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Abstract

This report details the results of numerical experiments involving

models of threshold of collapse for economic systems and disease-host

problems. An example is given showing the evolution of a disease for

comparison of a healthy host with an unhealthy host. The Disease-

Host model may be applied to simulate recovery, chronic illness and

collapse (death) of the host.
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1 Introduction

In the Threshold of Collapse project, a study of dynamical systems that

approach stable equilibrium sets was performed. Example problems from

economics and disease modeling were studied that have equilibrium points

and lines to which the solutions tend. These problems either reach zero or

non-zero equilibrium points. Collapse to zero represents the destruction of

the system, or in biological models, the death of a patient or a population.

The goal of the project was to model these circumstances and determine

when subsistence or collapse results.

A seventh-order Runge-Kutta scheme was implemented to numerically

integrate the model problems. The Economic/Population and Disease-Host

problems are governed by non-linear ordinary differential equations (ODEs).

A high-order numerical method was applied to handle the non-linear equa-

tions. The central theme in this project was to conduct numerical experi-

ments to study the qualitative properties of ODEs. The qualitative properties

were explored by plotting computed solutions of the dynamical systems in

phase space to identify the equilibrium points.

The numerical scheme was coded using the language C. All plots for this

project were generated using the software program Gnuplot. The computer

that performed all calculations is a Mac with a 10.6.8 operating system. The

C program developed for the project is listed in the Appendix.

2 Qualitative Theory of Ordinary Differential

Equations

The qualitative theory of ordinary differential equations is the study of the

global behavior of solutions to ODEs including their stability. Stability, in

the context of this project, was defined as the long-time behavior of a solution

of a dynamical system, Sanchez [1]. A stable system in a threshold of collapse
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problem approaches an equilibrium set. The characteristics of a non-stable

system would include the rate of change of the solution growing without

bound, or the system suddenly exploding around a fixed value. In this study

numerical experiments were used to determine whether or not the model

problems are stable.

The analysis of all of the numerical experiments was done by plotting

the solutions of the systems in phase space. Phase space is defined as a

three-dimensional representation where the X and Y axes are solutions to a

given ODE, while the Z axis, represents the evolution of the solution in time,

Arnold [2]. The goal of the analysis was to discover the solutions that reach

equilibrium points, and those systems that converge to zero, zero being one

equilibrium point representing collapse.

A given system of ODEs represents a slope field in the region of phase

space where the equations are defined. A solution of the system is a curve

in phase space that is tangent to the slope field defined by the differential

equations for each point on the curve.

3 Numerical Method

In this study a seventh-order Runge-Kutta-Fehlberg (RKF) scheme was im-

plemented to integrate the threshold of collapse problems. This scheme em-

ployed variable stepsize control. High-order Runge-Kutta schemes were de-

veloped in astrodynamics, for example see the textbook of Battin [3].

The scheme applied in this study was developed by Fehlberg [4], and is

defined by the following equations:

f0 = f(x0, y0), (1)

fκ = f(x0 + ακh, y0 + h
κ−1∑
λ=0

βκλfλ), (2)
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y = y0 + h
10∑

κ=0

cκfκ + 0(h8), (3)

and

ŷ = y0 + h

12∑
κ=0

ĉκfκ + 0(h9), (4)

where h is the step size. In Equation (2), κ = 1, 2, 3, ..., 12. An ordinary dif-

ferential equation is integrated numerically by applying Equations (1), (2),

and (3) in an iterative fashion. Equation (1) represents the system of equa-

tions to be integrated at the initial data point, (x0, y0). Equations (3) and

(4) are the seventh and eighth-order RKF schemes, respectively. Equation

(3) was used to calculate the solution. Equation (4) was used to compute the

stepsize update. In Equations (2), (3), and (4), there are quadrature con-

stants, ακ, βκλ, cκ, ĉκ, required by the numerical method, Fehlberg [4] (see

page 65).

The seventh-order Runge-Kutta-Fehlberg scheme was used in this study

because the solutions may have highly non-linear characteristics. For ex-

ample, problems similar to the Economics/Population model studied in the

following section may have unstable solutions that become arbitrarily large

in finite time. The RKF numerical method allows the accurate calculation

of data when the rate of change of the solution is large.

