine the level of similarity between the languages of the two files. This is done by finding

the absolute values of the differences between corresponding frequencies for the two files,

then finding the sum of these differences as seen in Figure 3.

This gives an approximate measure of how different the two files are in terms of the

Page 10 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

Figure 2: Learning morphology with bigrams

a b c . . .
a 0 0.204 0.509 . . .
b 0.080 0 0 . . .
c 0.298 0 0.269 . . .
...

...
...

...
. . .

Table 1: Sample of frequency array

frequency of given bigrams. As each language tends to have a unique frequency distribution,

a large net difference suggests a different language for each file while a smaller net difference

suggests the same language. The threshold dividing a determination of ‘same language’ or

‘different language’ was experimentally determined to be approximately 55.

Figure 3: Calculating morphology differences between sample texts

Page 11 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

2.2 Limitations

This method does have certain limitations, however. Since the program deals with bigrams

(though it can be easily made to use n-grams for any n greater than 1), single-letter words

are not taken into account. While this does not have a large overall effect, it produces some

inaccuracies in the analysis of frequencies for a given language.

A more significant limitation is the requirement that all “legal” characters be defined

before the program is run. Although it would be relatively straightforward to dynamically

determine the character set based on the input files, this creates issues where the character

sets for each file are not the same, making it difficult, if not impossible, to accurately compare

the two files. Even ignoring this, varying the number of characters may produce variations

in the threshold used to determine language similarity. The program is also effective only

for files of considerable length to allow for a large enough sample size.

2.3 Results

Figure 4: Distribution of English bigrams

Page 12 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

The program was run using a series of files in English, French and Spanish. Initial

frequency tables for analysis of individual languages were created using the EU Charter in

each respective language [13], producing the frequency distributions shown in Figures 4, 5,

and 6 for English, French, and Spanish, respectively.

Figure 5: Distribution of French bigrams

These frequency graphs show that each language has a handful of extremely common

bigrams (in addition to some which appear little or not at all). In English, this includes

“th” and “he” with percentage frequencies of 2.9 and 2.8, respectively, along with “on” and

“ti” also both above 2.5%. This data is slightly skewed by the text used, though “th” and

“he” are indeed the most common bigrams in English. A study conducted using a sample of

40,000 words [14] gave the two frequencies of 1.5 and 1.3, respectively, though the next most

common bigrams in the sample text are not as common in the English language as a whole

as their frequencies here would suggest. This is largely due to an inherent bias in the text,

as words such as “protection” or “responsibilities” appear frequently in the EU Charter.

French resulted in “es” and “on” as the most common bigrams, followed by “de” and

Page 13 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

Figure 6: Distribution of Spanish bigrams

“le”. In Spanish, the most common bigram by far was “de”, followed by “cl”, “en”, “er”,

and “es”. Again, however, these likely suffer from slight biases due to the nature of the text.

The comparison threshold was initially determined using a series of randomized Wikipedia

articles of considerable length in English and French. The same threshold was also used

to compare English and Spanish texts and French and Spanish texts with continued high

accuracy for texts of considerable length, showing that this method does not vary notably

with different languages. The outputs of these tests are shown in Table 2.

philosophy encyclopedia france (fr) capitalism (fr) jazz (es) nyc (es)
philosophy

encyclopedia 33.13
france (fr) 73.83 75.31

capitalism (fr) 73.94 79.62 30.15
jazz (es) 67.68 69.56 64.76 67.76
nyc (es) 71.76 73.42 66.41 70.46 28.95 . . .

Table 2: Sample of sum differences

Page 14 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

Finally, this method was tested with files of varying lengths. For the set of two English

texts which were tested with decreasing word counts, the point at which this method was

no longer accurate was between 400 and 200 words. For other files this is likely to vary,

and could be lessened with further fine-tuning of the threshold. At a certain point, however,

the difference values begin overlapping due to variation and bias from the words used in the

text, making accuracy impossible.

Page 15 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

3 Syntax

To analyze the syntax of a language, a “recursive learning” method is implemented using

C++. Since the program would ideally require an absolute minimum of initial information,

this method takes a small initial set of words and builds on this by alternately using known

words to learn new sentence structures and using known sentence structures to learn new

words as seen below.

{cat, man, has} → “The man has a cat” → “The x y a z” → “The man wore a hat” →

{cat, man, has, wore, hat}

3.1 Algorithm

There are two main elements to understanding the recursive learning system, namely un-

derstanding both how the information is represented and the methods used to analyze new

information.

The information this program gathers can be split into two pieces, information on the

words themselves and information on valid sentence structures. For words, the program

keeps track of the word itself and the word’s type. Only two specific types are defined in

the program, “noun” and “verb”, and the actual meaning of each is defined by context.

Any word which does not fit these definitions is defined relative to these definitions. For

sentences, the program keeps track of the number of words in a given sentence pattern and

the type of the word in each position (in an array). These structures are shown in Figure 7.

The methods used by the program to analyze new information can also be split into two

pieces. Both methods require that some information is already known about the sentence

in question, but are used in slightly different ways. The first method analyzes new words

based on the structure of the sentence, by selecting the most applicable of existing patterns

Page 16 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

Figure 7: Word and sentence pattern datatypes

based on correspondence with known information. The program keeps track of how many

“matches” there are between the sentence and the known pattern, taking the one with the

most matches (if greater than half the word count) and using it to set unknown word types.

This method is seen in Figure 8

Figure 8: Sentence structure method of learning

This method is particularly useful for learning new nouns and verbs, in situations where

other words in the sentence are primarily known grammatical particles. The other method

uses the surrounding words to define the type of any unknown words. The program notes the

types of the words before and after the unknown word, and the type of the unknown word

is then stated as “a<type of previous word> b<type of next word>”. For example, a word

with type “anoun bverb” would be one which tends to come after nouns and before verbs.

Page 17 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

This type could also be analyzed and modified to give further insight into other types of

words such as adjectives, as detailed in Section 5.1. The program can redefine known words

if new information is found on their positioning, using the new definition if it is shorter, and

thus more general, than the previous definition. This is seen in Figure 9.

This method is best used when most of the nouns and verbs in a sentence are known,

but other words exist which are not known. The program would be able to dynamically

select between the two methods based on what information is already known. As a rule, the

program would default to the first method initially as this is more likely to provide accurate

results.

Figure 9: Word-based method of learning

3.2 Limitations

With proper development this method could be used to learn many types of sentences.

However, it still has several limitations. Although it is sufficient for simpler grammatical

constructs, complicated words and patterns could cause confusion. In particular, words

which have multiple meanings with different parts of speech would confuse the program

Page 18 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

tremendously, and at present it also has no way of connecting related words (such as plural

or possessive forms of nouns).

In addition, this method requires carefully crafted training sentences. Although it can

work with a minimum of initial information unlike most existing systems, it still has to learn

the constructs somewhat sequentially and avoid having too many new concepts introduced

at once. This could be partially remedied by implementing a method by which the program

stores any sentences it does not yet have the tools to analyze to be recalled later, so that a

more general text could be used as training material.

3.3 Results

As a proof of concept for these methods, a series of three training sentences were input

and analyzed by the program to learn a handful of new words and concepts. Although the

program begins with far less information than many existing programs, it nonetheless needs

some initial input - in this case three words which will, together with “a” and “the”, make

up the initial sentence, as seen in Table 3.

Word Type
has verb
hat noun
man noun

Table 3: Initial program input

The first sentence input into the program is “the man has a hat,” which is analyzed

using the word-based second method. From here, two new words are learned - namely “a”

and “the” which are defined based on the surrounding words. The sentence pattern is also

catalogued, and the known information reads as in Table 4.

At present, although “the” must only appear before a noun, “a” is assumed to require a

Page 19 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

Word Type
has verb
hat noun
man noun
the bnoun
a averb bnoun

5 bnoun—noun—verb—averb bnoun—noun

Table 4: Program knowledge after run one

preceding verb. To correctly define “a”, the next sentence reads “a man has the hat.” While

using the same words, the two known grammatical particles are reversed. The program

redefines the word “a” with a more general definition (i.e. simply requires a succeeding noun),

however the definition of “the” remains the same as the program determines that replacing

the definition would add more constraints, which is counterproductive. The sentence pattern

is again catalogued, and the known information reads as in Table 5.

Word Type
has verb
hat noun
man noun
the bnoun
a bnoun

5 bnoun—noun—verb—averb bnoun—noun
5 bnoun—noun—verb—bnoun—noun

Table 5: Program knowledge after run two

Although the two existing sentence patterns are functionally identical, and the first should

actually be redefined as the second, both are kept to demonstrate the first method based on

sentence patterns. For this, the sentence “the dog ate a biscuit” is used, having the same

structure as existing sentences but a different set of nouns and verbs. Although some matches

exist with the first pattern, the redefinition of “a” results in only two matches. Instead, the

program finds this to be the same as the second sentence pattern, as the number of words

matches as do the types of the words “the” and “a”. Hence, the program defines the unknown

Page 20 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

words based on this pattern, resulting in the set of information shown in Table 6.

Word Type
has verb
hat noun
man noun
the bnoun
a bnoun

dog noun
ate verb

biscuit noun

5 bnoun—noun—verb—averb bnoun—noun
5 bnoun—noun—verb—bnoun—noun

Table 6: Program knowledge after run three

Page 21 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

4 Analysis

In this project we have developed methods for allowing a computer to understand and learn

both the morphology and the syntax of a language. Using novel techniques or applications,

we have designed and implemented these methods and tested their capabilities for learning

language.

Although the use of bigrams in language analysis is not a new idea, we have implemented

it in a novel way by working to develop it as a defining quality and learning mechanism for

natural language processing. The method proves very useful for understanding the mor-

phology of a language, though only to a point. It is extremely effective when using a large

enough sample text, but with smaller sample texts it is no longer able to accurately compare

languages. Hence, although it creates a computationally effective “definition” of a language,

its actual ability as a learning mechanism is limited. Used in tandem with other methods,

the bigram method could prove extremely powerful.

The recursive learning method implemented for gaining an understanding of syntax proves

very useful and has great potential to be developed further. Both of its submethods work

with high accuracy for simple sentences, and hence it is able to develop a growing model of

sentence construction. Even more particularly, it is able to do this with a very small amount

of initial input and with methods which could be applied to many types of languages.

4.1 Comparison to Existing Programs

The use of bigrams to understand and analyze different parts of a given language has been

studied and implemented substantially. For example, there are programs that calculate

bigram frequencies to evaluate a language’s morphology. However, unlike our program,

none to date have utilized the differences in bigram frequencies between two languages to

distinguish one language from the next.

Page 22 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

The system in the program that was used for determining the parts of speech in a sentence

has rarely been attempted, and when it has been used, only partially and in conjunction

with other methods. Most natural language processing programs have been designed to be

as the efficient and effective as possible. As a result, many use large banks of initial data,

which the program then analyzes and uses for subsequent input. As discussed previously, the

most common and successful programs of this sort are statistical parsers. On the contrary,

our program uses the recursive principle to acquire new vocabulary and forms of syntax for

a given language, provided only a very small initial set of data. In practice, our model only

required one sentence with verb and noun indicated to determine the parts of speech of all

other words, although not denoting them in linguistic terms (article, preposition, etc.), as

well as learn new words and, in theory, to learn new sentence patterns. Despite the extensive

power of the recursive method, it has rarely been used in the history of natural language

processing. The results of our program illustrate the potential abilities of the recursive

method that have not been seen previously.

Page 23 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

5 Extension

The program as it stands now can learn and understand a range of language elements,

including morphology and simple sentence patterns. However, there is still significant room

for further exploration both by developing the techniques for learning syntax to allow for a

more complete range of sentence patterns, and by developing methods for a computational

understanding of semantics.

5.1 Other Sentence Structures

In addition to existing sentence structures and constructs, the syntax program can learn

other common constructs. Although some may be understandable at present, others may

require some additions to the program to fully understand. Below are some examples of

other simple sentence constructs and how the program would interpret them.

“The man has a blue hat.”

Here, the only unknown word with present knowledge is “blue”. The program at present

would interpret it using the word-context method, resulting in a type of “abnoun bnoun”.

Continuing in this manner would quickly lead to complications, however, so the program

could be extended to understand words based on the form of types which are not nouns or

verbs. The word directly before blue has the type “bnoun”, so “blue” would be interpreted

in this manner as a noun, resulting in two nouns in a row. The program could additionally

be edited to interpret two like words in a row as a “noun phrase” or “verb phrase”, which

would differentiate adjectives from nouns and adverbs from verbs in a way more intuitive to

the computer.

“The hat is blue.”

This sentence presents a different use of an adjective effectively in the place of a noun.

Assuming “is” had been previously learned as a verb, this sentence would be more-or-less

Page 24 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

readily understandable as “blue” is still interpreted as related to nouns. This introduces

another common sentence construct as well, namely that some nouns can appear directly

after verbs without a “bnoun” word in between. Here, it may become worthwhile to add

some indicator to new nouns about whether they can appear directly after a verb or not.

“The man has one hat.”

This sentence would introduce numerical words, which would be readily understandable

as “bnoun” words similar to “a” or “the”. This is sufficient and accurate for most cases,

though as the program expands into semantics this construct may require more specific

definition.

“The man has four hats.”

Here, the concept of plurality is introduced. This sentence would simply be another

example of the above sentence with regards to syntax alone—the word “hats” would just

be considered a new noun. However, this would likely be the most problematic concept

regarding semantics. Without an external concept of meaning or some other indication,

plurality would have to be learned simply by similarity at the word level. In many cases

this would be sufficient, such as “hats”, but some words do not follow standard plurality

rules such as “mice” versus “mouse”. Similar issues apply to verb tenses, though here the

rules are even less standardized. This issue could be at least partially remedied by creating

an artificial semblance of external understanding, though this would likely prove difficult as

well.

Many other sentence constructs are built from these sorts of basic patterns. For example,

another common sentence construct involves prepositions such as the sentence “the man

threw the hat in the trash”. Assuming prior knowledge of the nouns present, the program

could interpret “in” as verb-like, appearing between two noun phrases. This is, again, a

sufficient interpretation in most cases. A marker indicating what would effectively be two full

Page 25 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

constructs could be implemented as well. Embedded clauses would be interpreted similarly,

where the program would find the pattern of the outside clause and then the pattern of

the inside clause. An understanding of punctuation would make such sentences more easily

interpretable.

Despite some issues, the program can, currently or with only minor modifications, un-

derstand many common sentence constructs using the two main forms of learning and still

a fairly small amount of initial information. The program proves fairly versatile, though of

course not at the full level of human understanding.

5.2 Semantics

Semantics is the meanings of words or sentences, not only determined by direct definition,

but also by connotation and context. To gain a computational understanding of semantics in

a given language, without external representation for words, we have devised an associative

approach. For a noun, different adjectives and verbs can be used when employing the noun

in a sentence. The particular set of adjectives and verbs for that noun are representative of

the nature of the object. A second noun will have some shared verbs and adjectives, and

the degree to which this is true will indicate the similarities of the two objects. Conversely,

a verb would be understood based on the different objects associated with it, especially

the order of the nouns, i.e the subjects and objects used with that noun. From a set of

sentences, a threshold of similarity could be experimentally determined, which would result

in the categorization of the different nouns and verbs. The sequence of sentences could be

as follows:

1. The man wears the big hat.

2. The man throws the small hat.

Page 26 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

(“hat” is known to be something that can be “big”, “small”, “worn”, and “thrown”)

3. The man throws the big ball.

4. The man bounces the small ball.

(“ball” is like “hat” in having the ability to be “big” or “small” and can be “thrown”,

however it has not yet be found that it can be “worn”, and “hat” has not be shown to

be able to be “bounced”)

5. The man wears the big shoes.

6. The man throws the small shoes.

(“shoes” is then understood as the same type of object as “hat”)

7. The man uses the telephone.

8. The man answers the telephone.

Let us stop here because the fundamental logic of the sequence of sentences can now

be seen. Using these characteristics of nouns, a complex associative web would be formed,

where objects have meaning based on their relation to a set of other objects, which also

have meaning in relations to another set objects that the first may not. This web may be

represented visually by a venn diagram similar to the one in Figure 10.

For the verbs “wear”, “throw”, “bounce” etc., the program would interpret the above

sentences as suggesting that only “man” can conduct these actions, but cannot be the recip-

ient of these actions, while certain nouns can be the recipient of these actions. Further, it

should be noted that the training sentences do not require a strict order because a charac-

teristic of a particular noun would be stored until another noun was found to have the same

characteristic, and the two nouns would then share a link of the web. Similarly, a verb would

have tentative subjects and objects associated with it until more were found. Nevertheless,

Page 27 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

Figure 10: Sample semantic web

this method is limited by the requirement of large amounts of sentences in order to gain any

significant understanding of a given word.

To understand a concept such as time, which is essential for semantics and acknowledging

tenses, the program would require some initial specification, as well as using a time indicator

in all sentences referring to the past or present. It would start with the conditional parameter

that if a sentence has the word “yesterday”, “ago”, “tomorrow”, “later”, “past”, or “future”,

then a time different from the current moment is being referenced, and the verb used is similar

to another verb (the present form, which is the first form the program learns), but with a

slightly different morphology. Yet, a problem arises because “last” and “next” applied in

“last/next week” or “last/next month” cannot be used strictly as indicators of time, as they

can be used in other contexts, such as “He ate the last cookie in the jar” or “He is next

in line at the supermarket”. Thus, in certain cases, time would present a difficulty for the

semantic understanding of the program. The same applies for the use of negation, as in the

Page 28 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

sentence “The man is not big”, whereby “not”, “never”, “none”, “no longer”, and “no more”

would have to be explained prior and would result in the noun or verb being categorized as

different from other nouns and verbs with shared associative terms.

