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Executive Summary

This project explores the nature of language acquisition in computers, guided by techniques

similar to those used in children. While existing natural language processing methods are

limited in scope and understanding, our system aims to gain an understanding of language

from first principles and hence minimal initial input.

The first portion of our system is focused on understanding the morphology, or word

structure, of language using bigrams which are two-letter sequences within words. The

program was developed first in C++, and then translated into Java to take advantage of

the ability to use non-standard characters. We use frequency distributions and differences

between them to define and distinguish languages. English and French texts were analyzed

to determine a difference threshold of 55 before the texts are considered to be in different

languages. The program was also tested with Spanish texts and found to work with the

same threshold, and the frequency distributions for the individual languages were analyzed.

The second portion of our system focuses on gaining an understanding of syntax, or

sentence structure, of a language using a recursive method. The program uses one of two

possible methods to analyze given sentences based on either sentence patterns or surrounding

words. Both methods have been implemented in C++. Using a minimum of initial input,

the program is able to understand the structure of simple sentences and learn new words.

In addition, we have provided some suggestions regarding future work and potential

extensions of the existing program. We have described how the program might currently

analyze certain sentence constructs along with how the program could be edited to provide

better understanding. We have also made suggestions regarding how to implement a com-

putationally intuitive understanding of semantics, or the meanings of words in a language.



Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

Contents

1 Introduction 2
1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Statistical Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Other NLP Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Common Language Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Bigrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Linguistic Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Project Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Morphology 10
2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Syntax 16
3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Analysis 22
4.1 Comparison to Existing Programs . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Extension 24
5.1 Other Sentence Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Conclusion 30

7 Acknowledgements 31

A Sample Texts 34

B Morphology Code 35

C Syntax Code 37

Page 1 of 39



Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

1 Introduction

Natural language processing is a wide and varied subfield of artificial intelligence. The

question of how best to give a computer an intuitive understanding of language is one with

many possible answers, which nonetheless has not yet been answered satisfactorily. Most

existing programs work only within a limited scope, and in most cases it cannot realistically

be said that the computer actually understands the language in question.

This project seeks to give a computer a truly intuitive understanding of a given language,

by developing methods which allow the computer to learn the language with a minimum of

outside input, on its own terms. We have developed methods to teach the computer both

the morphology and the syntax of a language, and have provided some suggestions regarding

language acquisition at the semantic level.

1.1 History

The idea of natural language processing originates from Alan Turing, a British computer

scientist, who formulated a hypothetical test, known as the “Turing Test”. The “Turing

Test” proposes that the question “Can machines think?” can be answered if a computer

is indistinguishable from a human in all facets of thought, such as conversation; object

identification based on given properties; and so forth [1]. After Turing’s proposition, many

attempts have been made to create natural language processing software, particularly using

sound recognition, which is currently used in cell-phones, most proficiently in the iPhone

4S Siri system. However, most of these programs do not have high-level semantic abilities,

rather they have a very limited set of operations, for which keywords are assigned. For

example, the Siri system can send an email or text message. When told to send an email

or text message, the software uses these keywords to open a blank e-mail or text message

and when told what is to be written in the e-mail or text message, there is no semantic
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understanding of the message, simply a transcription of the words using voice recognition

[2]. Similarly, there is a lot of software, such as LingPipe, that is able to determine the origin

and basic ‘significance’ of a term or sentence by searching the term(s) on a database for other

uses of the term(s). These programs do not, however, gain a semantic understanding of the

term(s), rather they simply collect patterns of information with association to the term(s)

[3].

1.1.1 Statistical Parsers

There have also been some more technical, less commercially efficacious attempts at natural

language processing, such as statistical language parsers, which have been intricately devel-

oped by many educational institutions. Parsers are a set of algorithms that determine the

parts of speech of the words in a given sentence. Current parsers use a set of human-parsed

sentences that creates a probability distribution, which is then used as a statistical model for

parsing other sentences. Stanford University and the University of California Berkeley use

probabilistic context-free grammars (PCFG) statistical parsers, which are the most accurate

statistical parsers currently used, with 86.36% and 88% accuracy, respectively [4] [5]. The

different parts of speech are separated as in Figure 1.

In Figure 1, NN = noun, NP = noun phrase, S = subject, VP = verb phrase, and the

other symbols represent more specific parts of speech. One can see that the parser splits the

sentence into three parts: the subject noun phrase, the verb phrase, and the noun phrase.

Each of these parts is then split into more parts and those parts into parts, finally arriving

at individual qualifications for each word. The assignment of a given part of speech for a

word is determined by tentatively allocating the part of speech that is most probable for

that word, which is then tested within its phrase (i.e. subject noun phrase, or verb phrase,

etc.), and if the probability remains high then that part of speech is set for the word. These
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Figure 1: Statistical parser tree [4]

parsers are called context-free because the parse of a word is not affected by the other words

in the sentence other than those in its phrase, while the less accurate parsers obtain an

overall probability for a sentence and adjust their parsing accordingly [6].

1.1.2 Other NLP Programs

In addition to statistical parsers, which only determine the syntax of a sentence, some ele-

mentary programs have been written for evaluating the semantics of a given body of text.

