3

EXCELLANTS

NEwW MEXICO
SUPERCOMPUTING CHALLENGE
FiNAL REPORT
APRIL 4, 2012

TEAM 66
Los ALAaMOSs HiGH SCHOOL

Team Members:

PETER AHRENS
DUSTIN TAUXE

Teacher:
LEE GOODWIN

Mentors:

JAMES AHRENS
CHRISTINE AHRENS

Contents

8

9

Executive Summary
Problem Statement

Background
3.1 Previous Work

Methods

4.1 Tour Construction
4.1.1 Serial Implementation
4.1.2 Task Parallel Implementation
4.1.3 Turning to Data Parallelism
4.1.4 Data Parallel Implementations

4.2 Pheromone Update,

4.3 Probability Calculation

Results

5.1 Validation
5.1.1 Experiment 1

5.2 Scaling and Speedupo
5.2.1 Experiment 2 oL
5.2.2 Experiment 3 L.
5.2.3 Experiment 4 L.

53 Qualityo
5.3.1 Experiment 5

Conclusions
Significant Original Achievement
Related Work

Future Work

10 Work Products

10.1 Code

11 Acknowledgements

14
15
15
15
15
16
17
20
20

21

22

22

23

23
23

63

1 Executive Summary

The aim of this project is to create an efficient parallel implementation of
Ant Colony Optimization (ACQO) applied to Traveling Salesman Problem
(TSP). It should also be portable and easy to understand or modify. ACOs
are algorithms based on ant foraging behavior. The TSP is a problem in
which cities in an undirected graph must be connected by the shortest tour
possible. A tour is a path that visits each city once and only once. ACOs have
applications in problems including vehicle routing, networking, communica-
tions, and scheduling. Data Parallelism is a style of parallelism that usually
consists of running the same fine grained operation for each piece of data in
a very long vector.[6] The very large size of data that must be processed in
a parallel ACO makes a data parallel implementation attractive. Due to the
small size and large number of computations that must be performed at the
same time, data parallelism particularly lends itself to computation on the
Graphics Processing Unit (GPU). GPUs must do many tasks via ”threads”
in parallel to display pixels on the screen. They are convenient to use as
general purpose processors for hardware acceleration of programs, as they
are readily available on most computers. We used Thrust, a data-parallel
C++ template library modeled off of the C++ Standard Library’s[13] vec-
tor operations and implemented in a data parallel fashion, to implement
our data-parallel ACO. Our implementation proved to be very effective. We
achieved a speedup of about 100 (it varies with problem size) over a serial im-
plementation. Our program has a computational complexity of O(nlog(n))
while the serial implementation has a complexity of O(n?). Excellants has
made original contributions. Firstly, our implementation is portable to tar-
gets other than GPU. Also, we describe a tree algorithm that is important.
Our code is also available and open source, both in this report and online.
Additionally, our code is written in an easy to understand and modify C++
template library called Thrust. These advantages are important to anyone
looking to use our work in a practical application or to extend it in the
research world.

2 Problem Statement

Ants can forage for food quite efficiently. When an ant finds food, it leaves
a pheromone trail back to the ant hill, which compels other ants to follow
the same path. However, as the wind blows and the sun shines on this trail,
the pheromones start to evaporate. Only the most traveled trails can con-
tinue to exist. Thus shorter, more popular paths are generated. Ant Colony
Optimization (ACO) is a technique inspired by this ant foraging behavior,
and can be used to generate good solutions to combinatorial optimization
problems very quickly.[§]

Although Ant Colony Optimization seems more suited to foraging, it
has proved itself a powerful metaheuristic that can be applied to problems
ranging from routing to machine learning. However, ACOs are most concep-
tually suited to and commonly applied to the Traveling Salesman Problem
(TSP). This is a very well-documented combinatorial optimization problem.
In Symmetric TSP (referred to as TSP in this paper), n nodes in an undi-
rected graph must be connected in the shortest tour possible. A tour is a
path that visits each node once and only once. Each node is defined as a
city, and a path connecting two cities is called a route. The TSP represents
the dilemma of one unlucky salesman who has several cities to visit, but
limited gas money and time in which he may do so. Our salesman would
like to travel the shortest tour possible. Unfortunately, the TSP is a very
difficult problem. A brute force approach to a TSP of n cities would have a

computational complexity of
(n—1)!
ek (1)

Solving a 200-city TSP using brute force would take approximately 2.0622103%
years on Computer A [1], yet an ACO can get to within 2% of the optimum
in 200 seconds. For the purposes of this project, the Travelling Salesman
Problem will be used as a standard problem to solve, but is important to
note that the TSP is not the focus of this project. Many excellent TSP
solvers already exist. The focus is on ACO, which can be applied to many
problems ranging from networking to protein folding, and TSP will be used
as an example problem for ACO to tackle.

In some cases, the problem may change during the time an ACO is gen-
erating a solution. Let us use, as an example, the case of a truck driver
delivering packages. He must deliver several hundred packages a day, and
finding an optimal tour could take a while. To make matters worse, unan-

ticipated packages may arrive in the early morning. A fast ACO would save
him time (less time spent waiting for his solution to be generated). It would
also save money (if the optimization runs faster, using the time he has more
efficiently, he would get a better tour and thus have to spend less money on
gas). Thus, there are two advantages to having a faster ACO. Our driver’s
day is not over, however. Suppose there was an eleven-car pileup on a ma-
jor road. The solution his program had generated was operating under the
assumption that this road would be a convenient route, but now the driver
needs a new tour. He could wait for the long simulation to run again, but if
he had an ACO that could quickly generate a new solution based on previous
calculations, he could get home to his family much faster.

This TSP with cities that change as the problem is being solved is called
the Dynamic Travelling Salesman Problem (DTSP). The DTSP can be
thought of in two ways. It could be that the problem changes after a so-
lution has been generated, and the ACO simply resumes working with the
previously calculated pheromones, or it could be thought that the problem
changes as the ACO is solving it, and it must cope with the changes. The
former situation being more suited toward a more stable real world appli-
cation like our truck driver, and the latter being suited to something more
volatile like a network routing problem. These two perspectives may arise
out of different situations, but they are fundamentally identical in solution,
in that the simulation must simply alter the data it has calculated before the
change to fit the new conditions.

Clearly, an ACO applied to a DTSP would have to be fast, and could
thus benefit from a parallel implementation. Implementing ACO in parallel
is difficult, however, due to the random memory access patterns and the
coordination of large parallel tasks.[8] Even though an ACO will not actually
be applied to DTSP in this paper, it provides an excellent reason for an ACO
to be sped up, and any advances in ACO techniques for a TSP could easily
be applied to DTSP.

Due to the large amount of data that must be processed in an ACO
and the relative simplicity of the computations that must be performed, a
parallel implementation of ACO would be desirable. Also, because the TSP
is simply a sample problem, the code of such an implementation would have
to be simple enough to be modified for other problems. The aim of this
project is to create an efficient parallel implementation of ACO on the GPU
applied to TSP. It should also be portable and easily understood or modified.

3 Background

In order to understand the methods used to create an efficient parallel imple-
mentation of ACO, one must first understand the traditional implementation
of an ACO applied to TSP. The mechanism of action for an ACO can be de-
scribed as follows.

All ACOs have the same approximate structure. To initialize, they cal-
culate all the distances between cities, make pheromone and probability ma-
tricies (a way to store the values of all the pheromones on all the trails), and
create ants. Once the data is initialized, then the program enters the main
loop in which the ants construct solutions and then lay pheromone based on
the quality of these solutions.

In a TSP, ants start their tour construction at a random city. They then
use probabilistic rules to decide where to move next until they have visited
all the cities. Two factors influence these decisions. The first factor, 7;; is
the pheromone on a route from city 4 to city j. The second factor, n;; is the
inverse of the distance. The probability p;; that ant k at city ¢ will move to
city 7 is given by:

S T o K
bi; = ZleNf[Til]a[nil]/B ,ifj €N, (2)

where NF is a collection of all the cities the ant has not yet visited and «
and (3 are parameters. Pheromone update is achieved in many different ways
for different algorithms. In all cases, evaporation occurs on the routes first.

The new amount of pheromone on a route 7/; is given by:
;= (1= p)7y (3)

where p is a parameter (from 0-1). Then, the ants deposit pheromone on
their tours. Usually, the base unit of pheromone an ant lays down, Ar;;, is

given by:
1

where Cj; is the ant’s tour length. After the ants deposit pheromone in
some configuration, Pheromone update occurs in many ways, so the above
equations are to help the reader understand the basic ways the pheromone
update works.

3.1 Previous Work

For last year’s Supercomputing Challenge, we created the most common
implementations of ACO in Python. These implementations ran in parallel
on the CPU using Python’s multiprocessing module. We had great success
with the performance enhancements that came from the parallelization of
the algorithms. However, last year’s program was not optimized for speed.|[5]
Designing last year’s code inspired us to build a much faster, more optimized,
more efficient version this year. All code from last year had to be scrapped
as we were using a faster language and more powerful tools, including an
entirely new approach to ACO parallelization.

4 Methods

4.1 Tour Construction

Tour construction is the step in an ACO when all ants must construct paths
that visit every city only once. Because tour construction takes up most
of the time in an ACOIg], this is the aspect on which we focused most.
Many implementations were tried and tested to find a suitable parallel tour
construction method.

4.1.1 Serial Implementation

The probability of an ant at city ¢ going into city j is described in Equation
2. In a traditional tsp, this probabilistic selection is accomplished through
method analogous to a roulette wheel. The various probabilities that an ant
may visit are gathered into a list. A random number is generated between 0
and the sum of these probabilities. The ant then iterates over each probability
and selects its next city to visit. (One can imagine the roulette ball starting
at the top and travels counter clockwise and ends up landing in a pie piece
corresponding to a particular city) This process is repeated until an entire
tour is created. See Figure 1. This will be very computationally costly as it
is done for every ant for every city.

Figure 1: A typical serial implementation.