In addition, the associative method only allows for a definitional understanding of a given

word, which can be substantially limited due to the possible changes in the meaning of a

word as a result of its context. To allow a computer to have an understanding of context,

a system could be implemented to keep track of previously learned information. Cognitive

scientist Marvin Minsky suggests that a series of “frames” which represent generalized situ-

ations can be used to represent cognition computationally. These general frames could then

be modified with situation-specific variables [15]. This idea could prove useful in natural

language processing to give a computer an understanding of context. For example, if a series

of sentences read “John is playing soccer. He kicked the ball,” the program would be able to

select a general frame which it could use to keep track of relevant variables, such as “John”

being the subject of this action—hence linking this to the “he” in the next sentence.

Another issue that might arise is the issue of connotative meaning of words rather than

merely denotative meaning. This is also related to the idea of symbolism, another element of

language which can prove difficult for a computer to understand. Here, a method similar to

the associative approach above could be implemented after the initial denotative associations

were formed. Here, the training sentences would be ones using symbolism rather than literal

ones as above. If a word is suddenly associated with a word which is not within the proper

categorization, such as “a heart of stone,” it could be interpreted by the computer as a

connotative association. This would allow the computer to examine characteristics related

only to one or the other, hence gaining an understanding of the symbolic associations of

words.

Page 29 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

6 Conclusion

Using certain principles of language, we have designed a novel method by which a computer

can gain an intuitive understanding of language rather than simply an artificial understand-

ing. We have developed techniques by which a computer can learn and analyze the mor-

phology of any given language, and hence understand differences between two languages.

We have also developed a recursive learning system for understanding sentence patterns and

constructs, which uses a minimum of initial information. At present, the program can in-

terpret many basic sentences, and we have also provided possibilities and suggestions for

extending the capabilities of the program. This approach is unique compared to common

natural language processing systems because of this lack of need for significant initial in-

put and its recursive design, and could have great potential in the field of natural language

processing.

Page 30 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

7 Acknowledgements

We would like to thank our mentor, Jorge Roman, for his help in designing a practical

method for understanding the morphology of language, as well as his coding suggestions.

We would also like to thank our teachers, Jocelyne Comstock and Jeff Mathis, for their help.

Finally, we would like to thank all those involved with the Supercomputing Challenge for

their extensive work in organizing this program.

Page 31 of 39

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

References

[1] E. Reingold. The Turing Test. University of Toronto Department of Psychol-

ogy. Available at http://www.psych.utoronto.ca/users/reingold/courses/ai/

turing.html.

[2] Learn More About Siri. Apple Inc. Available at http://www.apple.com/iphone/

features/siri-faq.html.

[3] LingPipe. Alias-I. Available at http://alias-i.com/lingpipe/.

[4] D. Klein and C.D. Manning. Accurate Unlexicalized Parsing. In: Proceedings of the 41st

Annual Meeting on Association for Computational Linguistics, Vol. 1 (2003), 423–430.

[5] M. Bansal and D. Klein. Simple, Accurate Parsing with an All-Fragments Grammar. In:

Proceedings of the 48th Annual Meeting on Association for Computational Linguistics

(2010).

[6] E. Charniak. Statistical Parsing with a Context-Free Grammar and Word Statistics.

In: Proceedings of the Fourteenth National Conference on Artificial Intelligence. AAAI

Press/MIT Press, Menlo Park, CA (1997), 598–603.

[7] C.M. Powell. From E-Language to I-Language: Foundations of a Pre-Processor for the

Construction Integration Model. Oxford Brookes University (2005).

[8] R. Morelli. The Vigenere Cipher. Trinity College Department of Computer Science.

Available at http://www.cs.trincoll.edu/~crypto/historical/vigenere.html.

[9] H.H. Chen and Y.S. Lee. Approximate N-Gram Markov Model Natural Language Gen-

eration. National Taiwan University Department of Computer Science and Information

Engineering (1994).

[10] Dr. Seuss. Fox in Socks. Available at http://ai.eecs.umich.edu/people/dreeves/

Fox-In-Socks.txt.

[11] M.H. Christiansen and N. Chater. Constituency and Recursion in Language. In: M.A.

Arbib. The Handbook of Brain Theory and Neural Networks. 2nd ed. MIT Press, Cam-

bridge, MA (2003), 267–271.

Page 32 of 39

http://www.psych.utoronto.ca/users/reingold/courses/ai/turing.html
http://www.psych.utoronto.ca/users/reingold/courses/ai/turing.html
http://www.apple.com/iphone/features/siri-faq.html
http://www.apple.com/iphone/features/siri-faq.html
http://alias-i.com/lingpipe/
http://www.cs.trincoll.edu/~crypto/historical/vigenere.html
http://ai.eecs.umich.edu/people/dreeves/Fox-In-Socks.txt
http://ai.eecs.umich.edu/people/dreeves/Fox-In-Socks.txt

Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

[12] B.C. Lust. Child Language: Acquisition and Growth. Cambridge University Press, Cam-

bridge, UK (2006).

[13] The Charter of Fundamental Rights of the European Union. European Parliament.

Available at http://www.europarl.europa.eu/charter/default_en.htm.

[14] Digraph Frequency. Cornell University Department of Mathematics. Available at http:

//www.math.cornell.edu/~mec/2003-2004/cryptography/subs/digraphs.html.

[15] M. Minsky. A Framework for Representing Knowledge. In: J. Haugeland, editor. Mind

Design. The MIT Press, Cambridge, MA (1981), 95–128.

Page 33 of 39

http://www.europarl.europa.eu/charter/default_en.htm
http://www.math.cornell.edu/~mec/2003-2004/cryptography/subs/digraphs.html
http://www.math.cornell.edu/~mec/2003-2004/cryptography/subs/digraphs.html

Duel of the Fuel

New Mexico Supercomputing Challenge

Final Report

Team #41

Edgewood Elementary

Team Members

Ethan Hintergardt

Chase Podzemny

Emily Robinson

Keith Stevens

Pete Talamante

Teacher/Sponsor

Carol Thompson

Jennifer Wiggins

Team Mentors

Wayne Bitner

Joaquin Roibal

1

Table of Contents

Executive summary…………………………………………………………………………………………….2

Introduction ……………………………………………………………………………………………………….3

Description……6

Results …….8

 Natural Attenuation………………………………………………………………………………..8

 Oxygen……………………………………………………………………………………………………9

 Lactate……………………………………………………………………………………………………9

Charcoal Filter………………………………………………………………………………………10

Main Model 21 150 oxygen…………………………………………………………………..10

Main Model 21 250 oxygen…………………………………………………………………..11

Main Model 21 500 oxygen…………………………………………………………………..11

Microbe Aggression Summary………………………………………………………………12

Main Model 21 200 Microbes……………………………………………………………….12

Conclusions………………………………………………………………………………………………………13

Recommendations……………………………………………………………………………………………13

Acknowledgments...…………………………………………………………………………………………14

Bibliography…………………………………………………………………………………………………….15

Appendix A (Code) ………………………………………………………………………………………….18

 Figure 1: Water Agents………….……………………………………………………………..18

 Figure 2: EDB Agents…..………………………………………………………………………..19

 Figure 3: Microbe Agents……………………………………………………………………..20

 Figure 4: Oxygen Agents………………………………………………………………………..21

 Figure 5: Setup……………………………………………………………………………………..22

 Figure 6: Runtime and Collisions………………………………………………………….23

2

Executive Summary

Our project was based on the Kirtland Air Force Base fuel spill and how microbial life

forms could assist in the clean-up. Our hope was that microbes would consume the

contaminate EDB (ethylene dibromide,) which is an anti-knocking additive that used to be in jet

fuel. The EDB leaked into the ground in the 50’s and 60’s, before it was discovered to be a

carcinogen. To test the clean-up we used StarLogo, an agent based program that allowed us to

simulate different scenarios, with various circumstances, and produced realistic results. We

focused our project only on EDB, at one test well. We did not consider the size of the plume,

the flow rate, or any other chemical. Our models represented a charcoal filter and additives

such as lactate or oxygen, but we also modeled using no additives at all. We researched lactate

and oxygen, making models with these two additives. We also tested if the clean up could be

done without any additives, which is called natural attenuation. We hypothesized that with the

additive lactate, the EDB would break down the fastest. We thought the EDB would break down

the slowest with no additives. For each model we timed how long it took for the EDB agents to

disappear. To make our model realistic, we decided that every clock cycle should be considered

a day. We used Microsoft Excel to make graphs of our results. We found that our hypothesis

was correct and that the lactate was most efficient and natural attenuation was the least

effective. To further develop our project after interims, based on the judges’ suggestion to

combine two of our models, we made a new model, pump and treat, so that we could learn

something interesting.

3

Introduction

The purpose of this project is to see which method would clean up EDB (ethylene

dibromide) at the Kirtland Air Force Base jet fuel spill most efficiently. The options we studied

were natural attenuation, a charcoal filter, and additives such as lactate and oxygen.

We chose this subject because it is a local problem, which threatens Albuquerque’s

drinking water supply. We had local resources to help us. We used the KAFB website

extensively for maps, data, and information. We were very fortunate to meet Mr. Wayne

Bitner, Chief of Environmental Restoration at KAFB, and discuss the spill in person. He helped us

to better understand the problems.

The problem’s significance to us is that Albuquerque’s water comes from the aquifer

that could be contaminated by the jet fuel, and most importantly, EDB, a known carcinogen.

Now, even though we don’t live in Albuquerque, our friends and relatives who live there will be

affected.

To prepare ourselves for this project, we researched microbes, aquifers, and fuel spills.

Here are the results of this research:

EDB and the Fuel Spill

The research showed that there have been a lot of oil spills all over the world and in

many cases contamination got in to the ground water. The one that leaked from Kirtland had

EDB (ethylene dibromide), which has not been legal in the USA for a long time. EDB was used in

the jet fuel as an anti-knocking substance. The jet fuel that spilt from Kirtland has not reached

Albuquerque's ground water supply yet. The Air Force has placed monitoring wells across the

city to monitor the spill.

The spill has leaked an estimated 8 million gallons of jet fuel in to the ground. It has

been leaking since the late 1950’s. Some people dislike what they are doing to try to clean it up.

Some people say that the drilling that they do is loud. From websites that I have looked at it

says that even a sniff of the EDB can be very harmful to your body. EDB can cause cancer and

other side defects that will harm your body. Some of the side defects are breathing difficulties,

skin itching and rashes, eye irritation and burning, and coughing and throat irritation.

4

The fuel has not reached the monitoring wells yet. They estimate that it is 500 feet below

ground. Kirtland Air force base says that they are willing to spend whatever it takes to clean it up. From

my research it says that the jet fuel is only 1.6 miles away from drinking water wells.

Aquifers

Do you ever wonder where your water comes from? They come from aquifers. We will

tell you what an aquifer is!

An aquifer is an area underground where water is. Aquifers can occur at various depths.

They can be 5 feet down, or 200 feet down. A lot of the time aquifers can have clean water. But

sometimes they do not. There are two different types of aquifers with clean or unclean water.

There are saturated and unsaturated aquifers. Saturated aquifers have clean water

usually and their atmospheric pressure is bigger than the water head. The definition of a water

table (which is like an aquifer) is that the water head pressure is the same as the atmospheric

pressure.

Unsaturated is when above the water table the gauge pressure is negative (absolute

pressure can’t be negative but gauge pressure can) and the water that doesn’t fully go into the

pores, goes into a suction (a suction is when water goes into a funnel.)

Many aquifers that are close to the surface get a lot of their water from the rain fall. The

ones that are underground mainly get a lot of their water from lakes that go deep downward.

Lots of desert areas such as New Mexico can have water resources near silicon and

sandstone. The underground water can also be in underground rivers as in underground caves.

This has a chance of happening near eroded silicon, which only makes a small percentage of the

Earth. Usually this can be like a kitchen sponge; it sucks saturated water into holes, which can

be used for water.

We depend on groundwater as much as we depend on air to live. Our fresh-water

aquifers (the ones that aren’t contaminated) can get water from salt-water. This could turn out

to be a serious problem. We cannot drink salt-water so if it (or other contaminates) gets into

our water supply, we can cause some serious damage. This can also be a big problem near the

ocean, where pumping aquifer water is excessive.

5

The aquifers that are close to the ground can be used for watering crops. A lot of the

aquifers for use of crops are near the surface and are fresh-water aquifers. Also, aquifer

depletion is a big concern.

When fresh-water aquifers are near the ocean there is salt-water that leaks into the

aquifer. However, salt-water is denser than fresh-water so the salt-water goes downward. So, it

makes it easier to get the fresh-water out but you can still have the chance of pumping up salt-

water. One of the largest underground aquifers is the Great Artisan Basin. This aquifer provides

a lot of water for Queensland and parts of South Africa. This aquifer is 1.7 million KM in area.

Microbes

 Have you ever wondered if there are living things inside your body other than cells or

dust mites? Well there is. There are microbes too!

Microbes are tiny organisms that can only be seen with a microscope. Some microbes

are even submicroscopic and can only be seen by special electron microscopes. Microbes have

the ability to live in extremely harsh environments of intense heat or extreme cold. Some

microbes are referred to as germs or bacteria and can make you sick while others are essential

to all life. Surprisingly there are several billion more bacterial cells in the human body than

there are human cells. The bacterial form of microbes is vulnerable to Clorox wipes, hot water,

air freshener, and to most disinfectants.

Microbes are used for many things. Sometimes they are used at water treatment plants

to remove contaminates that cannot be left in water. Another use for microbes is to help clean

up fuel spills. The microbes will quite literally eat the fuel. Certain types of microbes can live

longer than a human! When microbes die, carnivorous microorganisms will come and eat the

dead ones. Other types of carnivorous microbes will eat living microbes.

Microbes can be separated into five different groups; Archae, Bacteria, Fungi, Protista,

and Viruses. Archae are bacteria look-alikes that are living fossils and are evidence of the very

first living things on earth. Bacteria are often dismissed as germs but some are very helpful. An

6

example of how Bacteria help us is they support the atmosphere or eat types of dangerous

garbage. Fungi can be the size of a grain of yeast to a 3 and a half mile wide mushroom and is

useful for decomposing waste. Protista is a plant-like algae that produces much of the oxygen

that we breathe. Viruses are unable to do much of anything on their own, but they will attack

host cells, wreak havoc, and cause diseases. From my research I have discovered that microbes

can be both helpful and unhelpful as well as being both essential for life and deadly enough to

cause disease or kill.

Description

Our project was chosen because it was a local problem that was threatening

Albuquerque’s water supply. We wanted to see which additive (lactate or oxygen) would do the

best job assisting microbes to clean up the EDB in the Kirtland Air Force Base jet fuel spill. We

researched KAFB for information about our project. We researched oil spills, microbes and

aquifers. We modeled EDB (Ethylene Dibromide) in the water table and how we could use

different ways to decrease the levels of EDB using several types of models like a charcoal filter,

and additives such as lactate, oxygen, and natural attenuation. For every model, we used data

from KAFB well number 106076. There are 360 µg/L EDB, and 60 µg/L oxygen at the site. We

are modeling one liter of water in our models, with the exception of our pumping models. We

focused our project only on EDB, at one test well. We did not consider the size of the plume,

the flow rate, or any other chemical. The materials we used were the programs StarLogo, Excel,

various search engines, poster boards, and Legos.

 Natural attenuation means letting nature do the clean up. In this model we used 360 EDB

agents, 100 microbe agents, and 60 oxygen agents. When the microbes collided with EDB, the

EDB agents disappeared and the microbes gained five energy. When the microbes have over

ten energy they hatch, creating more microbes. When the microbes collide with oxygen they

gained ten energy. Microbes died when they ran out of energy.

The oxygen model increased the number of oxygen agents from 60 to 180. Like every model, it

had 100 microbes. The oxygen assisted the microbes in cleaning up the EDB, because when the

oxygen agents collided with the microbe agents, the microbes gained energy and hatched, or

7

reproduced, so that there were more agents to consume the EDB. When the microbes collided

with the EDB, the EDB died. When the microbes ran out of energy, they died.

The lactate model had 250 lactate, 100 microbes, and no oxygen agents, because it was an

anaerobic model. When the lactate collided with the microbes, the microbes gained energy,

reproduced, and died.

The charcoal filter model is a pump and treat model where EDB-contaminated water is pumped

through a charcoal filter, cleaned, and then returned into the ground. In this model, there were

1370 agents total consisting of 1000 water agents, 360 EDB agents, and 10 microbe agents.

When the microbes collided with an EDB agent they consumed it but otherwise the EDB moved

with the water, by gravity, to the bottom of the pump and were pumped up. After that, the

EDB agents disappeared and the water was pumped back into the ground. Then they lost

energy. When the microbes collided with EDB, the EDB died.

The pump and treat model has two wells that pump oxygen into the ground on either side of a

charcoal filter that pumps the water. The microbes get an oxygen energy boost to help clean

up the EDB. The pump and treat model used water, filters, oxygen, and microbes and they all

work together to do the job. The pump and treat model has 3 sliders for different variables.

The first slider is for how much oxygen we put into each trial, the second slider has microbe

aggression, which is how vigorously microbes hunt EDB. Our purpose for this slider is to

calibrate the model. The last slider is for how much energy microbes need to reproduce. When

the microbes collide with EDB they gain one energy and when they collide with oxygen they

gain a random five energy which means they gain anywhere from one to five energy. We

manipulated the sliders to see which setting works best. While running this model, we found

that EDB agents were getting trapped on one side or the other, so we added another injection

well to improve the water flow.