There is a system called FRUMP that organises news stories by finding key words in an

article that match a set of scripts and then assigns the article to a certain category, in
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which it is grouped with other articles of similar content. SCISOR summarizes a given news

article by analyzing the events, utilizing three different sets of knowledge: semantic knowl-

edge, abstract knowledge, and event knowledge. As the program sifts through the body

of text, certain words trigger different pieces of knowledge, which are compiled to gain the

best understanding of that word or sequence of words. The resultant meanings can then be

organized and rewritten using similar meanings, equally balanced among the three sets of

knowledge as the original piece of information. Similarly, TOPIC summarizes a given text

by distinguishing the nouns and noun phrases and then analyzing their meaning through a

“thesaurus-like ontological knowledge base”, after which the program uses these equivalent

meanings to rewrite the text [7].

1.2 Common Language Properties

Certain elements of language are commonly used both in natural language processing and the

general analysis of language. These properties include bigrams and recursion, two properties

which play a significant role in this project.

1.2.1 Bigrams

An n-gram is a sequence of n letters. The most commonly used forms of n-grams are

bigrams and trigrams because these offer a specific indication for a set of information, without

signifying extremely rare and complex aspects of the subject. A good example of this is the

use of bigrams in cryptography. A common method of decoding a message that has been

encoded using a keyword, like the Vigenere Cipher encryption, is to calculate the distance

in letters between two of the same bigrams in order to determine the length of the keyword,

and then the keyword itself [8]. If any n-grams are used, where n is greater than or equal

to 4 or even in some cases if n is equal to 3, then the number of same n-grams for a given
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message would be very rare and make determining the length of the keyword increasingly

difficult.

Similarly, in natural language processing, bigrams are used for word discrimination, which

is the understanding of an unknown word based upon bigram correspondence with a reference

list of known words. In addition, word bigrams are used in some lexical parsers, the Markov

Model for bag generation, and several text categorization tools [9].

1.2.2 Recursion

The principle of recursion is an essential aspect of human language, and is considered one

of the primary ways in which children learn a language. For a sentence with a particular

pattern, a word with a specific part of speech can be exchanged for another word of the same

part of speech, indicating that the two words have the same part of speech. For example,

given the sentence: “The boy wears a hat”, it can be determined that “the” and “a” are the

same part of speech by reconstructing the sentence as “A boy wears the hat”. In addition,

the word “boy” can be exchanged for the word “girl”, indicating that these are also the same

type of word, thereby expanding the lexicon of the child.

In addition, the words of a sentence can remain unchanged, while the pattern changes,

thereby introducing a new part of speech. If we have the sentence “The boy wears a hat”

or “A B C A B” if represented as a pattern of parts of speech, we can add a “D” part of

speech by creating a new sentence, “The boy wears a big hat” (A B C A D B). The child

ascertains that “big” must be a new part of speech because no words have previously been

placed between an “A” and a “B”. This method can be repeated for any new part of speech,

as well as embedded clauses such as “The boy, who is very funny, wears a big hat.”

Finally, recursion can be used to indicate the grammatical structures of a language. Let

us examine the following poem:
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When tweetle beetles fight,
it’s called

a tweetle beetle battle.

And when they
battle in a puddle,

it’s a tweetle
beetle puddle battle.

AND when tweetle beetles
battle with paddles in a puddle,

they call it a tweetle
beetle puddle paddle battle.

- Excerpt from Dr. Seuss’ Fox in Socks [10]

The author uses the recursive principle to indicate that “tweetle beetle” can be both a

noun and an adjective, and then repeats this demonstration with “puddle” and “paddle”.

Further, the correct placement of the new noun acting as an adjective is shown to be between

the old string of nouns acting as adjectives and the object noun. Conversely, the poem

illustrates that a noun acting as an adjective can be rewritten as a preposition and an added

clause, e.g “a tweetle beetle puddle battle” can be rephrased as “a tweetle beetle battle in a

puddle” [11]. Thus, the principle of recursion can allow a child to acquire new vocabulary,

new types of parts of speech, and new forms of grammar.

1.3 Linguistic Interpretation

There is a basic three-link chain in the structure of language. Phonetics is the most basic

structure, which is formed into meaning by units, known as words. Units are then arranged

syntactically to form sentences, which in turn forms a more extensive meaning, formally

called semantics [12].

It is fundamental in learning a language that a computer understand the connections in
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the phonetics-syntax-semantics chain, and the structure and computations of each, with the

exception of phonetics. Phonetics and their formulation can be disregarded because these

refer more greatly to the connections of the brain to external sounds, than the core structure

of language. In fact, the entire external world can be ignored, as there need not be an infer-

ence between external objects in their human sensory perception, and their representation

as language, formally known as pragmatics or in Chomskyan linguistics as E-language (Ex-

ternal Language). Instead, the relations between words and meaning, intricately augmented

by the semantics created by their syntactically accurate formed sentences, is the only form

of language necessary, denominated contrastingly as I-language (Internal Language) [12].

Noam Chomsky argues that I-Language is the only form of language that can be studied

scientifically because it represents the innate structure of language [7]. Language similar

to this form can be found in humans who are literate in a language, yet can not speak it.

Therefore, due to the increase in structure, the lack of external representation in natural

language processing may be more advantageous than one might think.