The RKF code developed for this project was checked against known

solutions to a linear vibration problem. For an outline of the validation

problem and its solution, see Baty and Armijo [5].

4 Threshold of Collapse

In this section, two threshold of collapse problems are presented: an Eco-

nomics/Population problem and a Disease-Host problem. Numerical experi-
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ments are outlined showing the qualitative properties of the solutions of these

dynamical systems.

For threshold of collapse problems empirical data is exceptionally hard

to obtain. These systems can be so complex that whole studies have to

be performed just to get approximate values for the rate constants in the

governing differential equations and for the initial data points. For the Eco-

nomics/Population problem studied here, example empirical data can be

found in the article of Johansen and Sornette [6].

4.1 Economics/Population Modeling

The first numerical experiments studied the time-evolution of a series of

Economics/Population simulations. The analysis of the simulations plotted

solutions in phase space for variable initial data. The following system of

ordinary differential equations (ODEs) was used as the model for the Eco-

nomics/Population problem:

dy

dt
= βy(t)[N(t)− y(t)], (5)

and

dN

dt
=

α[N(t)− y(t)] if y(t) ≥ N(t)

0 if y(t) < N(t)
, (6)

where α and β are rate constants. In Equations (5) and (6), y(t) is the value

of whatever is is being modeled, i.e., individuals in the population or financial

factors in an economy; N(t) is defined as the carrying capacity for the model,

i.e., the number of individuals that the system can support, or the ideal

combination of economic factors for stability in the system. For Equations

(5) and (6), either the solutions will intersect one of the equilibrium lines,

or the system will collapse to zero. For the numerical experiments presented

here, the rate constants were fixed as: α = β = 1.
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In Figure 1, the dotted-line (tan curve) of positive slope represents a

set of non-collapse equilibrium points within the problem. Three situations

can occur depending on initial data. If an initial-data point is below the

equilibrium line, then the solutions (green and red curves) will jump up to a

point at which the system has a constant population that can be maintained.

If the initial-data point is above the line, two events can occur:

1. Either the system has a low enough population that the solution curve

will intersect the equilibrium line (brown and cyan curves), or

2. The solutions (blue and purple curves) will be so skewed that the curve

will intersect the y(t) axis before it reaches the equilibrium line and

collapse to zero.

Figure 2 shows the time-evolution in phase space of example solutions, which

converge to constant population states of Figure 1.

The Economics/Population model studied here follows the development

and notes of Tucker [7].
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Figure 1: Typical solutions of the Economics/Population problem plotted in
the N(t)-y(t) plane showing the dotted, non-collapse, equilibrium line.
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Figure 2: Typical solutions of the Economics/Population problem plotted in
phase space. Here, the third axis is time.
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4.2 Disease-Host Modeling

For the second problem in the threshold of collapse project, numerical exper-

iments were run to study the time-evolution of a Disease-Host model. For the

purposes of the simulations, idealized values were entered for the rate con-

stants because of the lack of availability of measured data for disease-host

interactions. The Disease-Host model follows the development and notes of

Tucker [8].

The following system of ODEs was used to describe the evolution of the

population of invaders and defenders for a disease-host model:

dx

dt
= −kx2(t) + kNx(t)− lx(t)y(t), (7)

and
dy

dt
= mMx(t)− (m+ l0)x(t)y(t), (8)

where k, l, l0, m are rate constants. In Equations (7) and (8), x(t) is the

population of invaders, and y(t) is the population of defenders; moreover, N
is the carrying capacity for the invaders, and M is the carrying capacity for

the defenders. In the model, the invaders represent the population of a virus

or a bacteria and the defenders represent the population of antibodies or T-

cells. The carrying capacities N and M are specified as numbers near one for

the simulations. The numerical experiments vary the relative magnitudes of

the carrying capacities. In a real disease-host problem, the carrying capacity

populations may be on the order of 1012.