8

Results

We ran each model 5-10 times. The results for the natural attenuation model were that

the EDB was never completely removed from the groundwater; we found out from this model

that natural attenuation was the slowest technique for this problem. On average, there were

30 EDB agents left after each trial. This is realistic because you will never remove all of the

contaminants from the ground completely. The results for the lactate model were that the EDB

disappeared in an average of five days. This sounds like a very short time, but we modeled the

amount of EDB in only one liter of water. We learned that lactate is anaerobic, which means

that it worked better without oxygen. The results for the oxygen model were that it took an

average of 11 days for EDB to be removed from one liter of groundwater. The charcoal filter

model took an average of 91 days for all of the EDB to be removed from the groundwater. The

results for the pump and treat model were an average of seven days for all the EDB to be

removed from the groundwater.

0

5

10

15

20

25

30

35

40

1 2 3 4 5

D

a

y

s

Trial Number

Natural Attenuation

9

0

2

4

6

8

10

12

1 2 3 4 5

D

a

y

s

Trial Number

Oxygen Model

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11

D

a

y

s

Trial Number

Lactate Results

10

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11

D

a

y

s

Trial Number

Main Model 21 150 Oxygen

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

D

a

y

s

Trial Number

Charcoal Filter Results

11

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

D

a

y

s

Trial Number

Main Model 21 500 Oxygen

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

D

a

y

s

Trial Number

Main Model 21 250 Oxygen

12

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

D

a

y

s

Trial Number

Main Model 21 200 Microbes

0

5

10

15

20

25

Aggression 0 Aggression 2 Aggression 4 Aggression 6 Aggression 8

D

a

y

s

Microbe Aggression Summary

13

Conclusion

 The conclusion for this project is that the hypothesis was correct because the lactate

took, on average, five days to be removed from the groundwater. The lactate idea would work

the best in anaerobic conditions. Although the lactate worked the quickest, there was a

problem. We learned from our mentor, Mr. Bitner, that lactate will only work in soil and not

groundwater, making it ineffective for our purposes. After Interims, based on the judge’s

suggestions, we created a model that combined the charcoal filter model and the oxygen model

to make a pump and treat model. This pump and treat model gave us results almost as good as

the lactate model’s results. We found that adding more than 250 oxygen agents did not

significantly improve our results. These results were unexpected. We found that adding a hunt

procedure to the microbes improved results, but increasing microbe aggression did not make a

significant difference.

 In all our research there is no hard evidence that microbes are able to break down EDB

in ground water. We think that pumping and filtering is going to be an important part of the

solution. Lactate is very encouraging in its ability to break down EDB in soil. More research

needs to be done on how it can be effective in ground water. Our sources at Kirtland Air Force

base report that the microbe species Dehalococcoides might degrade EDB over time.

Recommendations

 As for recommendations, there are so many ways to go with this project it would be

hard to list them all. We only looked at EDB, in one liter of water. We didn’t look at any other

chemical, any other amount of water, the way the water moved, etc. Our test well was initially

the highest concentration of EDB, but during the third quarter, it shifted from 360 µg/L to 180,

and a well 1/10 of a mile to the northeast changed to 370 µg/L EDB. If we were to continue

working on this project we might want to look at how EDB concentrations change over periods

of time. We could also investigate how the geology around the spill affects the fuel.

Unfortunately, after we had already gotten the results from our first models, we found

out that lactate wouldn’t work in groundwater. Although it wouldn’t work where we needed it

14

to, it does work in soil, so if we took the project any further, we could study how to move the

EDB into soil, where lactate could break it down. We would want to do this because the fastest

way of cleaning up EDB was done with lactate.

Acknowledgements

 Wayne Bitner, Chief of Restoration at KAFB

 Joaquin Roibal, Student at NM Tech

 The people at UNM from our fieldtrip

 Stefan Bocchino, Public Relations KAFB

 JP Gonzales, Santa Fe Institute, GUTS

 The Supercomputing Challenge: David Kratzer, Celia Einhorn, and Betsy Frederick for

organizing all of the great events we have attended this year.

 Our Parents: Bird Podzemny, Doug Podzemny, Pete Talamante, Laura Talamante, Dana

Mitchell, Charles Mitchell, Riley Robison, Angela Robinson for transportation and supporting

us.

 Our Teachers: Carol Thompson, Jennifer Wiggins, Samantha Eaton

 Our principal, Nicole Dray, for giving us time to attend activities away from school.

15

Bibliography

Actionbioscience. "Microbes: What They Do & How Antibiotics Change Them."
Actionbioscience. Actionbioscience, Jan. 2001. Web.
<http://www.actionbioscience.org/evolution/meade_callahan.html>.

Anonymous. "The Mariner Group -- Oil Spill History." The Mariner Group. Web. 15 Mar. 2012.
<http://www.marinergroup.com/oil-spill-history.htm>.

"Aquifer." Wikipedia. Wikimedia Foundation, 03 Nov. 2012. Web. 2011.
<http://en.wikipedia.org/wiki/Aquifer>.

ASTDR. "Toxic Substances Portal - Ethylene Dibromide." Toxic Substances Portal. ASTDR. Web.
<http://www.atsdr.cdc.gov/MMG/MMG.asp?id=1143&tid=251>.

"Aviation Fuel." Wikipedia. Wikimedia Foundation. Web.
<http://en.wikipedia.org/wiki/Aviation_fuel>.

"Bacteria." Wikipedia. Wikimedia Foundation, 03 Nov. 2012. Web.
<http://en.wikipedia.org/wiki/Bacteria>.

"Burn Pits - Public Health." Public Health Home. Web.
<http://www.publichealth.va.gov/exposures/burnpits/index.asp>.

"Decades-old Jet Fuel Spill Sparks Water Contamination Fears in South Bibb County." - Local &
State. 15 Aug. 2010. Web. <http://www.macon.com/2010/08/15/1229614/south-bibb-
residents-fear-contamination.html>.

"Decades-old Jet Fuel Spill Sparks Water Contamination Fears in South Bibb County." - Local &
State. Web. <http://www.macon.com/2010/08/15/1229614/south-bibb-residents-fear-
contamination.html>.

"Decades-old Jet Fuel Spill Sparks Water Contamination Fears in South Bibb County." - Local &
State. Web. <http://www.macon.com/2010/08/15/1229614/south-bibb-residents-fear-
contamination.html>.

"EGeo Services, Inc." EGeo Services, Inc. Web. 12 Mar. 2012.
<http://www.egeoservices.com/Technology.html>.

Fitzgerald, Matt. "The Lactic Acid Myths." Competitor.com. Competitor, 26 Jan. 2010. Web. 7
Dec. 2011. <http://running.competitor.com/2010/01/training/the-lactic-acid-
myths_7938>.

Garcia, Eddie. "It Could Take 2 Years to Clean up Jet Fuel Contamination." Kob.com. Kob, 19 Oct.
2011. Web. Oct. 2011. <http://www.kob.com/article/stories/s2336566.shtml>.

"Hot Topics:" Kirtland Jet Fuel Spill Seeps Into Neighborhood. Web. 2011.
<http://www.koat.com/news/27306599/detail.html>.

"Jet Fuel." Wikipedia. Wikimedia Foundation. Web. <http://en.wikipedia.org/wiki/Jet_fuel>.
"Killing Us Softly with EDB." Argyle Bartonville Communities Alliance. Web. 2011.

<http://abcalliance.org/?p=1581>.
Kirtland AFB. "Media Advisory: Kirtland Releases Quarterly Fuel Plume Data Results." Kirtland

AFB. Kirtland AFB, 10 Mar. 2011. Web.
<http://www.kirtland.af.mil/news/story.asp?id=123274506>.

"Kirtland Fuel Spill Ready for Cleanup." KRQE TV. Web. 6 Nov. 2010.
<http://www.krqe.com/dpp/news/Kirtland-fuel-spill-ready-for-cleanup>.

"The Mariner Group -- Oil Spill History." The Mariner Group. Web.
<http://www.marinergroup.com/oil-spill-history.htm>.

16

"Microbes." Web. <http://www.niaid.nih.gov/topics/microbes/pages/default.aspx>.
"The Origin, Evolution and Classification of Microbial Life." Online Textbook of Bacteriology.

Web. 12 Mar. 2012.
<http://textbookofbacteriology.net/themicrobialworld/origins.html>.

"Redirect Notice." Wikipedia. Wikipedia. Web.
<http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMicrobial
_corrosion>.

"Residents near Kirtland Believe Tap Water Is Contaminated." Web. 2011.
<http://www.kob.com/article/stories/S2237756.shtml>.

"Soil & Groundwater Remediation Project." Hanford Site. Usa.gov, 8 July 2011. Web. 28 Feb.
2012. <http://www.hanford.gov/page.cfm/SoilGroundwater>.

"Supplemental Content." National Center for Biotechnology Information. U.S. National Library
of Medicine, Jan. 2003. Web. <http://www.ncbi.nlm.nih.gov/pubmed/12502073>.

United States Environmental Protection Agency. "Ground Water Cleanup at Superfund Site."
EPA. Environmental Protection Agency, Dec. 1996. Web. Oct. 2011.
<http://www.epa.gov/superfund/health/conmedia/gwdocs/brochure.htm>.

USGS. "Groundwater Quality." Water Science for Schools. USGS. Web.
<http://ga.water.usgs.gov/edu/earthgwquality.html>.

USGS. "Pesticides in Groundwater." Pesticides in Groundwater. USGS. Web.
<http://ga.water.usgs.gov/edu/pesticidesgw.html>.

"Why Does Lactic Acid Build up in Muscles? And Why Does It Cause Soreness?: Scientific
American." Science News, Articles and Information. Scientific American, 23 Jan. 2006.
Web. 8 Dec. 2011. <http://www.scientificamerican.com/article.cfm?id=why-does-lactic-
acid-buil>.

PDF Documents

http://www.kirtland.af.mil/shared/media/document/AFD-100510-060.pdf

http://www.epa.gov/tio/download/citizens/bioremediation.pdf

http://www.epa.gov/tio/download/citizens/mna.pdf

http://www.epa.gov/nrmrl/pubs/600r08107/600r08107.pdf

http://www.ecs.umass.edu/cee/reckhow/courses/697w/papers/Rob1.pdf

http://www.epa.gov/oust/cat/Section_8-Remediation_and_Treatment.pdf

http://www.kirtland.af.mil/shared/media/document/AFD-110930-094.pdf

http://www.epa.gov/ogwdw/pdfs/factsheets/soc/ethylene.pdf

http://www.kirtland.af.mil/shared/media/document/AFD-100510-060.pdf
http://www.epa.gov/tio/download/citizens/bioremediation.pdf
http://www.epa.gov/tio/download/citizens/mna.pdf
http://www.epa.gov/nrmrl/pubs/600r08107/600r08107.pdf
http://www.ecs.umass.edu/cee/reckhow/courses/697w/papers/Rob1.pdf
http://www.epa.gov/oust/cat/Section_8-Remediation_and_Treatment.pdf
http://www.kirtland.af.mil/shared/media/document/AFD-110930-094.pdf
http://www.epa.gov/ogwdw/pdfs/factsheets/soc/ethylene.pdf

17

http://lakeland.edu/AboutUs/MSDS/PDFs/543/Jet%20Fuel%20No%203%20%28All%20Brands%

29.pdf

http://www.kirtland.af.mil/shared/media/document/AFD-080731-037.pdf

http://water.usgs.gov/wrri/00grants/NMaquifers.pdf

http://www.google.com/url?q=http%3A%2F%2Finfo.ngwa.org%2Fgwol%2Fpdf%2F872944335.

PDF&sa=D&sntz=1&usg=AFQjCNEgkJqvtyyPEsiHHQhRaF8-SjqLjQ

http://www.kirtland.af.mil/shared/media/document/AFD-100510-060.pdf

http://www.epa.gov/nrmrl/pubs/540s02500/540S02500.pdf

Newspaper Articles

Albuquerque Journal, Tuesday October 4th, 2011. Pages A1 and A2.

Special thanks to abqjournal.com and Kirtland Air Force Base for the map of the oil spill that we

used all throughout the project!

http://lakeland.edu/AboutUs/MSDS/PDFs/543/Jet%20Fuel%20No%203%20%28All%20Brands%29.pdf
http://lakeland.edu/AboutUs/MSDS/PDFs/543/Jet%20Fuel%20No%203%20%28All%20Brands%29.pdf
http://www.kirtland.af.mil/shared/media/document/AFD-080731-037.pdf
http://water.usgs.gov/wrri/00grants/NMaquifers.pdf
http://www.google.com/url?q=http%3A%2F%2Finfo.ngwa.org%2Fgwol%2Fpdf%2F872944335.PDF&sa=D&sntz=1&usg=AFQjCNEgkJqvtyyPEsiHHQhRaF8-SjqLjQ
http://www.google.com/url?q=http%3A%2F%2Finfo.ngwa.org%2Fgwol%2Fpdf%2F872944335.PDF&sa=D&sntz=1&usg=AFQjCNEgkJqvtyyPEsiHHQhRaF8-SjqLjQ
http://www.kirtland.af.mil/shared/media/document/AFD-100510-060.pdf
http://www.epa.gov/nrmrl/pubs/540s02500/540S02500.pdf

Warehouse Layout and Picking Simulation

New Mexico

Supercomputing Challenge

Final Report

April 4, 2012

Team 64

Los Alamos High School

Team Members:
Sudeep Dasari

David Murphy

Colin Redman

Teachers:
Lee Goodwin

Mentors:
Elizabeth Cooper

Executive Summary:
This project explores what factors contribute to increased order picking time in a

specific warehouse layout. Warehouses are extremely complex and as a result an difficult

portion of the supply chain to model. Of all the processes that occur inside a warehouse order

picking is probably the most important as it accounts for 55% of all total costs. In order to

determine the biggest contributors to inefficiencies in the picking process we created a

simulation that can model the picking process in a warehouse. The simulation was an agent

based model written in the Java programming language and built with the MadKit platform.

Agents represented the various actors present in a warehouse, such as the pickers, conveyor

segment, and the warehouse itself. warehouse layout program was also created in order to

feed the simulation information related to the warehouses’ layout, and a database was used

to store item stock, incoming orders, and final results of the simulation. The simulation was

subsequently used to determine some interesting relationships between the warehouse layout

and the picking times for a pre-determined set of customer orders. The parameters changed

included the number of orders allowed to be processed at one time, whether or not the picker

was collecting multiple items on a picking route, how the items were distributed (sorted) on

the shelves, and after our results were analyzed it was found that there were many

parameters that had an influence on the picking time.

2

Problem Statement:
As e-commerce companies such as Amazon become the dominant way people

buy goods, increasing strain has been put on getting an order to a customer as quickly,

reliably, and efficiently as possible [2]. A critical part of this supply chain is the logistics of

the warehouse that these online companies use to store products until they are

purchased, picked, and shipped. Inarguably, the most important function in a warehouse

is the picking process, which accounts for 55% of operational expenses [1]. Since under-

performance in picking can lead to bad overall effectiveness and high operational costs,

it is imperative that a company’s warehouse is organized in such a way that it allows for

the most effective order picking possible [3].

The basic principle behind order picking is that a worker, called a “picker”,

receives an order and picks its components off of storage shelves, after which he or she

deposits the items in a tote which is placed on a conveyor belt. Figure 1 below

demonstrates linear order picking across a shelf.

Figure 1- Depicts a picker moving along a pick line to pick items x and y.

There are two basic implementations of order picking, zone and discrete order

picking. “In discrete order picking a single worker walks to pick all the items necessary

to fulfil a single customer order” (Eisenstein, 2006). Discrete order picking is

demonstrated in Figure 2. As you can see, a picker is moving throughout the warehouse

picking the various parts of an order before returning to a depot to return the fully picked

order. The picker then gets the next order and repeats the process.

Figure 2- Depicts discrete order picking implemented in such a way that the picker starts at the depot, picks items x,
y, and z, and then returns to the depot to get the next order.

In zone picking, each picker is assigned a zone and he or she picks all the items of a set of

orders that occur in his or her zone. Once all the items in a zone are picked, they are put on a

conveyor in units called totes, before being batched together into their separate orders and

sent to a shipping area [1], [3].Figure 3 shows a picker picking all the various items in an order

that fall in his row before depositing them on a conveyor.

Figure 3- Depicts a picker moving in his zone, picking items x, y, and z, and then depositing them on a conveyor.

4

While discrete order picking has many advantages, mainly reliability and simplicity, zone

picking is definitely the better organizational scheme in a warehouse due to significantly

decreased travel times on smaller orders [3]. Simply put, zone picking offers faster pick

times than discrete order picking, with the same reliability.

The most important thing to consider in order picking is the distance a picker

walks during each order, as this directly correlates with the amount of worker hours a

company must pay for [1],[3]. It is possible to cut the distance walked by configuring the

layout of a warehouse, and by improving the organization of the warehouse. Configuring

the layout of the facility is achieved by modifying the positions of the various conveyors,

depots, and shelves. Carefully sorting the items and picker distribution based on item

demand can help substantially increase the organization of the warehouse [3].

Problem Solution:
The goal of this project was to create a program that can accurately simulate the

picking process in a warehouse. We wanted to find out which factors would have a greater

impact on the picking times than others. We have identified several parameters within the

capability of our simulation which can be adjusted in behavior space to impact the overall

picking times for a set of orders in a specific warehouse layout. These parameters will be

more fully explained later in this document.

To summarize, the problem solution was implemented in Java in two distinct

applications. First, we developed a graphical layout program which we called the “Warehouse

Layout Manager” using Java in the Eclipse Integrated Development Environment (IDE). This

program was used to create the various warehouses for testing.

