Simulation of Multi-Agent Based Scheduling Algorithms

for Waiting-line Queuing Problems

New Mexico Supercomputing Challenge

Team Members
Steven Chen

Andrew Tang

Teacher

Pauline Stephens

Project Mentor

Hsing-bung (HB) Chen

Final Report
April 4™, 2012
Team 73

Los Alamos Middle School

Page 1 of 65

mailto:p.stephens@laschools.net

Table of contents

EXE@CULIVE SUMMATY ... sssssss st sess st sessss sessssssssssssssssssasssass 3
1. Problem STAtEIMENT ...ttt es et sees s se s ss s e s s neas 4
2 Multi-agent task scheduling simulation design and implementation................... 5
2.1 Simulation queue MOdel ... ————— 5
2.2 Multi-agent task scheduling simulation SyStem........c 6
2.3 AZENT AESIGNS e 8
2.4 Heuristic scheduling methods...... s 9
2.4.1 Round-robin Mmethod........enee s sessessesnns 9
2.4.2 Random SeleCtiON......eremeeeeseeseeseessessseseesssesesssessssssessesssesssess seessees 9
2.4.3 Less WOrKI0oad FirSt..... s seseessesseessesssessesssesseessssssessesseens 9
2.4.4 Early Starting Time FirSt..... s cesesseseesesseessesssessseseens 9
2.4.5 A Mixed Selection of the Above Four Heuristic Methodes............... 10
2.5 Time step simulation and Task interactive SEQUENCE.........comrrrermerrerrrrerseenns 10
2.6 Main Screen Design and Implementation........cooenemeensesneeseesseessneesseenns 13
3 Testing and Performance data........ s s 17
3.1 Performance index definitions......mees s 18
3.2 TESEING CASES et ————— 21
3.2.1 Strong scaling teSting CASES.....cuueermermersems s sssessssssessaes 21
3.2.2 Weak scaling testing Cases......oummmerernessessessessssssssssssssssssssssssse s 29
3.2.3 AUtO tUNING fEATUTE ...ovveeeerrerr et e 31
4 (000 1 ol 113 o) o 00N PO 33
5 FULUTE WOTKS. ..ot eseeeeseesesse s sssesse s sssesss s sess s sessessss s ssssssessssssessesssesssees 34
ACKNOWIEAZGEIMENToeieeeceeeeeeeeseeree et see s ses s ss e s s s s 34
Bibliography and ReferenCes.......o e sesseseessessessesssessses sesessssssessesssessssssessssssesssssses 34
Appendix - Source code - NetLogo Program.........ccccveiieeiieeiiieeiee e see e 36

Page 2 of 65

Executive Summary

In this project, we designed and implemented a multi-agent computer simulation
program. We used this simulation software to model a real-life waiting line or queuing problem
in variety of business and industrial situations such as supermarket's checkout lines and bank's
teller service windows. Through our experiments we addressed the following issues: (1) How to
model an independent task scheduling problem (single waiting queue (multiple servers with
Multiple service queues) using NetLogo multi-agent simulation system, (2) How to provide an
interactive approach to control run-time simulation activities, (3) How to collect performance
data and justify implemented scheduling methods, and (4) Is it possible to create an useful Multi-
agent education tool to teach scheduling problem. To solve the problems presented above, we
would like to apply efficient scheduling solutions. Scheduling is a key concept in computer
multitasking, the multiprocessing operating system and real-time operating system designs.
Scheduling refers to the way processes assigned to run on available CPUs. This assignment is
normally carried out by software known as a task scheduler or a job dispatcher. The “NetLogo”
is an agent based modeling software tool that we can use to create and investigate various models
for application problems. In reality, there is no universal scheduling algorithm to solve real-life
waiting-line or queuing problems. However, using heuristic approaches is the most reasonable
way to obtain acceptable solutions. We implemented five scheduling algorithms—round-robin,
random selection, early start time first, less workload first, and a mixed selection heuristic that
combines the four previously listed methods. The rich property of the random number generator
in “NetLogo” is an excellent tool to generate random task behaviors such as task size and task
arriving time. We conducted testing cases to cover various task patterns on our NetLogo
simulation program. We defined and collected various performance matrices such as waiting
time, turnaround time, and queue length. We found the Early Starting Time First algorithm to be
the best heuristic in most of the testing cases. For example, it can obtain a shorter waiting time
and average queue length and a faster turnaround time. We also demonstrated that our interactive
multi-agent simulation program is a good tool to teach multi-processing task scheduling

problem.

Page 3 of 65

http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/CPU

1. Problem statement
Waiting line queuing problems are commonly seen in everyday life. Some typical
examples are:

1. Supermarkets must decide how many cash registers should be opened to reduce
customers' waiting time.

2. Gasoline stations must decide how many pumps should be opened and how many
attendants should be on duty.

3. Manufacturing plants must determine the optimal number of mechanics to have on duty
in each shift to repair machines that break down.

4. Banks must decide how many teller windows to keep open to serve customers during the
various hours of the day.

5. Peer-to-Peer, Grid, and Cloud computing need to effectively and quickly manage and
schedule distributed resources for solving large-scale problems in science, engineering,
and commerce.

6. Modern large scale HPC cluster machines need to schedule millions of processes or

threads so it can provide fast turnaround time and better machine utilization.

Whether it is waiting in line at a grocery store to buy deli items (by taking a number),
checking out at the cash registers (finding the quickest line), waiting in line at the bank for a
teller, or submitting a batch job to available computers, we spend a lot of time waiting. The time
you spend waiting in a line depends on a number of factors including the number of people (or in
general tasks) served before you, the number of servers working, and the amount of time it takes
to serve each individual customer/task.

To deal with the problems mentioned above, we must provide effective and reasonable
solutions in order to reach goals of minimizing wait time in a queue, minimizing turnaround
time, balancing workload among service points, and increasing server utilization. To simplify
our project's problem description, we would like to formalize a waiting line and queuing problem
as a task scheduling problem. We can treat all objects (clients, customers, mechanics, tellers,
messages, jobs, processes, threads) waiting in a service line by putting them into a queue as
tasks. The task scheduling problem is very challenging and interesting. This problem is a class
of hard problems that cannot be optimally solved in a reasonable amount of computation time.

Page 4 of 65

For this reason, researchers have spent the past several decades developing work heuristic (rule
of thumb) methods to try and find a near-optimal solution.

The main goal of our project is to design and implement a multi-agent simulation model
for task scheduling problems and provide an interactive software tool to learn distributed task
scheduling problems. Now, why are we using simulation? Simulation appears to be the only
feasible way to analyze algorithms on large-scale distributed systems using various resources.
Unlike using the real system in real time, simulation works well, without making the analysis
mechanism unnecessary complex, by avoiding the overhead of co-ordination of real resources.
Simulation is also effective in working with very large hypothetical problems that would
otherwise require involvement of a large number of active users and resources, which is very

hard to coordinate and build at large-scale research environment for an investigation purpose.

2 Multi-agent task scheduling simulation design and implementation

2.1 Simulation queue model
There are several Waiting line 's Queue models: . Task, E processing point

e Single-server, single-phase

oo0—/ —

e Single-server , multiphase
eo0——PN—o00—IN

e Multi-server, single-line single-phase: centralized scheduler

L
~m—

Page 5 of 65

e Multi-server, multiline, single-phase

o00—/—

oo0—I —
(Y Y -

v

e Multi-server, multiphase

-
>->ooo{—»
-/ P

...——*

In this project, we implement the multi-server, single-line, and single-phase queue model.
This model typically and simply represents an independent task scheduling model on a
distributed computing system such as Cluster, GRID or Cloud computing environment. A
centralized task scheduler handles many randomly arrived tasks and finds available processing
points to execute tasks.

2.2 Multi-agent task scheduling simulation System
Our multi-agent based models are composed of three different types of agents: the
schedule agent, machine agent, and task agent.
The agents in a multi-agent system have several important characteristics:
= Autonomy: the agents are at least partially autonomous
= Local views: no agent has a full global view of the system, or the system is too
complex for an agent to make practical use of such knowledge
= Centralization and decentralization: there is a designated and centralized
scheduling agent and there are number of decentralized task agents randomly
ask the scheduler to schedule a created “task™ on a selective machine agent.

Page 6 of 65

http://en.wikipedia.org/wiki/Autonomous_agent

Figure 1 shows the system diagram of our simulation agents.

Heuristic Scheduling methods

1. Round-Robin
. 2. Random

Centralized Task 3. Early Starting Time First

Scheduler agent 4. Less Workload First
5. Mixed selection

Resource — eight machine agents or more
/ / / v \ \
1 2 3 4 5 6 7 8

Figure 1: Multi-agent task scheduling simulation

Page 7 of 65

2.3 Agentdesigns

Scheduler agent:

Only one centralized scheduler agent is defined here. We use the scheduler agent to
receive scheduling requests from task agents and find available machine agents to run tasks. The
selection of an available machine is based on the selected scheduling heuristic.

Machine agent:

A Machine agent is the main system resource to schedule a task. We have used eight and
sixteen machine agents in this simulation. Each machine agent is used to receive a task
assignment request from the scheduler agent and update its avail-time, accumulate-task-time,
and idle time. We can simulate more machine agents but we have considered to provide and
interactive approach and construct an education tool. Enploying eight to sixteen machine agents
in our simulation is within a reasonalbe range to view -real-time task schedule activities on a
monotoring screen.

