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Executive Summary 

The goal of this project is the development of fast genetic algorithms that can solve both 

continuous and discrete optimization problems. There are usually a few ways to solve any 

problem. In a brute force solution, the program attempts to solve the problem using a 

randomly generated data set. This method is very easy to implement but usually very inefficient 

and can even fail completely. Genetic algorithms allow one to solve some problems more 

efficiently. The basic idea behind a genetic algorithm is based on natural selection. My genetic 

algorithms initially generate a random population. Then the initial random population is 

subjected to the specific task. Depending on how well they do at that task , they are included or 

discarded. Those that are included are incorporated into a new population. The program 

combines two or more parent elements to form a new population. The program does this until 

the new population is the same size as the original population. Finally a small percentage of 

mutation is added to the new population. The mutation process helps to avoid from becoming 

stuck in a 'divot' or a local minima other than the intended minimum.  This process is repeated 

many thousands of times, preferably on multiple threads. I developed and optimized GAs for 

both continuous and discrete problems. In order to further increase the speed of my program, I 

wrote genetic algorithms for each piece of code, and used C-optimized Python. I used two 

different approaches for each problem: a random search algorithm, and a method using GAs. In 

each problem, the GA-based algorithms vastly outperformed any random search algorithm. 

 

 



 

Background 

Genetic Algorithms (GAs) provide a powerful approach to complex problems involving 

optimization or design. In the absence of a clear analytical approach, GAs work especially well 

with complicated solutions, numerous unknowns, many constraints, and large solution sets. A 

brief description of a GA is as follows. The optimization problem is modeled by an artificial 

world populated with organisms. The optimization is characterized by a fitness function. Each 

organism has an artificial genotype or data set that mimics real-life DNA. A process of natural 

selection eliminates organisms (solutions) that score poorly as measured by the fitness 

function. A process that acts like reproduction combines DNA, or mixes the genotype of two or 

more organisms. A mutation-based process adds small random changes to the best solutions. 

Mutations can be positive or negative; positive mutations benefit the organism and negative 

mutations harm the organism. Mutations are essential to the algorithm in that they assist in 

ensuring that organisms do not get stuck in a local dip in the energy landscape. 

 

Problem Statement 

The original goal for this project was to simulate protein folding. However, I soon realized that 

this was on the scale of a two year project. Instead I choose a new subject; using genetic 

algorithms to solve complicated optimization problems. Genetic algorithms help solve many 

problems in all fields of science. However, while they can solve problems, they are even better 



at optimizing the solutions to a problem. In a scenario in which you need to design the most 

aerodynamic car, for example, you would use a genetic algorithm. It would take the original 

design and develop a more efficient solution. Since genetic algorithms are used in such a variety 

of fields, it would be very worthwhile to improve on the general theory. During the tour at 

Sandia National Laboratory I learned that the power for their supercomputers cost them 

millions of dollars annually. Since time is money, if one could improve on the algorithms used 

on supercomputers to solve problems, these improvements would save millions, if not billions 

of dollars. In addition, just by increasing the efficiency of you solution algorithms, it would allow 

for an increase in computing power, decreasing the need for larger, more expensive computers 

and allow more discoveries in science and medicine. 

In order to understand how to improve our computing situation, we must first gain knowledge 

on how to write efficient GAs. GAs take a population, run it through the required task ( such as 

a function), return the result, and then generate a new population. In order for the new 

population to avoid becoming stuck in something like a local minima, it is important to 

incorporate a degree of 'mutation' into your results. A simple way of explaining how GAs work 

is that they attempt to  find the lowest point in a landscape. For example you want to find the 

lowest point in a golf course. A GA will plop down in some random spot, roll straight down to 

the lowest point while taking a look around. If it sees a lower landscape, it will eventually 'jump' 

to the spot. This jump is facilitated by mutation.  

However, GAs do have some disadvantages. For example, code complexity can be an issue, 

especially if you write you own like I did. Also, it is possible that you can have round-off errors, 



however, this is a chance with any program. The purpose of my project is to aid the 

development of more efficient GAs. I hope to be able to write my own GAs capable of solving 

intensive problems. 