The simulation itself was also coded in Java and it utilized a framework called

MadKit[9], a multi-agent platform based on the Agent-Group-Role (AGR) philosophy. We also

up a SQL database (using HSQLDB) with tables of items and orders so that these could be

kept constant from run-to-run. The output of the Warehouse Layout Manager was saved as a

file that was read in by the simulator. The simulator can be run with any number of orders and

a set of items stored in the warehouse. The other parameters that can be varied from run-to-

run are the way the items are stored on the shelves, how they are sorted onto the shelves

and how the items are picked for an order. Although we can simulate discrete picking we

concentrated on zone picking for our results. However we could set whether or not the picker

fetched more than one item at a time while in the shelves, or if he just picked up one item at a

time and took it back to the tote. After the simulation was run we recorded the simulation

steps for completing all the orders in the set and the other parameters that were set for the

simulation run.

Warehouse Layout Manager:

The “Warehouse Layout Manager” is a program that is used to layout the various

components of a warehouse. It was implemented using Swing, Java’s primary Graphical User

Interface (GUI) toolkit, along with the Eclipse’s WindowBuilder plug-in. When starting a new

warehouse layout it starts with a dialog box to input the warehouse dimensions in grid units (a

6

grid unit is considered to be a 2' x 2' area in the warehouse). Once the dimensions were

entered the dialog box was replaced by a new window which contained a panel of three

buttons as well as a grid space where various warehouse components are added. The

components are the stop and start segments of a conveyor, conveyor segments (with a

flow direction), item stops (special conveyor segments where a tote is ejected for

picking), and shelf areas. The grids not filled with any of these objects were treated as

open areas for worker movement. More specific instructions on using the Warehouse

Layout Manager can be found in Appendix A. The save files utilized the unique T64 file

extension which was named after our team number. The layouts were saved in zipped

ArrayList objects utilizing the: java.io.FileOutputStream, java.io.ObjectOutputStream,

and java.util.GZIPOutputStream. Saved files were read back into the layout manager for

editing. Most importantly the saved files could also be parsed by the simulator to set up

the simulation.

Figure 1 - This is the layout manager window displaying the layout of a demo warehouse. The orange areas
are shelves and the graphics with the directional arrows are conveyor segments. Picking stations can be
seen off the conveyor located near the shelves.

Database:
The SQL database had two purposes. The first was to contain pre-generated sets of

items for the warehouse and orders with sets of items. The second purpose was to record

results of the simulation runs.

The database has three table structures. The “item” table contains more than150,000

items, each with a unique id, and their generated popularity. A warehouse simulation used a

subset of these items to stock the shelves. For example if a run was set up to use 100 items,

the first 100 items were selected from the database. Likewise if a run was set up to use 500

items (for a larger warehouse), the first 500 items were selected to stock the shelves. The

only other parameter stored in the items table (besides the item id) was the item popularity.

Realistically in e-commerce the goal is to sell and ship items quickly so most of the items in

the table were weighted to be more popular [2]. To calculate the popularity a random number

was generated and weighted using the square root of the randomly generated number. This

resulted in a curve shown below with the resulting popularity on the y-scale based on any

randomly generated number (0-1) on the x-axis.

Figure 2 - The probability that an item is popular

8

The idea behind the popularity is that most orders will contain popular items, and the

popularity can be used to stock the shelves in a more efficient manner so that the

picking time is optimized. How the shelves were stocked with these items was based on

simple or more complex algorithms in the simulator initialization. The most simple was

to randomly assign bins to the items (assuming most were popular anyway) and the

most complex was to carefully store items by popularity.

The “orders” table is actually several tables. The items in the orders had to be

based on a pre-determined number of items in the warehouse so that the orders

contained a subset of these items. In other words a warehouse with 100 items had

orders that contained items 0-100, whereas a warehouse with 1000 items had more

variety in the orders (could contain any items with ids 0-1000). So orders were pre-

generated using a random number of items (0-12, with 6 being the most popular based

on the average number of items in an on-line shopping cart [7].) However, we did

account for outliers in our generated order, and as a result the range of orders in our

database was between one and twelve. This is demonstrated in the graph below. The

orders table had two columns: a unique order id and a list of items in the order. Orders

were always selected from the database in the same way (same lookup) to provide

consistency in the simulation runs. Any number of orders (up to 10,000) could be

selected from any of the order tables. Order tables were set up for 100, 200, 300, 400,

500, 1000, 1200, 2000, 4000, and 10000 items in the warehouse.

The last table is the “results” table. Following a simulation run, a variety of

information about each run is collected and placed in the database under a unique run

id. A unique ID is also generated for a set of runs that are created from one behavior

space run so all the results of this experiment can be compared with greater ease by

simply finding all the runs that share this ID.

Figure 3 - This graph shows a range of up to 12 items, but most orders have around six.

Simulation:

The first step to set up a simulation is the creation of a warehouse in “Warehouse

Layout Manager”. In this program the output will look similar to what is pictured below.

Figure 4 – How the warehouse is built in the “Warehouse Layout Manager”

10

This warehouse is saved as a binary file with the ".t64" extension. Once a file is

created in this manner, it can be selected to be loaded into a simulation.

The simulator can be run with or without graphics, and also with command line

parameters (useful for exploring behavior space) or with a panel to set specific

simulation parameters. The screen shot below shows what a parameter panel looks

like. The parameters that can be set include which warehouse layout to use, how many

items should be stocked, which warehouse should be loaded, how many orders should

be processed, and what the maximum number of orders to be processed should be in

addition to several other important parameters. Once this dialog is closed the program

queries the database for a list of orders the length of which corresponds to how many

orders are supposed to be processed.

Figure 5 - The parameter panel for a single simulation run

It is also possible to run the program without these by providing the parameters

directly to the simulator for the purpose of consecutive runs for an experiment, and this

is the method that was used to find our results. A helper program we created called

“Behavior Space” let us make many simulation runs by varying one parameter at a time

in this manner. The orders table of the database is important because while we could

generate random orders for each individual simulation, a database allows us to make a

controlled experiment; no random parameters affect our results so we are sure they are

consistent to the input we provided. Our simulator does not contain icons but is still a

direct representation of the file as it was created. Picking zones are calculated for the

simulation, and that accounts for the re-coloration of the shelves and the addition of circles

next to the picking stations in this screen shot (colors are randomly generated since we do not

know ahead of time how many zones will be in the warehouse). A picker is represented by the

circle (he moves around on the grid as he works) and the shelves that are part of the picker's

“zone” or “domain” are in the same color as the picker.

Figure 6 – The warehouse layout and resulting simulation screen

12

Figure 7 – Aisle Layout

Directly above is a screen shot of an example simulation setup called the “Aisle”

warehouse. The conveyor that snakes through the facility is blue with a thick black line

pointing in the direction it is facing and is broken into conveyor segments. The picking

stations are pink with a thick black line pointing to the conveyor they are connected to.

Next to each picking station a picker is generated and assigned to that station so that he

will stay in that zone. Each station has the shelves with the closest walking distance

added to its zone, so that when a tote that needs an item in those shelves is passing by

it will be redirected so the picker can collect that item. Zones in this example are mostly

aisles, so it is apparent what is closest to the station. The shelves in a zone and the

picker that is assigned to that zone are colored in the same way so it is easier to see

where they are. Zone colors are randomly generated. At the start of the conveyor there

is always an origin, colored a pink salmon color, for the totes where they are placed

onto the conveyor and at the end of the conveyor there is a place where the totes are

removed from the system (the order is ready to be shipped), which is cyan. A tote on the

conveyor paints that segment red.

Below is another layout we used called “Boxy” Layout.

The A* (pronounced "A star") path finding algorithm was core to our project in order to

get the best paths for the purpose of the movement of pickers, calculation of walking distance

for picking station zones, etc. The form of the algorithm we used was adapted to java by

memoization.com (http://memoization.com/2008/11/30/a-star-algorithm-in-java/) [8] from the

Maze example in AI Application Programming by M. Tim Jones, and was heavily modified to

fit our needs. The general idea of an A* search algorithm is that it uses a heuristic to find the

best next point from each point as it works out a path, where once each best point is selected

it is added to the list of best path points. Once this path reaches the goal this list is saved as

the path to be used. Specifically, our program generates a complete second overlay grid to be

used for the path finding, where the points on the grid that are not accessible (conveyors,

storage, etc.) are removed from this second grid because they cannot be part of the worker's

path. Starting from the beginning point where the path needs to come from, the program looks

at all adjacent points to find the one that is closest to where it needs to be, and weights it

additionally based on how far the path thus far is from the start point. It then adds the point to

be the "parent" of the point it just came from, and repeats the process. Once it reaches the

end point the program follows the chain of points back to where it originated and forms a list

of all the points, which is the result. In our program a router class is available to be

14

instantiated for use by any other portion of the program, and it is inside these routers

that the path finding is performed. The path finding part of the simulation was by far the

most time consuming part of the development. Despite the weeks spent finding the

cause of of stack overflows, we are very satisfied with the resulting code and its

functionality.

The Agent Model

At the heart of our simulation is the agent framework MadKit [9]. Part of the

learning curve for our simulation was understanding how MadKit agents interact and

communicate with each other as needed. Madkit is based on messaging between

agents in the same community and groups. For our simulation all agents were in the

“warehouse” community. The Warehouse agent itself belonged to several other groups

so that it could be the central relay for other kinds of agents to interact. There was one

Warehouse agent in the model, but there could be any number of conveyor segment

agents (which communicate with each other to transfer totes) and any number of picker

agents.

Item Stops (where the pickers put items into totes) were another type of agent.

The role of the Item Stop was to tell a picker when it has a tote to fill and to put the tote

back onto the conveyor system when it was filled with the items from its zone. Zones

(called a domain in the code) are calculated based on the item bins closest to itself by

walking distance (using A*). Therefore zones are actually a collection of item bins that

are closest to the picking station.

End conveyor segments and Start segments (known as ToteSpawns) are

subclasses of the normal conveyor segments and have different roles in the “conveyor

segment” group. The ToteSpawn is responsible for initiating the order in the system. It

puts a new tote on the conveyor system with an order number.

The simulation agents themselves are prompted to act by schedulers that

operate once each tick (the unit of time in the simulation). Schedulers call specific

methods in each of their agents each time tick. Some Agents act independently of

timers, such as the central Warehouse agent. All agents can receive and send

messages to either specific agents or to all agents of a certain group and role (as a

broadcast message). For example in our model the Item Stop can send a message only to its

own picker to tell it to work on an order.

In the initialization stage of our simulation, after the layout is read in, all the agents are

started and launched by the Warehouse. One Picker is launched for each ItemStop (and is

assigned to the stop at this time). When agents are launched in the MadKit platform they call

their “activate” method which sets the agent's community, group, and role. After this the agent

begins to listen for messages and handles them in its “receiveMessage” method. Messages in

our simulation are all subclasses of the generic MadKit Message class. The reason we made

so many subclasses is that it is easy to determine what kind of message it is when received

by the receiveMessage method. Schedulers are special agents that call methods in the Agent

classes on a timer. The Timer scheduler is the main scheduler which calls the “Tic” method in

the Warehouse to check the status of the order process.

The basic process of the simulation begins when the Warehouse sends the first

“NewOrder” message to the ToteSpawn segment of the conveyor system. It responds by

placing a tote with the order number on the next conveyor segment. The next conveyor

segment for the ToteSpawn (and all conveyor segments) is set up during the initialization of

the simulation (when the layout file is read).

If the system is set up to handle multiple orders at a time, more totes with orders are

launched, up to the number allowed by the maximum allowed orders in process at one time

(a simulation parameter).

The Tote continues along the conveyor until it reaches an "Item Stop" (picking station).

If the order in the tote has an item in the Domain of this ItemStop then it is ejected onto the

ItemStop segment. When the ItemStop receives the tote it examines the order and sends the

Picker off to collect one or more items (depending on if the picker is operating in single-pick or

multi-pick mode). The ItemStop monitors the tote (one of the methods called every time tick of

the simulation) to see if it is full yet. If it is full it places it back on the conveyor system to head

toward the End Segment (or toward another Item Stop for more items).

Sometimes a tote that needs to get off at an Item Stop cannot because the ItemStop

already has a tote. So this Tote will go around the conveyor and become a partially filled

16

order. Partially filled order totes are placed back on the conveyor system by the

ToteSpawn if the number of orders in process is less than the maximum allowed at one

time.

The tote finally reaches the end of the conveyor (End segment). If the order is

complete this order process is finished and the order is removed from the system

(shipped). If the tote's order is not yet filled it is put back on the conveyor to go past the

item stops again.

When the orders are all complete the database record is updated with the number of

steps for the simulation and other simulation parameters.

Results and Analysis:

Comparison of boxy versus aisle layout:

Our simulations of the boxy warehouse ran faster than the aisle picking warehouse.

18

0

100

200

300

400

500

600

AISLES
BOXY

Comparisons of picking multiple items at a time versus picking one item at a time:

Aisles:

On the facility with pickers in aisle shaped zones there was a clear time saving in
multipicking.

Boxy Layout:

0

100

200

300

400

500

600

700

800

No Multipick
Multipick

S
te

ps

0

50

100

150

200

250

300

350

400

450

500

MULTI
No MULTI

There were fewer items in this run and so fewer total steps. There is a slightly smaller saving.

Number of orders:

This was an interesting set of runs comparing the number of orders to the amount of time that

the run takes to complete. This graph was created based off of the data, and one can tell that

the pick time does not increase linearly with the number of orders.

Conclusions:

From the data generated by our program we can draw some interesting conclusions.

The boxy warehouse appears to be more efficient, although it is likely that this is because we

reduced the number of items to 100 for both layouts and so the aisles were not full, leading to

a loss of efficiency. Multi- picking is always faster than single picking, and this result makes

sense because it cuts out countless unnecessary trips for the picker returning to his station in

between picking up items. However, single-picking is less inefficient on a boxy layout. Again,

this makes sense because the picker is never as far from the station as it is inside an aisle

20

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

500

f(x) = 64.39 x̂ 0.61

Column C
Column C
Column C
Column C
Power Regression for Column C

Number of orders

S
te

ps
 to

 c
om

pl
et

e

where it must walk all the way back down the aisle between picks. Finally, we retrieved

an interesting result when increasing the number of orders that are run through the

database. The time it takes to pick for an increasing number of orders increases, of

course, but the increase was not linear. At lower order quantities the increase vastly

increased the time required for a complete pick, but as the order quantities increased

each individual order came to make less of an impact.

The most important result of our project was the simulator itself. These results

are only changing several parameters, but with slight modifications we could measure

much more.

Significant Original Accomplishments:
Creating a working simulation of the picking process was a major task. It was made simpler

by using the MadKit framework and implementing the Warehouse Layout Manger to generate

warehouse layouts. MadKit worked great but took some planning and some trial and error to

set up the agents and messages. Overall we highly recommend that any Java programmer

building a simulation that involves agent interactions use MadKit because of its flexibility and

adaptability to large agent-based projects.

The Warehouse Layout Manager was a significant accomplishment that helped us (and

others interested in using our simulation) lay out a warehouse for testing. We think that

adding this application was an excellent idea so that the warehouse configurations did not

have to be hand coded for the simulation (although we used a simple “Demo Test”

configuration for testing code that is hand coded and is part of the WarehouseLayout code).

Adapting the A* Maze route algorithm to path finding in the Warehouse was a straightforward

idea, but took a lot of work to make it function correctly in our environment. This Route code

was use extensively in the simulation.

Once all these parts were put together and the simulation was running it was beautiful to

watch the pickers go to the shelves and grab items, add them to the order, watch the totes

leave the picking stations and travel around the conveyors until the orders were all filled.

22

Acknowledgements:
First, our team would like to thank the New Mexico Supercomputing Challenge

for making the project possible. Next, we would like to thank Elizabeth Cooper who was

our mentor this year. She helped us with creating the simulation and proofreading the

final report. Our team would also like to thank our teacher Lee Goodwin, who provided

encouragement throughout the year. Many experts advised us on the development of

our project and we would like to recognize their valuable input and assistance as well.

John Snider answered questions we had related to the warehouse business, which he

currently works in. His input was useful in cementing our grasp of the internal workings

in a warehouse. We would also like to thank Jeff Grantham for giving us feedback on

the interim report and those who evaluated our project at the Northern New Mexico

Community College. We would like to thank Ms.Parkinson, the teacher that runs our

school’s writing lab, who helped grammar check our final report. Finally we thank

Fabien Michel, a primary MadKit developer, for being an active supporter of our project.

Background on our Team and Experience:

Our team is composed of three freshman students from Los Alamos High School. Colin

Redman has been participating in the supercomputing challenge since 2005. This is Sudeep

Dasari's 5th year participating, and David Murphey's 2nd year. Experience from prior years was

helpful in planning and implementing this project. Last year's project on sorting packages in a

shipping facility was similar but implemented in Greenfoot (also a Java based agent system).

One major difference between that project and this one was that there were less variable

parameters that could be adjusted so the simulation was not as interesting.

This is the second MadKit project that Colin, our chief programmer, has produced for the New

Mexico Supercomputing Challenge. The first one was three years ago, simulating a closed

environment in a long voyage spacecraft. This used a previous version of MadKit (version

4.2) and although a lot of thought went into the simulation it was not very complete (too many

parameters to consider). This year MadKit made a lot more sense and we used an newer

updated version (version 5.0) which was easier to integrate with the simulation code since it

was not designed as an IDE, but as a library.

Sudeep worked with this team last year and this year was the secondary programmer, but

chief developer of the Warehouse Layout Manager. David was also with the team last year

(his first year) and contributed by drawing graphics for both programs and for the illustrations

in the final report and evaluation presentation. Everyone contributed to the final report but

Sudeep and David did most of the work while Colin was finishing the simulation code and

producing results.