1.4 Project Definition

This project examines the nature of language acquisition in computers by implementing

techniques similar to those used by children to acquire language. We have focused primarily

on morphology and syntax, developing methods to allow a computer to gain knowledge of

these aspects of language. We have developed programs in both C++ and Java.

Regarding morphology, the program is able to analyze the word structure of given lan-

guages and distinguish between languages in different samples of text using bigram frequen-

cies, and we have examined the usefulness and limitations of this method in the context of

existing methods. Using this technique we have developed computationally understandable

definitions of English, French and Spanish morphologies. We have also described and par-
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tially implemented a novel technique for understanding the syntax of a language using a

minimum of initial input and recursive methods of learning both approximate meanings of

words and valid sentence structures. Finally, we provide suggestions for future work regard-

ing the further development of our methods for understanding syntax as well as potential

methods for gaining a rudimentary understanding of semantics.
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2 Morphology

To analyze the morphology of a given language, bigrams can be used to define and compare

languages. Since the frequency distribution of a set of bigrams is unique to a given language

(across a large enough sample text), this can be used as an accurate identifier of a language

with minimal effort.

2.1 Algorithm

The program was initially developed in C++ then translated to Java to take advantage

of non-standard characters, and is set up in two main portions. The first step involves

generating a table of frequency values from a file, and the second step is to compare the two

tables and determine the level of similarity.

To generate a frequency table, a two-dimensional numerical array is created from the set

of valid characters such that the array includes a space for every possible bigram, with the

initial value for each being set to zero. For each word from the input file, the program checks

each pair of letters, adding one to the corresponding position in the bigram frequency table.

Once the end of the file is reached, each frequency count is divided by the total number of

bigrams found times 100 to give a percentage frequency. This process is shown in Figure 2.

This produces an array similar to Table 1, which can be analyzed separately to examine

common and uncommon bigrams for a given language, or compared with another text’s table

to distinguish between languages as detailed below.

After the frequency tables are created for each file, the two must be compared to deter-

mine the level of similarity between the languages of the two files. This is done by finding

the absolute values of the differences between corresponding frequencies for the two files,

then finding the sum of these differences as seen in Figure 3.

This gives an approximate measure of how different the two files are in terms of the
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Figure 2: Learning morphology with bigrams

a b c . . .
a 0 0.204 0.509 . . .
b 0.080 0 0 . . .
c 0.298 0 0.269 . . .
...

...
...

...
. . .

Table 1: Sample of frequency array

frequency of given bigrams. As each language tends to have a unique frequency distribution,

a large net difference suggests a different language for each file while a smaller net difference

suggests the same language. The threshold dividing a determination of ‘same language’ or

‘different language’ was experimentally determined to be approximately 55.

Figure 3: Calculating morphology differences between sample texts
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2.2 Limitations

This method does have certain limitations, however. Since the program deals with bigrams

(though it can be easily made to use n-grams for any n greater than 1), single-letter words

are not taken into account. While this does not have a large overall effect, it produces some

inaccuracies in the analysis of frequencies for a given language.

A more significant limitation is the requirement that all “legal” characters be defined

before the program is run. Although it would be relatively straightforward to dynamically

determine the character set based on the input files, this creates issues where the character

sets for each file are not the same, making it difficult, if not impossible, to accurately compare

the two files. Even ignoring this, varying the number of characters may produce variations

in the threshold used to determine language similarity. The program is also effective only

for files of considerable length to allow for a large enough sample size.

2.3 Results

Figure 4: Distribution of English bigrams
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The program was run using a series of files in English, French and Spanish. Initial

frequency tables for analysis of individual languages were created using the EU Charter in

each respective language [13], producing the frequency distributions shown in Figures 4, 5,

and 6 for English, French, and Spanish, respectively.

Figure 5: Distribution of French bigrams

These frequency graphs show that each language has a handful of extremely common

bigrams (in addition to some which appear little or not at all). In English, this includes

“th” and “he” with percentage frequencies of 2.9 and 2.8, respectively, along with “on” and

“ti” also both above 2.5%. This data is slightly skewed by the text used, though “th” and

“he” are indeed the most common bigrams in English. A study conducted using a sample of

40,000 words [14] gave the two frequencies of 1.5 and 1.3, respectively, though the next most

common bigrams in the sample text are not as common in the English language as a whole

as their frequencies here would suggest. This is largely due to an inherent bias in the text,

as words such as “protection” or “responsibilities” appear frequently in the EU Charter.

French resulted in “es” and “on” as the most common bigrams, followed by “de” and

Page 13 of 39



Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

Figure 6: Distribution of Spanish bigrams

“le”. In Spanish, the most common bigram by far was “de”, followed by “cl”, “en”, “er”,

and “es”. Again, however, these likely suffer from slight biases due to the nature of the text.