Task agent:

We have used up to 99,999 task agents in our similation. Each task agent comes with a
different arriving time and task execution length. We used various number of task agents to
represent different run-time environments such as light workload (hundred tasks), moderate
workload (thousand tasks), heavy workload (multiple ten thousand tasks), lots of small tasks
(small execution time), lots of large tasks (very long execution time), or mixed small and large
task sizes etc..

Task information

Property of a Task:

e Each scheduling task is an independent task. There is no dependency relation or related
execution order between tasks

e Each task has been assign a random execution time, i.e. the length of a task

e Each task has been assigned a random arriving time

e Task arrival times are not known a priori. Every task has the attributes arrival time, worst
case computation time, and deadline. The ready time of a task is equal to its arrival time.
Task's arriving time is generated by a selected random number generator.

e Tasks are non-preemptive; each of them is independent.

Page 8 of 65

We used two different random number generator provided by the NetLogo— random and
Poisson-random. We used a random number generator to generate a task's arriving time and a

task's execution time.

Task selection discipline :

The selection of a task is based on the First Come First Serve FCFS) order. The NetLogo
system decides the task order in a queue when there are multiple tasks arrive at the same time
tick.

2.4 Heuristic scheduling methods
We implemented five different decision-making heuristics. Various heuristic scheduling
methods represent the intelligence and capabilities of each method. The heuristic is how we

select a machine to execute an arriving task.

2.4.1 Round-robin method
The scheduler agent uses a round-robin order to select each machine agent and assigns an
arriving task to it. Each machine agent takes an equal share of responsibility to run a task in

turn.

2.4.2 Random Selection
The scheduler agent randomly selects an available machine agent and assigns an arriving

tasks to it. It randomly selects a machine to run an incoming task.

2.4.3 Less Workload First
The scheduler agent selects an available machine agent with the smallest accumulated

task workload and assigns an arriving task to it.

2.4.4 Early Starting Time First
The scheduler agent selects an available machine agent with the early task starting time to

run a task and assigns an arriving task to it.

Page 9 of 65

2.4.5 A Mixed Selection of the Above Four Heuristic Methods

A mixed selection of the above scheduling methods can be called a heuristic of
heuristics. For each arriving task, the scheduler agent randomly picks one of the abewve four
heuristic methods mentioned above and applies this selected method to find an available machine
agent, and then assigns an arriving task to it.

2.5 Time step simulation and Task interactive sequence

Task agents Scheduler agent Machine agents

Tick-a

A task . L
. Task arriving time is
arrives equal global time tick
A task is Tick-b
scheduled Task start
Accept and
execute a task
. Tick-c
Tick-d Update Task finish
task information
Tick-e Task is finished
Update task
information
Time sequence Time sequence Time sequence

Figure 2: Interaction between agents based on time sequence

A global time tick is used in the simulation. This global time tick is advanced by "N"
time ticks. “N” can be any number. We advanced one time tick each time. The global time tick is
used as the wall clock and we used it to check the task arriving time. We also use it to monitor
task activities such as task waiting, task scheduling, task execution, and task finishing. We used
the global time tick to collect performance data. When a task's arriving time is equal to the
current global time tick, this task agent will ask the scheduler agent to scheduler agent to find an
available machine agent to execute it. Figure 2 shows the interaction between agents based on

the time advanced sequence.

Page 10 of 65

In Figure 3, we show the simulation NetLogo program architecture. "Ask™ is the
keyword used to query each agent about its status and expect activities. "Ask" also represents
the required interactive activities between agents. A task agent checks its task-arriving time and
the global time tick and sees if its task is ready to be scheduled. The scheduler agent use a
selected heuristic method to find an available machine "X" and then ask the machine agent "X"
to accept the arriving task and execute it. These interactive activities among agents are
continuing until all tasks are scheduled and finishing execution. We collected performance data
during the whole simulation process.

One of our goals for this simulation project is to provide education tolls for task
scheduling problems. We adapted a visualized and interactive approach to build this simulation.
We let users to define the run-time environment while we provided run-time animations of task

scheduling activities and in-time performance data display during the whole simulation process.

Page 11 of 65

Ask taskAgents ;; // all task agents execute this part concurrently

if task's arriving time is equal to the global time tick --> ask scheduler

Ask schedulerAgent ;; // only the scheduler agent executes
this part

Apply the selecting Hueristic method to find an available
machine “X” to run this arriving task

Repeat this
activity for
each time tick
until all tasks
are scheduled
and finishing
execution

Ask machineAgent “X” ;; // only the selected
machine agent X executes this part

Update machine X information

Total number of task assigned to this machine X
Total task length assigned to this machine X
Update machine X Utilization data

Update nextAvailableTime to schedule a task on this
machine X

Collect performance data from the schedulerAgent

Collect performance data from this task agent

End of Ask taskAgents

Advance one time tick

Figure 3: NetLogo simulation program -interaction between agents

Page 12 of 65

2.6 Main Screen Design and Implementation

The Global tick count is shown in Figure 4-1.

Global Time Tick

Figure 4-1: Global time tick counter

Users define parameters for simulation (Figure 4-2)
¢ the number of task agents used in each simulation,
e the range of task arriving time distribution,
e the range of task execution time distribution,

e the number of machine used in simulation

Parameters Setup

Figure 4-2: Setup testing parameters

Page 13 of 65

Users select a random number generator used in simulation (Figure 4-3).

Random function

Normal Distribution

PoissonDistribution

Figure 4-3: Select random number generator

Users select a scheduleing method used in simulation (Figure 4-4).

Scheduling methods

Round Rohin

Random

Early Start Time First

Less Workload First

Mixed Heuristics

Figure 4-4: Select schedule method

Users interactively control simulation action (Figure 4-5).

Page 14 of 65

Action Control

Add One Machine

Remove One Machine

setup

go

Figure 4-5: Run time control bottom

Monitoring run time performance data update and display (Figure 4-6)

Max Utilization

Run Time Performance Data

Min Utilization

turn Around Time

Number Arrived Jobs

0.7497113163972287 0.3068386322735453 281.05 500
maxFinishTime2 minFinishTime2 Average utilization LBPI-1
10392 9965 0.4724349044954713 4722
Max Start Time Min Start Time Average Wait Time LBPI-2
10272 9873 225,664 0.4428726841236833
Max Throughput Min Throughput2 Avg machine Tk Lengths LBPI-3
198 84 4762.25 114
max total task length Min total task length average Task Execution time| | LBPI-4
7791 3069 78.55257731958763 0

Figure 4-6: Rum Time Performance data update and Display

Messages area for displaying Testing Setup information and Run time activities

(Figure 4-7)

is shown in

Page 15 of 65

Messages - Testing Setup

150

500

10000

8

Select
Select
Systenm
System
Systen
Systen
System
Systen

Task Size Range - 0 to

Total Number of Jobs Created

Task Arriving Time Between 0 to

Nunmber of machine used in simulation

Normal distribution
Early Starting Time First Method

is
is
is
is
is
is

overloaded!
overloaded!
overloaded!
overloaded!
overloaded!
overloaded!
G : lerloaded! R hi c : -

Add
Add
Ada
Add
Add
Adad

machine
machine
machine
machine
machine
machine

one
one
one
one
one
one

more
more
more
more
more
more

to
to
to
to
to
to

service
service
service
service
service
service

m

Figure 4-7: Message area for Testing setup and activities

Run Time visualization display for task scheduling activities is shown in Figure 4-8.

Mult-Agent Based Heuristic Task Scheduling Simulation System

10800

Tast starting Time

TaskAction-StartTime

— Jmber of Jobs assigne =5

Mathings

13

Num of Job Assigned

|

Mathines 33

TN

Utilization(26)

Utization

Mathines

Number of Task

Task Arrhing Patterns

fitks 10200

11200

— TaskFinished Time

= Average Waiting Time =

TaskActon-FiishTime

13

WaTime

ftks 10800

6040

total Task Time

Total Task Execuion Time

13

Task Distrbufion

Figure 4-8: Run time visualization area

Page 16 of 65

Figure 4-9 is the main screen for our multi-agent task scheduling simulation system.

nterface |info | Gode
A

i Button

normal speed

7] view updates

| [Csowngs_]

¥ AT
o b ¥

cte Add conbuous ~
Multi-Agent Based Heuristic Task Scheduling Simulation System
TaskAction StartTime Num of Job Assigned Utilization Task Arriving Patterns
10100 E 2= B B 220 1 ! " 10
. 2 B g E E i B | :
z | =) = = S = H 5
£ = B = 2 7 ! 2
s i E = H € g &
i EEE R F 2 ‘ B g | | :
@ = 5 “ £
% BEE U L 5 5 E
e E EE BH E = £ z,
E EH E B =] €
o H E = = m| 0 | = = 0 z ! 0
0 Machines 238 0 Machines 238 0 Machines 15 0 ticks 12100
o WaitTime Total Task Execution Tine Task Distribution
10400 —_ 348 7730 163 "
: £ A i 3
: 5 e/ \ £ 5!
z g S [g
5 3 ~- i 5
: 11N\ ~__ Z
5 g R —] F
2 5 2 s
0 0] —] [I]
0 [] ticks 10800 | 0 Machines 15 [ticks 12100
Action Control Parameters Setup Random function scheduling methods Run Time Performance Data Messages - Testing Setup
AGd One Machine rasksee ‘ﬂ] Max Liikzation Mn Unkzaton tumn Arcund Time Number Arrived Jobs Task Size Range - 0 to
I —
manumJobs 500 2 LBPLL
FRemont Qe Machioe " PolssonDistibution Random 10135 ‘ 0 0.6568457240602908 } 773
S T——]
\ MmaxobAfiveTima 10000 Max Start Time Min Start Teme Average Wait Time L8P1-2
setup 9 Early Start Time First 9955 0 104,662 0.7706910405765456 | | | &
s e
- Max Throughput Min Throughput? Avg machine Tk Lengths 18P1:3
Global Time Tick F3n Avtoruning LsssWorkload First | | 203 ‘ 0 6167.666666666667 3
% $ tmeticks 10136 3o ot | [tors
vy X S —— %73 o roiommses | |
o r—

smlation E:
observer

Figure 4-9: Main screen design

3 Testing and Performance data

We focused on the following performance Index:

a) The average number of tasks waiting in line on a machine agent - The number of

tasks waiting in line can be interpreted in several ways. Short waiting lines can result

from relatively constant task arrivals (no major surges in demand) or by the

organization having excess capacity (too many machines open). On the other hand,

long waiting lines can result from poor server efficiency, inadequate system

capacity, and/or significant surges in demand.

b) The average time tasks spend on waiting in a queue,

¢) The average time a task spends in the system - turnaround time

d) The system utilization rate - Measuring capacity utilization shows the percentage of

time the machines are busy. Management’s goal is to have enough machines to

Page 17 of 65

assure that waiting is within allowable limits but not too many machines as to be

cost inefficient.
3.1 Performance index definitions

We defined the following parameters in our simulation program and then collected them

as performance data.