24

Citations:
1. Eisenstein, Donald D. ANALYSIS AND OPTIMAL DESIGN OF DISCRETE ORDER

PICKING TECHNOLOGIES ALONG A LINE. Rep. Graduate School of Business,

The University of Chicago, 27 Dec. 2006. Web. 7 Mar. 2012.

<http://faculty.chicagobooth.edu/donald.eisenstein/research/pick12.pdf>.

2. Ricker, Fred R., and Ravi Kalakota. Order Fulfillment: The Hidden Key to E-

Commerce Success. Rep. Logistech, 1999. Web. 3 Mar. 2012.

<http://www.logistech.us/lsi/resources/SCM9911ecomm.pdf>.

3. Koster, Rene De, The Le-Duc, and Kees Jan Roodbergen. Design and Control of

Warehouse Order Picking: A Literature Review. Rep. Rotterdam, The

Netherlands: Erasmus University, 2006. Design and Control of Warehouse Order

Picking: A Literature Review. ScienceDirect, 25 Oct. 2006. Web. 26 Mar. 2012.

4. Vrysagotis, Vassilios, and Patapios Alexios Kontis. Warehouse Layout Problems :

Types of Problems and Solution Algorithms. Rep. International Scientific Press,

31 Aug. 2011. Web. 13 Mar. 2012.

5. Bartholdi, John J., and Steven T. Hackman. WAREHOUSE & DISTRIBUTION

SCIENCE Release 0.95. Rep. The Supply Chain and Logistics Insitute, 21 Aug.

2011. Web. 26 Mar. 2012.

6. "Maximize Pick Productivity." The Avery Way. Warehouse Consultant Gets Results

Fast! Avery Way. Web. 14 Mar. 2012.

<http://www.elogistics101.com/Article/MaxPickProd.htm>.

7. "Good News! The Average On-line Order Value Was up More than 10 Percent from

Last Year." Good News! The Average On-line Order Value Was up More than 10

Percent from Last Year. Pinnacle Cart. Web. 19 Mar. 2012.

<http://blog.pinnaclecart.com/2010/11/22/good-news-the-average-on-line-order-value-

was-up-more-than-10-percent-from-last-year/>.

8. Admin. "A-Star Algorithm in Java." A-Star Algorithm in Java. Memoization, 30 Nov.

2008. Web. 28 Mar. 2012. <http://memoization.com/2008/11/30/a-star-algorithm-in-

java/>.

9. MadKit http://www.madkit.org/. A Multi-Agent Development Kit by Olivier Gutknecht,

Jacques Ferber, and Fabien Michel, LIRMM Montpellier France

26

http://memoization.com/2008/11/30/a-star-algorithm-in-java/
http://memoization.com/2008/11/30/a-star-algorithm-in-java/
http://www.madkit.org/

ExcellAnts

New Mexico
Supercomputing Challenge

Final Report
April 4, 2012

Team 66
Los Alamos High School

Team Members:
Peter Ahrens
Dustin Tauxe

Teacher:
Lee Goodwin

Mentors:
James Ahrens

Christine Ahrens

Contents

1 Executive Summary 2

2 Problem Statement 3

3 Background 5
3.1 Previous Work . 6

4 Methods 6
4.1 Tour Construction . 6

4.1.1 Serial Implementation 6
4.1.2 Task Parallel Implementation 7
4.1.3 Turning to Data Parallelism 8
4.1.4 Data Parallel Implementations 10

4.2 Pheromone Update . 13
4.3 Probability Calculation . 14

5 Results 14
5.1 Validation . 15

5.1.1 Experiment 1 . 15
5.2 Scaling and Speedup . 15

5.2.1 Experiment 2 . 15
5.2.2 Experiment 3 . 16
5.2.3 Experiment 4 . 17

5.3 Quality . 20
5.3.1 Experiment 5 . 20

6 Conclusions 21

7 Significant Original Achievement 22

8 Related Work 22

9 Future Work 23

10 Work Products 23
10.1 Code . 23

11 Acknowledgements 63

1

1 Executive Summary

The aim of this project is to create an efficient parallel implementation of
Ant Colony Optimization (ACO) applied to Traveling Salesman Problem
(TSP). It should also be portable and easy to understand or modify. ACOs
are algorithms based on ant foraging behavior. The TSP is a problem in
which cities in an undirected graph must be connected by the shortest tour
possible. A tour is a path that visits each city once and only once. ACOs have
applications in problems including vehicle routing, networking, communica-
tions, and scheduling. Data Parallelism is a style of parallelism that usually
consists of running the same fine grained operation for each piece of data in
a very long vector.[6] The very large size of data that must be processed in
a parallel ACO makes a data parallel implementation attractive. Due to the
small size and large number of computations that must be performed at the
same time, data parallelism particularly lends itself to computation on the
Graphics Processing Unit (GPU). GPUs must do many tasks via ”threads”
in parallel to display pixels on the screen. They are convenient to use as
general purpose processors for hardware acceleration of programs, as they
are readily available on most computers. We used Thrust, a data-parallel
C++ template library modeled off of the C++ Standard Library’s[13] vec-
tor operations and implemented in a data parallel fashion, to implement
our data-parallel ACO. Our implementation proved to be very effective. We
achieved a speedup of about 100 (it varies with problem size) over a serial im-
plementation. Our program has a computational complexity of O(nlog(n))
while the serial implementation has a complexity of O(n3). Excellants has
made original contributions. Firstly, our implementation is portable to tar-
gets other than GPU. Also, we describe a tree algorithm that is important.
Our code is also available and open source, both in this report and online.
Additionally, our code is written in an easy to understand and modify C++
template library called Thrust. These advantages are important to anyone
looking to use our work in a practical application or to extend it in the
research world.

2

2 Problem Statement

Ants can forage for food quite efficiently. When an ant finds food, it leaves
a pheromone trail back to the ant hill, which compels other ants to follow
the same path. However, as the wind blows and the sun shines on this trail,
the pheromones start to evaporate. Only the most traveled trails can con-
tinue to exist. Thus shorter, more popular paths are generated. Ant Colony
Optimization (ACO) is a technique inspired by this ant foraging behavior,
and can be used to generate good solutions to combinatorial optimization
problems very quickly.[8]

Although Ant Colony Optimization seems more suited to foraging, it
has proved itself a powerful metaheuristic that can be applied to problems
ranging from routing to machine learning. However, ACOs are most concep-
tually suited to and commonly applied to the Traveling Salesman Problem
(TSP). This is a very well-documented combinatorial optimization problem.
In Symmetric TSP (referred to as TSP in this paper), n nodes in an undi-
rected graph must be connected in the shortest tour possible. A tour is a
path that visits each node once and only once. Each node is defined as a
city, and a path connecting two cities is called a route. The TSP represents
the dilemma of one unlucky salesman who has several cities to visit, but
limited gas money and time in which he may do so. Our salesman would
like to travel the shortest tour possible. Unfortunately, the TSP is a very
difficult problem. A brute force approach to a TSP of n cities would have a
computational complexity of

(n− 1)!

2
(1)

Solving a 200-city TSP using brute force would take approximately 2.062x10360

years on Computer A [1], yet an ACO can get to within 2% of the optimum
in 200 seconds. For the purposes of this project, the Travelling Salesman
Problem will be used as a standard problem to solve, but is important to
note that the TSP is not the focus of this project. Many excellent TSP
solvers already exist. The focus is on ACO, which can be applied to many
problems ranging from networking to protein folding, and TSP will be used
as an example problem for ACO to tackle.

In some cases, the problem may change during the time an ACO is gen-
erating a solution. Let us use, as an example, the case of a truck driver
delivering packages. He must deliver several hundred packages a day, and
finding an optimal tour could take a while. To make matters worse, unan-

3

ticipated packages may arrive in the early morning. A fast ACO would save
him time (less time spent waiting for his solution to be generated). It would
also save money (if the optimization runs faster, using the time he has more
efficiently, he would get a better tour and thus have to spend less money on
gas). Thus, there are two advantages to having a faster ACO. Our driver’s
day is not over, however. Suppose there was an eleven-car pileup on a ma-
jor road. The solution his program had generated was operating under the
assumption that this road would be a convenient route, but now the driver
needs a new tour. He could wait for the long simulation to run again, but if
he had an ACO that could quickly generate a new solution based on previous
calculations, he could get home to his family much faster.

This TSP with cities that change as the problem is being solved is called
the Dynamic Travelling Salesman Problem (DTSP). The DTSP can be
thought of in two ways. It could be that the problem changes after a so-
lution has been generated, and the ACO simply resumes working with the
previously calculated pheromones, or it could be thought that the problem
changes as the ACO is solving it, and it must cope with the changes. The
former situation being more suited toward a more stable real world appli-
cation like our truck driver, and the latter being suited to something more
volatile like a network routing problem. These two perspectives may arise
out of different situations, but they are fundamentally identical in solution,
in that the simulation must simply alter the data it has calculated before the
change to fit the new conditions.

Clearly, an ACO applied to a DTSP would have to be fast, and could
thus benefit from a parallel implementation. Implementing ACO in parallel
is difficult, however, due to the random memory access patterns and the
coordination of large parallel tasks.[8] Even though an ACO will not actually
be applied to DTSP in this paper, it provides an excellent reason for an ACO
to be sped up, and any advances in ACO techniques for a TSP could easily
be applied to DTSP.

Due to the large amount of data that must be processed in an ACO
and the relative simplicity of the computations that must be performed, a
parallel implementation of ACO would be desirable. Also, because the TSP
is simply a sample problem, the code of such an implementation would have
to be simple enough to be modified for other problems. The aim of this
project is to create an efficient parallel implementation of ACO on the GPU
applied to TSP. It should also be portable and easily understood or modified.

4

3 Background

In order to understand the methods used to create an efficient parallel imple-
mentation of ACO, one must first understand the traditional implementation
of an ACO applied to TSP. The mechanism of action for an ACO can be de-
scribed as follows.

All ACOs have the same approximate structure. To initialize, they cal-
culate all the distances between cities, make pheromone and probability ma-
tricies (a way to store the values of all the pheromones on all the trails), and
create ants. Once the data is initialized, then the program enters the main
loop in which the ants construct solutions and then lay pheromone based on
the quality of these solutions.

In a TSP, ants start their tour construction at a random city. They then
use probabilistic rules to decide where to move next until they have visited
all the cities. Two factors influence these decisions. The first factor, τij is
the pheromone on a route from city i to city j. The second factor, ηij is the
inverse of the distance. The probability pij that ant k at city i will move to
city j is given by:

pkij =
[τij]

α[ηij]
β∑

l∈Nk
i
[τil]α[ηil]β

, ifj ∈ Nk
i (2)

where Nk
i is a collection of all the cities the ant has not yet visited and α

and β are parameters. Pheromone update is achieved in many different ways
for different algorithms. In all cases, evaporation occurs on the routes first.
The new amount of pheromone on a route τ ′ij is given by:

τ ′ij = (1− ρ)τij (3)

where ρ is a parameter (from 0-1). Then, the ants deposit pheromone on
their tours. Usually, the base unit of pheromone an ant lays down, ∆τij, is
given by:

∆τij =
1

Cij
(4)

where Cij is the ant’s tour length. After the ants deposit pheromone in
some configuration, Pheromone update occurs in many ways, so the above
equations are to help the reader understand the basic ways the pheromone
update works.

5

3.1 Previous Work

For last year’s Supercomputing Challenge, we created the most common
implementations of ACO in Python. These implementations ran in parallel
on the CPU using Python’s multiprocessing module. We had great success
with the performance enhancements that came from the parallelization of
the algorithms. However, last year’s program was not optimized for speed.[5]
Designing last year’s code inspired us to build a much faster, more optimized,
more efficient version this year. All code from last year had to be scrapped
as we were using a faster language and more powerful tools, including an
entirely new approach to ACO parallelization.

4 Methods

4.1 Tour Construction

Tour construction is the step in an ACO when all ants must construct paths
that visit every city only once. Because tour construction takes up most
of the time in an ACO[8], this is the aspect on which we focused most.
Many implementations were tried and tested to find a suitable parallel tour
construction method.

4.1.1 Serial Implementation

The probability of an ant at city i going into city j is described in Equation
2. In a traditional tsp, this probabilistic selection is accomplished through
method analogous to a roulette wheel. The various probabilities that an ant
may visit are gathered into a list. A random number is generated between 0
and the sum of these probabilities. The ant then iterates over each probability
and selects its next city to visit. (One can imagine the roulette ball starting
at the top and travels counter clockwise and ends up landing in a pie piece
corresponding to a particular city) This process is repeated until an entire
tour is created. See Figure 1. This will be very computationally costly as it
is done for every ant for every city.

6

Figure 1: A typical serial implementation.

4.1.2 Task Parallel Implementation

Task Parallelism is the typical style of parallelism in which the parallelism
is focused on doing different tasks on different pieces of data. Task parallelism
usually consists of running processes to compute the results of more coarse
grained tasks. In hopes of speeding up the traditional ACO, it would be
tempting to simply run the ants in parallel. It does not scale efficiently, as
each ant must still look at all of the next cities at every step of its tour
sequentially (O(n2), where n is the number of cities. It also creates excessive
overhead. All of the ants have random access patterns, the tasks may take
different times to complete, and the size and number of tasks is also neither
suited to a GPU nor CPU. Each processor must make an entire tour for one
ant. The overhead significantly reduces the power of such an approach.[8]
See Figure 2.

7

Figure 2: A typical task parallel implementation.

4.1.3 Turning to Data Parallelism

Data Parallelism is a style of parallelism focused on performing the same
tasks on the same pieces of data. It usually consists of running the same
fine-grained operation for each piece of data in a very long vector. [6] The
very large size of data that must be processed in parallel makes a data par-
allel implementation attractive.[6] Due to the small size and large number
of computations that must be performed at the same time, data parallelism
particularly lends itself to computation on the Graphics Processing Unit
(GPU). GPUs must do many tasks via ”threads” in parallel to display pix-
els on the screen. They are convenient to use as general purpose processors
for hardware acceleration of programs, as they are readily available on most
computers. We chose to use Thrust [11], a data-parallel C++ template li-
brary modeled off of the C++ Standard Library’s[13] vector operations and
implemented in a data parallel fashion described by Guy Blelloch[6] in his

8

thesis, which has sometimes been described as a data-parallel bible. Thrust
is very easy to use and modify for data-parallel operations. The most com-
mon Thrust target is CUDA, but it can also target OpenMP, OpenCL, or
Thread Building Blocks. Thrust essentially translates the data parallel op-
erations to primitive functions in CUDA, OpenMP, etc. It also provides host
and device vector types, that store data on either the host or computation
device. [11] Using Thrust eliminated the need for us to create a very spe-
cific and optimized data parallel functions and allowed us to create a more
general ACO within the time allotted for this project. Some of these Thrust
functions are used extensively in our code and assume a very important role
in what we do. These functions are described by example in Table 1.

Table 1: Common primitive data-parallel functions supplied by Thrust.
Inputs

A 0 5 1 8 7 3
B 2 2 2 2 2 2
C 1 2 5
D 0 1 1 2 3 3 4 5

Function Output Description
gather(C in A) 5 1 3 Index A by indicies in C

permutation iterator(C in A) 5 1 3 Gather with kernel fusion
inclusive scan(A) 0 5 6 14 21 24 Cumulative sum of A

transform(A and B with +) 2 7 3 10 9 5 Add A to B
reduce(A with +) 24 Sum A

sort(A) 0 1 3 5 7 8 Sort A
upper bound(C in D) 3 4 7 Find last index of D

where C could be inserted
without violating ordering

If a programmer can use Thrust functions as frequently and correctly
as possible, their code will be both modular, portable, and efficient. For
example, when performing multiple memory bound operations on a vector
of data, it is better to use kernel fusion, or condense each of the operations
to be performed into the same kernel, or chunk of code that will be executed
on the device. Another example is the usage of Thrust functions such as the
zip iterator to create virtual arrays that can be processed without having to
actually move or reorder large amounts of data.

9

4.1.4 Data Parallel Implementations

The first data parallel method we tested was analogous to stacking the pre-
viously described roulette wheels and selecting cities for every ant at the
same time. Each ant gathered data for all the cities it was going to visit.
This is very quick on a GPU because all of the lookups can be performed
in parallel and there are many processors with which to do this. Then, a
prefix sum(cumulative sum) was performed on a list of all the probabilities.
This has the effect of evaluating each piece of the roulette wheel previously
described in the traditional ACO at the same time. Then, the random num-
bers are generated, and the list of probabilities is iterated over in parallel by
every ant.

This implementation suffers, however, due to the number of operations
that must be performed in series. At every step of the tour construction, the
cities the ant visited had to be updated, the probability gathered, the prob-
abilities prefix summed, random number bounds selected, random numbers
generated, and searches performed. While this implementation was fairly
straightforward to code and understand it needed to be improved upon. See
Figure 3.

10

Figure 3: Our initial data parallel implementation.