The comparison threshold was initially determined using a series of randomized Wikipedia

articles of considerable length in English and French. The same threshold was also used

to compare English and Spanish texts and French and Spanish texts with continued high

accuracy for texts of considerable length, showing that this method does not vary notably

with different languages. The outputs of these tests are shown in Table 2.

philosophy encyclopedia france (fr) capitalism (fr) jazz (es) nyc (es)
philosophy . . . . . . . . . . . . . . . . . .

encyclopedia 33.13 . . . . . . . . . . . . . . .
france (fr) 73.83 75.31 . . . . . . . . . . . .

capitalism (fr) 73.94 79.62 30.15 . . . . . . . . .
jazz (es) 67.68 69.56 64.76 67.76 . . . . . .
nyc (es) 71.76 73.42 66.41 70.46 28.95 . . .

Table 2: Sample of sum differences
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Finally, this method was tested with files of varying lengths. For the set of two English

texts which were tested with decreasing word counts, the point at which this method was

no longer accurate was between 400 and 200 words. For other files this is likely to vary,

and could be lessened with further fine-tuning of the threshold. At a certain point, however,

the difference values begin overlapping due to variation and bias from the words used in the

text, making accuracy impossible.
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3 Syntax

To analyze the syntax of a language, a “recursive learning” method is implemented using

C++. Since the program would ideally require an absolute minimum of initial information,

this method takes a small initial set of words and builds on this by alternately using known

words to learn new sentence structures and using known sentence structures to learn new

words as seen below.

{cat, man, has} → “The man has a cat” → “The x y a z” → “The man wore a hat” →

{cat, man, has, wore, hat}

3.1 Algorithm

There are two main elements to understanding the recursive learning system, namely un-

derstanding both how the information is represented and the methods used to analyze new

information.

The information this program gathers can be split into two pieces, information on the

words themselves and information on valid sentence structures. For words, the program

keeps track of the word itself and the word’s type. Only two specific types are defined in

the program, “noun” and “verb”, and the actual meaning of each is defined by context.

Any word which does not fit these definitions is defined relative to these definitions. For

sentences, the program keeps track of the number of words in a given sentence pattern and

the type of the word in each position (in an array). These structures are shown in Figure 7.

The methods used by the program to analyze new information can also be split into two

pieces. Both methods require that some information is already known about the sentence

in question, but are used in slightly different ways. The first method analyzes new words

based on the structure of the sentence, by selecting the most applicable of existing patterns
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Figure 7: Word and sentence pattern datatypes

based on correspondence with known information. The program keeps track of how many

“matches” there are between the sentence and the known pattern, taking the one with the

most matches (if greater than half the word count) and using it to set unknown word types.

This method is seen in Figure 8

Figure 8: Sentence structure method of learning

This method is particularly useful for learning new nouns and verbs, in situations where

other words in the sentence are primarily known grammatical particles. The other method

uses the surrounding words to define the type of any unknown words. The program notes the

types of the words before and after the unknown word, and the type of the unknown word

is then stated as “a<type of previous word> b<type of next word>”. For example, a word

with type “anoun bverb” would be one which tends to come after nouns and before verbs.
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This type could also be analyzed and modified to give further insight into other types of

words such as adjectives, as detailed in Section 5.1. The program can redefine known words

if new information is found on their positioning, using the new definition if it is shorter, and

thus more general, than the previous definition. This is seen in Figure 9.

This method is best used when most of the nouns and verbs in a sentence are known,

but other words exist which are not known. The program would be able to dynamically

select between the two methods based on what information is already known. As a rule, the

program would default to the first method initially as this is more likely to provide accurate

results.

Figure 9: Word-based method of learning

3.2 Limitations

With proper development this method could be used to learn many types of sentences.

However, it still has several limitations. Although it is sufficient for simpler grammatical

constructs, complicated words and patterns could cause confusion. In particular, words

which have multiple meanings with different parts of speech would confuse the program
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tremendously, and at present it also has no way of connecting related words (such as plural

or possessive forms of nouns).

In addition, this method requires carefully crafted training sentences. Although it can

work with a minimum of initial information unlike most existing systems, it still has to learn

the constructs somewhat sequentially and avoid having too many new concepts introduced

at once. This could be partially remedied by implementing a method by which the program

stores any sentences it does not yet have the tools to analyze to be recalled later, so that a

more general text could be used as training material.

3.3 Results

As a proof of concept for these methods, a series of three training sentences were input

and analyzed by the program to learn a handful of new words and concepts. Although the

program begins with far less information than many existing programs, it nonetheless needs

some initial input - in this case three words which will, together with “a” and “the”, make

up the initial sentence, as seen in Table 3.

Word Type
has verb
hat noun
man noun

Table 3: Initial program input

The first sentence input into the program is “the man has a hat,” which is analyzed

using the word-based second method. From here, two new words are learned - namely “a”

and “the” which are defined based on the surrounding words. The sentence pattern is also

catalogued, and the known information reads as in Table 4.

At present, although “the” must only appear before a noun, “a” is assumed to require a
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Word Type
has verb
hat noun
man noun
the bnoun
a averb bnoun

5 bnoun—noun—verb—averb bnoun—noun

Table 4: Program knowledge after run one

preceding verb. To correctly define “a”, the next sentence reads “a man has the hat.” While

using the same words, the two known grammatical particles are reversed. The program

redefines the word “a” with a more general definition (i.e. simply requires a succeeding noun),

however the definition of “the” remains the same as the program determines that replacing

the definition would add more constraints, which is counterproductive. The sentence pattern

is again catalogued, and the known information reads as in Table 5.