 

 

 

 



Problem Solution 

My simulations were based in Python, and I used an environment called IPython plus the 

Enthought Python Distribution to help visualize my results. Although the Python 

implementation was slightly slower than other solutions, I found it to be sufficient when 

combined with the efficiency of the GA and methods with the Numpy library. My first problem 

was simple, find the minimum of a 2-D function(.05sin(30x)2+ .1x2.) This is a highly oscillatory 

function, as shown below. This oscillatory nature allows the GA to easily be caught in a local 

minima 

 Figure 1. Illustration of the function:   .05sin(30x)2+ .1x2 

 



 

This task had an easy to distinguish solution(min = 0), but it was much harder to achieve 

computationally. My GA was just a basic algorithm, it worked by generating a random 

population of 10,000 data points between -5 and 5. Next it takes each of those x-coordinates 

and runs them through the fitness function. Then it has to determine which one did the best. 

Since this is just a function minimization, the program takes the lowest 10 percent and includes 

them in the new population. This top ten percent are the parents. Then is generates a new 

population using the average of two randomly chosen parents and repeats this until it has a 

population size of 10,000 ( the size of the original population.) Next it adds a small degree of 

mutation, this help from the solution becoming stuck in a 'divot' or local minima. The mutation 

step multiplies adds a very small number to each element in the population. It obtains this 

number by multiplying a random number from 0 to .000001 by the smallest element of the 

population. Then it adds this number to every element in the population. This function was 

designed to test the mutation ability of my GA. After about 1000 iterations, I reached a number 

around 10-6 ,after this it barely improved at all. I tried to add in mutation as a percent of the 

smallest member of the population, and I still had the same problem. This led me to conclude 

that this was a rounding discrepancy.  

Figure 2. Result after 10 iterations 

 

Figure 3. Result after 10,000 iterations 



 

This demonstrates the rounding discrepancy that is part of my program. However this is not a 

serious problem, due to the fact that rounding discrepancies will occur in any computer 

program. In addition to this, these values are very close to zero. These illustrations also show 

how rapidly the program converges. It achieves the same accuracy in 10 iterations that it 

achieves in 10,000 iterations. 

In addition to the above mentioned rapid converegeence, my program is also very fast when 

compared to other methods. For example my GA has a maximum execution time (for ten 

iterations) of about 2.49 seconds while the random search method has an eqiluvant convergant 

time of about 21.5 seconds. Note that the random method cnan sometimes, but rarely have a 

far smaller min execution time (0.0125 seconds) than my GA. (It achieved this only rarely due to 

the random number generator 'getting lucky.') In addition to this, the randomized method is 

also much less reliable, with a variance in execution time of about  1720 percent. One 

interesting thing I noticed was that the execution times for one and 10,000 iterations were 

about the same (~2.1 seconds.) This leads me to conclude that my program itself is fast, only 

the setup is slow.  

Whereas the previous problem was a good example of a smooth but complicated function with 

multiple minima, the next problem involves searching for a discrete solution in a very large 

possible solution space. The N-Queens problem involves the placement of N queens on an N-

by-N chess board. The objective is to place all the queens without any of the pieces able to take 

each other. This problem is very interesting in that it has a somewhat limited number of 



solutions but a located in a huge search space. For example, if this problem was solved with a 

brute force method it would require a search of 2.81474*1014 possible blind placement. 

However, using a slightly improved method in which each queen is placed on a separate row it 

would still require 1.6777 * 107 blind solutions. 

Figure 4. Chart showing number of solutions for n 

 

One interesting thing to note after looking at this chart is that the solution set for N = 6 is 

smaller than the solution set for N = 5. Another interesting fact is that there is no known 

formula for the number of solutions. A common solution trait is a distinctive stair step pattern, 

much like one a knight would make. I wrote a program that  can solve the general N-queens 

problem. My program randomly places one queen on the board, recording it's position. Then it 

places another queen randomly on the board, except where the two queens paths conflict. 

When the path's of queens conflict, it means that one queen is able to take another queen. In 

order to check that no paths conflict, the program checks that there are no queens on the same 

row, column, or diagonal. The GA is used if this check returns false with a scoring of how badly 

it fails. If there are p queens on a board and if is declared invalid, then the GA returns to the last 

known valid step  (p-1), and tries a slightly different position for the queen. At this time my GA 

can find some solutions for the N-queens. It is probably not possible to prove one can find all 

solutions with a GA. 