Global information - can be viewed and accessed by all agents

ticks : the global time tick as the reference wall clock
Number of Task: N, Task;, 1=1toN

Number of machine: M, Maching;, j=1to M

Num of Scheduler: 1, Scheduler

Task agent information:

Number of Task agent created : N, Task;, 1L =1to N, i is referenced as the task ID

A Task i: Task;
Task i execution time : TaskLength;

A random number generator is used to create a task's execution time
Task i arriving time : TaskArrive;

A random number generator is used to create a task's arriving time
Task i start executing time: TaskStart;
Task i finish execution time : TaskFinish;

TaskFinish; = TaskStart; + TaskLength;
Task i Waiting time in queue: TaskWait;

is the time between task’s arriving time and the actual task’s start execution time

TaskWait; = TaskStart; - TaskArrive;

TotalTaskWaitingTime(Sum of TaskWait;, i= 1 to N)

AverageWaitingTime: Average task waiting time
AverageWaitingTime = TotalTaskWaitingTime / Number of Task arrived

Page 18 of 65

Task i Turnaround time: TaskTRtime; , the amount of time spend on waiting and execution
task TRtime; = TaskFinish; - TaskArrive;
TotalTaskTurnaroundTime(Sum of TaskTRTime;, i= 1 to N)

AverageTurnaroundTime: Average task turnaround time

AverageWaitingTime = TotalTaskTurnaroundTime / Number of Task Finished

Machine agent information

Number of machine: M, Machine;, j=1to M, j is referenced as the machine ID
We create two version of simulation. One is using eight machine agents and the other is using
sixteen machine agents

A machine j : Machineg;

MachTotalTaskTime;: Total task execution time on a machine j
MachAvailableTime;: the current available time to add a new task on a machine j
MachldleTimej : Machine j Idle time upto the current golbal time ticks
MachldleTimej = ticks - MachTotalTaskTime;
MinimunTotalTaskTime (MachTotatITaskTime; j = 1 to M)
The smallest total task time on a machine agent
MaximunTotalTaskTime(MachTotalTaskTime; j = 1 to M)
The biggest total task time on a machine agent
MachUtilization;: A machine j current utilization
MachUtilization; = MachTotal TaskTime;/ ticks
The less utilized machine : MiumumUtil(MachUftilization;, j = 1 to M)
The most utilized machine : MaxmumuUtil(MachUtilization;, j = 1 to M)
The average machine utilization : Average(MachUTtilization;, j = 1 to M)
EarlyStartTime(Minumum(MachAvailableTime;, j = 1 to M)): the early start time for a task
from all machine agents

MachFinishTask;: Number of tasks finished on a machine agent j at current global time ticks

Page 19 of 65

This is the throughput on a machine agent j
MinimunThroughput(MachFinishTask;, j = 1 to M)
MaximunThroughput(MachFinishTask;, j= 1 to M)

Total Throughput(MachFinishTask;, j= 1 to M)
TaskWaitingEueueLength;: waiting queue lenght on a machine agent j
MinimunQueuLength(TaskWaitingEueueLength;, j=1 to M)

The minimum queue length

MaximunQueuLength(TaskWaitingEueueLength;, j=1 to M)

The maxinum queue length

Load Balance Performance Index :

Load balance Performance Index1 (LBPI1) =
MaximumTotalTaskTime - MinimumTotaltaskTime
Check the total task execution time assigned on a machine agent

Calculate the biggest gap among machine agents

Load balance Performance Index2 (LBP12) = MaximumuUtil - MinimumuUtil
Check the machine utilization on a machine agent

Calculate the biggest gap of utilization among machine agents

Load balance Performance Index3 (LBPI13) = MaximumThroughout - MinimumThroughout
Check the total task execution time assigned on a machine agent

Calculate the biggest gap of throughout among machine agents

Load balance Performance Index4 (LBPI14) =
MaximumQueuelLength - MinimumQueuelLength
Check the total task execution time assigned on a machine agent

Calculate the biggest gap of waiting queue length among machine agents

We defined these four Load Balance Performance Index to measure the capability of

providing a local balance run-time environment for each task scheduling method. The less

Page 20 of 65

variation of the LBPI value indicates a better load balancing result that is there is not a large
difference between the "min™” and "max". For example, we use the LBPI2 to check whether a

scheduling method can assign even workload to each machine.

3.2 Testing cases
We used the task pattern
e Task size distribution: range 0 to 720 time ticks
o Number of Task agents : 1000 task agents created
e Task arriving time distribution: range from 0 to 100000 time ticks
. Using the default normal random number generator

We measured both strong scaling and weak scaling performance.

3.2.1 Strong scaling testing cases

In this strong scaling test case, the problem size stays fixed but the number of machines
used is increased.

In strong scaling testing, we apple the above task pattern and start with using five
machine in testing. For each round of testing, we applied the same workload and then increased
one machine for each round of testing until we used up to eight machines.

Figure 5-1 shows the result of average waiting time comparison. The result is shown that
every scheduling can reduce the waiting time when more machines are added to the simulation.
We use a normalized Scalingindex to compare the average waiting time. Table-1 shows the
formula we used to calculate the Scalingindex. The higher Scalingindex value indicates a better

scaling result.

Average Waiting time | Normalized Scalingindex-Average waiting time
Using 5 machines A A/A=1
Using 6 machines B A/B
Using 7 machines C A/C
Using 8 machines D A/D

Table-1: Normalized ScalingIndex for Average Waiting Time

Page 21 of 65

Figure 5-2 shows the Scalingindex: Average Waiting Time comparison. The early Start-Time

First method demonstrates as a better scheduling method in terms of strong scaling comparison.

Strong Scaling testing - Average Waiting Time Comparison,
Same worklgad with different number of machines used
..X.o.oo.o-.
..l.x...'...
O oe® M
100 /
200 —
[7y)]
-
Ig
- 300
£
= 00 Testing workload —
Task Size: range (1,720) time ticks
Number Task: 1000 Task
500 — o -
Task Arriving Time: Range (0, 100000)
600
5 machines 6 machines 7 machines 8 machines
—4— Round Robin 164.6 70.6 38.3 16.2
—@— Random 512.9 376.8 237.3 186.4
Early Start-Time First 51.1 15.2 7.6 1.75
e o# ¢ | ess Workload First 74.6 36.7 11.9 8.2
= Mlixed Selection 185.1 115.9 78 60.5

Figure 5-1: Strong scaling testing and average waiting time comparison, same workload with

different number of machines

Page 22 of 65

Strong Scaling comparison
35
x
o 30 /‘
2> /
- -— 20
o0 J/
c 15 /
o 10
&)
v —
0
5 machines 6 machines 7 machines 8 machine
=4=—Round-Rohin 1 2.331 4,125 10.16
=fli—Random 1 1.361 2.161 3
=== Early-Start_time First 1 3.361 6.723 29.2
== | es5s Workload First 1 2.032 6.268 9
=== \ixed Selection 1 1.597 2.373 3.059

Figure 5-2: Normalized ScalingIndex for Average waiting Time comparison

Figure 5-3 shows the result of average turnaround time comparison. This result shows
that every scheduling can reduce the average turnaround time when more machines are added to
the simulation. The Early Start-Time First heuristic can obtain the lower average turnaround

time.

Page 23 of 65

Strong Scaling testing - Average Turnaround Time Comparison,
Same workload with different number of machines used
350
nlooo..no"X’OOo..o.o.oo.
e .)(. v
450 -
" 550 e |
S
=
[+F]
E
|_
650
750
Testing workload :
Task Size: range (1,720) time ticks
850 — Number Task: 1000 Task n
Task Arriving Time: Range {0, 100000)
950
5 machines 6 machines 7 machines 8 machines
—— Round Robin 518.6 426.8 404.9 374.4
—@— Random 867 735.2 593.1 541.5
Early Starting First 397.5 379.8 358.2 363.3
e e so e | ess Workload First 423.8 382.2 365.6 373.4
== [Mlixed Selection 550 474.6 429.5 430.1

Figure 5-3: Strong scaling testing and average turnaround time comparison, same workload with

different number of machines

Figure-5-4 shows the average machine utilization in string scaling testing case. We
observed that there is not a large variation among all five scheduling methods. It seems that the
strong scaling testing cannot clearly help us pinpoint the pros and cons of each scheduling

heuristic.