~For each Ant:
| ~For each City:

Get non-visited cities: II 4 E 7

Lookup probabilistic .
desirabilities: lO.l_H 0.4 ‘ 0.2 ‘ 0.3 lo.z ‘

’_,

Sum

Sum probabilities:

.
4
P

Generate random
number
between 0 and sum:

Select City: Selected City:

(4]

4.1.2 Task Parallel Implementation

Task Parallelism is the typical style of parallelism in which the parallelism
is focused on doing different tasks on different pieces of data. Task parallelism
usually consists of running processes to compute the results of more coarse
grained tasks. In hopes of speeding up the traditional ACO, it would be
tempting to simply run the ants in parallel. It does not scale efficiently, as
each ant must still look at all of the next cities at every step of its tour
sequentially (O(n?), where n is the number of cities. It also creates excessive
overhead. All of the ants have random access patterns, the tasks may take
different times to complete, and the size and number of tasks is also neither
suited to a GPU nor CPU. Each processor must make an entire tour for one
ant. The overhead significantly reduces the power of such an approach.[8]
See Figure 2.

Figure 2: A typical task parallel implementation.

Ant 1l Ant 2
~For each City: For each City:
Get non-visited | "

aiess | [][1]G]s] | [E[E I

Get

desrpiives: | [02]0a]03] 05 (o1]04]os] 03

Sum
probabilities:
| |
q{.‘ <.'
| I.II |

Generate |
random
number:

Select a City: Selected City: Selected City:

ey 1 — |3

4.1.3 Turning to Data Parallelism

Data Parallelism is a style of parallelism focused on performing the same
tasks on the same pieces of data. It usually consists of running the same
fine-grained operation for each piece of data in a very long vector. [6] The
very large size of data that must be processed in parallel makes a data par-
allel implementation attractive.[6] Due to the small size and large number
of computations that must be performed at the same time, data parallelism
particularly lends itself to computation on the Graphics Processing Unit
(GPU). GPUs must do many tasks via ”threads” in parallel to display pix-
els on the screen. They are convenient to use as general purpose processors
for hardware acceleration of programs, as they are readily available on most
computers. We chose to use Thrust [11], a data-parallel C++ template li-
brary modeled off of the C++ Standard Library’s[13] vector operations and
implemented in a data parallel fashion described by Guy Blelloch[6] in his

thesis, which has sometimes been described as a data-parallel bible. Thrust
is very easy to use and modify for data-parallel operations. The most com-
mon Thrust target is CUDA, but it can also target OpenMP, OpenCL, or
Thread Building Blocks. Thrust essentially translates the data parallel op-
erations to primitive functions in CUDA, OpenMP, etc. It also provides host
and device vector types, that store data on either the host or computation
device. [11] Using Thrust eliminated the need for us to create a very spe-
cific and optimized data parallel functions and allowed us to create a more
general ACO within the time allotted for this project. Some of these Thrust
functions are used extensively in our code and assume a very important role
in what we do. These functions are described by example in Table 1.

Table 1: Common primitive data-parallel functions supplied by Thrust.

Inputs

Aj051873

B|222222

C|l125

D|01123345

Function | Output Description
gather(Cin A) [513 Index A by indicies in C
permutation_ iterator(C in A) | 51 3 Gather with kernel fusion

inclusive_ scan(A) | 05 6 14 21 24 | Cumulative sum of A
transform(A and B with +) | 2731095 Add A to B

reduce(A with +) | 24 Sum A
sort(A) (013578 Sort A
upper_ bound(Cin D) | 347 Find last index of D

where C could be inserted
without violating ordering

If a programmer can use Thrust functions as frequently and correctly
as possible, their code will be both modular, portable, and efficient. For
example, when performing multiple memory bound operations on a vector
of data, it is better to use kernel fusion, or condense each of the operations
to be performed into the same kernel, or chunk of code that will be executed
on the device. Another example is the usage of Thrust functions such as the
zip_ iterator to create virtual arrays that can be processed without having to
actually move or reorder large amounts of data.

4.1.4 Data Parallel Implementations

The first data parallel method we tested was analogous to stacking the pre-
viously described roulette wheels and selecting cities for every ant at the
same time. Each ant gathered data for all the cities it was going to visit.
This is very quick on a GPU because all of the lookups can be performed
in parallel and there are many processors with which to do this. Then, a
prefix sum(cumulative sum) was performed on a list of all the probabilities.
This has the effect of evaluating each piece of the roulette wheel previously
described in the traditional ACO at the same time. Then, the random num-
bers are generated, and the list of probabilities is iterated over in parallel by
every ant.

This implementation suffers, however, due to the number of operations
that must be performed in series. At every step of the tour construction, the
cities the ant visited had to be updated, the probability gathered, the prob-
abilities prefix summed, random number bounds selected, random numbers
generated, and searches performed. While this implementation was fairly
straightforward to code and understand it needed to be improved upon. See
Figure 3.

10

Figure 3: Our initial data parallel implementation.
l,-For each City:

Anlt 1 Ant 2
All ants get non-visited F 2|1 14| |7 2 -4 ‘7.
cities: I v . . .,l, ,1,
Lookup probabilities: ‘0.1_ 06 |0.3 |0.6 |0.4 05 ‘0.9 ‘0.2
[thrust::gather)
cumulativesum: [0.1] 0.7 [1.0 [1.6 |0.4| 09 18] 20|

(thrust::inclusive scan_by key)

Generate random
numbers:

Between 0 and max Between 0 and max

Find last city lower

s AnMYEE 0] 0.@0 | 16] obo.g 18] 20]
H Selected City: u Selected City:
4 2

A new method had to be implemented that was completely different from
all the others. More of the operations had to be grouped and performed at
the same time. To accomplish this a tree-based algorithm was implemented.
All the probabilities are gathered as previously described for each ant. Then,
each probability is assigned to a thread, along with the city it is associated
with, and a random number. At each step in the tree, two cities are reduced
to one. The random number is used to probabilistically select a city based on
the probabilities given. Then, the probabilities are summed and the chosen
city is given to the next level of the tree. The unused random number is
given to the next level of the tree. This mathematically can select from a
large list of cities a single city randomly with a bias toward the probabilities
in the same way that the previous algorithms have described. The reason
the probabilities are summed has to do with multiplication of probabilities.
The probability of going from city ¢ to city j should be equivalent to the
desirability metric of that city divided by the sum of the probabilities of all

11

the other cities that ant can visit. The probability of an example city 1 being
selected out of five cities in the tree algorithm is shown below in Equation
5. The probability of city 1 being selected is equivalent to the probability of
city 1 being selected at every level of the tree.

! P1+ D2]yl
— % = (5)
P1+p2 pP1+p2+p3s+ps ZZGN{“ [Ta]®[1a)?

k
P51

As one can see, the probabilities simplify to Equation 2 as desired. This
implementation performed very well and can also scale efficiently. The re-
duction can perform city selection for all of the ants and all of the cities
in parallel for every level of the tree, making the reduction O(log(n)). The
reduction must be performed for every city, so the whole tour construction
step is O(nlog(n)). The implementation is described in the diagram below,
and pseudocode is given for the decision function at each node in the tree.
See Algorithm 1, Figure 4.

Algorithm 1 The algorithm used to reduce two cities in the tree selection
method.
Inputs: (City A, Probability A, Random A),

(City B, Probability B, Random B)

if (Random A * (Probability A + Probability B) < Probability A)

return (City A,
(Probability A + Probability B), // Probabilities added
Random B) // Unused random returned
}else {
return (City B,
(Probability A + Probability B), // Probabilities added
Random B) // Unused random returned

12

Figure 4: Our best data parallel implementation.
For each City: ACQ 1

Ant 2
All ants get non-visited cities: g @ g‘ @ g %

Lookup probabilities: 0.1 oe 10306 [04\05 09 |02

(thrust::g

Get random seeds: (6] 10108 02 0] [BS][8651

Tree Selection (using
algorithm 1 at each node):

[thrust::reduce_by_key)

Cities: 2 |4\ \7\ o] [2] [4] [7]

Probabilities: |0.1] 0.6 0.3/ 0.6] 04|05 09]02]

I Random numbers: !’
7] 0 4]

03] (o] i

A

Selected City: Selected City:

4.2 Pheromone Update

Even though the tour construction is the most time consuming, it was simple
enough to implement pheromone updates in parallel, and important to do
as it must not become a bottleneck. It is also advantageous to do this on a
GPU as data transfer between the GPU and the CPU is expensive in terms
of computation time.

The pheromone update is straightforward to implement but can be dif-
ferent for every ACO variant. As a general rule, it makes sense to add the
previously calculated amount of pheromone to each route in the necessary
tours. For our project we settled on a Rank Based Ant System as it is simple
to implement. In a Rank Based Ant System, ants deposit pheromone accord-
ing to their rank. Their rank is assigned based on the quality of their tour.
Most of the time the number of ranks is usually around six so only six ants
will deposit pheromone. Thankfully, Thrust has a very well implemented

13

and efficient sort, so this sort was used to assign the six ranks.

4.3 Probability Calculation

Calculating probabilties is also simple to do in parallel. Each probability
for a particular route is calculated by a separate thread, using the dis-
tance of that route and the pheromone on that route. Probability cal-
culations for each route are easily parallelized. Each probability is calcu-
lated in parallel. The distance and pheromone for that particular route
can be looked up by a separate thread, making this a very simple and
quick implementation. thrust::transform() was used to calculate Equation
2 (probability = pheromone® x 1/distance®) for all of the cities in parallel.
See Figure 5

Figure 5: Probability calculation with thrust::transform().
Pheromones Distances Probabilities
0.2¢ X 48 =
0.6¢ X 3F =
0.1® X 5B =

5 Results

It was initially decided that Marco Dorigo’s code would be used as a bench-
mark test against which to compare our code.[8] This, however, led to issues
because his code did not allow for large numbers of ants (i.e. greater than
100). For this reason a new ACO was selected. We settled on libaco[10]
because it is a very standard ACO, and can accommodate the large number
of ants that we require. It is as accurate as Dorigo’s, but may be slower.
We cannot measure because Dorigo’s code does not allow for large numbers
of ants. The exact speed may not be as important of a metric as how the
algorithm scales. This is because the two algorithms are being run on dif-
ferent devices. For this reason, both experiments measuring speedup and
experiments validating theoretical scaling have been run. There is, however,
a limit to scaling, as the number of threads and amount of local memory
on a GPU may reach an upper limit. Another metric used to assess the

14

quality of both algorithms is a comparison of the quality of the tour after a
certain amount of time. This is a similar metric to a simple speedup calcu-
lation, but is looking at a fixed time limit instead of a fixed quality (same
number of mathematically identical iterations) as shown above. These two
metrics address both sides of the time/quality trade-off described in detail
in the problem statement. All statistical calculations were done with R, a
statistical language.[9]

5.1 Validation
5.1.1 Experiment 1

The first challenge was to validate our ACO. Even though the two implemen-
tations were created to produce equal results, we felt that evidence of this
should be given. To do this, we compare the tour lengths after 20 iterations
from 20 trials of both implementations on Computer A[1] on dj38.tsp from
National TSP [3]. This is a simple test problem of the largest population
centers in Djbouti. A two sample t-test of these 20 trials yields a p-value of
.638. Thus, assuming the programs produce identical results, the probability
that the discrepancies in the results we obtained were due to chance is 63.8%.
This is likely enough to assume that the two implementations produce iden-
tical results. Knowing that the implementation is valid, tests can be run to
determine scaling capability.