Word Type
has verb
hat noun
man noun
the bnoun
a bnoun

5 bnoun—noun—verb—averb bnoun—noun
5 bnoun—noun—verb—bnoun—noun

Table 5: Program knowledge after run two

Although the two existing sentence patterns are functionally identical, and the first should

actually be redefined as the second, both are kept to demonstrate the first method based on

sentence patterns. For this, the sentence “the dog ate a biscuit” is used, having the same

structure as existing sentences but a different set of nouns and verbs. Although some matches

exist with the first pattern, the redefinition of “a” results in only two matches. Instead, the

program finds this to be the same as the second sentence pattern, as the number of words

matches as do the types of the words “the” and “a”. Hence, the program defines the unknown
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words based on this pattern, resulting in the set of information shown in Table 6.

Word Type
has verb
hat noun
man noun
the bnoun
a bnoun

dog noun
ate verb

biscuit noun

5 bnoun—noun—verb—averb bnoun—noun
5 bnoun—noun—verb—bnoun—noun

Table 6: Program knowledge after run three
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4 Analysis

In this project we have developed methods for allowing a computer to understand and learn

both the morphology and the syntax of a language. Using novel techniques or applications,

we have designed and implemented these methods and tested their capabilities for learning

language.

Although the use of bigrams in language analysis is not a new idea, we have implemented

it in a novel way by working to develop it as a defining quality and learning mechanism for

natural language processing. The method proves very useful for understanding the mor-

phology of a language, though only to a point. It is extremely effective when using a large

enough sample text, but with smaller sample texts it is no longer able to accurately compare

languages. Hence, although it creates a computationally effective “definition” of a language,

its actual ability as a learning mechanism is limited. Used in tandem with other methods,

the bigram method could prove extremely powerful.

The recursive learning method implemented for gaining an understanding of syntax proves

very useful and has great potential to be developed further. Both of its submethods work

with high accuracy for simple sentences, and hence it is able to develop a growing model of

sentence construction. Even more particularly, it is able to do this with a very small amount

of initial input and with methods which could be applied to many types of languages.

4.1 Comparison to Existing Programs

The use of bigrams to understand and analyze different parts of a given language has been

studied and implemented substantially. For example, there are programs that calculate

bigram frequencies to evaluate a language’s morphology. However, unlike our program,

none to date have utilized the differences in bigram frequencies between two languages to

distinguish one language from the next.
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The system in the program that was used for determining the parts of speech in a sentence

has rarely been attempted, and when it has been used, only partially and in conjunction

with other methods. Most natural language processing programs have been designed to be

as the efficient and effective as possible. As a result, many use large banks of initial data,

which the program then analyzes and uses for subsequent input. As discussed previously, the

most common and successful programs of this sort are statistical parsers. On the contrary,

our program uses the recursive principle to acquire new vocabulary and forms of syntax for

a given language, provided only a very small initial set of data. In practice, our model only

required one sentence with verb and noun indicated to determine the parts of speech of all

other words, although not denoting them in linguistic terms (article, preposition, etc.), as

well as learn new words and, in theory, to learn new sentence patterns. Despite the extensive

power of the recursive method, it has rarely been used in the history of natural language

processing. The results of our program illustrate the potential abilities of the recursive

method that have not been seen previously.
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5 Extension

The program as it stands now can learn and understand a range of language elements,

including morphology and simple sentence patterns. However, there is still significant room

for further exploration both by developing the techniques for learning syntax to allow for a

more complete range of sentence patterns, and by developing methods for a computational

understanding of semantics.

5.1 Other Sentence Structures

In addition to existing sentence structures and constructs, the syntax program can learn

other common constructs. Although some may be understandable at present, others may

require some additions to the program to fully understand. Below are some examples of

other simple sentence constructs and how the program would interpret them.

“The man has a blue hat.”

Here, the only unknown word with present knowledge is “blue”. The program at present

would interpret it using the word-context method, resulting in a type of “abnoun bnoun”.

Continuing in this manner would quickly lead to complications, however, so the program

could be extended to understand words based on the form of types which are not nouns or

verbs. The word directly before blue has the type “bnoun”, so “blue” would be interpreted

in this manner as a noun, resulting in two nouns in a row. The program could additionally

be edited to interpret two like words in a row as a “noun phrase” or “verb phrase”, which

would differentiate adjectives from nouns and adverbs from verbs in a way more intuitive to

the computer.

“The hat is blue.”

This sentence presents a different use of an adjective effectively in the place of a noun.

Assuming “is” had been previously learned as a verb, this sentence would be more-or-less
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readily understandable as “blue” is still interpreted as related to nouns. This introduces

another common sentence construct as well, namely that some nouns can appear directly

after verbs without a “bnoun” word in between. Here, it may become worthwhile to add

some indicator to new nouns about whether they can appear directly after a verb or not.

“The man has one hat.”

This sentence would introduce numerical words, which would be readily understandable

as “bnoun” words similar to “a” or “the”. This is sufficient and accurate for most cases,

though as the program expands into semantics this construct may require more specific

definition.

“The man has four hats.”