Page 24 of 65

Strong Scaling testing - Average Utilization Comparison, Same
workload with different number of machines used

0.8
) 0.75
N
c
S ;.\
= 0.7
(1]
N
2 065 ’
>
Q
£
_: 0.6
(&)
=
o 055
bo
C
1
Q
= 0.5
<
L] . .
0.45 \K
0.4
5 machines 6 machines 7 machines 8 machines
=——¢== Round Robin 0.7 0.59 0.52 0.45
=={l— Random 0.71 0.6 0.51 0.45
Early Starting First 0.7 0.61 0.5 0.46
e o:¢ o | ess Workload First 0.71 0.59 0.51 0.46
== Mixed Selection 0.74 0.6 0.51 0.42

Figure 5-4: Strong scaling testing and average utilization comparison, same workload with
different number of machines

We also used the Poisson-random-number generator and repeated the strong scaling
testing above. We present results in Figure 6-1, Figure 6-2, Figure 6-3, and Figure 6-4. Our
results has show that there is no much difference of using the Normal random number generator

and the Poisson random number generator provide in the NetLogo simulation system. The only

Page 25 of 65

big difference is that the Less Workload First has a better normalized ScalingIndex when using

eight machines.

Strong Scaling testing - Average Waiting Time Comparison,
Same workload with different number of machines used -
0 x...nccc!cc)(occoccco.c;
e ®
°* y—/ X
200 //I
i 300
2
|—
: /
£ 400
= /
500 . . T —
Testing workload : Poisson Distribution
Task Size: range (1,720) time ticks
600 Number Task: 1000 Task I
/ Task Arriving Time: Range (0, 100000)
700 {
800
5 machines 6 machines 7 machines 8 machines
—¢— Round Robin 156.4 65.1 31.9 17
—@— Random 739.1 353.9 245.5 172.6
Early Starting First 555 22.6 8.13 2.9
e o8 o | oss \Workload First 97.8 31.3 10.7 6
—— Mixed Selection 155.1 124.8 74.9 69.6

Figure 6-1: Strong scaling testing and average waiting time comparison, same workload with

different number of machines

Page 26 of 65

Normalized Scalinglndex comparison -

Average Waiting time

25
20 /
ﬁ 15 X
|_ /
(%]
= 10
< /
5
0
5 machines 6 machines 7 machines 8 machine
== Round-Robin 1 2.399 4.902 8.941
=—Random 1 2.088 3.01 4
== Early-Start_time First 1 2.455 6.826 19.13
== o5s Workload First 1 3.125 9.14 16
=== \ixed Selection 1 1.243 2.07 2.228

Figure 6-2: Normalized ScalingIndex comparison - average waiting time

Page 27 of 65

Strong Scaling testing - Average Turnaround Time Comparison, Same workload with
different number of machines used

350
450
550 e e |
(%]
—
©
|—
) 650
£
|—
750
Testing workload :
Task Size: range (1,720) time ticks
850 — Number Task: 1000 Task -
Task Arriving Time: Range (0, 100000)
950
5 machines 6 machines 7 machines 8 machines
——¢— Round Robin 518.6 426.8 404.9 374.4
—— Random 867 735.2 593.1 541.5
=i Early Starting First 397.5 379.8 358.2 363.2
e« s'e o Less Workload First 423.8 382.2 365.6 3734
——je— Mixed Selection 550 474.6 429.5 430.1

Figure 6-3: Strong scaling testing and average turnaround time comparison, same workload with

different number of machines

Page 28 of 65

Strong Scaling testing - Average Utilization Comparison, Same workload
with different number of machines used

0.8
0.75
0.7
(%]
S
= 0.65
(1]
E
|_
0.6
0.55
0.5
0.45
0.4
5 machines 6 machines 7 machines 8 machines
== Round Rohin 0.73 0.6 0.5 0.45
—f— Random 0.71 0.6 0.52 0.44
=== Early Starting First 0.75 0.61 0.53 0.44
e oo o | oss Workload First 0.73 0.6 0.52 0.43
=t \flixed Selection 0.7 0.6 0.49 0.45

Figure 6-4: Strong scaling testing and average utilization comparison, same workload with

different number of machines

3.2.2 Weak scaling testing cases

Page 29 of 65

We also conducted weak scaling testing cases. In a weak scaling testing case the problem
size (workload) assigned to each machine stays constant. Table-2 shows the workload

distribution when using different number of machines.

Number of machine used 1 2 3 4 5 6 7 8

Workload(#task agent used) | 400 | 800 | 1200 | 1600 | 2000 | 2400 | 2800 | 3200

Table-2: Workload distribution for weak scaling testing

Figure 7-1 shows that the Early Start-time First and the Less Workload First methods
have better stable/static decreasing average waiting time when increasing machines in
simulation. The random scheduling method shows an up/down or unstable average waiting time

when increasing more machine in simulation.

Page 30 of 65

Weak Scaling testing - Average Waiting Time

—4— Round Robin
= =Random

=s@=Less Workload
=== Mlixedselection -
-

— .

—A = Early Starting Time

-‘D—-__D'

"

-
— -

= 9‘<:: == -=1-_-u-x

400JOBS/1 800JOBS/2 1200JOBS/31600JOBS/42000J0OBS/52400J0BS/62800J0BS/73200J0BS/8
Machine Machine Machines Machines Machines Machines Machines Machines

Figure 7-1: Weak scaling testing - Average waiting time comparison

Figure 7-2 shows the result of weak scaling testing cases in terms of average turnaround
time comparison. We show that the Early Start-time First and the Less Workload First methods
can decrease average waiting time when increasing machines in simulation. The random

scheduling method shows an unpredictable.

Page 31 of 65

Weak Scaling testing - Average Turn Around Time Comparison

jound Robin

andom

arly Starting Time
ess Workload

. lixed selection
\ J -

NN
A

-‘--
-

| —

400JOBS/1 800JOBS/2 1200JOBS/31600JOBS/42000J0BS/52400J0BS/62800J0OBS/73200J0OBS/8
Machine Machine Machines Machines Machines Machines Machines Machines

Figure 7-2: Weak Scaling testing - Average turnaround time comparison

3.2.3 Auto tuning feature
We also implemented an "Auto Tuning" feature. We used the "switch™ to turn on an off
the "Auto Tuning feature.” We used the "slider" to set two parameters to control the "auto
tuning" feature. They are:
o maxWaitTimeAllow - If the average waiting time is greater than this value, we
then add one more machine to the service.
o minWaitTimeAllow - If the average waiting time is below this value, we then

remove one machine from the service.

Page 32 of 65

We used this "Auto Tuning" feature to dynamically control the run-time wait-line

situation. A sample run-time screen-shot is shown in Figure 8-1, Figure 8-2, and Figure 8-3.

Switch button to turn on and off of

on / the "Auto Tuning" feature
Hof AutoTuning

maxWaitTimeAllow 960 | | Data Slider to setup maxWaitTimeAllow

. —
_minWaitTimeAllow 100 | Qo

Data Slider to setup minWaitTimeAllow

Figure 8-1: Setup: Auto Tunning"

Messages - Testing Setup

Task Size Range - 0 to -
150

Total Number of Jobs Created

500

Task Arriving Time Between 0 to . .
g Initially using one machine

10000 /
Number of machine used in simulation |

1 Add one machines
Select Normal distribution when is overloaded
Select Early Starting Time First Method

System is overloaded! Add one more machine to service
System is overloaded'! Add one more machine to service
System is overloaded! Add one more machine to service
System is underloaded! Remove one more machine from service

\ remove one machine

when is underloaded

Figure 8-2: Run time messages show activities of the "Auto Tuning"

Page 33 of 65

WaitTime

N
(4]
o

WaitTime is over 200

WaitTime is below 100

o Average Waiting Time

0 ticks 4430

Figure 8-3: AverageWaitTime visualization data over the global tick counter

4 Conclusion

We successfully created a multi-agent task scheduling simulation system using NetLogo
programming language and NetLogo run-time environment. We provided an interactive user
interface and rich visualization of run-time information. We collected performance data and
discuss the pro and con of each heuristic task scheduling methods. We showed that some simple
heuristic could help to get better results. The interactive and visualized approach used in the
simulation system proves to be useful and interesting. It helps to learn various task patterns such
as light workload and heavy workload. It helps to understand performance matrices such as the
strong scaling and weak scaling. It demonstrates how difference workload can have different
impacts on the waiting time and machine utilization. Using our simulation system, we can
conduct testing cases of various real-lives waiting line and queuing problems.

The major contributions of the Team 73 are: (1) the first ever to implement a multi-agent
task scheduling simulation program, (2) comparing five heuristic scheduling methods, and (3)
implementing a useful educational simulation program that can assist those who wish to study
real-life waiting line and queuing problems.

Through this project, we have learned the following things: (1) how to use the NetLogo
programming system, (2) what is the waiting line and queuing problem, (3) what is heuristic
scheduling method, (4) how to convert a real-life problem to a multi-agent model, (5) how to
design interactive user-interface, and (6) how to work together as a team towards a common goal

and eventually finish this project on time.