5.2 Scaling and Speedup

An ACO could scale with respect to a few metrics. For clarity, the number
of cities will be referred to by the parameter n. The number of ants will be
referred to by the parameter m.

5.2.1 Experiment 2

The first test of scaling capability was done with respect to the number of
cities. The number of ants was held at a constant 128. The city sets for this
test were the first n cities of usal3509.tsp[12], a set of cities in the United
States. This and all following scaling tests were performed on Computer
B[2]. The results are shown for both implementations in Table 3. Note that
a maximum speedup of 100 was achieved.

15

Table 2: The time to complete one iteration with respect to the number of
cities.

Number of Cities | libaco Time (s) | ExcellAnts Time (s) | Speedup
32 0.0675 0.0138 4.89

64 0.2881 0.0254 11.34
128 1.2141 0.0630 19.27
256 5.2334 0.1344 39.35
012 22.3871 0.3707 60.39
1024 95.1977 0.9484 100.38

The expected scaling of a serial implementation with respect to cities
should be O(n?), as each city must be examined at every city in the tour.
With this assumption, a fitted linear regression was performed on the data.
The correlation constant was 1.000, and the residuals were scattered. r? was
0.9998, meaning that 99.98% of the variation in the data is explained by the
theoretical scaling. This means that we can safely say the above model is
correct.

The expected scaling of our data-parallel implementation with respect
to cities should be O(nlog(n)), as all the cities are reduced (in log(n) time)
at every city in the tour. With this assumption, a fitted linear regression
was performed on the data. The correlation constant was 0.9973, and the
residuals were scattered. r? was 0.9947, meaning that 99.47% of the variation
in the data is explained by the theoretical scaling. This means that we can
safely say the above model is correct.

5.2.2 Experiment 3

The second test of scaling capability used different numbers of ants with
the same number of cities. The city set for this problem was held at the
constant first 128 cities of usal3509.tsp[12]. The results are shown for both
implementations in Table 3. Note that we achieved a maximum speedup of
81.

16

Table 3: The time to complete one iteration with respect to the number of
ants.

Number of Ants | libaco Time (s) | ExcellAnts Time (s) | Speedup
32 0.3032 0.0484 6.26

64 0.6077 0.0532 11.42
128 1.2124 0.0628 19.31
256 2.4238 0.0642 37.75
512 4.842 0.0912 53.09
1024 9.6713 0.1184 81.68

The expected scaling of a serial implementation with respect to ants
should be O(m), as the tour construction is performed for every ant. With
this assumption, a fitted linear regression was performed on the data. The
correlation constant was 1.000. The residuals were patterned, but they were
too small to acknowledge. r? was 0.9999, meaning that 99.99% of the varia-
tion in the data is explained by the theoretical scaling. This means that we
can safely say the above model is correct.

The expected scaling of data-parallel implementation with respect to ants
should be O(log(m)), as all the ants’ possible cities are reduced (in log(n)
time) for a constant amount of cities. With this assumption, a fitted linear
regression was performed on the data. The correlation constant was 0.9310.
r? was 0.8665, meaning that 86.65% of the variation in the data is explained
by the theoretical scaling. Although this is a relatively low r? value, the
residuals are very scattered, and show absolutely no clear pattern. This
means that we can safely say the above model is correct.

5.2.3 Experiment 4

The third test of scaling capability considered both ants and cities. The
number of ants was set to the recommended amount, the number of cities|§].
The city sets for this test were the first n cities of usal3509.tsp[12]. The
results are shown for both implementations graphically in figures 6 and 7.
Note that the vertical axes have different values. Note that a maximum
speedup of 340 was achieved.

17

Table 4: The time to complete one iteration with respect to the number of

cities and ants.

Number of Cities and Ants (n = m) | libaco Time (s) | ExcellAnts Time (s) | Speedup
32 0.0169 0.0099 1.71

64 0.1429 0.0281 5.09

128 1.2123 0.0631 19.21
256 10.4507 0.1861 56.16
512 89.6375 0.6784 132.13
1024 756.8478 2.2204 340.86

Figure 6: The time for libaco to complete one iteration with respect to the

number of cities and ants.

Scaling With Respect to Cities and Ants (libaco Code)

600
|

lteration Time (s)
400
|

200
l

e

Q

o - oo—o—

_'___,.-"

0 200

I
400

I I
600 800

Mumber of Cities and Ants

18

1000

Figure 7: The time for ExcellAnts to complete one iteration with respect to
the number of cities and ants.

Scaling With Respect to Cities and Ants (Excellants Code)

a

=)

od

o
" -
k]
=
E
=
=l =
5 -
&

o
u
2
a
o —
= o=
2
I I I I I I
0 200 400 G600 &oo 1000

Mumber of Cities and Ants

The expected scaling of a serial implementation with respect to cities and
ants should be O(n?m) or O(n?®) (n = m), as each city must be examined at
every city in each ant’s tour. With this assumption, a fitted linear regression
was performed on the data. The correlation constant was 1.000, and the
residuals were scattered. r? was 0.9999, meaning that 99.99% of the variation
in the data is explained by the theoretical scaling. This means that we can
safely say the above model is correct. The expected scaling of our data-
parallel implementation with respect to cities and ants should be O(nlog(n))
as all the cities for all the ants are reduced (in log(n) time) for every city
in the tour. This is the same scaling equation that we saw in Experiment 2
for the serial code. The reason for this is that although the cities must be

19

evaluated for every ant, they are all reduced at the same time, producing
O(nlog(nm)), or O(nlog(n?)) (n = m), which reduces to O(nlog(n)). With
this assumption, a fitted linear regression was performed on the data. The
correlation constant was 0.9982, and the residuals were scattered. r? was
0.9765, meaning that 97.65% of the variation in the data is explained by the
theoretical scaling. This means that we can safely say the above model is

correct.

5.3 Quality
5.3.1 Experiment 5

One could think of performance as getting a faster solution or getting a
better solution. In this experiment, the two implementations were compared
by their end tour quality. The following tests were run on Computer A.[1]
Both libaco and ExcellAnts tour qualities were measured at the end of 100
seconds on different datasets from TSPLIB. [12] The results are presented
in Table 5 and the proportional improvement can be visually compared in
Figure 8. The Excellants quality was up to three times better.

Table 5: The best tour lengths generated by each ACO in 100 seconds.

TSP d198.tsp | pch442.tsp | rat783.tsp
ExcellAnts 16536 64727.6 3165.93
libaco 18941 193819 7263.16
libaco/ExcellAnts | 0.87 0.33 0.44

20

Figure 8: The proportional difference in best tour lengths generated by each

ACO in 100 seconds.
1

0.9

0.8

0.7

0.6

0.5 M Excellants

M libaco
0.4
0.3
0.2

0.1

d198.tsp pcb442.tsp rat783.tsp

6 Conclusions

A data-parallel ACO on the GPU that is easy to program and is portable
to multiple targets has its advantages. First and foremost, it’s faster. The
parallel code outperformed the serial code in all cases.(see Tables 3, 2, 4)
We achieved a speedup over the libaco code of about 100 with 512 ants and
512 cities. The speed can also lead to better quality. In some cases, Excel-
lAnts achieved three times the quality of a serial implementation. Also, it
scales much more efficiently. If one ran their simulations at the recommended
number of ants, libaco would scale at O(n?) while ExcellAnts would scale at
O(nlog(n)). This project successfully created a working data-parallel im-
plementation of ACO that significantly outperformed the serial version, with
vast improvements in scaling capability. Even a simple task-parallel approach
would only reach a scaling of O(n?) with respect to cities and ants, as all
cities must still be evaluated at each city in the tour. Our program was

21

also portable to different targets. We were able to run our program with
OpenMP. Our code also made use of an off the shelf data parallel library, for
ease of programming,.

7 Significant Original Achievement

ExcellAnts has made some important contributions. Firstly, we wrote an
efficient, high-quality data-parallel implementation of ACO (via Thrust [11])
that is portable to multiple targets (CUDA, OpenCL, OpenMP, or Thread
Building Blocks) without having to change the code. Secondly, the methods
used to construct the tree-based selection process are described in detail.
This is important to anyone attempting their own implementation using our
methods. Thirdly, our code is also available and open source, both in this
report and online.[4] Fourth, the time to build this efficient, portable imple-
mentation was less than what it would have taken to create a hand-tuned
implementation on each target, since Thrust provides a library that is easy
to use. These advantages are important to anyone looking to use our work
in a practical application or to extend it in the research world.

8 Related Work

It came to our attention as this paper was being written that a paper on
a hand-tuned GPU implementation of ACO was available online in Jan-
uary 2012.[7] However, all the original ideas presented here were conceived
independently from this work. We did not read it until we had done our
implementation and started writing our paper. We have had several original
achievements, and actually some improvements over this work. The first one
of these is the tree-based selection process. This sped up our code consid-
erably and also allows it to scale to larger data sets more efficiently. Ours
is described in detail, their’s is not. The other methods initially attempted
were also of our own design. Our code is also written in Thrust, while theirs
is written in CUDA and highly optimized to a GPU, making it difficult to
understand and non-portable. While their code is not currently available,
The code for ExcellAnts is available in an open source format online.[4]

22

9 Future Work

This report does not mark the end of our project. We aim to continue our
work on our Google Project page.[4] We have several plans which we expect
to apply to the code in the future. One of the most prominent of these is that
we plan to use our ACO on a dynamic traveling salesman problem (DTSP)
and optimize it for use with DSTPs. Another plan is to overlap CPU and
GPU computation by running suitable operations on both processors in order
to maximize the use of the computational power of the system on which it is
running. Yet another goal for us to work toward in the future is to add more
implementations of ACO to give the user more flexibility.