Here, the concept of plurality is introduced. This sentence would simply be another

example of the above sentence with regards to syntax alone—the word “hats” would just

be considered a new noun. However, this would likely be the most problematic concept

regarding semantics. Without an external concept of meaning or some other indication,

plurality would have to be learned simply by similarity at the word level. In many cases

this would be sufficient, such as “hats”, but some words do not follow standard plurality

rules such as “mice” versus “mouse”. Similar issues apply to verb tenses, though here the

rules are even less standardized. This issue could be at least partially remedied by creating

an artificial semblance of external understanding, though this would likely prove difficult as

well.

Many other sentence constructs are built from these sorts of basic patterns. For example,

another common sentence construct involves prepositions such as the sentence “the man

threw the hat in the trash”. Assuming prior knowledge of the nouns present, the program

could interpret “in” as verb-like, appearing between two noun phrases. This is, again, a

sufficient interpretation in most cases. A marker indicating what would effectively be two full
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constructs could be implemented as well. Embedded clauses would be interpreted similarly,

where the program would find the pattern of the outside clause and then the pattern of

the inside clause. An understanding of punctuation would make such sentences more easily

interpretable.

Despite some issues, the program can, currently or with only minor modifications, un-

derstand many common sentence constructs using the two main forms of learning and still

a fairly small amount of initial information. The program proves fairly versatile, though of

course not at the full level of human understanding.

5.2 Semantics

Semantics is the meanings of words or sentences, not only determined by direct definition,

but also by connotation and context. To gain a computational understanding of semantics in

a given language, without external representation for words, we have devised an associative

approach. For a noun, different adjectives and verbs can be used when employing the noun

in a sentence. The particular set of adjectives and verbs for that noun are representative of

the nature of the object. A second noun will have some shared verbs and adjectives, and

the degree to which this is true will indicate the similarities of the two objects. Conversely,

a verb would be understood based on the different objects associated with it, especially

the order of the nouns, i.e the subjects and objects used with that noun. From a set of

sentences, a threshold of similarity could be experimentally determined, which would result

in the categorization of the different nouns and verbs. The sequence of sentences could be

as follows:

1. The man wears the big hat.

2. The man throws the small hat.
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(“hat” is known to be something that can be “big”, “small”, “worn”, and “thrown”)

3. The man throws the big ball.

4. The man bounces the small ball.

(“ball” is like “hat” in having the ability to be “big” or “small” and can be “thrown”,

however it has not yet be found that it can be “worn”, and “hat” has not be shown to

be able to be “bounced”)

5. The man wears the big shoes.

6. The man throws the small shoes.

(“shoes” is then understood as the same type of object as “hat”)

7. The man uses the telephone.

8. The man answers the telephone.

Let us stop here because the fundamental logic of the sequence of sentences can now

be seen. Using these characteristics of nouns, a complex associative web would be formed,

where objects have meaning based on their relation to a set of other objects, which also

have meaning in relations to another set objects that the first may not. This web may be

represented visually by a venn diagram similar to the one in Figure 10.

For the verbs “wear”, “throw”, “bounce” etc., the program would interpret the above

sentences as suggesting that only “man” can conduct these actions, but cannot be the recip-

ient of these actions, while certain nouns can be the recipient of these actions. Further, it

should be noted that the training sentences do not require a strict order because a charac-

teristic of a particular noun would be stored until another noun was found to have the same

characteristic, and the two nouns would then share a link of the web. Similarly, a verb would

have tentative subjects and objects associated with it until more were found. Nevertheless,
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Figure 10: Sample semantic web

this method is limited by the requirement of large amounts of sentences in order to gain any

significant understanding of a given word.

To understand a concept such as time, which is essential for semantics and acknowledging

tenses, the program would require some initial specification, as well as using a time indicator

in all sentences referring to the past or present. It would start with the conditional parameter

that if a sentence has the word “yesterday”, “ago”, “tomorrow”, “later”, “past”, or “future”,

then a time different from the current moment is being referenced, and the verb used is similar

to another verb (the present form, which is the first form the program learns), but with a

slightly different morphology. Yet, a problem arises because “last” and “next” applied in

“last/next week” or “last/next month” cannot be used strictly as indicators of time, as they

can be used in other contexts, such as “He ate the last cookie in the jar” or “He is next

in line at the supermarket”. Thus, in certain cases, time would present a difficulty for the

semantic understanding of the program. The same applies for the use of negation, as in the
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sentence “The man is not big”, whereby “not”, “never”, “none”, “no longer”, and “no more”

would have to be explained prior and would result in the noun or verb being categorized as

different from other nouns and verbs with shared associative terms.

In addition, the associative method only allows for a definitional understanding of a given

word, which can be substantially limited due to the possible changes in the meaning of a

word as a result of its context. To allow a computer to have an understanding of context,

a system could be implemented to keep track of previously learned information. Cognitive

scientist Marvin Minsky suggests that a series of “frames” which represent generalized situ-

ations can be used to represent cognition computationally. These general frames could then

be modified with situation-specific variables [15]. This idea could prove useful in natural

language processing to give a computer an understanding of context. For example, if a series

of sentences read “John is playing soccer. He kicked the ball,” the program would be able to

select a general frame which it could use to keep track of relevant variables, such as “John”

being the subject of this action—hence linking this to the “he” in the next sentence.