5 Future works

Page 34 of 65

We would like to extend our current simulation program to cover more real-life problems
involving waiting line and queuing. There are several interesting areas that we plan to add to or
modify our existing simulation program including Real-time task scheduling problem,
Dependent task scheduling problem, Work Flow simulation, Multi-server and multi-line task
scheduling, Add multiple phases to the existing simulation, and more interactive run-time
visualization display such as Gantt chart etc. The initial implementation of the "Auto Tuning"
feature is demonstrating our future enhancement plan to provide an intelligent scheduling

environment for waiting line queue problems.

Acknowledgements

First, we would like to thank the Super-computing Challenging program and the
committee members. The kickoff program at New Mexico Tech was especially helpful. Through
this training, we gained knowledge, useful information, and a variety of idea to implement in our
simulation program. Furthermore, we would like to thank the comments and suggestions from
our intern reviewing judges. We would also like thank our Supercomputing challenge project
teacher Mrs. Pauline Stephens for sponsoring our project and her constant encouragement
throughout these in the past five months. In addition, we also would like to thank Ariel Chen for
reviewing our report and HB Chen for mentoring our team.

Finally we would like to thank our parents for helping us prepare posters, editing the final
report, and setting up different testing environments.

Bibliography and References

NetLogo from North Western University - http://ccl.northwestern.edu/netlogo/

NetLogo 5.0 User manual - North Western University

Seth Tisue and Uri Wilensky , “NetLogo: A Simple Environment for Modeling Complexity,”
ICCS 2004

Frederic Haziza, “Scheduling Algorithms,” Department of Computer Science, Uppsala
University

Page 35 of 65

mailto:p.stephens@laschools.net
http://ccl.northwestern.edu/netlogo/

Terence C. Ahern, "Bridging the Gap: Cognitive Scaffolding to Improve Computer
Programming for Middle School Teachers,” 39" ASEE/IEEE Frontier in Education
Conference, October 18-21, 2009, San Antonio, TX

E.O. Oyetunji, “Some Common Performance Measures in Scheduling Problems: Review
Article,” Research Journal of Applied Sciences, Engineering and Technology 1(2): 6-9,
2009

“Process Scheduling”, class note, Department of Computer Science, University of Texas at
Austin, Professor Lorenzo Alvisi

Sartaj K. Sahni, "Algorithms for Scheduling Independent Tasks,", Journal of ACM, Vol 23,
Issues 1, Jan., 1976

Yiqiu Fang, Fei Wang and Junwei Ge, "A Task Scheduling Algorithm Based on Load
Balancing in Cloud Computing,” Lecture Notes in Computer Science, 2010, Volume
6318/2010, 271-277

Yingzi Li, Xiaodong Zhang, and Shou Zhang, "Multi-agent Simulation System Study on
Product Development Process,"”, Applied Mathematics and Information Science, 2011

Sebastien Paquest, Nicolas Bernier, and Brahim Chaib-Dras, "Multiagent System Viewed as
Distributed Scheduling Systems: Methodology and Experiments,” Proceedings of the
18th Conference of the Canadian Society for Computational Studies of Intelligence,
Canadian Al 2005, Victoria, Canada, may 2005

Waiting line and Queuing problem - Queuing theory:
http://businessmanagementcourses.org/Lesson21QueuingTheory.pdf

Page 36 of 65

https://springerlink3.metapress.com/content/?Author=Yiqiu+Fang
https://springerlink3.metapress.com/content/?Author=Fei+Wang
https://springerlink3.metapress.com/content/?Author=Junwei+Ge
https://springerlink3.metapress.com/content/0302-9743/
http://businessmanagementcourses.org/Lesson21QueuingTheory.pdf

Appendix = NetLogo Simulation Source code

;; Modeling Task Scheduling Problems using Multi-Agent Based Simulation System - a heurictic
;; approaches

;; Steven Chen and Andrew Tang

;; Los Alamos Middle School

;; Los Alamos, New Mexico 87544, USA
;; 04/2012

;; This NetLogo simulation project is for the 2012 New Mexico Supercomputing Challenge

;; Using NetLogo release 4.1.3 & NetlLogo 5.0.1

;; Task scheduling problem is a hard problem. Where an exhaustive search for an optimal
;» solution is impractical, we choose heuristic methods to speed up the process of finding a
;; satisfactory solution.

;; We have implemented five different heuristic scheduling methods

" 1 Round-Robin : This is a fair-shared approach. We let each machine take turn to

" receive an arriving task. Round-robin scheduling is simple, easy to

" implement, and starvation-free.

" The name of the algorithm comes from the round-robin principle known from
" other fields, where each machine takes an equal share of responsibility to

5 run a task in turn.

;; 2 - Random Selection : A randomized algorithm is an algorithm which employs a degree of
" randomness as part of its logic. We use the builtin random number generator

" and decice when machine to run an arriving task.

" it may not give us a good solution but it is a good indicator when we

" do the compariatvie studies.

;1 3 - Less Workload First -

" Each machine keep the total task ececution time assgiend to it.

" We pick a machine with the least amount total task execution time.

0 We only focus on a specific and continuous time period so this heuristic

i make sense in this simulation. We also expect to a good performance from this
5 heuristic scheduling method.

" 4 Early Starting Time First - We can use two different distribution to define a task arrining time, the
" random (normal distribution) and the randon-poisson (Poisson distribution)

" We think that we can use the early available to start a task on a machine as the

" machine selection index. We pick a machine the early starting time to run a

" task and assign this task to it. We think that this is a reasonable heuristic method. We

" implemented it in our simulation.

" 5 A Mixed Selection - We then come out this interesting heuristic method.

" We plan to implement four different heuristic scheduling methods. Why not try a
" combination approach to select an available machine.

" the idea is to use a random number to decide which method should be used to pick
5 a machine.

" It is an interesting "demo" to see how good is this mixed method.

Page 37 of 65

i We called it a heuristic of heuristics.

T I3 00 I 09099999999999737737799999999999999739737999999999999999937377373377313

;; We have defined four different agents

;; Task agent - many up to 99999

;; Scheduler agent - one scheduler agent

;; Machine agent - eight machine agents, can be more

;; Decos agent - for random display and decoration only

IRRRR R R R R R R RN R EEREREERERRREE]

;; Task agent: generate task information -

N task arriving time, task execution time

;; each task agent sends a task to the scheduler and asks
;; for a machine to run it

T39I YNNI I I 0309999993999 9999939339393999939939999999333333339999

breed [tasks taskA]

T39I YNNI NI I 0909999993999 9999939339393999939999999999333333339999

;; Machine agent
;; each machine keeps its current machine status and waits for
;; a request from the scheduer to run aa assigned taks

IRRRRR R R R R R R R R R R R R R R E RE R R R R R R R EEEEEREERERRRRRE]

breed [machines machine]

1393 NI I IIIII0090999933 3993999399 99099099399399933939999999999333333939999973973

;; Scheduler agent
;; check is there a arrriving task and find an available
;; machine ro run it

139333 IIIII999999393 933 9399999939993993933999939999993999999993339939993393999999999993393393999993973

breed [schedulers scheduler]

IRRRRR RN REEEERRERERRRREE]

;; Decos agent
;; this is for decoration only

IRRRRR R R R R R R R R R R R R R R E R R R R R R R R R R R R R R R R R KRR R R R R R R R R R R R R R R RRRRRREREREEEEREREREE)

breed [decos deco]

13933 I IIII999399393 93393909 99999939339399399399999939999999933399399933939999999999333933933999973973

;; Global variables, can be accessed by all agents

13933 I NI 9093993993999939939939999999999993939939993393999999999933393393393997393

globals [
totalMachineReserved
numMachineOccupied
numMachineAvailable
waitingTime
idleTime
averageldleTime
arrivingTime
taskExecTime
finishedJobs
lengthJob
markSpan
numJobCreated

Page 38 of 65

numJobFinished
totalJobs

totalTime

wallClock

throughPut
averageTurnAroundTime
total TurnAroundTime
utilization
averageResponseTime
averageWaitTime
averageTaskLengthTask
numJobArrived
numJobWaiting

autoTuneTickCount
nextautoTuneTickCount

FlagAutoTune

:; Load Balance Performance Index

LBPI1
LBPI2
LBPI3
LBPI4

:; machine workload information

machWorkLoad1
machWorkLoad2
machWorkLoad3
machWorkLoad4
machWorkLoad5
machWorkLoad6
machWorkLoad7
machWorkLoad8
machWorkLoad9
machWorkLoad10
machWorkLoad11
machWorkLoad12
machWorkLoad13
machWorkLoad14
machWorkLoad15
machWorkLoad16

lessWorkloadMachinelD

averageTaskLengthMachine

;; performance data
maxStartTime

minStartTime
maxFinishTime
minFinishTime
maxThroughput
minThroughput
maxTaskLength
minTaskLength
maxUtilization

Page 39 of 65

minUtilization
maxStartTime2
minStartTime2
maxFinishTime2
minFinishTime2
maxThroughput2
minThroughput2
maxTaskLength2
minTaskLength2
maxUltilization2
minUtilization2
loadBalancelndex
maxJobWait
minJobWait
maxJobFinish
minJobFinish
maxJobWait2
minJobWait2
maxJobFinish2
minJobFinish2
jobPatterns
numJobTick
throughPutTimeTick
selectedMethod

139339999930 NIIIIIII99999999399999999999999993393)

;» only task agent can access its own variables

tasks-own [
tasklD
taskLength
arriveTime
startTime
finishTime
waitTime
markSpanTime
assignedMachine
taskDone
taskWaiting
taskExecution
taskFinish
turnAroundTime

IRRRRR RRRRRRERRERRRRRREREE]