10 Work Products

w N

ft

NI X

NONON N NN

S1

10.1 Code

[3 stttk ok ok ok ok ok K R KKK K KKK KK KKK KK SR K K SRR R KK K K K
x Setup.cpp *
x Peter Ahrens *
* Sets up the ACO *

**/

#include ”RankBasedAntSystem.h”
s|#include "TSPReader.h”
ol#include ”Comm.h”

#include ” Writer.h”

#include <iostream>

2|#include <unistd.h>

s|#include <string>

#include <cctype>

s|#include <ctime>

il using namespace std;

s| //Setup: The main control loop to the whole program.
int main(int argc, charx argv][]){
//declare variables
cout << 7 |SETUP|\n";
string antHillType = "RBAS”;
int m = —1;
int ranks = 6;
int maxTime =

0;

23

26 int maxIter = 0;
27 int maxReps = 0;
28 int reps = 0;

29 bool stopping false;

30 bool graphics = false;

31 charx filen ;

s2| Writer O; //writes output to stdout and an optional file
33 //Read initially neccesary command—line arguments.

saf for(int i = 0; i < arge;i++){

35 if (string(argv[i]) "—ras”){
36 antHillType = "RBAS”;

37 if(i + 1 < arge){

38 if (string (argv[i]) [0] != "—"){

39 ranks = atoi(argv[i+1]);

40 }
41 }
42 }

43 if (string(argv[i]) = "—tsp”){
44 filen = argv[i+1];

45 }

16 if (string(argv[i]) = "—gui”){
47 graphics = true;

18 }
19 if (string(argv[i]) =
50 m = atoi(argv[i+1]);

7—m”) {

51
52 if (string(argv[i]) = "—out”){
53 if (10.setFile (argv[i+1])){

54 cout << ”Unable to open output file\n”;

55 }

57 if (string(argv[i]) = "—maxTime”){
58 maxTime = atoi(argv[i+1]);

59 }

60 if (string(argv[i]) = "—maxIter”){
61 maxIter = atoi(argv[i+1]);

62 }

63 if (string(argv[i]) = "—maxReps”){

64 maxReps = atoi(argv[i+1]);
65 }
66 }

67| cout << 7> << flush; //——Checkpoint 1
68 if (graphics){
69 //1If graphics are running, create pipes and processes.

70 int parentPipe[] = {-1,-1}; // parent —> child

24

71 int childPipe[] = {-1,-1}; // child —> parent
72 if (pipe(parentPipe) < 0 || pipe(childPipe) < 0)
73 {

1 std :: cout << "Failed to create pipe”;

75 return 1;

76 }

77|#define PARENTREAD childPipe [0]
7s|#define CHILD.WRITE childPipe [1]
79|#define CHILD_READ parentPipe [0]
so|#define PARENTWRITE parentPipe [1]

81 pid_t pID = fork ();

82 if (pID = 0){//child

83 close (PARENT_WRITE) ;

84 close (PARENT READ) ;

85 //Graphics run in a separate process from the computations
so neither is slowed down.

86 Comm C(CHILD_READ, CHILD WRITE) ;

87 cout << "> << flush; //——Checkpoint 3

88 if (1C.send (string (" Test”))){

89 cout << ”"\n Interprocess Comm Failed”;

90 return 1;

91 }

92 telse if(pID < 0){//fail

93 cout << ”Failed to fork”;

94 return 1;

95 telse{//parent

96 close (CHILDREAD) ;

97 close (CHILD-WRITE) ;

98 //Computations run in a separate process from the graphics
so neither is slowed down.

99 Comm C(PARENTREAD,PARENT WRITE) ;

100 cout << 7>” << flush;//——Checkpoint 2

101 TSPReader t;

102 t.read (filen);

103 cout << ">" << flush;//——Checkpoint 4

104 if(m= —1){

105 m = t.getNumNodes () ;

106

107 RankBasedAntSystem antHill(t.getDistances () ,t.getNumNodes
() m);

108 cout << "> << flush;//——Checkpoint 5

109 //1f any parameters need to be changed, they are modified
from their defaults here.

110 for(int i = 0; i < argc;i++){

111 if (string(argv[i]) = "-b"){

25

135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151

152

antHill.setBeta(atof (argv[i+1]));

if (string(argv[i]) = "—r”){
antHill.setRho(atof(argv[i—+1]));
}
}
cout << ">" << flush;//——Checkpoint 6
antHill.initialize () ;
if (C.recieve () = "Test”){ //A check to find out if the
comm is working.
cout << 7’>\n” << flush;//———Checkpoint 7
telse{

cout << ”\n Interprocess Comm Failed”;
return 1;
}
O.writeHeader (antHill.getBeta () ,antHill.getRho () ,antHill.
getNumAnts () ,antHillType , t.getName ()) ;
clock_t t1, t2, t3;
t1 = t2 = t3 = clock();
//Main control sequence.
for (int i = 0; !stopping; i++){

t2 = t3;
antHill . forage () ;
t3 = clock ();

O.write (i, antHill.getIterBestDist (), antHill.getGlobBestDist
(), (double)(t3 — t1) / CLOCKSPERSEC, (double)(t3 — t2) /
CLOCKS_PER-SEC) ;

if (maxTime = 0){

if ((int) ((double)(t3 — t1) / CLOCKSPER-SEC)> maxTime){
stopping = true;
}

}

if (maxIter != 0){
if (i >= maxIter){
stopping = true;
}

}
if (maxReps != 0){
if (antHill.getReps () >= maxReps) {
stopping = true;

26

153
154
155
156
157
158
159

160

161

183
184
185
186

187

189
190
191

192

cout << 7> << flush;//———Checkpoint 2
TSPReader t;
t.read(filen);

cout << 7>7 << flush;//——Checkpoint 3
if(m = —1){
m = t.getNumNodes () ;
}
RankBasedAntSystem antHill(t.getDistances(),t.getNumNodes() ,
m) ;

//If any parameters need to be changed, they are modified
from their defaults here.

cout << 7> << flush;//———Checkpoint 4
for(int i = 0; i < arge;i++){
if (string(argv[i]) = "-b"){
antHill.setBeta(atof (argv[i+1]));
}
if (string(argv[i]) = "—1r"){
antHill.setRho(atof(argv[i+1]));
}
}
cout << 7> << flush;//——Checkpoint 5
antHill.initialize ();
cout << 7">>\n" << flush;//————Checkpoint 6/7

O.writeHeader (antHill . getBeta () ,antHill.getRho() ,antHill.
getNumAnts () ,antHillType ,t.getName ()) ;

clock_t t1, t2, t3;

tl = t2 = t3 = clock();

//Main control sequence.

for(int i = 0; !stopping; i++){

t2 = t3;

antHill. forage () ;

t3 = clock ();

O.write (i, antHill.getIterBestDist (), antHill.
getGlobBestDist (), (double)(t3 — t1) / CLOCKSPER.-SEC,
(double) (t3 — t2) / CLOCKS_PERSEC) ;

if (maxTime != 0){

f ((double)(t3 — t1) / CLOCKSPERSEC > maxTime){
stopping = true;
}
}
if (maxIter != 0){
if (i >= maxIter){
stopping = true;

}
}

27

193 if (maxReps != 0){

14| if (antHill.getReps () >= maxReps) {
195 stopping = true;

196 }

197 }

198 }

199 }

200 }

201
202| //Copyright (c¢) 2012, Peter Ahrens

203| //All rights reserved.

204| //

205| //Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

206| //

27| // Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer .

208| // Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

200| // Neither the name of Excellants nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission .

210 //

211 //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER, OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER, CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE
, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

212
213
214 /**
215 % RankBasedAntSystem.h *

28

x Peter Ahrens *
x Performs specific RBAS procedures *
Sk sk s kKK KK KKK KKK SRR SR K K SR R KRR R KKK KRR KoKk

#ifndef RANKBASEDANTSYSTEM H

21| #define RANKBASEDANTSYSTEM H

229

238
239
240

241

243

22|#include ” Colony.h”

//RankBasedAntSystem: Provides the neccesary extensions to

Colony to create a Rank—Based Ant System

class RankBasedAntSystem : Colony{

public:

RankBasedAntSystem (thrust :: host_vector<float> newDistances
int newNumCities, int newNumAnts); // Allocates memory and
sets defaults.

void initialize(); // Runs the Colony initialize , then creates
additional maps and keys.

void computeParameters(); // Simply computes neccesary
parameters.

void forage(); // Runs Colony forage.

void setRho(float newRho);

void setBeta(float newBeta);

void setW(int newW) ;

int getW();

double getRho () ;

double getBeta () ;

int getNumAnts() ;

double getlterBestDist ()

double getGlobBestDist () ;

int getReps();

private:

void computelnitialPheromone(); // Computes the initial
pheromone level with the formula described by Marco Dorigo.

void updatePheromones(); // Evaporates, then the ants lay
pheromone at levels corresponding to their rank, judged by
the distances of their tours.

int w;

thrust :: device_vector <float > RBASWeight;

thrust :: device_vector <int> RBASMap;

s
#endif

//Copyright (c¢) 2012, Peter Ahrens
//All rights reserved.

29

253

254

255

256

257

259

260

261
262
263
264
265
266
267
268
269
270
271
272

273
274

/!

//Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

//

// Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer .

// Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

s| // Neither the name of Excellants nor the names of its

contributors may be used to endorse or promote products
derived from this software without specific prior written
permission .

//

//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER, CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE
, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

[3 kR ok ok ok ok ok R o K K KK KKK KKK R K R R K R R KK K K %
x RankBasedAntSystem . cu *
x Peter Ahrens *
x Performs specific RBAS procedures *

sk sk sk sk s KKK KKK K K KRR SR R SR K SR SR SR SR KR KK KKK KRRk ok k[
#include ”RankBasedAntSystem.h”

//constructor: Allocates memory and sets defaults.
RankBasedAntSystem :: RankBased AntSystem (thrust :: host_vector<float
> newDistances, int newNumCities, int newNumAnts)
Colony (newDistances , newNumCities, newNumAnts)

30

5] w= 6;//default
76| RBASWeight = thrust :: device_vector<float >(numAnts) ;
277 RBASMap = thrust :: device_vector <int >(numAnts*xnumCities) ;

1)

280/ //initialize: Runs the Colony initialize , then creates
additional maps and keys.