Another issue that might arise is the issue of connotative meaning of words rather than

merely denotative meaning. This is also related to the idea of symbolism, another element of

language which can prove difficult for a computer to understand. Here, a method similar to

the associative approach above could be implemented after the initial denotative associations

were formed. Here, the training sentences would be ones using symbolism rather than literal

ones as above. If a word is suddenly associated with a word which is not within the proper

categorization, such as “a heart of stone,” it could be interpreted by the computer as a

connotative association. This would allow the computer to examine characteristics related

only to one or the other, hence gaining an understanding of the symbolic associations of

words.
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6 Conclusion

Using certain principles of language, we have designed a novel method by which a computer

can gain an intuitive understanding of language rather than simply an artificial understand-

ing. We have developed techniques by which a computer can learn and analyze the mor-

phology of any given language, and hence understand differences between two languages.

We have also developed a recursive learning system for understanding sentence patterns and

constructs, which uses a minimum of initial information. At present, the program can in-

terpret many basic sentences, and we have also provided possibilities and suggestions for

extending the capabilities of the program. This approach is unique compared to common

natural language processing systems because of this lack of need for significant initial in-

put and its recursive design, and could have great potential in the field of natural language

processing.
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A Sample Texts

Sample texts for the morphology-analysis system were primarily selected from randomized

Wikipedia articles in the respective languages, and were selected primarily for length. The

following sample texts were used for testing:

English EU Charter (available at http://www.europarl.europa.eu/charter/pdf/text_en.pdf)

French EU Charter (available at http://www.europarl.europa.eu/charter/pdf/text_fr.pdf)

Spanish EU Charter (available at http://www.europarl.europa.eu/charter/pdf/text_es.pdf)

English Wikipedia article on “Philosophy” (available at http://en.wikipedia.org/wiki/Philosophy)

English Wikipedia article on “Encyclopedias” (available at http://en.wikipedia.org/wiki/Encyclopedia)

English Wikipedia article on “Peace Dollars” (available at http://en.wikipedia.org/wiki/Peace_

dollar)

English Wikipedia article on “Buffalo Nickels” (available at http://en.wikipedia.org/wiki/Buffalo_

nickel)

French Wikipedia article on “France” (available at http://fr.wikipedia.org/wiki/France)

French Wikipedia article on “Capitalism” (available at http://fr.wikipedia.org/wiki/Capitalisme)

French Wikipedia article on “Karl Marx” (available at http://fr.wikipedia.org/wiki/Karl_Marx)

French Wikipedia article on “Democracy” (available at http://fr.wikipedia.org/wiki/Dmocratie)

Spanish Wikipedia article on “Jazz” (available at http://es.wikipedia.org/wiki/Jazz)

Spanish Wikipedia article on “New York City” (available at http://es.wikipedia.org/wiki/New_

York_City)

Spanish Wikipedia article on “the Sassanid Empire” (available at http://es.wikipedia.org/wiki/

Imperio_sasnida)

Spanish Wikipedia article on “the Crown of Castile” (available at http://es.wikipedia.org/wiki/

Corona_de_Castilla)
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B Morphology Code

package ngrams;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.PrintWriter;

import java.util.Scanner;

public class Ngrams {

// Main program

public static void main(String [] args) throws IOException {

String file1 = "", file2 = "";

float diff = 0; // Total frequency difference between two files

char[] alpha = {’a’,’ ’,’ ’,’ ’,’b’,’c’,’ ’,’d’,’e’,’ ’,’ ’,’ ’,’ ’,

’f’,’g’,’h’,’i’,’ ’,’ ’,’j’,’k’,’l’,’m’,’n’,’o’,’ ’,’ ’,’p’,’q’,

’r’,’s’,’t’,’u’,’ ’,’ ’,’ ’,’v’,’w’,’x’,’y’,’ ’,’z’}; // Valid characters

System.out.print("Input First File Name: ");

file1 = read(file1); // Reads text from file

System.out.print("Input Second File Name: ");

file2 = read(file2);

float bi1 [][] = count(file1 , alpha ); // Creates frequency table for file

float bi2 [][] = count(file2 , alpha );

// Calculates total frequency difference

for (int i = 0; i < alpha.length; i++)

for (int j = 0; j < alpha.length; j++)

diff += Math.abs(bi1[i][j] - bi2[i][j]);

System.out.println(diff);

if (diff < 55) // Experimentally determined threshold

System.out.println("Same Language");

else

System.out.println("Different Language");

}

// Create frequency tables

public static float [][] count(String file ,char[] alpha)

throws IOException { // 2-d frequency table of all possible bigrams

float bigram [][] = new float[alpha.length ][alpha.length ];

for (int i = 0; i < alpha.length; i++)

for (int j = 0; j < alpha.length; j++)

bigram[i][j] = 0; // Initialize with frequency =0

int a = alpha.length+1, b = alpha.length +1;

float total = 0; // Total number of bigrams

Scanner in = new Scanner(new File(file+".txt"));
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while(in.hasNext("\\S+")) { // Read file word by word

String word = in.next("\\S+");

word.toLowerCase ();

for (int k = 0; k < word.length ()-1; k++)