;; only the scheduler agent can access these variables

T399I I I I I3 I I I II0000999999999999999999999999999993999399393999999993999)

schedulers-own [
schedulerID
numJobArrive
numJobStart
numJobFinish
numJobWait

Page 40 of 65

currentmachinelD

T3 I35 9999999999999999997377377333999999999999997397373933999999999999999)

;; each machine can access its own variables
;; there is no array ro multi-dimension data structure
;; but this is useful. Each agent can define its own variables

2331 IIII999797797399999999999999999399373399973999999999999997973373939999999999999313173)

machines-own [
machinelD
numJobArrive
numJobStart
numJobFinish
numJobWait
waitTimeM

idleTimeM
currentStartTime
nextAvailTime

total TaskTime
currentTaskID
utilizationM
totalTurnAroundTimeM
averageTurnAroundTimeM
throughputM

T39I I NI YNNI INIIIIIIIIII9099999999999999999)

;; the "setup™ button"

;; use this "setup" button before run each simulation
;; after the "setup™ also you need to select distribution
;; method and scheduling method

;; default is set to

;; normal distribution and round-robin scheduling

IR RRR RRRRERRERERERREREEEREE]

to setup
;; (for this model to work with NetLogo's new plotting features,
;; __ clear-all-and-reset-ticks should be replaced with clear-all at
;; the beginning of your setup procedure and reset-ticks at the end
;; of the procedure.)
__clear-all-and-reset-ticks ;; this will clean out all button variables and plot areas

init-globals ;; initialize global variables

:; create one scheduler
;; turtle 0 : schedule
create-schedulers 1

;; create eight machines
;; turtle 1-8: machines
create-machines 8

;; create two watchdog turtles for some extra activities
;; turtle ID 9 adn 10

Page 41 of 65

cro 2

;; create task list

;; we used 100 tasks here for

;; it can be change to different number later
;; 1D 11 - 110 remap to task ID 1 - 100
create-tasks maxNumJobs

set numJobCreated maxNumJobs

create-decos 100 ;; decoration only

;; setup basic information for agents
setup-scheduler
setup-machines
setup-task-info

output-print "Task Size Range -0to "
output-print maxTaskSize

output-print "Total Number of Jobs Created"
output-print maxNumJobs

output-print "Task Arriving Time Between 0 to "
output-print maxJobArriveTime

output-print "Number of machine used in simulation”

output-print numMachine

;; reset the tick counter value to zero
reset-ticks
end

13939999999999999999999939399999999933939939933939939993

;; setup schedule basic information

IR RRR RRRRRRRRE]

to setup-scheduler
ask scheduler O [

;;print "scheduler setup done™
set schedulerID 0
set numJobArrive 0
set numJobStart 0
set numJobFinish 0
set numJobWait 0
set currentMachinelD 0

]

ask patches [
set pcolor green

;; initialize global variables

to init-globals
:;set numMachine 8

Page 42 of 65

set totalMachineReserved 8
set numMachineOccupied 0
set numMachineAvailable 0
set waitingTime 0
setidleTime 0

set averageldleTime O

set arrivingTime O

set taskExecTime 0

set finishedJobs 0

set lengthJob 0

set markSpan 0

set totalJobs 0

set numJobFinished 0

set totalTime 0

set wallClock 0

set throughPut 0

set averageTurnAroundTime 0

set totalTurnAroundTime 0
set utilization 0

set averageResponseTime 0
set averageWaitTime 0

set numJobArrived 0

set numJobFinished 0

set numJobWaiting 0

set machWorkLoad1 0
set machWorkLoad2 0
set machWorkLoad3 0
set machWorkLoad4 0
set machWorkLoad5 0
set machWorkLoad6 0
set machWorkLoad7 0
set machWorkLoad8 0
set machWorkLoad9 0
set machWorkLoad10 0
set machWorkLoad11 0
set machWorkLoad12 0
set machWorkLoad13 0
set machWorkLoad14 0
set machWorkLoad15 0
set machWorkLoad16 0

set throughPutTimeTick O

set lessWorkloadMachinelD 0

set maxStartTime 0

set minStartTime 0

set maxFinishTime 0
set minFinishTime O
set maxThroughput 0
set minThroughput 0
set maxTaskLength 0
set minTaskLength O

Page 43 of 65

set maxUtilization 0
set minUtilization 0
set maxJobWait 0
set minJobWait 0

set maxJobFinish 0
set minJobFinish 0

set maxStartTime2 0
set minStartTime2 0
set maxFinishTime2 0
set minFinishTime2 0
set maxThroughput2 0
set minThroughput2 0
set maxTaskLength2 O
set minTaskLength2 0
set maxUtilization2 0
set minUtilization2 0

set maxJobWait2 0
set minJobWait2 0

set maxJobFinish2 0

set minJobFinish2 0

set autoTuneTickCount 0
set FlagAutoTune 1

set LBPI1 0

set LBPI2 0

set LBPI3 0

set LBPI14 0

set numJobTick 0
set selectedMethod 1
end

TN YNNI NI I I I IIII9009997999999999999999939337393

;11 setup resource machine infor
;;; we have used 8 machines in this simulation

to setup-machines
ask machine 1 [

set machinelD 1
set numJobArrive 0
set numJobStart 0
set numJobFinish 0
set numJobWait 0
set currentStartTime 0
set nextAvailTime 0
set currentTaskiD 0
set idleTimeM 0
set waitTimeM 0
set utilizationM 0
set totalTaskTime 0
set averageTurnAroundTimeM 0

Page 44 of 65

set total TurnAroundTimeM 0
]

ask machine 2 [
set machinelD 2
set numJobArrive 0
set numJobStart 0
set numJobFinish 0
set numJobWait 0
set currentStartTime 0
set nextAvailTime 0
set currentTaskiD 0
set idleTimeM 0
set waitTimeM 0
set utilizationM 0
set total TaskTime O
set averageTurnAroundTimeM 0
set total TurnAroundTimeM 0

]

ask machine 3 [
set machinelD 3
set numJobArrive 0
set numJobStart 0
set numJobFinish 0
set numJobWait 0
set currentStartTime 0
set nextAvailTime 0
set currentTaskiD 0
setidleTimeM 0
set waitTimeM 0
set utilizationM 0
set total TaskTime O
set averageTurnAroundTimeM 0
set total TurnAroundTimeM 0

]

ask machine 4 [
set machinelD 4
set numJobArrive 0
set numJobStart 0
set numJobFinish 0
set numJobWait 0
set currentStartTime 0
set nextAvailTime 0
set currentTaskID 0
set idleTimeM 0
set waitTimeM 0
set utilizationM 0
set totalTaskTime 0
set averageTurnAroundTimeM 0
set total TurnAroundTimeM 0

]

ask machine 5 [
set machinelD 5

Page 45 of 65

set numJobArrive 0

set numJobStart 0

set numJobFinish 0

set numJobWait 0

set currentStartTime 0

set nextAvailTime 0

set currentTaskID 0

set idleTimeM 0

set waitTimeM 0

set utilizationM 0

set totalTaskTime 0

set averageTurnAroundTimeM 0
set total TurnAroundTimeM 0

]

ask machine 6 [
set machinelD 6
set numJobArrive 0
set numJobStart 0
set numJobFinish 0
set numJobWait 0
set currentStartTime 0
set nextAvailTime 0
set currentTaskID 0
set idleTimeM 0
set waitTimeM 0
set utilizationM 0
set total TaskTime 0
set averageTurnAroundTimeM 0
set total TurnAroundTimeM 0

]

ask machine 7 [
set machinelD 7
set numJobArrive 0
set numJobStart 0
set numJobFinish 0
set numJobWait 0
set currentStartTime 0
set nextAvailTime 0
set currentTaskiD 0
setidleTimeM 0
set waitTimeM 0
set utilizationM 0
set total TaskTime O
set averageTurnAroundTimeM 0
set total TurnAroundTimeM 0

]

ask machine 8 [
set machinelD 8
set numJobArrive 0
set numJobStart 0
set numJobFinish 0
set numJobWait 0
set currentStartTime 0

Page 46 of 65

set nextAvailTime 0

set currentTaskiD 0

set idleTimeM 0

set waitTimeM 0

set utilizationM 0

set total TaskTime O

set averageTurnAroundTimeM 0
set total TurnAroundTimeM 0

;; let each task agent to create a job

to setup-task-info

ask tasks [
;; Task ID
set tasklD random maxTaskSize
set tasklength random maxTaskSize
if taskLength=0 [
set taskLength 1
]

;; task arriving time generated from the selecting
;; distribution
;; the default is normal distribution
if jobPatterns =0 [
set arriveTime random maxJobArriveTime

]

;; Poisson distribution is used if you select this one
if jobPatterns =1 [
set arriveTime random-poisson maxJobArriveTime

]

set startTime O

set finishTime 0

set waitTime 0

set markspanTime 0
set assignedMachine 0
set taskDone 0

set taskWaiting 0

set taskExecution 0

set taskFinish 0

set turnAroundTime 0
;aprint "tasks setup done"

23T I NI NI999999999973937739399999999999993133199

Page 47 of 65

;; button to select the Normal distribution

IRRRR R R R R R R R R R R R R R R E R AR EEEREEEERRERE]

to normalDistribution

set jobPatterns 0

output-print "Select Normal distribution
end

T390 9999999999973779739999999999999999933933399397399999999973993731339

;; button to select the Poisson distribution

T3 Y I I I I I YNNI I090999979999999999999999979319)

to poissonDistribution

set jobPatterns 1

output-print "Select Poisson distribution"
end

T39I I YNNI I IIIIIII900999999999999399999999939933339399399399793

;» button to select the Round-robin scheduling method

139330 IIIIIIIIII099999999399999399939999999933393393939939399393993

to roundRobin

set selectedMethod 1

output-print "Select Round Robin Method"
end

IR EERRRRREE]