2s1| void RankBasedAntSystem:: initialize ()

282 {
2s3) Colony:: initialize ();

2s4| thrust:: fill (RBASWeight. begin () ,RBASWeight.end () ,0) ;

2s5| thrust::copy_n(thrust:: make_reverse_iterator (thrust::
make_counting_iterator (w)),

286 w,

287 RBASWeight . begin ()) ;

2ss| thrust:: fill (ACInt. begin (),
289 ACInt.end (),

290 0);

201] ACInt [numCities] = 1;
202| thrust::inclusive_scan (ACInt.begin (),

293 ACInt.end (),

294 ACInt. begin());

295 thrust :: exclusive_scan_by_key (ACInt. begin () ,
296 ACInt.end (),

207 thrust:: make_constant_iterator (1,0),
298 RBASMap. begin ()) ;

299 }

300

301| //computeParameters: Simply computes neccesary parameters.

so2| void RankBasedAntSystem :: computeParameters ()

303 {

304/ if (numCities < w){

305 w = numCities;

306 }

3071 computelnitialPheromone () ;

308 }

309

st0| //computelnitialPheromone: Computes the initial pheromone level
with the formula described by Marco Dorigo.

void RankBasedAntSystem :: computelnitialPheromone ()

312 {

313 initialPheromone = 0.5%wx(w—1)/(rho * Colony:: greedyDistance ()

)3
314 }

31

316

336

337

338
339
340

341

342
343

344

345
346
347
348

349

//updataPheromones: Evaporates, then the ants lay pheromone at

levels corresponding to their rank, judged by the distances
of their tours.

void RankBasedAntSystem :: updatePheromones ()

{

//evaporate

thrust :: transform (pheromones. begin () ,
pheromones.end () ,
thrust :: make_constant_iterator (1.0f—rho),
pheromones. begin () ,
thrust :: multiplies<float >());

//determine ant pheromone levels

thrust ::stable_sort_by_key (thrust:: make_permutation_iterator (
antDistances . begin () ,ACKey. begin ()),

thrust :: make_permutation_iterator (antDistances.end (),
ACKey.end()),
antTours. begin ());
thrust :: transform (RBASWeight. begin () ,
RBASWeight . end () ,
antDistances.begin (),
AFloat . begin () ,
thrust :: divides<float >());

//AFloat [w—1] = w/globBestDist ;

AFloat [w—1] = w/iterBestDist;//for a simple rankbased, without

global pheromone

ACInt. assign (antTours. begin () ,antTours.end());

//thrust ::scatter (globBestTour.begin () ,globBestTour.end(),
thrust :: make_counting_iterator (numCities*(w—1)) ,ACInt.begin
()

thrust :: scatter (iterBestTour.begin (),
iterBestTour.end (),
thrust :: make_counting_iterator (numCitiesx(w—1)),
ACInt.begin()); //for a simple rankbased, without global

pheromone
thrust :: transform (ACInt. begin () ,
ACInt.end (),
thrust :: make_permutation_iterator (ACInt. begin () ,distMap.
begin () ,

ACInt2. begin () ,
saxpy-_functor (numCities)) ;

//lay Pheromone

for (int i = 0; i < numCities*w; i += numCities){

thrust :: transform (thrust :: make_permutation_iterator (

pheromones. begin () ,ACInt2.begin () + i),

32

350 thrust :: make_permutation_iterator (pheromones.end (),
ACInt2.begin () + i + numCities),

351 thrust :: make_permutation_iterator (AFloat.begin () ,ACKey
.begin() + i),
352 thrust :: make_permutation_iterator (pheromones. begin (),

ACInt2.begin () + i),thrust:: plus<float >());
353 }

354 }
355
36| //forage: Runs Colony forage.

357| void RankBasedAntSystem :: forage ()
358 {
350 Colony :: forage () ;
360 }
361
362| void RankBasedAntSystem ::setRho(float newRho)
363 {
36
365 }
366
s67| void RankBasedAntSystem :: setBeta(float newBeta)
368 {
s60| Colony ::setBeta(newBeta);
370 }
371
s72| void RankBasedAntSystem ::setW (int newW)
373 {
374 W = newW;
375 }
376
377/ int RankBasedAntSystem :: getW ()
378 {
379 return w;

380 }

32| double RankBasedAntSystem :: getRho ()
383 {
3sa) return Colony::getRho();
385 }
386
37| double RankBasedAntSystem :: getBeta ()
388 {
sso| return Colony:: getBeta();

390 }

391

Colony :: setRho (newRho) ;

33

392
393
394
395
396
397

398

415

416

417

418

419

420
421

int RankBasedAntSystem :: getNumAnts ()

{
}

double RankBasedAntSystem :: getIterBestDist ()
{

}

double RankBasedAntSystem :: getGlobBestDist ()
{

}

int RankBasedAntSystem :: getReps ()

{
}

//Copyright (c¢) 2012, Peter Ahrens

//All rights reserved.

//

//Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

return Colony :: getNumAnts () ;

return Colony :: getIterBestDist () ;

return Colony :: getGlobBestDist () ;

return Colony :: getReps () ;

//

// Redistributions of source code must retain the above
copyright mnotice, this list of conditions and the following
disclaimer .

// Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

// Neither the name of Excellants nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission .

//

//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER, OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

34

422
423
424
425
426
427
428
429
430

43

—

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

450

451
452
453
454
455
456
457

458

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHEIHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE
, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

/**

x Colony.h *
x Peter Ahrens *
x Main ACO procedures *

**/

#ifndef COLONYH
#define COLONYH
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/copy.h>
#include <thrust/fill .h>
#include <thrust/binary_search.h>
#include <thrust/sequence.h>
#include <thrust/adjacent_difference.h>
#include <thrust/random.h>
#include <thrust/functional.h>
#include <thrust/gather.h>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/discard_iterator.h>
#include <thrust/scan.h>
#include <thrust/sort.h>
#include <thrust/remove.h>
#include <iostream>
#include <sys/time.h>
#include <math.h>
//saxpy_-functor: Performs the operation s = a * x + y, where a
is a constant.
struct saxpy_functor
{
const float a ;
saxpy-functor (float _—a) : a (-a) {}
__host__ __device__
float operator () (const float & x , const float & y) const

{

return a * x +y ;

35

463

464
465
466

467

480
481
482
483

484

486
487
488
489
490

491

492

}
b

//treeSelect: The main function used to reduce two cities that
an ant might visit.
struct treeSelect : public thrust::binary_function<thrust::tuple
<int ,float ,unsigned int>,thrust::tuple<int ,float ,unsigned int
>,thrust :: tuple<int , float ,unsigned int> >
{
treeSelect () {}
__host__ __device__
thrust :: tuple<int , float ,unsigned int> operator () (const
thrust :: tuple<int , float ,unsigned int> tupl,const thrust::
tuple<int , float ,unsigned int> tup2) const
{
const float prob = tupl.get<1>() + tup2.get<1>();
if (tupl.get<2>() % prob / 4294967296 < tupl.get<1>()){
return thrust :: make_tuple(tupl.get <0>(),prob,tup2.get<2>()
)
} elseq

return thrust:: make_tuple (tup2.get <0>(),prob,tup2.get <2>()

)3
}
}
}

s| //prob_functor: Performs the probabilistic desireability

calculation s = (pheromone level) alpha % (1/distance) beta
struct prob_functor: public thrust::binary_function<float ,float ,
float >

{

const float beta;
prob_functor (float _beta) : beta (_beta) {}

__host__ __device__
float operator () (const float & pher , const float & dist
) const

return pher * pow(l / dist, beta) ;

i
//randStep: Performs one step of a linear congruential generator

struct randStep : public thrust::unary_function<unsigned int
unsigned int>
{

36

493 __host__ __device__

494 unsigned int operator () (const unsigned int x) const
495 {

196| //numerical recipies LCG values

197 return ((x % 1664525) + 1013904223) % 4294967296,

498 }
90| }3

500
so1| //unaryMultiplies: Multiplies all the values of an array by a

value.
s02| struct unaryMultiplies : public thrust::unary_function<int , int>
503 {
504 const int y;
s05) unaryMultiplies (int -y) @y (-y) {}
506 __host__ __device__
507 int operator () (const int x) const
508 {
509 return x * y;

s}
st b

512
513 //unaryPlus: Adds a value to all the elements of an array.
s struct unaryPlus : public thrust::unary_function<int, int>

s15) {
516 const int y;
5171 unaryPlus (int _y) @y (-y) {}

518 __host__ __device__

519 int operator () (const int x) const
520 {

521 return x + y;

522 }

523 };

524

525 //isX: Checks to see if a elements of an array are equal to a
given constant.

526 struct isX

527 {
528 const int y;

soolisX(int _y) oy (2y) {}

5

530 __host__ __device__

5311 bool operator()(const int x) const
532

533 return x — y;

534 }
535 }s

37

7| //Colony: The main ACO functions and data.

s35| class Colony

543

S| {

public:
Colony (thrust :: host_vector<float> newDistances, int
newNumCities, int newNumAnts) ;

void initialize(); // Initializes data, creates maps and keys,
performs standard ACO initialization steps etc.

void forage(); // Main ACO loop. Performs the solution
constructruction step, then updates distances, pheromones,
probabilities.

void computeAntDistances(); // Computes the distances of each
ant’s tour, then updates records.

void computeProbabilities(); // Computes the probabilities
from the distances and pheromones.

void setRho(float newRho);

void setBeta(float newBeta);

double getRho () ;

double getBeta () ;

int getNumAnts() ;

double getlterBestDist () ;

double getGlobBestDist () ;

int getReps();

virtual void computeParameters() = 0; //Implemented
differently in each ACO.

protected :

float greedyDistance(); // Returns the value of a simple
greedy solution starting at city O.

virtual void computelnitialPheromone() = 0; //Implemented
differently in each ACO.

virtual void updatePheromones() = 0; //Implemented differently
in each ACO.