{ // For each pair of letters

a = alpha.length +1;

b = alpha.length +1;

for (int m = 0; m < alpha.length; m++)

{ // Locates each letter within alpha list

if (word.charAt(k) == alpha[m])

a = m;

if (word.charAt(k+1) == alpha[m])

b = m;

}

if (a < alpha.length && b < alpha.length)

{ // Adds valid bigrams to frequency list

bigram[a][b]++;

total ++;

}

}

}

// Create new file with frequency table

PrintWriter out = new PrintWriter(new FileWriter(file+"_tab.csv"));

for (int p = 0; p < alpha.length; p++) {

for (int q = 0; q < alpha.length; q++) {

bigram[p][q] = (bigram[p][q] / total) * 100;

// Convert to decimal frequency

out.print(bigram[p][q]);

out.print(",");

}

out.print("\n");

}

out.close ();

return bigram;

}

// Read text from file

public static String read(String str) {

String str2 = "";

BufferedReader read = new BufferedReader(new InputStreamReader(System.in));

try {

str2 = read.readLine ();

} catch (IOException ioe) {

System.out.println("Error: Cannot Read Input\n");

read(str);

}

return str2;

}

}
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C Syntax Code

To begin, types must be created and initial input defined, and the sentence must be divided
into its component words which are checked against known information:

// Type definitions

struct word {

string word;

string type;

} list [50];

struct pattern {

int wcount;

string patt [10];

} list2 [10];

// Initial input - First word must be "NULL" to avoid errors

list [0]. word = "NULL";

list [0]. type = "NULL";

list [1]. word = "has";

list [1]. type = "verb";

list [2]. word = "hat";

list [2]. type = "noun";

list [3]. word = "man";

list [3]. type = "noun";

// Split sentence into component words

for (i = 0; i < sen.length (); i++) {

if (sen.at(i) == ’ ’)

sen_count ++;

}

for (i = 0; i < sen.length (); i++) {

if (sen.at(i) == ’ ’) {

words[pos] = sen.substr(temp ,i-temp);

temp = i+1;

pos++;

}

}

// Find words in "list" array

num2 = num;

for (i = 0; i < sen_count; i++) { // For each word

for (j = 0; j < num; j++) {

if (words[i] == list[j].word) {

inarray[i] = j; // For known words , track position

}

}

if (inarray[i] == 0) {

inarray[i] = num2; // For unknown words , set new position

num2 ++;
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}

}

Unknown words are then defined using either the word-context method:

// For words not in "list" array , define

// Define unknown words by surrounding words

for (i = 0; i < sen_count; i++) { // For each word

if (inarray[i] >= num)

{ // If unknown , position will be greater than num (number of words)

list[inarray[i]]. word = words[i];

list[inarray[i]]. type = "";

if (i > 0) // If not the first word in the sentence

list[inarray[i]]. type =

list[inarray[i]]. type + "a" + list[inarray[i -1]]. type + " ";

if (i < sen_count -1) // If not the last word in the sentence

list[inarray[i]]. type =

list[inarray[i]]. type + "b" + list[inarray[i+1]]. type + " ";

}

else if (list[inarray[i]]. type != "noun" &&

list[inarray[i]]. type != "verb")

{ // If known , but not a noun or verb , checks if should be redefined

type_temp = "";

if (i > 0)

type_temp = type_temp + "a" + list[inarray[i-1]]. type + " ";

if (i < sen_count -1)

type_temp = type_temp + "b" + list[inarray[i+1]]. type + " ";

if (type_temp.length () <= list[inarray[i]]. type.length ())

// The shorter one is the type

list[inarray[i]]. type = type_temp;

}

}

num = num2; // Reset known number of words

// Create new sentence pattern

list2[runs]. wcount = sen_count;

for (i = 0; i < sen_count; i++) { // For each word

list2[runs].patt[i] = list[inarray[i]]. type;

}

Or by the sentence pattern method:

// Define unknown words by sentence structure

for (j = 0; j < 2; j++) { // For each existing pattern

matches = 0;

for (i = 0; i < sen_count; i++) { // For each word

if (inarray[i] < num)

if (list[inarray[i]]. type == list2[j].patt[i])

matches ++;

Page 38 of 39



Language Acquisition in Computers Megan Belzner and Sean Colin-Ellerin

}

if (sen_count == list2[j]. wcount) // If word counts match

matches ++;

if (matches > sen_count /2)

{ // If enough matches exist , unknown words are defined

for (i = 0; i < sen_count; i++) {

if (inarray[i] >= num) {

list[inarray[i]]. word = words[i];

list[inarray[i]]. type = list2[j].patt[i];

}

}

}

}

num = num2; // Reset known number of words

Page 39 of 39


	Introduction
	History
	Statistical Parsers
	Other NLP Programs

	Common Language Properties
	Bigrams
	Recursion

	Linguistic Interpretation
	Project Definition

	Morphology
	Algorithm
	Limitations
	Results

	Syntax
	Algorithm
	Limitations
	Results

	Analysis
	Comparison to Existing Programs

	Extension
	Other Sentence Structures
	Semantics

	Conclusion
	Acknowledgements
	Sample Texts
	Morphology Code
	Syntax Code