A new method had to be implemented that was completely different from
all the others. More of the operations had to be grouped and performed at
the same time. To accomplish this a tree-based algorithm was implemented.
All the probabilities are gathered as previously described for each ant. Then,
each probability is assigned to a thread, along with the city it is associated
with, and a random number. At each step in the tree, two cities are reduced
to one. The random number is used to probabilistically select a city based on
the probabilities given. Then, the probabilities are summed and the chosen
city is given to the next level of the tree. The unused random number is
given to the next level of the tree. This mathematically can select from a
large list of cities a single city randomly with a bias toward the probabilities
in the same way that the previous algorithms have described. The reason
the probabilities are summed has to do with multiplication of probabilities.
The probability of going from city i to city j should be equivalent to the
desirability metric of that city divided by the sum of the probabilities of all

11

the other cities that ant can visit. The probability of an example city 1 being
selected out of five cities in the tree algorithm is shown below in Equation
5. The probability of city 1 being selected is equivalent to the probability of
city 1 being selected at every level of the tree.

pk5 1 =
p1

p1 + p2
∗ p1 + p2
p1 + p2 + p3 + p4

=
[τij]

α[ηij]
β∑

l∈Nk
i
[τil]α[ηil]β

(5)

As one can see, the probabilities simplify to Equation 2 as desired. This
implementation performed very well and can also scale efficiently. The re-
duction can perform city selection for all of the ants and all of the cities
in parallel for every level of the tree, making the reduction O(log(n)). The
reduction must be performed for every city, so the whole tour construction
step is O(nlog(n)). The implementation is described in the diagram below,
and pseudocode is given for the decision function at each node in the tree.
See Algorithm 1, Figure 4.

Algorithm 1 The algorithm used to reduce two cities in the tree selection
method.
Inputs: (City A, Probability A, Random A),

(City B, Probability B, Random B)

if (Random A * (Probability A + Probability B) < Probability A)
{

return (City A,
(Probability A + Probability B), // Probabilities added
Random B) // Unused random returned

} else {
return (City B,

(Probability A + Probability B), // Probabilities added
Random B) // Unused random returned

}

12

Figure 4: Our best data parallel implementation.

4.2 Pheromone Update

Even though the tour construction is the most time consuming, it was simple
enough to implement pheromone updates in parallel, and important to do
as it must not become a bottleneck. It is also advantageous to do this on a
GPU as data transfer between the GPU and the CPU is expensive in terms
of computation time.

The pheromone update is straightforward to implement but can be dif-
ferent for every ACO variant. As a general rule, it makes sense to add the
previously calculated amount of pheromone to each route in the necessary
tours. For our project we settled on a Rank Based Ant System as it is simple
to implement. In a Rank Based Ant System, ants deposit pheromone accord-
ing to their rank. Their rank is assigned based on the quality of their tour.
Most of the time the number of ranks is usually around six so only six ants
will deposit pheromone. Thankfully, Thrust has a very well implemented

13

and efficient sort, so this sort was used to assign the six ranks.

4.3 Probability Calculation

Calculating probabilties is also simple to do in parallel. Each probability
for a particular route is calculated by a separate thread, using the dis-
tance of that route and the pheromone on that route. Probability cal-
culations for each route are easily parallelized. Each probability is calcu-
lated in parallel. The distance and pheromone for that particular route
can be looked up by a separate thread, making this a very simple and
quick implementation. thrust::transform() was used to calculate Equation
2 (probability = pheromoneα ∗ 1/distanceβ) for all of the cities in parallel.
See Figure 5

Figure 5: Probability calculation with thrust::transform().

5 Results

It was initially decided that Marco Dorigo’s code would be used as a bench-
mark test against which to compare our code.[8] This, however, led to issues
because his code did not allow for large numbers of ants (i.e. greater than
100). For this reason a new ACO was selected. We settled on libaco[10]
because it is a very standard ACO, and can accommodate the large number
of ants that we require. It is as accurate as Dorigo’s, but may be slower.
We cannot measure because Dorigo’s code does not allow for large numbers
of ants. The exact speed may not be as important of a metric as how the
algorithm scales. This is because the two algorithms are being run on dif-
ferent devices. For this reason, both experiments measuring speedup and
experiments validating theoretical scaling have been run. There is, however,
a limit to scaling, as the number of threads and amount of local memory
on a GPU may reach an upper limit. Another metric used to assess the

14

quality of both algorithms is a comparison of the quality of the tour after a
certain amount of time. This is a similar metric to a simple speedup calcu-
lation, but is looking at a fixed time limit instead of a fixed quality (same
number of mathematically identical iterations) as shown above. These two
metrics address both sides of the time/quality trade-off described in detail
in the problem statement. All statistical calculations were done with R, a
statistical language.[9]

5.1 Validation

5.1.1 Experiment 1

The first challenge was to validate our ACO. Even though the two implemen-
tations were created to produce equal results, we felt that evidence of this
should be given. To do this, we compare the tour lengths after 20 iterations
from 20 trials of both implementations on Computer A[1] on dj38.tsp from
National TSP [3]. This is a simple test problem of the largest population
centers in Djbouti. A two sample t-test of these 20 trials yields a p-value of
.638. Thus, assuming the programs produce identical results, the probability
that the discrepancies in the results we obtained were due to chance is 63.8%.
This is likely enough to assume that the two implementations produce iden-
tical results. Knowing that the implementation is valid, tests can be run to
determine scaling capability.

5.2 Scaling and Speedup

An ACO could scale with respect to a few metrics. For clarity, the number
of cities will be referred to by the parameter n. The number of ants will be
referred to by the parameter m.

5.2.1 Experiment 2

The first test of scaling capability was done with respect to the number of
cities. The number of ants was held at a constant 128. The city sets for this
test were the first n cities of usa13509.tsp[12], a set of cities in the United
States. This and all following scaling tests were performed on Computer
B[2]. The results are shown for both implementations in Table 3. Note that
a maximum speedup of 100 was achieved.

15

Table 2: The time to complete one iteration with respect to the number of
cities.

Number of Cities libaco Time (s) ExcellAnts Time (s) Speedup
32 0.0675 0.0138 4.89
64 0.2881 0.0254 11.34
128 1.2141 0.0630 19.27
256 5.2334 0.1344 39.35
512 22.3871 0.3707 60.39
1024 95.1977 0.9484 100.38

The expected scaling of a serial implementation with respect to cities
should be O(n2), as each city must be examined at every city in the tour.
With this assumption, a fitted linear regression was performed on the data.
The correlation constant was 1.000, and the residuals were scattered. r2 was
0.9998, meaning that 99.98% of the variation in the data is explained by the
theoretical scaling. This means that we can safely say the above model is
correct.

The expected scaling of our data-parallel implementation with respect
to cities should be O(nlog(n)), as all the cities are reduced (in log(n) time)
at every city in the tour. With this assumption, a fitted linear regression
was performed on the data. The correlation constant was 0.9973, and the
residuals were scattered. r2 was 0.9947, meaning that 99.47% of the variation
in the data is explained by the theoretical scaling. This means that we can
safely say the above model is correct.

5.2.2 Experiment 3

The second test of scaling capability used different numbers of ants with
the same number of cities. The city set for this problem was held at the
constant first 128 cities of usa13509.tsp[12]. The results are shown for both
implementations in Table 3. Note that we achieved a maximum speedup of
81.

16

Table 3: The time to complete one iteration with respect to the number of
ants.

Number of Ants libaco Time (s) ExcellAnts Time (s) Speedup
32 0.3032 0.0484 6.26
64 0.6077 0.0532 11.42
128 1.2124 0.0628 19.31
256 2.4238 0.0642 37.75
512 4.842 0.0912 53.09
1024 9.6713 0.1184 81.68

The expected scaling of a serial implementation with respect to ants
should be O(m), as the tour construction is performed for every ant. With
this assumption, a fitted linear regression was performed on the data. The
correlation constant was 1.000. The residuals were patterned, but they were
too small to acknowledge. r2 was 0.9999, meaning that 99.99% of the varia-
tion in the data is explained by the theoretical scaling. This means that we
can safely say the above model is correct.

The expected scaling of data-parallel implementation with respect to ants
should be O(log(m)), as all the ants’ possible cities are reduced (in log(n)
time) for a constant amount of cities. With this assumption, a fitted linear
regression was performed on the data. The correlation constant was 0.9310.
r2 was 0.8665, meaning that 86.65% of the variation in the data is explained
by the theoretical scaling. Although this is a relatively low r2 value, the
residuals are very scattered, and show absolutely no clear pattern. This
means that we can safely say the above model is correct.

5.2.3 Experiment 4

The third test of scaling capability considered both ants and cities. The
number of ants was set to the recommended amount, the number of cities[8].
The city sets for this test were the first n cities of usa13509.tsp[12]. The
results are shown for both implementations graphically in figures 6 and 7.
Note that the vertical axes have different values. Note that a maximum
speedup of 340 was achieved.

17

Table 4: The time to complete one iteration with respect to the number of
cities and ants.
Number of Cities and Ants (n = m) libaco Time (s) ExcellAnts Time (s) Speedup
32 0.0169 0.0099 1.71
64 0.1429 0.0281 5.09
128 1.2123 0.0631 19.21
256 10.4507 0.1861 56.16
512 89.6375 0.6784 132.13
1024 756.8478 2.2204 340.86

Figure 6: The time for libaco to complete one iteration with respect to the
number of cities and ants.

18

Figure 7: The time for ExcellAnts to complete one iteration with respect to
the number of cities and ants.

The expected scaling of a serial implementation with respect to cities and
ants should be O(n2m) or O(n3) (n = m), as each city must be examined at
every city in each ant’s tour. With this assumption, a fitted linear regression
was performed on the data. The correlation constant was 1.000, and the
residuals were scattered. r2 was 0.9999, meaning that 99.99% of the variation
in the data is explained by the theoretical scaling. This means that we can
safely say the above model is correct. The expected scaling of our data-
parallel implementation with respect to cities and ants should be O(nlog(n))
as all the cities for all the ants are reduced (in log(n) time) for every city
in the tour. This is the same scaling equation that we saw in Experiment 2
for the serial code. The reason for this is that although the cities must be

19

evaluated for every ant, they are all reduced at the same time, producing
O(nlog(nm)), or O(nlog(n2)) (n = m), which reduces to O(nlog(n)). With
this assumption, a fitted linear regression was performed on the data. The
correlation constant was 0.9982, and the residuals were scattered. r2 was
0.9765, meaning that 97.65% of the variation in the data is explained by the
theoretical scaling. This means that we can safely say the above model is
correct.

5.3 Quality

5.3.1 Experiment 5

One could think of performance as getting a faster solution or getting a
better solution. In this experiment, the two implementations were compared
by their end tour quality. The following tests were run on Computer A.[1]
Both libaco and ExcellAnts tour qualities were measured at the end of 100
seconds on different datasets from TSPLIB. [12] The results are presented
in Table 5 and the proportional improvement can be visually compared in
Figure 8. The Excellants quality was up to three times better.

Table 5: The best tour lengths generated by each ACO in 100 seconds.
TSP d198.tsp pcb442.tsp rat783.tsp
ExcellAnts 16536 64727.6 3165.93
libaco 18941 193819 7263.16
libaco/ExcellAnts 0.87 0.33 0.44

20

Figure 8: The proportional difference in best tour lengths generated by each
ACO in 100 seconds.

6 Conclusions

A data-parallel ACO on the GPU that is easy to program and is portable
to multiple targets has its advantages. First and foremost, it’s faster. The
parallel code outperformed the serial code in all cases.(see Tables 3, 2, 4)
We achieved a speedup over the libaco code of about 100 with 512 ants and
512 cities. The speed can also lead to better quality. In some cases, Excel-
lAnts achieved three times the quality of a serial implementation. Also, it
scales much more efficiently. If one ran their simulations at the recommended
number of ants, libaco would scale at O(n3) while ExcellAnts would scale at
O(nlog(n)). This project successfully created a working data-parallel im-
plementation of ACO that significantly outperformed the serial version, with
vast improvements in scaling capability. Even a simple task-parallel approach
would only reach a scaling of O(n2) with respect to cities and ants, as all
cities must still be evaluated at each city in the tour. Our program was

21

also portable to different targets. We were able to run our program with
OpenMP. Our code also made use of an off the shelf data parallel library, for
ease of programming.

7 Significant Original Achievement

ExcellAnts has made some important contributions. Firstly, we wrote an
efficient, high-quality data-parallel implementation of ACO (via Thrust [11])
that is portable to multiple targets (CUDA, OpenCL, OpenMP, or Thread
Building Blocks) without having to change the code. Secondly, the methods
used to construct the tree-based selection process are described in detail.
This is important to anyone attempting their own implementation using our
methods. Thirdly, our code is also available and open source, both in this
report and online.[4] Fourth, the time to build this efficient, portable imple-
mentation was less than what it would have taken to create a hand-tuned
implementation on each target, since Thrust provides a library that is easy
to use. These advantages are important to anyone looking to use our work
in a practical application or to extend it in the research world.

8 Related Work

It came to our attention as this paper was being written that a paper on
a hand-tuned GPU implementation of ACO was available online in Jan-
uary 2012.[7] However, all the original ideas presented here were conceived
independently from this work. We did not read it until we had done our
implementation and started writing our paper. We have had several original
achievements, and actually some improvements over this work. The first one
of these is the tree-based selection process. This sped up our code consid-
erably and also allows it to scale to larger data sets more efficiently. Ours
is described in detail, their’s is not. The other methods initially attempted
were also of our own design. Our code is also written in Thrust, while theirs
is written in CUDA and highly optimized to a GPU, making it difficult to
understand and non-portable. While their code is not currently available,
The code for ExcellAnts is available in an open source format online.[4]

22

9 Future Work

This report does not mark the end of our project. We aim to continue our
work on our Google Project page.[4] We have several plans which we expect
to apply to the code in the future. One of the most prominent of these is that
we plan to use our ACO on a dynamic traveling salesman problem (DTSP)
and optimize it for use with DSTPs. Another plan is to overlap CPU and
GPU computation by running suitable operations on both processors in order
to maximize the use of the computational power of the system on which it is
running. Yet another goal for us to work toward in the future is to add more
implementations of ACO to give the user more flexibility.

10 Work Products

10.1 Code

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ Setup . cpp ∗
3 ∗ Peter Ahrens ∗
4 ∗ Sets up the ACO ∗
5 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
6

7 #inc lude ”RankBasedAntSystem . h”
8 #inc lude ”TSPReader . h”
9 #inc lude ”Comm. h”

10 #inc lude ”Writer . h”
11 #inc lude <iostream>
12 #inc lude <uni s td . h>
13 #inc lude <s t r i ng>
14 #inc lude <cctype>
15 #inc lude <ctime>
16 us ing namespace std ;
17

18 //Setup : The main con t r o l loop to the whole program .
19 i n t main (i n t argc , char ∗ argv []) {
20 // de c l a r e v a r i a b l e s
21 cout << ” |SETUP| \n” ;
22 s t r i n g antHi l lType = ”RBAS” ;
23 i n t m = −1;
24 i n t ranks = 6 ;
25 i n t maxTime = 0 ;

23

Page 1 of 65

Simulation of Multi-Agent Based Scheduling Algorithms
for Waiting-line Queuing Problems

New Mexico Supercomputing Challenge

Final Report

April 4th, 2012

Team 73

Los Alamos Middle School

Team Members

Steven Chen

Andrew Tang

Teacher

Pauline Stephens

Project Mentor

Hsing-bung (HB) Chen

mailto:p.stephens@laschools.net

Page 2 of 65

Table of contents

Executive Summary... 3

1. Problem statement ... 4

2 Multi-agent task scheduling simulation design and implementation................... 5

 2.1 Simulation queue model .. 5

 2.2 Multi-agent task scheduling simulation System... 6

 2.3 Agent designs... 8

 2.4 Heuristic scheduling methods.. 9

 2.4.1 Round-robin method... 9

 2.4.2 Random Selection... 9

 2.4.3 Less Workload First... 9

 2.4.4 Early Starting Time First.. 9

 2.4.5 A Mixed Selection of the Above Four Heuristic Methods............... 10

 2.5 Time step simulation and Task interactive sequence..................................... 10

 2.6 Main Screen Design and Implementation... 13

3 Testing and Performance data... 17

 3.1 Performance index definitions.. 18

 3.2 Testing cases .. 21

 3.2.1 Strong scaling testing cases... 21

 3.2.2 Weak scaling testing cases... 29

 3.2.3 Auto tuning feature ... 31

4 Conclusion.. 33

5 Future works... 34

Acknowledgement .. 34

Bibliography and References.. 34

Appendix - Source code - NetLogo program.. 36

Page 3 of 65

Executive Summary

 In this project, we designed and implemented a multi-agent computer simulation

program. We used this simulation software to model a real-life waiting line or queuing problem

in variety of business and industrial situations such as supermarket's checkout lines and bank's

teller service windows. Through our experiments we addressed the following issues: (1) How to

model an independent task scheduling problem (single waiting queue (multiple servers with

Multiple service queues) using NetLogo multi-agent simulation system, (2) How to provide an

interactive approach to control run-time simulation activities, (3) How to collect performance

data and justify implemented scheduling methods, and (4) Is it possible to create an useful Multi-

agent education tool to teach scheduling problem. To solve the problems presented above, we

would like to apply efficient scheduling solutions. Scheduling is a key concept in computer

multitasking, the multiprocessing operating system and real-time operating system designs.

Scheduling refers to the way processes assigned to run on available CPUs. This assignment is

normally carried out by software known as a task scheduler or a job dispatcher. The “NetLogo”

is an agent based modeling software tool that we can use to create and investigate various models

for application problems. In reality, there is no universal scheduling algorithm to solve real-life

waiting-line or queuing problems. However, using heuristic approaches is the most reasonable

way to obtain acceptable solutions. We implemented five scheduling algorithms—round-robin,

random selection, early start time first, less workload first, and a mixed selection heuristic that

combines the four previously listed methods. The rich property of the random number generator

in “NetLogo” is an excellent tool to generate random task behaviors such as task size and task

arriving time. We conducted testing cases to cover various task patterns on our NetLogo

simulation program. We defined and collected various performance matrices such as waiting

time, turnaround time, and queue length. We found the Early Starting Time First algorithm to be

the best heuristic in most of the testing cases. For example, it can obtain a shorter waiting time

and average queue length and a faster turnaround time. We also demonstrated that our interactive

multi-agent simulation program is a good tool to teach multi-processing task scheduling

problem.

http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/CPU

Page 4 of 65

1. Problem statement

 Waiting line queuing problems are commonly seen in everyday life. Some typical

examples are:

1. Supermarkets must decide how many cash registers should be opened to reduce

customers' waiting time.