//world vars

int numCities;

int reps;

//float alpha = 1, alpha is always 1

float beta;

float rho;

float initialPheromone;

thrust :: device_vector<float> pheromones;

thrust :: device_vector<float> distances;

thrust :: device_vector<float> probabilities;

//ant vars
int numAnts;

38

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

609

float iterBestDist;
float globBestDist;

thrust :: device_vector<int> iterBestTour;
thrust :: device_vector<int> globBestTour;
thrust :: device_vector<float> antVisits;
thrust :: device_vector<int> toVisit;

thrust :: device_vector<int> antTours;

thrust :: device_vector<float> antDistances;
thrust :: device_vector<float> currentProbabilities;
thrust :: device_vector<int> currentNeighbors;
//maps and keys

thrust :: device_vector<int> ACMapF;

thrust :: device_vector<int> ACMapL;

thrust :: device_vector<int> tourMap;

thrust :: device_vector<int> distMap;

thrust :: device_vector<int> ACKey;

thrust :: device_vector<int> ARepeatCMap;
thrust :: device_vector<int> ANMapF;

thrust :: device_vector<int> ANMapL;

thrust :: device_vector<int> ANKey;

thrust :: device_vector<int> CCKey;

thrust :: device_vector<int> ARepeatNMap;

//scratch variables

thrust :: device_vector<float> AFloat;

thrust :: device_vector<int> Alnt;

thrust :: device_vector<int> NInt;

thrust:: device_vector<int> ACInt;

thrust:: device_vector<int> ACInt2;

thrust:: device_vector<int> ACInt3;

thrust :: device_vector<int> ANInt;

thrust :: device_vector<float > ACFloat;

thrust :: device_vector <float > CCFloat;

thrust :: device_vector <unsigned int> AUnsignedInt;

//random numbers

thrust :: device_vector<unsigned int> ARandom;
thrust :: device_vector<unsigned int> ACRandom;

}s
#endif

//Copyright (c¢) 2012, Peter Ahrens

//All rights reserved.
//

//Redistribution and use in source and binary forms, with or
are permitted provided that the

without modification ,

following conditions are met:

39

614
615

616

617

/!
/!

//

/!

61| //

//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

619

620
621
622
623
624
625
626
627
628
629
630

631

632
633
634
635
636

637

/ *
*
*

*

Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer .

Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

Neither the name of Excellants nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission .

CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE
, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ok ok ok ok oKk kK ok ok ok ok ok ok ok ok Kk KOk KOk sk ok ok ok ok ok Kk Kok %
Colony . cu *
Peter Ahrens *
Main ACO procedures *

>k 3k 3k ok 3k sk ok ok Skok sk skosk ok skosk ok sk skok sk Skok ok skosk sk ok skok sk skok ok skook ok skosk */

#include 7 Colony.h”

//

Constructor: Sets defaults and allocates memory.

Colony :: Colony (thrust :: host_vector<float> newDistances, int

{

newNumCities, int newNumAnts)

//defaults
beta = 2;
rho = 0.1;
//world vars
reps = 0;

40

639

640

641

642
643
644
645

646

659
660
661
662
663
664
665
666
667
668
669
670

671

}

distances . assign (newDistances.begin () ,newDistances.end());
numCities = newNumCities;

probabilities = thrust::device_vector<float >(numCitiesx
numCities) ;
pheromones = thrust:: device_vector<float >(numCitiesxnumCities)

)
//ant vars
numAnts = newNumAnts;

antDistances = thrust:: device_vector<float >(numAnts) ;
antVisits = thrust::device_vector<float >(numCities*numAnts) ;
toVisit = thrust:: device_vector<int >(numCities*numAnts) ;
antTours = thrust::device_vector<int >(numCities*numAnts) ;
iterBestDist = std::numeric_limits<float >::max() — 1;
globBestDist = std:: numeric_limits<float >::max() ;
iterBestTour = thrust:: device_vector<int >(numCities) ;

globBestTour = thrust:: device_vector<int >(numCities) ;

//maps and keys

ACMapF = thrust::device_vector<int >(numAnts) ;

ACMapLL = thrust :: device_vector<int >(numAnts) ;

tourMap = thrust:: device_vector<int >(numAnts) ;

distMap = thrust:: device_vector<int >(numCities*numAnts) ;

ACKey = thrust :: device_vector <int >(numAntsxnumCities) ;

ARepeatCMap = thrust :: device_vector <int >(numAntsxnumCities) ;

CCKey = thrust ::device_vector<int >(numCitiesxnumCities) ;

//scratch variables

AFloat = thrust:: device_vector <float >(numAnts) ;

Alnt = thrust::device_vector<int >(numAnts) ;

ACInt = thrust:: device_vector<int >(numAntsxnumCities) ;

ACInt2 = thrust:: device_vector<int >(numAntsxnumCities) ;

ACInt3 = thrust:: device_vector<int >(numAntsxnumCities) ;

ACFloat = thrust::device_vector <float >(numAntsxnumCities) ;

CCFloat = thrust:: device_vector<float >(numCitiesxnumCities) ;

AUnsignedInt = thrust::device_vector<unsigned int>(numAnts);

//Random numbers

ARandom = thrust :: device_vector <unsigned int>(numAnts);

ACRandom = thrust ::device_vector<unsigned int>(numAntssx
numCities) ;

//initialize: Initializes data, creates maps and keys, performs

standard ACO initialization steps etc.

void Colony::initialize ()

{

//seed the random numbers
thrust :: transform (thrust :: make_counting_iterator (0),

41

679

680

681
682
683
684
685
686

687

688

689
690
691
692
693
694
695
696
697
698
699
700
701

70:

¥]

703

P = = =
- o ©® ®@ A & & &

ECTC R T
M)

thrust :: make_counting_iterator (numAntsxnumCities) ,
thrust :: make_counting_iterator (time (NULL)) ,ACRandom.
begin () ,thrust:: multiplies<int >());

thrust :: transform (thrust :: make_counting_iterator (0),
thrust :: make_counting_iterator (numAnts) ,
thrust :: make_counting_iterator (time (NULL)) ,
ARandom. begin () ,
thrust :: multiplies<int >());

//constant seeds

//thrust :: transform (thrust :: make_counting_iterator (0) ,thrust ::

make_counting_iterator (numAntsxnumCities) ,thrust ::
make_constant_iterator (1) ,ACRandom. begin () ,thrust ::
multiplies<int >());

//thrust :: transform (thrust :: make_counting_iterator (0) ,thrust ::

make_counting_iterator (numAnts) ,thrust ::
make_constant_iterator (1) ,ARandom. begin () ,thrust ::
multiplies<int >());
thrust :: transform (ACRandom. begin () ,
ACRandom. end () ,
ACRandom. begin () ,
randStep ()) ;
thrust :: transform (ARandom. begin () ,
ARandom. end () ,
ARandom. begin () ,
randStep ()) ;
//create maps and keys
//CCKey
thrust :: sequence (ACInt. begin () ,
ACInt. begin () + numCities
07
numCities) ;
thrust :: scatter (thrust:: make_constant_iterator (1,0),
thrust :: make_constant_iterator (1,numCities) ,
ACInt. begin () ,
CCKey. begin ()) ;
thrust ::inclusive_scan (CCKey. begin () ,
CCKey.end () ,
CCKey. begin ()) ;
/ /ACMapF
thrust :: sequence (ACMapF. begin () ,
ACMapF . end () ,
07
numCities) ;
/ /ACMapL
thrust :: transform (ACMapF. begin () ,

42

~

ACMapF . end () ,
thrust :: make_constant_iterator (numCities —1),
ACMapL. begin () ,
thrust :: plus<int >());
/ /ACKey
thrust :: scatter (thrust:: make_constant_iterator (1,0),
thrust :: make_constant_iterator (1,numAnts) ,
ACMapF. begin () ,
ACKey. begin ()) ;
thrust ::inclusive_scan (ACKey. begin () ,
ACKey.end () ,
ACKey. begin ()) ;
thrust :: transform (ACKey. begin () ,
ACKey.end () ,
thrust :: make_constant_iterator(—1),
ACKey. begin () ,
thrust :: plus<int >());
//distMap
thrust :: fill (distMap . begin (),
distMap .end () ,
1);
thrust ::inclusive_scan_by_key (ACKey. begin () ,
ACKey.end () ,
distMap . begin () ,
distMap . begin ()) ;
thrust ::scatter (thrust:: make_constant_iterator (0,0),
thrust :: make_constant_iterator (0,numAnts) ,
ACMapL. begin () ,
distMap . begin ()) ;
thrust :: transform (ACKey. begin () ,
ACKey.end (),
distMap . begin () ,
distMap . begin () ,
saxpy-functor (numCities)) ;
// ARepeatCMap
thrust :: exclusive_scan_by_key (ACKey. begin () ,
ACKey.end (),
thrust :: make_constant_iterator (1),
ARepeatCMap . begin ()) ;
//ACO Initialize
computeParameters () ;
thrust :: fill (pheromones. begin (),
pheromones.end () ,
initialPheromone) ;
computeProbabilities () ;

43

762
763

764

®

798

799

800

}

//forage: Main ACO loop. Performs the solution constructruction
step, then updates distances, pheromones, probabilities.
void Colony:: forage ()

{
//initialize variables and select start cities
toVisit.assign (ARepeatCMap. begin () ,ARepeatCMap.end ()) ;
ACInt2. assign (ACKey. begin () ,ACKey.end ()) ;
thrust:: fill (antVisits.begin (),

antVisits.end (),
0);
thrust :: sequence (tourMap. begin () ,
tourMap .end () ,
O,
numCities) ;
thrust :: transform (ARandom. begin () ,
ARandom. end () ,
ARandom. begin () ,
randStep ()) ;
thrust :: transform (ARandom. begin () ,
ARandom. end () ,
thrust :: make_constant_iterator (numCities) ,
thrust :: make_permutation_iterator (antTours. begin (),
tourMap . begin ()),
thrust :: modulus<unsigned int >());
thrust :: transform (ACMapF. begin () ,
ACMapF . end () ,
thrust :: make_permutation_iterator (antTours.begin (),
tourMap . begin ()),
Alnt . begin () ,
thrust :: plus<int >());
for(int x = 1; x < numCities; x++)
{
//update antVisits
thrust ::scatter (thrust:: make_constant_iterator(x,0),
thrust :: make_constant_iterator (x,numAnts) ,
Alnt.begin (),
antVisits.begin());
thrust :: remove_if (thrust:: make_zip_-iterator (thrust::
make_tuple(toVisit.begin (),
ACInt2. begin())),
thrust :: make_zip_iterator (thrust :: make_tuple(toVisit.begin
() + ((numCities—x + 1) * numAnts) ,