The solutions to the Disease-Host simulations fall into three basic cate-

gories. The first category ends with the patient recovering from the disease.

The solution curve in this situation would have an equilibrium point with

a relatively high y(t) value in comparison with the x(t) value. The second

set of solutions involve a patient surviving, but never fully recovering. The

solutions for this case converge to an equilibrium point, where the invaders

and defenders are in balance. The final category of solutions occur when the
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x(t) value greatly outweighs some threshold y(t) value (death). This system

would converge to a small value of y(t), signifying that there are not enough

defensive elements and the host has died.

Figure 3 show solutions of the Disease-Host model for carrying capacities

fixed at M = N = 1 and rate constants of k, l, l0,m = 0.01. For these values

two equilibrium sets occur:

1. The solutions converge to the equilibrium point (0.5, 0.5) for which the

patient survives but never fully recovers, or

2. The solutions converge to an equilibrium point above (0.0, 1.0) on the

vertical axis for which the patient recovers and the disease dies off.

The phase space region where the patient recovers is above the tan curve

in the top left-hand corner of the plot of phase space in Figure 3. Figure 4

shows the time-evolution in phase space of the simulations of Figure 3. The

values of initial data in Figures 3 and 4 where chosen to make the simulations

easier to plot. Initial values larger than M = N = 1 are not realistic in most

cases.

An important application of a computational model like the Disease-Host

model is being able to estimate the long time result of an illness. Figure 5

shows a comparison of a healthy host and an unhealthy host with a disease.

The blue, red and green curves in the figure are for a healthy host with

carrying capacities M = N = 1, rate constants k, l,m = 0.01, and l0 = 0.05.

Here l0 is a rate constant reducing the number of defenders. The brown,

cyan and purple curves all represent situations for an unhealthy host with

carrying capacities of: N = 1 and M = 0.7. The box outlined by tan stars

is an example of a region where the disease kills the host if y(t) < 0.15 for

x(t) > 0.5. The death region was chosen arbitrarily for the given simulations

and could be changed to fit specific circumstances. For these simulations,

the host dies for the purple and cyan curves.
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Figure 3: Typical solutions of the Disease-Host problem plotted in phase
space showing a chronic-illness, equilibrium point at (0.5,0.5).
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Figure 4: Typical solutions of the Disease-Host problem plotted in phase
space showing the evolution of the solutions in time.
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Figure 5: Simulations to compare a healthy host, M = 1.0, with a unhealthy
host, M = 0.7. The box outlined by tan stars represents the death region,
where the disease kills the host.
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5 Summary and Conclusions

This project studied two threshold of collapse problems: an Economics/ Pop-

ulation problem and a Disease-Host problem. These problems were simulated

using a seventh-order Runge-Kutta-Fehlberg scheme. The solutions of the

collapse problems were plotted in phase space to explore their qualitative

behavior.

In the model problems, three long-time behaviors appeared to present

in all simulations. For example in the disease-host simulations, the patient

may recover from a disease, the patient may live with a chronic-illness, or

the patient may die. All three outcomes represent stable solutions of the

governing system of ordinary differential equations. For the Disease-Host

model an important application is to determine if the host dies (collapse) or

if the host lives (non-collapse). This project studied idealized cases of the

Economics/Population and Disease-Host problems because the data (rate

constants) for these simulations are very hard to find and are very complex.

Such models may also exhibit complex behavior including stable and unstable

rapid growth and decay.

The original threshold of collapse models were developed by Don Tucker.

Sam Baty and Peter Armijo, along with help from Roy Baty, developed a

computer model and code to perform the calculations. A key concept that

Sam and Peter developed while doing the project was the idea of using the

Disease-Host model to compare solutions of a healthy host with solutions for

an unhealthy host. Such a comparison allows the analysis of a fixed disease

in the context of other medical conditions, e.g., a heart condition. One of the

key things that the team learned was that conclusions can be drawn from the

qualitative analysis of a problem, without knowing the exact or numerical

answer. The qualitative study of ODEs can give the fundamental behavior

of a problem evolving in time without the solution.
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Appendix: Code Listing

Code Page 1/10
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