;» button to select the Random machine scheduling method

T39I I3 IIIIIII009999999939999993999999993339339393993939939939393)

to randomMethod

set selectedMethod 2

output-print "Select Random Selection Method"
end

IR RRRR R R R R R R R R R R R E RRRERRRRRRRRRRREREEEREE]

;; button to select the Less Workload First scheduling method

TN Y NI NI I Y I I I TN IIIII00979939999999999999993979)

to lessWorkloadFirst

set selectedMethod 3

output-print "Select Less Workload First Method"
end

1393330999939 399999999339939999399999999999999999999339399399939999993999999333333319)

;; button to select the Early Starting Time First scheduling method

IR RRRR RN R R R R R R R R R R R ERREREEEREREER]

to earlyStartTimeFirst

set selectedMethod 4

output-print "Select Early Starting Time First Method"
end

T399I I I NI I I I 0009999993999 999999099999999399999999999999993793333339993)

;; button to randomly select from the four heuristic methods

T399I I NI I I I IIII0099999999999999999999999999399999399999999999999993399993999399)

to cockTailMixed

set selectedMethod 5

output-print "Select Mixed Heutistic Method"
end

Page 48 of 65

;; get how many tasks has assigned to a machine at this time

23T I NI 99999999999999999737737737799999999999993733737999999999999999933793331313

to get-machine-workload-number-of-jobs
ask machine 1 [
set machWorkLoadl numJobArrive
smaprint (word "machWorkLoad1 " machWorkLoad1)
]
ask machine 2 [
set machWorkLoad2 numJobArrive
;print (word "machWorkLoad?2 " machWorkLoad?2)

ask machine 3 [
set machWorkLoad3 numJobArrive
smaprint (word "machWorkLoad3 " machWorkLoad3)

ask machine 4 [
set machWorkLoad4 numJobArrive
;mprint (word "machWorkLoad4 " machWorkLoad4)

ask machine 5 [

set machWorkLoad5 numJobArrive

snaprint (word "machWorkLoad5 " machWorkLoad5)
1
ask machine 6 [

set machWorkLoad6 numJobArrive

smprint (word "machWorkLoad6 " machWorkLoad6)
]
ask machine 7 [

set machWorkLoad7 numJobArrive

smprint (word "machWorkLoad7 " machWorkLoad7)
1

ask machine 8 [
set machWorkLoad8 numJobArrive
;asprint (word "machWorkLoad8 " machWorkLoad8)

]

;; get what is the current early time to start a task on this machine

to get-machine-early-start-time-first

ask machine 1 [
set machWorkLoad1 nextAvailTime
;;print (word "ESTF machWorkLoadl " machWorkLoad1)

]

ask machine 2 [
set machWorkLoad2 nextAvailTime

Page 49 of 65

;;print (word "ESTF machWorkLoad2 " machWorkLoad?2)
]

ask machine 3 [
set machWorkLoad3 nextAvailTime
;print (word "ESTF machWorkLoad3 " machWorkLoad3)

]

ask machine 4 [
set machWorkLoad4 nextAvailTime
;sprint (word "ESTF machWorkLoad4 " machWorkLoad4)

ask machine 5 [
set machWorkLoad5 nextAvailTime
;;print (word "ESTF machWorkLoad5 " machWorkLoad5)

]

ask machine 6 [
set machWorkLoad6 nextAvailTime
;;print (word "ESTF machWorkLoad6 " machWorkLoad6)

]

ask machine 7 [
set machWorkLoad7 nextAvailTime
;print (word "ESTF machWorkLoad7 " machWorkLoad7)

]

ask machine 8 [

set machWorkLoad8 nextAvailTime

;;print (word "ESTF machWorkLoad8 " machWorkLoad8)
]

end

TN Y I I I I I I IIIII90099999999999999999999319)

;; get the current workload on each machine

to get-machine-workload-less-job-first

ask machine 1 [
set machWorkLoad1 totalTaskTime
;print (word "machWorkLoadl " machWorkLoad1)

]

ask machine 2 [
set machWorkLoad?2 totalTaskTime
smsprint (word "machWorkLoad? " machWorkLoad?2)

]

ask machine 3 [
set machWorkLoad3 total TaskTime
;print (word "machWorkLoad3 " machWorkLoad3)

]

ask machine 4 [
set machWorkLoad4 total TaskTime

Page 50 of 65

;aprint (word "machWorkLoad4 " machWorkLoad4)
]
ask machine 5 [

set machWorkLoad5 totalTaskTime

smsprint (word "machWorkLoad5 " machWorkLoad5)

]

ask machine 6 [
set machWorkLoad6 totalTaskTime
;mprint (word “machWorkLoad6 * machWorkLoad6)

]

ask machine 7 [
set machWorkLoad7 totaltaskTime
;imprint (word “machWorkLoad7 * machWorkLoad7)

]

ask machine 8 [
set machWorkLoad8 total TaskTime
smprint (word "machWorkLoad8 " machWorkLoad8)

]

T39I NI NI I I 0909999909939 99099999993933939399999999933333939999399999999993179)

; get the machinelD with the less workload at this time

T39I YNNI I NI I I 0909999909939 0909999999393393939999999993333393939939999993993933739)

to get-less-workload-machine
let workload 9999999

if numMachine >= 1 [
if workload > machWorkLoad1l [
set workload machWorkLoad1
set lessWorkloadMachinelD 1

]
]

if numMachine >=2 [
if workload > machWorkLoad?2 [
set workload machWorkLoad?2
set lessWorkloadMachinelD 2
]
]

if numMachine >=3 [
if workload > machWorkLoad3 [
set workload machWorkLoad3
set lessWorkloadMachinelD 3

]
]

if numMachine >=4 [
if workload > machWorkLoad4 [

Page 51 of 65

set workload machWorkLoad4
set lessWorkloadMachinelD 4

]
]

if numMachine >=5 [
if workload > machWorkLoad5 [
set workload machWorkLoad5
set lessWorkloadMachinelD 5

]
]

if numMachine >=6 [
if workload > machWorkLoad6 [
set workload machWorkLoad6
set lessWorkloadMachinelD 6

]
]

if numMachine >=7 [
if workload > machWorkLoad7 [
set workload machWorkLoad7
set lessWorkloadMachinelD 7

]
]

if numMachine >=8 [
if workload > machWorkLoad8 [
set workload machWorkLoad8
set lessWorkloadMachinelD 8

IRRRRR EEEEERRERRERERRE]

;; get the machine ID taht has the early task starting time

IRRRRR RREREERERRE]

to get-early-start-time-machine
let workload 9999999

if numMachine >=1 [
if workload > machWorkLoad1l [
set workload machWorkLoad1
set lessWorkloadMachinelD 1

]
]

if numMachine >=2 [
if workload > machWorkLoad?2 [
set workload machWorkLoad?2
set lessWorkloadMachinelD 2

]
]

Page 52 of 65

if numMachine >=3 [
if workload > machWorkLoad3 [
set workload machWorkLoad3
set lessWorkloadMachinelD 3

]
]

if numMachine >=4 [
if workload > machWorkLoad4 [
set workload machWorkLoad4
set lessWorkloadMachinelD 4

]
]

if numMachine >=5 [
if workload > machWorkLoad5 [
set workload machWorkLoad5
set lessWorkloadMachinelD 5

]
]

if numMachine >=6 [
if workload > machWorkLoad6 [
set workload machWorkLoad6
set lessWorkloadMachinelD 6

]
]

if numMachine >=7 [
if workload > machWorkLoad7 [
set workload machWorkLoad7
set lessWorkloadMachinelD 7

]
]

if numMachine >= 8 [
if workload > machWorkLoad8 [
set workload machWorkLoad8
set lessWorkloadMachinelD 8

]
]

;print (word "select lessworkload machine " lessworkloadMachinelD)

end

;; randomly select a machine

to get-random-machine

let LnumMachine numMachine + 1

Page 53 of 65

set lessWorkloadMachinelD random LnumMachine
if lessWorkloadMachinelD =0 [
set lessWorkloadMachinelD random LnumMachine
if lessworkloadMachinelD =0 [
set lessWorkloadMachinelD random LnumMachine
if lessworkloadMachinelD =0 [
set lessWorkloadMachinelD random LnumMachine
if lessWorkloadMachinelD =0 [
set lessWorkloadMachinelD 1

13933 YNNI 0TI IIIIIIIIII09939939IIIIIIII999999993999)

;; use the rounc-robin heuristic to select a machine

T399I IIIIIIII9999999999393993999999999933933393993993973

to get-round-robin-machine
;;this is Round-robin scheduling heuristic
if currentMachinelD = numMachine [
set currentMachinelD 1
|
if currentMachinelD < numMachine [
set currentMachinelD (currentMachinelD + 1)

TN NI I I I I T NI III9999999999999999999999999333)

;; button - Add a machine during the run time

;; this is an usefuly interactive feature of using the NetLogo

;; we can dynamically add some machine(s) to the task simulation

;; when we find the system is overloaded we can add machines to

;; reduce the task's waiting time and increase the overall task thoughput
;; this is an interesting "demo" feture™ to learn the task scheduling

;; concept in operating system

1393339 IIII0099993993939339999999933993999939999939999999999339333939939993399999999999333339313)

to AddMachine
if numMachine < 8 [
set numMachine numMachine + 1

]

end

2399I I I I I3 I I I 0009099999999 9999999939993999939999999999999999933999333339399393

;» button - Remove a machine during the run time

;; this is an usefuly interactive feature of using the NetLogo

;; we can dynamically remove some machine(s) to the task simulation

;; when we find the system is underloaded we can remove machines to

;; save system resouece and still maintain a reasonable performance such as
;; waiting time, throughput, and system utilization

Page 54 of 65

;; this is an interesting "demo" feture" to learn the task scheduling
;; concept in operating system

IR RN R R R R R R R R R R R R RRRRRRRRREE]

to RemoveMachine
if numMachine >=2 [
set numMachine numMachine - 1

]

end

;; main control procedures

;; the "go" routine is set as "forever"

;; it will repeat the same executing sequence again and again

;; for each iteration we advance a tick acount to remembet the current
;; wall-clock information

;; the tick counter is used as the wall-clock.