2. Gasoline stations must decide how many pumps should be opened and how many

attendants should be on duty.

3. Manufacturing plants must determine the optimal number of mechanics to have on duty

in each shift to repair machines that break down.

4. Banks must decide how many teller windows to keep open to serve customers during the

various hours of the day.

5. Peer-to-Peer, Grid, and Cloud computing need to effectively and quickly manage and

schedule distributed resources for solving large-scale problems in science, engineering,

and commerce.

6. Modern large scale HPC cluster machines need to schedule millions of processes or

threads so it can provide fast turnaround time and better machine utilization.

 Whether it is waiting in line at a grocery store to buy deli items (by taking a number),

checking out at the cash registers (finding the quickest line), waiting in line at the bank for a

teller, or submitting a batch job to available computers, we spend a lot of time waiting. The time

you spend waiting in a line depends on a number of factors including the number of people (or in

general tasks) served before you, the number of servers working, and the amount of time it takes

to serve each individual customer/task.

 To deal with the problems mentioned above, we must provide effective and reasonable

solutions in order to reach goals of minimizing wait time in a queue, minimizing turnaround

time, balancing workload among service points, and increasing server utilization. To simplify

our project's problem description, we would like to formalize a waiting line and queuing problem

as a task scheduling problem. We can treat all objects (clients, customers, mechanics, tellers,

messages, jobs, processes, threads) waiting in a service line by putting them into a queue as

tasks. The task scheduling problem is very challenging and interesting. This problem is a class

of hard problems that cannot be optimally solved in a reasonable amount of computation time.

Page 5 of 65

For this reason, researchers have spent the past several decades developing work heuristic (rule

of thumb) methods to try and find a near-optimal solution.

 The main goal of our project is to design and implement a multi-agent simulation model

for task scheduling problems and provide an interactive software tool to learn distributed task

scheduling problems. Now, why are we using simulation? Simulation appears to be the only

feasible way to analyze algorithms on large-scale distributed systems using various resources.

Unlike using the real system in real time, simulation works well, without making the analysis

mechanism unnecessary complex, by avoiding the overhead of co-ordination of real resources.

Simulation is also effective in working with very large hypothetical problems that would

otherwise require involvement of a large number of active users and resources, which is very

hard to coordinate and build at large-scale research environment for an investigation purpose.

2 Multi-agent task scheduling simulation design and implementation

2.1 Simulation queue model

There are several Waiting line 's Queue models: Task, processing point

 Single-server, single-phase

 Single-server , multiphase

 Multi-server, single-line single-phase: centralized scheduler

Page 6 of 65

 Multi-server, multiline, single-phase

 Multi-server, multiphase

 In this project, we implement the multi-server, single-line, and single-phase queue model.

This model typically and simply represents an independent task scheduling model on a

distributed computing system such as Cluster, GRID or Cloud computing environment. A

centralized task scheduler handles many randomly arrived tasks and finds available processing

points to execute tasks.

2.2 Multi-agent task scheduling simulation System

 Our multi-agent based models are composed of three different types of agents: the

schedule agent, machine agent, and task agent.

 The agents in a multi-agent system have several important characteristics:

 Autonomy: the agents are at least partially autonomous

 Local views: no agent has a full global view of the system, or the system is too

complex for an agent to make practical use of such knowledge

 Centralization and decentralization: there is a designated and centralized

scheduling agent and there are number of decentralized task agents randomly

ask the scheduler to schedule a created "task" on a selective machine agent.

http://en.wikipedia.org/wiki/Autonomous_agent

Page 7 of 65

Figure 1 shows the system diagram of our simulation agents.

Figure 1: Multi-agent task scheduling simulation

1 2

1

3 4 5 6 7 8

Centralized Task

Scheduler agent

Task
agent

Heuristic Scheduling methods
1. Round-Robin
2. Random
3. Early Starting Time First
4. Less Workload First
5. Mixed selection

Resource – eight machine agents or more

Task
agent

Task
agent

............

............

............

............

............

............

Page 8 of 65

2.3 Agent designs

Scheduler agent:

 Only one centralized scheduler agent is defined here. We use the scheduler agent to

receive scheduling requests from task agents and find available machine agents to run tasks. The

selection of an available machine is based on the selected scheduling heuristic.

Machine agent:

 A Machine agent is the main system resource to schedule a task. We have used eight and

sixteen machine agents in this simulation. Each machine agent is used to receive a task

assignment request from the scheduler agent and update its avail-time, accumulate-task-time,

and idle time. We can simulate more machine agents but we have considered to provide and

interactive approach and construct an education tool. Enploying eight to sixteen machine agents

in our simulation is within a reasonalbe range to view -real-time task schedule activities on a

monotoring screen.

Task agent:

 We have used up to 99,999 task agents in our similation. Each task agent comes with a

different arriving time and task execution length. We used various number of task agents to

represent different run-time environments such as light workload (hundred tasks), moderate

workload (thousand tasks), heavy workload (multiple ten thousand tasks), lots of small tasks

(small execution time), lots of large tasks (very long execution time), or mixed small and large

task sizes etc..

Task information

Property of a Task:

 Each scheduling task is an independent task. There is no dependency relation or related

execution order between tasks

 Each task has been assign a random execution time, i.e. the length of a task

 Each task has been assigned a random arriving time

 Task arrival times are not known a priori. Every task has the attributes arrival time, worst

case computation time, and deadline. The ready time of a task is equal to its arrival time.

Task's arriving time is generated by a selected random number generator.

 Tasks are non-preemptive; each of them is independent.

Page 9 of 65

We used two different random number generator provided by the NetLogo— random and

Poisson-random. We used a random number generator to generate a task's arriving time and a

task's execution time.

Task selection discipline :

 The selection of a task is based on the First Come First Serve FCFS) order. The NetLogo

system decides the task order in a queue when there are multiple tasks arrive at the same time

tick.

2.4 Heuristic scheduling methods

 We implemented five different decision-making heuristics. Various heuristic scheduling

methods represent the intelligence and capabilities of each method. The heuristic is how we

select a machine to execute an arriving task.

2.4.1 Round-robin method

The scheduler agent uses a round-robin order to select each machine agent and assigns an

arriving task to it. Each machine agent takes an equal share of responsibility to run a task in

turn.

2.4.2 Random Selection

The scheduler agent randomly selects an available machine agent and assigns an arriving

tasks to it. It randomly selects a machine to run an incoming task.

2.4.3 Less Workload First

The scheduler agent selects an available machine agent with the smallest accumulated

task workload and assigns an arriving task to it.

2.4.4 Early Starting Time First

The scheduler agent selects an available machine agent with the early task starting time to

run a task and assigns an arriving task to it.

Page 10 of 65

2.4.5 A Mixed Selection of the Above Four Heuristic Methods

 A mixed selection of the above scheduling methods can be called a heuristic of

heuristics. For each arriving task, the scheduler agent randomly picks one of the above four

heuristic methods mentioned above and applies this selected method to find an available machine

agent, and then assigns an arriving task to it.

2.5 Time step simulation and Task interactive sequence

Figure 2: Interaction between agents based on time sequence

 A global time tick is used in the simulation. This global time tick is advanced by "N"

time ticks. “N” can be any number. We advanced one time tick each time. The global time tick is

used as the wall clock and we used it to check the task arriving time. We also use it to monitor

task activities such as task waiting, task scheduling, task execution, and task finishing. We used

the global time tick to collect performance data. When a task's arriving time is equal to the

current global time tick, this task agent will ask the scheduler agent to scheduler agent to find an

available machine agent to execute it. Figure 2 shows the interaction between agents based on

the time advanced sequence.

Tick-a
Task arriving time is
equal global time tick

Accept and

execute a task

Task agents Scheduler agent Machine agents

 A task

arrives

A task is

scheduled

Tick-e
Update task
information

Tick-b
Task start

Tick-c
Task finish

Tick-d Update
task information

Task is finished

Time sequence Time sequence Time sequence

Page 11 of 65

 In Figure 3, we show the simulation NetLogo program architecture. "Ask" is the

keyword used to query each agent about its status and expect activities. "Ask" also represents

the required interactive activities between agents. A task agent checks its task-arriving time and

the global time tick and sees if its task is ready to be scheduled. The scheduler agent use a

selected heuristic method to find an available machine "X" and then ask the machine agent "X"

to accept the arriving task and execute it. These interactive activities among agents are

continuing until all tasks are scheduled and finishing execution. We collected performance data

during the whole simulation process.

 One of our goals for this simulation project is to provide education tolls for task

scheduling problems. We adapted a visualized and interactive approach to build this simulation.

We let users to define the run-time environment while we provided run-time animations of task

scheduling activities and in-time performance data display during the whole simulation process.

Page 12 of 65

Figure 3: NetLogo simulation program -interaction between agents

Ask taskAgents ;; // all task agents execute this part concurrently

if task's arriving time is equal to the global time tick --> ask scheduler

Collect performance data from this task agent

End of Ask taskAgents

Ask schedulerAgent ;; // only the scheduler agent executes

this part

Apply the selecting Hueristic method to find an available

machine “X” to run this arriving task

……………………………………..

Collect performance data from the schedulerAgent

Ask machineAgent “X” ;; // only the selected

machine agent X executes this part

Update machine X information
Total number of task assigned to this machine X
Total task length assigned to this machine X
Update machine X Utilization data

Update nextAvailableTime to schedule a task on this

machine X

…………………..

Collect performance data from this machine agent X

Repeat this
activity for
each time tick
until all tasks
are scheduled
and finishing
execution

Advance one time tick

Page 13 of 65

2.6 Main Screen Design and Implementation

The Global tick count is shown in Figure 4-1.

Figure 4-1: Global time tick counter

Users define parameters for simulation (Figure 4-2)

 the number of task agents used in each simulation,

 the range of task arriving time distribution,

 the range of task execution time distribution,

 the number of machine used in simulation

Figure 4-2: Setup testing parameters

Page 14 of 65

Users select a random number generator used in simulation (Figure 4-3).

Figure 4-3: Select random number generator

Users select a scheduleing method used in simulation (Figure 4-4).

Figure 4-4: Select schedule method

Users interactively control simulation action (Figure 4-5).

Page 15 of 65

Figure 4-5: Run time control bottom

Monitoring run time performance data update and display (Figure 4-6)

Figure 4-6: Rum Time Performance data update and Display

Messages area for displaying Testing Setup information and Run time activities is shown in

(Figure 4-7)

Page 16 of 65

Figure 4-7: Message area for Testing setup and activities

Run Time visualization display for task scheduling activities is shown in Figure 4-8.

Figure 4-8: Run time visualization area

Page 17 of 65

Figure 4-9 is the main screen for our multi-agent task scheduling simulation system.

 Figure 4-9: Main screen design

3 Testing and Performance data

 We focused on the following performance Index:

a) The average number of tasks waiting in line on a machine agent - The number of

tasks waiting in line can be interpreted in several ways. Short waiting lines can result

from relatively constant task arrivals (no major surges in demand) or by the

organization having excess capacity (too many machines open). On the other hand,

long waiting lines can result from poor server efficiency, inadequate system

capacity, and/or significant surges in demand.

b) The average time tasks spend on waiting in a queue,

c) The average time a task spends in the system - turnaround time

d) The system utilization rate - Measuring capacity utilization shows the percentage of

time the machines are busy. Management’s goal is to have enough machines to

Page 18 of 65

assure that waiting is within allowable limits but not too many machines as to be

cost inefficient.

3.1 Performance index definitions

 We defined the following parameters in our simulation program and then collected them

as performance data.

Global information - can be viewed and accessed by all agents

ticks : the global time tick as the reference wall clock

Number of Task: N, Taski, 1 = 1 to N

Number of machine: M, Machinej, j= 1 to M

Num of Scheduler: 1 , Scheduler

Task agent information:

Number of Task agent created : N, Taski, 1 = 1 to N , i is referenced as the task ID

A Task i: Taski

Task i execution time : TaskLengthi

 A random number generator is used to create a task's execution time

Task i arriving time : TaskArrivei

 A random number generator is used to create a task's arriving time

Task i start executing time: TaskStarti

Task i finish execution time : TaskFinishi

 TaskFinishi = TaskStarti + TaskLengthi

Task i Waiting time in queue: TaskWaiti

 is the time between task's arriving time and the actual task's start execution time

 TaskWaiti = TaskStarti - TaskArrivei

TotalTaskWaitingTime(Sum of TaskWaiti, i= 1 to N)

AverageWaitingTime: Average task waiting time

 AverageWaitingTime = TotalTaskWaitingTime / Number of Task arrived

Page 19 of 65

Task i Turnaround time: TaskTRtimei , the amount of time spend on waiting and execution

 taskTRtimei = TaskFinishi - TaskArrivei

TotalTaskTurnaroundTime(Sum of TaskTRTimei, i= 1 to N)

AverageTurnaroundTime: Average task turnaround time

 AverageWaitingTime = TotalTaskTurnaroundTime / Number of Task Finished

Machine agent information

Number of machine: M, Machinej, j= 1 to M, j is referenced as the machine ID

We create two version of simulation. One is using eight machine agents and the other is using

sixteen machine agents

A machine j : Machinej

MachTotalTaskTimej: Total task execution time on a machine j

MachAvailableTimej: the current available time to add a new task on a machine j

MachIdleTimej : Machine j Idle time upto the current golbal time ticks

 MachIdleTimej = ticks - MachTotalTaskTimej

MinimunTotalTaskTime (MachTotatlTaskTimej, j = 1 to M)

 The smallest total task time on a machine agent

MaximunTotalTaskTime(MachTotalTaskTimej, j = 1 to M)

 The biggest total task time on a machine agent

MachUtilizationj: A machine j current utilization

 MachUtilizationj = MachTotalTaskTimej / ticks

The less utilized machine : MiumumUtil(MachUtilizationj, j = 1 to M)

The most utilized machine : MaxmumUtil(MachUtilizationj, j = 1 to M)

The average machine utilization : Average(MachUtilizationj, j = 1 to M)

EarlyStartTime(Minumum(MachAvailableTimej, j = 1 to M)): the early start time for a task

from all machine agents

MachFinishTaskj: Number of tasks finished on a machine agent j at current global time ticks

Page 20 of 65

 This is the throughput on a machine agent j

MinimunThroughput(MachFinishTaskj, j = 1 to M)

MaximunThroughput(MachFinishTaskj, j= 1 to M)

TotalThroughput(MachFinishTaskj, j= 1 to M)

TaskWaitingEueueLengthj: waiting queue lenght on a machine agent j

MinimunQueuLength(TaskWaitingEueueLengthj, j=1 to M)

 The minimum queue length

MaximunQueuLength(TaskWaitingEueueLengthj, j=1 to M)

 The maxinum queue length

Load Balance Performance Index :

Load balance Performance Index1 (LBPI1) =

 MaximumTotalTaskTime - MinimumTotaltaskTime

 Check the total task execution time assigned on a machine agent

 Calculate the biggest gap among machine agents

Load balance Performance Index2 (LBPI2) = MaximumUtil - MinimumUtil

 Check the machine utilization on a machine agent

 Calculate the biggest gap of utilization among machine agents

Load balance Performance Index3 (LBPI3) = MaximumThroughout - MinimumThroughout

 Check the total task execution time assigned on a machine agent

 Calculate the biggest gap of throughout among machine agents

Load balance Performance Index4 (LBPI4) =

 MaximumQueueLength - MinimumQueueLength

 Check the total task execution time assigned on a machine agent

 Calculate the biggest gap of waiting queue length among machine agents

 We defined these four Load Balance Performance Index to measure the capability of

providing a local balance run-time environment for each task scheduling method. The less

Page 21 of 65

variation of the LBPI value indicates a better load balancing result that is there is not a large

difference between the "min" and "max". For example, we use the LBPI2 to check whether a

scheduling method can assign even workload to each machine.

3.2 Testing cases

 We used the task pattern

 Task size distribution: range 0 to 720 time ticks

 Number of Task agents : 1000 task agents created

 Task arriving time distribution: range from 0 to 100000 time ticks

 Using the default normal random number generator

 We measured both strong scaling and weak scaling performance.

3.2.1 Strong scaling testing cases

 In this strong scaling test case, the problem size stays fixed but the number of machines

used is increased.

 In strong scaling testing, we apple the above task pattern and start with using five

machine in testing. For each round of testing, we applied the same workload and then increased

one machine for each round of testing until we used up to eight machines.

 Figure 5-1 shows the result of average waiting time comparison. The result is shown that

every scheduling can reduce the waiting time when more machines are added to the simulation.

We use a normalized ScalingIndex to compare the average waiting time. Table-1 shows the

formula we used to calculate the ScalingIndex. The higher ScalingIndex value indicates a better

scaling result.

 Average Waiting time Normalized ScalingIndex-Average waiting time

Using 5 machines A A/A = 1

Using 6 machines B A/B

Using 7 machines C A/C

Using 8 machines D A/D

 Table-1: Normalized ScalingIndex for Average Waiting Time

Page 22 of 65

Figure 5-2 shows the ScalingIndex: Average Waiting Time comparison. The early Start-Time

First method demonstrates as a better scheduling method in terms of strong scaling comparison.

Figure 5-1: Strong scaling testing and average waiting time comparison, same workload with

different number of machines

Page 23 of 65

 Figure 5-2: Normalized ScalingIndex for Average waiting Time comparison

 Figure 5-3 shows the result of average turnaround time comparison. This result shows

that every scheduling can reduce the average turnaround time when more machines are added to

the simulation. The Early Start-Time First heuristic can obtain the lower average turnaround

time.