44

802
803

804

805

806
807
808
809
810

811

ACInt2.begin ()+ ((numCities—x + 1) =x
numAnts))) ,
antVisits.begin () ,isX(x));
//get probabilities
thrust :: transform (thrust :: make_permutation_iterator (thrust
::make_permutation_iterator (antTours. begin () ,tourMap.
begin()),ACInt2.begin ()),
thrust :: make_permutation_iterator (thrust ::
make_permutation_iterator (antTours.end () ,tourMap.end())
,ACInt2.begin ()+ ((numCities—x) * numAnts)),
toVisit . begin (),
ACInt. begin (),
saxpy-_functor (numCities)) ;
//update tour map
thrust :: transform (tourMap . begin () ,
tourMap .end () ,
tourMap . begin () ,
unaryPlus (1)) ;
//update random numbers
thrust :: transform (ACRandom. begin () ,
ACRandom. begin () + ((numCities—x + 1) * numAnts),
ACRandom. begin () ,
randStep ()) ;
//select cities
thrust :: reduce_by_key (ACInt2. begin () ,
ACInt2. begin ()+ ((numCities—x) * numAnts) ,
thrust :: make_zip_iterator (thrust :: make_tuple(thrust::
make_counting_iterator (0),
thrust :: make_permutation_iterator (
probabilities.begin () ,ACInt.begin()),
ACRandom. begin ())),
thrust :: make_discard_iterator (),
thrust :: make_zip_iterator (thrust :: make_tuple(Alnt.
begin (),
AFloat . begin (),
AUnsignedInt.begin())),
thrust :: equal_to<int >(),
treeSelect ());
thrust :: gather (Alnt . begin (),
Alnt.end (),
toVisit . begin (),
thrust :: make_permutation_iterator (antTours. begin (),
tourMap . begin ()));
}

computeAntDistances () ;

45

862
863
864
865

866

868
869

870

}

updatePheromones () ;
computeProbabilities () ;

//computeAntDistances: Computes the distances of each ant’s tour

then updates records.

void Colony :: computeAntDistances ()

{

}

//compute distances
thrust :: transform (antTours. begin () ,
antTours.end (),
thrust :: make_permutation_iterator (antTours. begin (),
distMap . begin ()),
ACInt. begin () ,
saxpy_functor (numCities)) ;
thrust :: gather (ACInt. begin () ,
ACInt.end (),
distances.begin (),
ACFloat. begin ());
thrust :: reduce_by_key (ACKey. begin () ,
ACKey.end () ,
ACFloat . begin () ,
thrust :: make_discard_iterator (),
antDistances . begin());
//update bests
int i = thrust:: min_element(antDistances.begin (),
antDistances.end()) — antDistances.begin();
thrust :: gather (thrust :: make_counting_iterator (i*numCities)
thrust :: make_counting_iterator ((i+1)*numCities)
antTours. begin (),
iterBestTour . begin ());

iterBestDist = antDistances[i];
if (iterBestDist < globBestDist){
reps = 0;

globBestDist = iterBestDist;
globBestTour . assign (iterBestTour.begin () ,iterBestTour.end())

telse{
reps—+-+;
}

//greedyDistance: Returns the value of a simple greedy solution

starting at city 0.

77| float Colony :: greedyDistance ()

46

878 {

879 float distance;
880 int i = 0;
881 int init = i;

ss2| thrust::device_vector<int> visits (numCities);
ss3| thrust:: fill (visits.begin(),

884 visits .end (),

885 1);

sso| thrust::device_vector<float> Cfloat (numCities) ;
887 int j;

sss| for(int x = 1; x < numCities; x++){

889 visits [1] = 0;

890 thrust :: transform (visits.begin (),

891 visits.end (),

892 thrust :: make_permutation_iterator(distances.begin (),
thrust :: make_counting_iterator (i*numCities)) ,

893 Cfloat . begin (),

894 thrust :: divides<float >());

895 j = thrust :: max_element (Cfloat.begin (),

896 Cfloat.end()) — Cfloat.begin();

897 distance += distances [numCities * i + j];

898 1 =7];

899 }

oo0| distance += distances|[numCities * i + init];
901 return distance;

902 }
903
94| //computeProbabilities: Computes the probabilities from the
distances and pheromones.

905| void Colony :: computeProbabilities ()

906 {

907| thrust :: transform (pheromones. begin () ,
908 pheromones.end () ,

909 distances.begin (),

910 probabilities.begin (),

911 prob_functor (beta));

912 }

913

o[void Colony ::setBeta(float newBeta)

915 {

916 beta = newBeta;

917 }

o19| void Colony ::setRho(float newRho)

920 {

47

921 rho = newRho;
922 }
923
921| double Colony :: getBeta ()
925 {
926 return beta;
927 }
928
920| double Colony :: getRho ()
930 {
931 return rho;
932 }
933
o34/ int Colony :: getNumAnts ()
935 {
936 return numAnts;
937 }
938
os0| double Colony :: getIterBestDist ()

940 {

941 return iterBestDist ;

942 }

o11| double Colony :: getGlobBestDist ()
945 {

946 return globBestDist ;

947 }

os0| int Colony :: getReps ()
950] {

951 return reps;

952 }

1| //Copyright (c¢) 2012, Peter Ahrens

//All rights reserved.

//

//Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

ot
w

&)

©
a o o>
=

~

oss| //

59| // Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer .

aco| // Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

48

961

962
963

964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

988

disclaimer in the documentation and/or other materials
provided with the distribution.

// Neither the name of Excellants nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission .

//

//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE
, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

/>I<***>|<****>|<****>I<>|<************************

x+ TSPReader.h *
x+ Dustin Tauxe and Peter Ahrens *
x Reads .tsp files *

K3k 3k K sk >k sk Sk K sk Rk Sk K sk sk sk Sk >k sk Rk Sk R sk sk ok Sk R skosk ok Sk R sk ok ok ko */

#ifndef TSPREADERH

#define TSPREADER.H

#include <iostream> // Used for command line I/O
#include <fstream> // Used for file Input
#include <string>

#include <math.h>

#include <cctype>

#include <float.h> // Used to find maximum float
#include <thrust/host_vector.h>

using namespace std;

//TSPReader: Used to read .tsp files.
class TSPReader

{

string name; // TSP name — max length 16
int numCities; // Number of cities (dimension)

49

989
990
991
992

993
994
995
996
997
998
999

1000

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

1016

1017

1018

1019

1020

float* Xcoords; // X coords
float* Ycoords; // Y coords
stringx cityNames;

thrust :: host_vector<float> distances; // Distances between
cities
public:

//Constructors/Destructors
TSPReader () {}
“TSPReader () ;

bool read(charx filen); // Reads a given tsp file and extracts
data.

string getName () ;

float* getXcoords();

float* getYcoords();

int getNumNodes () ;

thrust :: host_vector<float> getDistances();

private:
void calculateDistances(); // Calculates distances on the CPU.

};

#endif

//Copyright (c¢) 2012, Peter Ahrens

//All rights reserved.

/!

//Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

//

// Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer .

// Redistributions in binary form must reproduce the above

/!

/!

copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

Neither the name of Excellants nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission .

50

1021

1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHEIHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE
, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

/**

x TSPReader.cu *
x Dustin Tauxe and Peter Ahrens *
x Reads .tsp files *

**/
#include ”TSPReader.h”

//destructor

TSPReader :: " TSPReader ()

{
delete [] cityNames;
delete [] Xcoords;
delete [] Ycoords;

}

//read: Reads a given tsp file and extracts data.
bool TSPReader::read(charx filen)
{
ifstream infile (filen , ios_base::in);
if (linfile){
cout << 7\n” << ”Unable to open file: 7 << filen << 7\n”;
return false;
}
string line;
string tag;
string value;
while (infile .good()){
getline (infile ,line);
if (line.length() > 1){

51

1054

1055
1056

1057

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

1079

1080
1081
1082
1083
1084
1085
1086
1087
1088

1089

1090
1091
1092

1093

if (lisprint (line [line.length () —1])) line.erase(line.length
()*171);
if (line.find (7:”) != string::npos){
tag = line.substr (0,line.find(7:7));
value = line.substr(line.find(”:”) + 1, line.length() — line.
find (7:7) — 1);
telse{
tag = line;

%

value = ;

while (tag. find (") != string ::npos){
tag.replace (tag.find (” 7),1,77);

while (value.find (7 7) != string::npos){
value.replace (value.find (7 7),1,77);
}
if (tag = "NAME") {
name = value;
telse if(tag = "TYPE”)
if (value != 7"TSP” && value != "STSP”){
cout << 7\n” << 7Invalid problem type: 7 << value << "\n”;
return false;

}
telse if(tag = ”DIMENSION”){
numCities = atoi(value.c_str());
}else if(tag =— "EDGEWEIGHT TYPE”) {
if (value != "EUC.2D"){
cout << 7\n” << ”Invalid edge weight type: 7 << value << ”"\n

Y
return false;

telse if(tag = "NODE_.COORD_SECTION"){
//Set coord arrays to appropriate lengths

cityNames = new string [numCities];
Xcoords = new float [numCities];
Ycoords = new float [numCities];

for(int i = 0; infile.good() && i < numCities; i++){
getline (infile ,line);
if (!isprint (line[line.length () —1])) line.erase(line.length ()
_171);
if(line = "EOF”){
return false;

}

cityNames[i] = line.substr(0,line.find (" 7));

52

1094 Xcoords[i] = atof(line.substr(line.find(” ”7) + 1, line.

find_last_of (7 7) — line.find(” 7)) — 1).c_str());

1095 Ycoords[i] = atof(line.substr(line.find_last_of(” 7) + 1,
line.length () — line.find_last_of (7 7) — 1).c_str());

1096 }

1097 }
1098
1099 }
1100 }

01| calculateDistances () ;
1102 return true;

1103 }
1104
05| //calculateDistances: Calculates distances on the CPU.

1106| void TSPReader :: calculateDistances (){

1o7| distances = thrust::host_vector<float> (numCitiesxnumCities);
1108 float k;

noo| for(int 1 = 0; 1 < numCities; i++){

1110 for(int j = 0; j < numCities; j++){

1111 k = sqrt (pow(Xcoords[i]—Xcoords[]j],2)+pow(Ycoords[i]—
Ycoords[j],2));

1112 if(i =13j)
3]k = std::numeric_limits<float >::max() ;
1114 distances[i * numCities + j] = k;

1115 }
1116 }

1117 }
1118

10| string TSPReader : : getName ()
1120 {

1121 return name;

1122 }
1123
24| float * TSPReader :: getXcoords ()
1125 {
1126 return Xcoords;

1127 }

1128
1120| float* TSPReader:: getYcoords ()
1130 {

1131 return Ycoords;

1132 }

1131] int TSPReader : : getNumNodes ()
1135 {

53

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

1147

1148

1149

1151

1152

1153

1154
1155
1156
1157
1158

return numCities;

}

thrust :: host_vector<float> TSPReader:: getDistances ()

{
}

//Copyright (c¢) 2012, Peter Ahrens

//All rights reserved.