 

 



 

 

Figure 5. One solution to the 8-queens variant, note the distinctive 'L'-shaped pattern 

 

 

 

Conclusion 

This year, I wrote and optimized several genetic algorithms that were capable of faster and 

more efficient calculation than random search methods. I was also able to program a simple N-

queens problem and solve it for N= 8. The program generated populations, ran them through 

tasks, and then 'evolved' these populations. After these programs evolved for a sufficient time, 

they developed into solutions for the task required. I created two different methods for each 

task: A random search algorithm, and a method using GAs. Then I timed the maximum 

execution time for each method to achieve similar results. For the random search algorithm it 

varied greatly, but the genetic algorithm was somewhat constant, with a minimal random 



component due to mutation. In each case, the GA based algorithms vastly outperformed any 

random based solution. 

Significant Achievements 

I endured many obstacles throughout the course of my project. I initially had problems with 

faulty Python installations and malware issues. I learned about the advantages and 

disadvantages of using genetic algorithm based method to solve problems. I also learned a lot 

about speed issues in some languages. I am currently learning writing GA methods using Cython 

to increase speed and efficiency. My major achievement was writing effective GA-based 

programs that could compute solutions quickly and efficiently, in both discrete and continuous 

cases. In each case, the GA-based algorithms vastly outperformed any random search 

algorithm. 
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Code: 

               Genetic Algorithm for a complicated function:        

1. ''' 

2. Alexander Swart 

3. 4-4-2012 

4. Supercomputing 2012 

5. ''' 

6. import numpy as np 

7. import matplotlib.pyplot as plt 

8. from sys import argv 

9.   

10. npop = 10000 # Size of population 

11. top = .1   # The best of the pop as a fraction 

12.   

13. # noise specification 

14. mu = 0.0001 

15.   

16. #Noise Amplitude 

17. noise = 0.000001 

18.   

19.   

20.   

21.   

22.   

23.   

24. def randpop(npop ,pmin,pmax): 

25.     # populates the initial graph with random points 

26.     a = np.random.random(npop) 

27.     pop = pmin + (a*(pmax-pmin)) 

28.     return pop 

29.   

30. def natsec(pop,top,fitfunc): 

31.     # calculates subpopulation using the fitness function 

32.     # pop = origional population 

33.     # top =  The best of the pop as a fraction 

34.     g = fitfunc(pop) 

35.     indicies = g.argsort() 

36.     t = int(len(g)*top) #Length of the new sub population 

37.     subpop = pop[indicies[:t]] 

38.     return subpop 

39.   



40. def fitfunc(x): 

41.     # The fitness function 

42.     # Parabola with fluctuation,optimal range: 10 points 

43.     return (.05*np.sin(30*x)**2)+ .1*x**2 

44.   

45. def spawn(subpop,npop): 

46.     # keep subpop 

47.     # rest of new_population = avge of 2 randomly chosen subpop    

  members 

48.     subpop_len = len(subpop) 

49.     k = 0 

50.     new_population = np.zeros(npop) 

51.     for k in range(subpop_len): 

52.         new_population[k] = subpop[k] 

53.     k = subpop_len 

54.     while k<npop: 

55.         n = np.random.randint(0,subpop_len - 1) 

56.         random1 = subpop[n] 

57.         j = np.random.randint(0,subpop_len - 1) 

58.         random2 = subpop[j] 

59.         avg = (random1+random2)/2.0 

60.         new_population[k] = avg 

61.         k = k+1 

62.     return new_population 

63.   

64. def mutate(pop): 

65.     # Slightly mutates each value in the new population 

66.     small_pop =  np.min(pop) 

67.     pop += (small_pop)*(noise*np.random.normal(0,mu,len(pop))) 

68.     return pop 

69.     

70. def init(num_iteration): 

71.     k = 0 

72.     if k <= num_iteration: 

73.         pop = randpop(npop,-5,5) 

74.         while k<100: 

75.             subpop = natsec(pop,top,moo) 

76.             newpop = spawn(subpop,npop) 

77.             newpop = mutate(newpop) 

78.             k = k+1 

79.             if k>300: noise = 0.00000001     

80.     return min(moo(newpop)) 

81.   

82. if __name__ == '__main__': 

83.     k = 0 



84.     if k <= argv: 

85.         pop = randpop(npop,-5,5) 

86.         while k<100: 

87.             subpop = natsec(pop,top,moo) 

88.             newpop = spawn(subpop,npop) 

89.             newpop = mutate(newpop) 

90.             k = k+1 

91.             if k>300: noise = 0.00000001         

92.     print np.min(moo(newpop)) 

93.     

94.   

 

 

 

 

 

 



 

 

   