Page 24 of 65

Figure 5-3: Strong scaling testing and average turnaround time comparison, same workload with

different number of machines

 Figure-5-4 shows the average machine utilization in string scaling testing case. We

observed that there is not a large variation among all five scheduling methods. It seems that the

strong scaling testing cannot clearly help us pinpoint the pros and cons of each scheduling

heuristic.

Page 25 of 65

Figure 5-4: Strong scaling testing and average utilization comparison, same workload with

different number of machines

 We also used the Poisson-random-number generator and repeated the strong scaling

testing above. We present results in Figure 6-1, Figure 6-2, Figure 6-3, and Figure 6-4. Our

results has show that there is no much difference of using the Normal random number generator

and the Poisson random number generator provide in the NetLogo simulation system. The only

Page 26 of 65

big difference is that the Less Workload First has a better normalized ScalingIndex when using

eight machines.

Figure 6-1: Strong scaling testing and average waiting time comparison, same workload with

different number of machines

Testing workload : Poisson Distribution
Task Size: range (1,720) time ticks
Number Task: 1000 Task
Task Arriving Time: Range (0, 100000)

Page 27 of 65

Figure 6-2: Normalized ScalingIndex comparison - average waiting time

Page 28 of 65

Figure 6-3: Strong scaling testing and average turnaround time comparison, same workload with

different number of machines

Page 29 of 65

Figure 6-4: Strong scaling testing and average utilization comparison, same workload with

different number of machines

3.2.2 Weak scaling testing cases

Page 30 of 65

 We also conducted weak scaling testing cases. In a weak scaling testing case the problem

size (workload) assigned to each machine stays constant. Table-2 shows the workload

distribution when using different number of machines.

Number of machine used 1 2 3 4 5 6 7 8

Workload(#task agent used) 400 800 1200 1600 2000 2400 2800 3200

Table-2: Workload distribution for weak scaling testing

 Figure 7-1 shows that the Early Start-time First and the Less Workload First methods

have better stable/static decreasing average waiting time when increasing machines in

simulation. The random scheduling method shows an up/down or unstable average waiting time

when increasing more machine in simulation.

Page 31 of 65

 Figure 7-1: Weak scaling testing - Average waiting time comparison

 Figure 7-2 shows the result of weak scaling testing cases in terms of average turnaround

time comparison. We show that the Early Start-time First and the Less Workload First methods

can decrease average waiting time when increasing machines in simulation. The random

scheduling method shows an unpredictable.

Page 32 of 65

Figure 7-2: Weak Scaling testing - Average turnaround time comparison

3.2.3 Auto tuning feature

 We also implemented an "Auto Tuning" feature. We used the "switch" to turn on an off

the "Auto Tuning feature." We used the "slider" to set two parameters to control the "auto

tuning" feature. They are:

o maxWaitTimeAllow - If the average waiting time is greater than this value, we

then add one more machine to the service.

o minWaitTimeAllow - If the average waiting time is below this value, we then

remove one machine from the service.

Page 33 of 65

 We used this "Auto Tuning" feature to dynamically control the run-time wait-line

situation. A sample run-time screen-shot is shown in Figure 8-1, Figure 8-2, and Figure 8-3.

Figure 8-1: Setup: Auto Tunning"

Figure 8-2: Run time messages show activities of the "Auto Tuning"

Switch button to turn on and off of

the "Auto Tuning" feature

Data Slider to setup maxWaitTimeAllow

Data Slider to setup minWaitTimeAllow

Initially using one machine

Add one machines

when is overloaded

remove one machine

when is underloaded

Page 34 of 65

Figure 8-3: AverageWaitTime visualization data over the global tick counter

 4 Conclusion

 We successfully created a multi-agent task scheduling simulation system using NetLogo

programming language and NetLogo run-time environment. We provided an interactive user

interface and rich visualization of run-time information. We collected performance data and

discuss the pro and con of each heuristic task scheduling methods. We showed that some simple

heuristic could help to get better results. The interactive and visualized approach used in the

simulation system proves to be useful and interesting. It helps to learn various task patterns such

as light workload and heavy workload. It helps to understand performance matrices such as the

strong scaling and weak scaling. It demonstrates how difference workload can have different

impacts on the waiting time and machine utilization. Using our simulation system, we can

conduct testing cases of various real-lives waiting line and queuing problems.

 The major contributions of the Team 73 are: (1) the first ever to implement a multi-agent

task scheduling simulation program, (2) comparing five heuristic scheduling methods, and (3)

implementing a useful educational simulation program that can assist those who wish to study

real-life waiting line and queuing problems.

 Through this project, we have learned the following things: (1) how to use the NetLogo

programming system, (2) what is the waiting line and queuing problem, (3) what is heuristic

scheduling method, (4) how to convert a real-life problem to a multi-agent model, (5) how to

design interactive user-interface, and (6) how to work together as a team towards a common goal

and eventually finish this project on time.

5 Future works

WaitTime is over 200

WaitTime is below 100

Page 35 of 65

 We would like to extend our current simulation program to cover more real-life problems

involving waiting line and queuing. There are several interesting areas that we plan to add to or

modify our existing simulation program including Real-time task scheduling problem,

Dependent task scheduling problem, Work Flow simulation, Multi-server and multi-line task

scheduling, Add multiple phases to the existing simulation, and more interactive run-time

visualization display such as Gantt chart etc. The initial implementation of the "Auto Tuning"

feature is demonstrating our future enhancement plan to provide an intelligent scheduling

environment for waiting line queue problems.

Acknowledgements

 First, we would like to thank the Super-computing Challenging program and the

committee members. The kickoff program at New Mexico Tech was especially helpful. Through

this training, we gained knowledge, useful information, and a variety of idea to implement in our

simulation program. Furthermore, we would like to thank the comments and suggestions from

our intern reviewing judges. We would also like thank our Supercomputing challenge project

teacher Mrs. Pauline Stephens for sponsoring our project and her constant encouragement

throughout these in the past five months. In addition, we also would like to thank Ariel Chen for

reviewing our report and HB Chen for mentoring our team.

 Finally we would like to thank our parents for helping us prepare posters, editing the final

report, and setting up different testing environments.

Bibliography and References

NetLogo from North Western University - http://ccl.northwestern.edu/netlogo/

NetLogo 5.0 User manual - North Western University

Seth Tisue and Uri Wilensky , “NetLogo: A Simple Environment for Modeling Complexity,”

ICCS 2004

Frederic Haziza, “Scheduling Algorithms,” Department of Computer Science, Uppsala

University

mailto:p.stephens@laschools.net
http://ccl.northwestern.edu/netlogo/

Page 36 of 65

Terence C. Ahern, "Bridging the Gap: Cognitive Scaffolding to Improve Computer

Programming for Middle School Teachers,” 39
th

 ASEE/IEEE Frontier in Education

Conference, October 18-21, 2009, San Antonio, TX

E.O. Oyetunji, “Some Common Performance Measures in Scheduling Problems: Review

Article,” Research Journal of Applied Sciences, Engineering and Technology 1(2): 6-9,

2009

“Process Scheduling”, class note, Department of Computer Science, University of Texas at

Austin, Professor Lorenzo Alvisi

Sartaj K. Sahni, "Algorithms for Scheduling Independent Tasks,", Journal of ACM, Vol 23,

Issues 1, Jan., 1976

Yiqiu Fang, Fei Wang and Junwei Ge, "A Task Scheduling Algorithm Based on Load

Balancing in Cloud Computing," Lecture Notes in Computer Science, 2010, Volume

6318/2010, 271-277

Yingzi Li, Xiaodong Zhang, and Shou Zhang, "Multi-agent Simulation System Study on

Product Development Process,", Applied Mathematics and Information Science, 2011

Sebastien Paquest, Nicolas Bernier, and Brahim Chaib-Dras, "Multiagent System Viewed as

Distributed Scheduling Systems: Methodology and Experiments," Proceedings of the

18th Conference of the Canadian Society for Computational Studies of Intelligence,

Canadian AI 2005, Victoria, Canada, may 2005

Waiting line and Queuing problem - Queuing theory:
http://businessmanagementcourses.org/Lesson21QueuingTheory.pdf

https://springerlink3.metapress.com/content/?Author=Yiqiu+Fang
https://springerlink3.metapress.com/content/?Author=Fei+Wang
https://springerlink3.metapress.com/content/?Author=Junwei+Ge
https://springerlink3.metapress.com/content/0302-9743/
http://businessmanagementcourses.org/Lesson21QueuingTheory.pdf

Ant Colony Conundrum

New Mexico

Supercomputing Challenge

Team 118

Sat. Science Math Academy

Team Members

Daniel Washington

Rachel Washington

Muhammad Musleh

Teacher

Debra Johns

Project Mentor

Wayne Witzel

Table of Contents

Executive Summary ………………………………………………………………page 3

Colony Setup …………………………………………………………...…………page 4

Behaviors and Parameters ………………………………………………………...page 6

Pheromones………………………………………………………………………..page 7

Dynamic Environment…………………………………………………………….page 8

Graphs and Data…………………………………………………………………...page 9

Conclusion………………………………………………………………………..page 11

Works Cited………………………………………………………………………page 12

Executive Summary

Our project examines the effectiveness of decentralized systems, such as an ant colony, for

solving a search problem. The problem that out project is attempting to solve is if a

decentralized system such as an ant colony is capable of more effective search patterns than a

centralized counterpart. In addition, we are looking at whether a system of numerous

independent agents is able to adapt to environmental changes as a cohesive unit without specific

communication between agents.

We will be examining the success of two primary behavior sets on a static and dynamic world

and comparing the results. We will then attempt to create an ideal fusion of the two behaviors to

maximize the efficiency of these ants. Finally, we will be exploring the usefulness of ant-based

search patterns in real world applications such as search and rescue and hostile environments

where robustness, reliability, and speed are key factors.

Colony Set up

 The simulation was programmed with the intention of comparing two independent

colonies side by side. The creation of the world is facilitated by a loop that duplicates a patch

setup on the negative and positive sides of the X-axis. Every food pile is generated by a system

that places food in a location within a radius measured to have a maximum food density of 256

seeds/pile.

The food is distributed into four possible densities. 100% density is red food. 25% density is

represented by yellow food. 12.5% density represents purple food and randomly distributed food

is shown in gray.

The exponential distribution is built to create equal

food quantities of variable densities.

Red: 256 seeds * 1 pile = 256

Yellow: 64 seeds * 4 piles = 256

Purple: 32 seeds * 8 piles = 256

The simulation also creates two identical ant colonies, which it then compares in real time. These

colonies are mirror images of each other with one difference: Their behavior parameters. For the

purpose of accurate comparison, each colony is generated with identical food layout and colony

size.

Behaviors and Parameters

 Each ant colony uses 2 major behavior sets: Site Fidelity and Density Recruitment.

Site Fidelity: Ants leave the nest using a random walk. They choose a random direction biased

away from the nest to turn to and move forward a set amount. Upon finding food, they store the

location internally. They then bring the food to the nest and return to the location of recently

found food.

Density Recruitment: Ants leave the nest in a random direction and use the same random walk

seen in Site Fidelity. Upon finding food, they make an assessment of food density in the

neighboring area (food count c) (random 100/100 = P) (recruitment parameter = r).

P <= c + r . If this equation is true then ants will lay a trail. Ants at the nest will follow

pheromones to a food source.

Pheromones

 In nature, some ants have been proven to use a method of recruitment known as

pheromones. Pheromones were discovered by placing absorbent paper between a nest and a food

location. As the food source becomes more reliable, the strength of the chemical trail increases

because more ants were returning to the location and laying trails. This effect is also seen in our

simulation. The strength of the trails increases as the density of the food pile increases. These

pheromone trails have also been proven to be volatile. All of the trails have an evaporation rate

determined by a genetically optimized parameter.

Trail evaporation equation

P = P initial * (1-E) if P initial > .001

P = 0 if P initial < .001

P = pheromone strength

E = evaporation constant (0<E<1)

Dynamic Environment

We are attempting to find a method of food collection that excels in both stationary and changing

environments. For this reason, we programmed a simulation with a dynamic environment. This

world begins with the same number of available food seen in the stationary model, but as time

goes by, food amounts will decrease and increase with seasons.

This code block allows all the food to decrease at a rate of 0.067 % of the remaining total per

tick over a 2500 tick interval. Resulting in approximately 50% fluctuation in food totals over all.

In addition to creating a fluctuation in available food, we created a visible environmental change

in the way of seasons. The simulation will shift from dark green to white to a light green to

symbolize a seasonal progression.

Graphs

To test the adaptability of different ant colonies, we tested many different scenarios of food

distributions and trail evaporation. We tested our ant program several times to get the most

dependable, reliable, and consistent data.

Random Food - Both graphs show the results of Site Fidelity

and Density Recruitment over multiple trial runs. The food

is distributed randomly. In this case, the ants perform almost

the same not really varying much in behavior or food

collection.

Large Piles/ Dense Food- The graphs are testing all dense

piles of food. In this case Site Fidelity performs better than

Density Recruitment. From collecting data and graphing we

found that this was because in Density Recruitment, many

of the ants never find food therefore they would never return

to the nest, causing many of the ants never to pick up a

pheromone trail.

Sparse Piles- these graphs test sparse piles, which are the

least dense pile of food in our program. Density recruitment

performs better in this case. This is because Density

Recruitment has a better chance of finding food and

returning to the nest unlike the case with only a few dense

food piles.

High Evaporation Rate- the higher the evaporation rate the

faster the pheromone trails will disappear. The two

colonies are in an environment with equal amounts of

different piles of food. The GA colony performs better

than the user-controlled colony with a high evaporation

rate. It took the user controlled colony time to adapt to

these extreme changes of their environment.

Low Evaporation Rate- In this case the ants had to adapt to

the trails evaporation slower. The two colonies in this

environment performed better than if the trails would

evaporate faster and did not have to adapt to any sudden

changes. Both ant colonies performed better as a result,

with density recruitment depending on pheromone trails.

Conclusion

Ants are the world’s greatest scavengers. Their behavior can teach us many things about

how to find and collect resources through a distributed system such as a colony. However, few

colonies live in an environment where their food availability is subject to extreme change. We

are able to create these environments though the use of computer simulation. By running

numerous tests, we have been able to pinpoint how to optimize the ant colonies in a system of

extreme drought or extreme moisture. We have discovered how to optimize a colony for very

dense and very sparse food sources, and we have learned how to adapt an ant colony to a

changing environment through our knowledge of existing ant behavior and how parameters can

affect it.

These new ant-based algorithms have numerous applications in the real world. A system

of Ant-based robots would be extremely successful at both search-and-rescue style operations

and in dangerous areas such as minefields. Because these ants are independent and highly

efficient, a system of autonomous robots would be both cheap and reliable. The possibilities of

robotic and digital ants are nearly endless.

Works Cited

1. T.P. Flanagan, K. Letendre, W.R. Burnside, G.M. Fricke and M.E.

Moses. (2011). "How Ants Turn Information into Food." Proceedings of

the 2011 IEEE Conference on Artificial Life:178-185

2. Netlogo website: http://ccl.northwestern.edu/netlogo/. (2011)

3. Supercomputing Challenge Webite http://challenge.nm.org (2012)

4. Marco Dorigo, Tomas Stuzle (2012)

http://www.scholarpedia.org/article/Ant_colony_optimization

5. Nikolaos V Karadimas, Georgios Kouzas, Ioannis Anagnostopoulos,

Vassili Loumos (2012) http://ducati.doc.ntu.ac.uk/uksim/journal/Vol-

6/No.12-13/paper5.pdf

6. Kwee Kim Lim, Yew-Soon Ong, Meng Hiot Lim, Xianshun Chen,

Amit Agarwal (2012)

http://www.springerlink.com/content/5774082768421663/

http://ccl.northwestern.edu/netlogo/
http://challenge.nm.org/
http://www.scholarpedia.org/article/Ant_colony_optimization
http://ducati.doc.ntu.ac.uk/uksim/journal/Vol-6/No.12-13/paper5.pdf
http://ducati.doc.ntu.ac.uk/uksim/journal/Vol-6/No.12-13/paper5.pdf
http://www.springerlink.com/content/5774082768421663/

	Binder2
	cover_front_back
	final_report_intro
	New Mexico Supercomputing Challenge
	Table of Contents
	About the New Mexico Supercomputing Challenge
	2011—2012 Challenge Awards ……………………...…………………………. 4
	Participants …………………………………………………………………….. 11
	Judges………………………………………………………………….………... 17
	Finalist Reports ………………………………………………………………… 19

	 Albuquerque Manzano High School student takes top award in 22nd New Mexico Supercomputing Challenge

	1_82_1-32
	82.pdf

	2_72_1-20
	72.pdf

	3_56_1-22
	56.pdf

	4_2_1-31
	blank_page
	5_36_1-35
	36.pdf
	Introduction
	History
	Statistical Parsers
	Other NLP Programs

	Common Language Properties
	Bigrams
	Recursion

	Linguistic Interpretation
	Project Definition

	Morphology
	Algorithm
	Limitations
	Results

	Syntax
	Algorithm
	Limitations
	Results

	Analysis
	Comparison to Existing Programs

	Extension
	Other Sentence Structures
	Semantics

	Conclusion
	Acknowledgements
	Sample Texts
	Morphology Code
	Syntax Code

	blank_page
	6_41_1-18
	41.pdf

	7_64_1-26
	64.pdf

	8_66_1-24
	66.pdf

	9_73_1-36
	73.pdf

	10_118_1-12
	blank_page

	blank_page