//

//Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

return distances;

/!

// Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer .

// Redistributions in binary form must reproduce the above
copyright mnotice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

// Neither the name of Excellants nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission .

//

//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER, OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER, CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE
, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

[3 sk sk sk ok sk ok skt KR KRR R R K R oK SR SRR KKK KRR R K K K KKK KO
x Comm. h *
x+ Peter Ahrens *

o4

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177

1178

1179

1180

1181
1182
1183
1184
1185

1186
1187
1188
1189
1190
1191

1192

1193

1194

* Communicates over a pipe *
**/

#ifndef COMMH
#define COMMH
#include <iostream>
#include <sstream>
#include <iomanip>
#include <unistd.h>
#include <stdlib .h>
#include <string>
#include <cctype>
using namespace std;

//Comm: A class used to simplify the data transfer over a pipe.
class Comm
{
public:
Comm(int read, int write); //constructor: Takes as arguments
the neccesary pipes to work with.
“Comm() ;
string recieve(); //recieve: Looks for data on the pipe. If
there is some, it is returned. If not, an empty string is
returned.
bool send(string message); //send: Puts the given data on the
pipe
private:
int tagLength;
int readPipe;
int writePipe;
string intToString(int t, int padding); //intToString:
Converts an int to a specified size string with Os as
padding .
b
#endif

//Copyright (c¢) 2012, Peter Ahrens

//All rights reserved.

//

//Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

//

// Redistributions of source code must retain the above

copyright notice, this list of conditions and the following

95

1195

1196

1197

1198

1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

1209

1210
1211
1212
1213
1214
1215
1216
1217
1218

1219

disclaimer .

// Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

// Neither the name of Excellants nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission .

//

//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER, CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE
, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

/**

* Comm. cpp *
x Peter Ahrens *
x Communicates over a pipe *

KK KK K K K K K 3K 3K 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk skook sk sk sk sk okok ok /

#include ”Comm.h”

//constructor: Takes as arguments the neccesary pipes to work
with .
Comm: :Comm(int newReadPipe,int newWritePipe)
{
readPipe = newReadPipe;
writePipe = newWritePipe;
tagLength = 8§;
}
Comm:: "Comm() //Destructor.
{}

56

1220 //recieve: Looks for data on the pipe. If there is some, it is
returned. If not, an empty string is returned.

1221 string Comm:: recieve ()

122‘2{
1225 char tag|[tagLength];

1224/ int rv = read(readPipe,tag,tagLength);
1225 if(rv < 0){

1226 cout << "Read Error 17;
1227 exit (1) ;

1228

1229 if (rv = 0){

1230 return string (7”);

1231 }

1232 string inputTag = tag;

1233 int toRead = atoi(inputTag.substr(0,tagLength).c_str());
1234 char charIn[toRead];

1235 if (read (readPipe,charln ,toRead) < 0){

1236 cout << "Read Error 27;

1237 exit (1) ;

1238 }

1239 string output = charln;

1240/ output = output.substr(0,toRead);
1241 return output;

1242 }

1243

1244| //send: Puts the given data on the pipe
1245 bool Comm:: send(string message)

1246 {
1247 message = intToString (message.length () ,taglength) + message;
1248 return (write (writePipe , message.data () ,message.length()) > 0);

1249 }

1251 //intToString: Converts an int to a specified size string with 0
s as padding.
1252 string Comm::intToString (int t, int padding)

1253 {

1254 std :: ostringstream oss;

1255 oss << setfill (’0’) << setw(padding) << t;
1256] return oss.str();

1257 }

1258

1250| // Copyright (c¢) 2012, Peter Ahrens

1260| //All rights reserved.
1261 //

o7

1262

1263
1264

1265

1266

1267

1268

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283

1284

//Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

/!

// Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer .

// Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

// Neither the name of Excellants nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission .

//

//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER, OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER, CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE
, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

/**

x Writer.h *
x+ Dustin Tauxe and Peter Ahrens *
x Writes output to file and stdout *

**/

#ifndef WRITERH
#define WRITERH
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
#include <time.h>
using namespace std;

58

1285
1286
1287
1288
1289

1290

1291
1292

1293

1294

1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306

1307

1308

1309

1310

1311

1312

class Writer

{

public:

Writer (); // Sets defaults.

Writer (charx filen); // Sets defaults and opens the given file

“Writer () ;

bool setFile(charx filen); // Tries to open given file. If it
does, it is changed to writing mode.

void writeHeader (float beta, float rho, int numAnts,string ACO
, string TSPName); // Writes a header to the file and (if
in writing mode) to the file.

void write(int iter , double iterBest , double globBest, double
time, double iterTime); // Writes a standard line of output
to stdout and (if in writing mode) to the file.

private:

charx fileName;

ofstream f; // this is the file
charx temp; // scratch

bool writing;

}s

#endif

//Copyright (c¢) 2012, Peter Ahrens

//All rights reserved.

//

//Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

//

// Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer .

// Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

// Neither the name of Excellants nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission .

//

59

1313

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341

1342

1343
1344

//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHEIHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE
, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

/**

x Writer.cpp *
x Dustin Tauxe and Peter Ahrens *
x Writes output to file and stdout *

sk sk sk s s K K KKK KK K KRR SR SR SR K Sk SR SR R R R KK KKK KRRk ok ok [
#include ” Writer . h”

//Constructor: Sets defaults.
Writer :: Writer ()

{
}

//Constructor: Sets defaults and opens the given file.
Writer :: Writer (chars filen)

{
}

Writer ::~ Writer () //Destructor.

{
}

//setFile: Tries to open given file. If it does, it is changed
to writing mode.
bool Writer :: setFile (charx filen)

{

writing = false;

setFile (filen);

delete [] fileName;

60

1345
1346
1347
1348
1349

1350

1355

1359
1360
1361
1362
1363

1364

1365

1366
1367
1368
1369
1370

1371

1372

1376

|4

o}

fileName = filen ;
writing = true;
f.open(filen ,ios_base::app);
if (1f){
writing = false;
}

return writing;

}

//writeHeader: Writes a header to the file and (if in writing
mode) to the file.

void Writer :: writeHeader (float beta, float rho, int numAnts,
string ACO, string TSPName)

time_t rawtime;
time (&rawtime);
if (writing){
f << 7\n” << ”"Date: 7 << ctime (&rawtime) <<
"TSP: 7 << TSPName << 7"\n” <<
"ACO: 7 << ACO << "\n” <<
"numAnts: 7 << numAnts << 7\n” <<
"Alpha: 1 7 << ”"Beta: 7 << beta << 7 Rho: ” << rho << ”"\n”
<<
"Iteration , Iteration_Best , Global_Best, Time,
Iteration_Time\n” << flush;
}
cout << 7\n” << "Date: 7 << ctime (&rawtime) <<
"TSP: 7 << TSPName << 7\n” <<
PACO: 7 << ACO << "\n” <<
"numAnts: 7 << numAnts << "\n” <<
?Alpha: 1 7 << ”"Beta: ” << beta << ” Rho: ” << rho << ”\n”
<<
std::left << setw (10) << "Iteration”’<< setw(10) << ”
Iter_Best” << setw(10) << 7 Glob_Best” << setw (10) << ”
Time” << setw(10) << "Iter_-Time” << 7\n”;

//write: Writes a standard line of output to stdout and (if in
writing mode) to the file.

void Writer:: write(int iter , double iterBest, double globBest,
double time, double iterTime)

{

if (writing){

f << iter << 7,7 << iterBest << 7,7 << globBest << 7,7 <<
time << 7,7 << iterTime << ”"\n” << flush;

61

1380

1381

1382
1383
1384
1385
1386

1387

1388
1389

1390

1391

1392
1393

}

cout << std::left << setw(10) << iter << setw(10) << iterBest
<< setw(10) << globBest << setw (10) << time << setw(10) <<
iterTime << "\n”;

}

//Copyright (c¢) 2012, Peter Ahrens

//All rights reserved.

/!

//Redistribution and use in source and binary forms, with or
without modification , are permitted provided that the
following conditions are met:

//

// Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer .

// Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

// Neither the name of Excellants nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission .

/]

//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHEIHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

)

62

11 Acknowledgements

Thanks so much to our mentors and to Mr. Goodwin for supporting and
guiding us along the past couple years of computing. We have come a long

way.

References

1]

[10]

[11]

Peter’s Computer: Asus G53J, Intel i7-740QM 1.73GHz, 8GB Memory,
Nvidia GeForce GTX 460M ; VRAM: 1.5GB, running Ubuntu Linux
11.10.

Dustin’s Computer: Asus P5QL pro, Intel Core2Quad Q8400 2.66GHz,
8GB Memory, Nvidia GTX 560 Ti Overclocked to 850 MHz ; Vram:
1GB, running Ubuntu Linux 11.10.

National TSP, http://www.tsp.gatech.edu/world/countries.html.
Peter Ahrens, Fzcellants, code.google.com/p/excellants.

Peter Ahrens, Dustin Tauxe, and Stephanie Djidjev, Brilliants, http:
//challenge.nm.org/archive/10-11/finalreports/56.pdf.

Guy Blelloch, Vector Models for Parallel Computing, Ph.D. thesis, The
Massachusetts Institute of Technology, 1988.

Jose M. Cecilia, Jose M. Garcia, Andy Nisbet, Martyn Amos, and
Manuel Ujaldon, Enhancing Data Parallelism for Ant Colony Optimisa-
tion on GPUs, Journal of Parallel and Distributed Computing (2012).

Marco Dorigo and Thomas Stutzle, Ant Colony Optimization, The MIT
Press, Cambridge, Massachusetts, 2004.

Robert Gentleman and Ross Thaka, The R Project For Statistical Com-
puling, http://www.r-project.org/.

Thomas Hammerl, Ant Colony Optimization for Tree and Hypertree De-
compositions, Vienna University of Technology (2009).

Jared Hoberock and Nathan Bell, Thrust: A Parallel Template Library,
http://www.meganewtons.com/, 2012, Version 1.6.0.

63

[12] Gerhard Reinelt, TSPLIB, http://www.iwr.uni-heidelberg.de/
groups/comopt/software/TSPLIB95/.

[13] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley,
Boston, Massachusetts, 1997.

64