;; we check the tick-count with task arriving time

;; if there is a match we should schedule this task ASAP.

;; becasue of this tick count , we then can generate performance data

;; such as task starting time, task finishing time, throughout, utilization,
;; waiting time...

;; we aslo "setup™ a simulation-stop condition

;; that is when the create task number is equal to the number of task scheduled

T3 I I I I I I I I II I I IIII0909999 9999090 IIIII9099999999993993993993999739)

to go

;. LOCAL variables

let taskScheduled 0

let L2MachinelD 0

let LMachinelD 0

let idleTimeT O

let waitTimeT O

let LtaskLength O

let LtaskID O

let LstartTime O

let LfinishTime 0

let LarriveTime O

let LpreviousStartTime 0
let LmixedMethod 0

set numJobTick 0

let LselectedMethod 0
set LselectedMethod selectedMethod
let LrrPicked 0

let LwaitTime O

let LidleTime O

let LturnAroundTime O

;;output-print "num of task agetns "'
;;output-print maxTaskSize

;; thisis a "simulation-stop™ condition checking
;; We stop the simuation when all created tasks are scheduled

Page 55 of 65

if numJobCreated = totalJobs [
;:print (word "All generaated task are scheduled™)

if maxFinishTime2 < ticks [
print (word "All generated tasks are finishing execution ")
print (word "Simulation End")
stop

;; Check if there is an arriving task from task agent
;; only the un-scheduled task is picked

ask tasks with [taskDone = 0] [
;; only schedule an available taks that is
;; arriving time is equal to the wall clock

if arriveTime = ticks [;; am | ready to be scheduled

set-current-plot "Task Distribution"
plotxy ticks taskLength

set numJobTick numJobTick + 1
set-current-plot "Task Arriving Patterns"
plotxy ticks numJobTick

xxxxx

;;print (word "tick " ticks " task arrive time " arriveTime " length "tasklength)

set taskScheduled 1

set totalJobs totalJobs + 1
set LtaskLength taskLength
set LtaskID taskID

set LarriveTime arriveTime

ask scheduler O [;; Only one scheduler is using here

;; STEP 001: Selection an available machine based on the
;; selected scheduling method

;; user can select a ""scheduling method from the button”

;; I have implemented five different heuristic scheduling methods
;; 1 - round-robin

;; 2 - random slection

;; 3 - lett workload first

iy 4 - early starting time first

Page 56 of 65

;5 - a mixed selection of the above four heuristic method

B e o B B o o o o o
;; First method: round robin or fail shared method
if LselectedMethod = 1 [
;;get-round-robin-machine
if currentMachinelD = numMachine [
set currentMachinelD 1
;nsprint (word "HBHBHB 001 >>>> " currentMachinel D)
set LrrPicked 1

]

if currentMachinelD < numMachine [
if LrrPicked =0 [
set currentMachinelD currentMachinelD + 1
;mprint (word "HBHBHB 002 >>>> " currentMachinelD)
]
]

if LrrPicked =1 [
set LrrPicked 0
1
1

B T T B o o
;; Second method: randomly selecting a machine to run this task
if LselectedMethod =2 [

get-random-machine

set currentMachinelD lessWorkloadMachinelD

]

e S o S

B S ot o o o o
;; Third method: Select a machei with less accumulated workload
if LselectedMethod = 3 [

get-machine-workload-less-job-first

get-less-workload-machine

set currentMachinelD lessWorkloadMachinelD

]

B L o o

B e o O I o o o o
;; Fourth method: Select a machienthe with early starting time that can run this taks
if LselectedMethod =4 [

get-machine-early-start-time-first

get-early-start-time-machine

set currentMachinelD lessWorkloadMachinelD

]

B

L
;; Fifth method: This is a mixed selection fo the above four heuristice methods

;; this is an experiment

if LselectedMethod =5 [

Page 57 of 65

]

;; use a random number to decide which method is going to select the next machine
set LmixedMethod random 4
if LmixedMethod =0 [
;;get-round-robin-machine
if currentMachinelD = numMachine [
set currentMachinelD 1
set LrrPicked 1

if currentMachinelD < numMachine [
if LrrPicked =0 [
set currentMachinelD currentMachinelD + 1

]

]
if LrrPicked =1 [
set LrrPicked 0
]
1

if LmixedMethod =1 [
get-random-machine
set currentMachinelD lessWorkloadMachinelD

]

if LmixedMethod =2 [
get-machine-workload-less-job-first
get-less-workload-machine
set currentMachinelD lessWorkloadMachinelD

]

if LmixedMethod =3 [
get-machine-early-start-time-first
get-early-start-time-machine
set currentMachinelD lessWorkloadMachinelD

]

o L L L

;; set local variables

set LMachinelD currentMachinelD
set L2MachinelD currentMachinelD
let MID currentMachinelD

STEP 002: Assign this task to this selected machine
and update information of this machine

ask machine currentMachinelD [

set numJobArrive numJobArrive + 1

set numJobStart numJobStart + 1

set numJobFinish numJobFinish + 1

set totalTaskTime total TaskTime + LtaskLength
set LpreviousStartTime currentStartTime

if nextAvailTime < LarriveTime [
;;print "nextAvail Time < LarriveTime --------------- "
set currentStartTime LarriveTime
set LidleTime LarriveTime - nextAvailTime
set idleTimeM idleTimeM + LidleTime

Page 58 of 65

;print (word "0002A Machine currentStartTime " currentStartTime " task arrive time "
LarriveTime " nextAvailTime " nextAvailTime)

]

if nextAvailTime > LarriveTime [
;;print "nextAvail Time < LarriveTime --------------- "
set currentStartTime nextAvailTime
set LwaitTime nextAvailTime - LarriveTime
set waitTimeM waitTimeM + LwaitTime
;print (word "0002B Machine currentStartTime " currentStartTime " task arrive time ™
LarriveTime " nextAvailTime " nextAvailTime)

]

set nextAvailTime currentStartTime + LtaskLength
set LstartTime LpreviousStartTime

set LfinishTime nextAvailTime

set currentTaskID LtasklD

set-current-plot "TaskAction-StartTime"

plotxy LMachinelD * 3 LstartTime
set-current-plot "TaskAction-FinishTime"

plotxy LMachinelD * 2 LfinishTime

set-current-plot "Num of Job Assigned”
let AverageThroughPut 0

let tplot-flag O
set tplot-flag ticks mod 100
plotxy LMachinelD * 3 numJobFinish

1;; end of ask machine
1;; end of ask scheduler

set finishTime LfinishTime

set waitTime LwaitTime
set turnAroundTime LfinishTime - LarriveTime
set LturnAroundTime turnAroundTime

set assignedMachine L2MachinelD

ask machine L2MachinelD [
set totalTurnAroundTimeM total TurnAroundTimeM + LturnAroundTime
if numJobFinish >0 [
set averageTurnAroundTimeM total TurnAroundTimeM / numJobFinish

]

sprint (word "machine totalTaskTime " L2MachinelD " totalTaskTime " totalTaskTime "
nextAvailTime " nextAvailTime)
set-current-plot "Total task Execution Time"
plotxy L2MachinelD * 2 totalTaskTime
;; plotxy L2MachinelD * 3 totalTaskTime
if nextAvailTime >0 [
if totalTaskTime > nextAvailTime [
;;print (word "totalTaskTime > nextAvailTime " totalTaskTime " > " nextAvailTime " How could
this happen?")

Page 59 of 65

]

if nextAvailTime >0 [
set utilizationM totalTaskTime / nextAvailTime

]

set-current-plot "Utilization"

;;Clear-plot

plotxy L2MachinelD * 2 utilizationM

;; plotxy L2MachinelD * 3 utilizationM

;print (word "machine totalTaskTime ™ L2MachinelD " totalTaskTime " totalTaskTime "
nextAvailTime " nextAvailTime " utilization " utilizationM)

]
]

set taskDone 1
set finishedJobs finishedJobs + 1

]:; end if ask tasks

B R R b o S S S s R S S R R S R 2 2 S S S S e S S e S
2]

;; Check starting time

;; Check execution time
;; check finish time

;; numJobArrive

;; numJobStart

;; numJobFinish

;; numJobWait

B R e S R R b R S S S R e S R S S R S S S S S S R e e e e
2]

let LMachID 0

set LTaskID 0

ask tasks with [taskDone = 1] [
set LMachID assignedMachine
set LTaskID taskiD

;;print (word "taskID " taskID " MachinelD " LMachID " finishTime " finishTime "global time tick
" ticks)

if taskFinish = 0 [;; only check if this task is not yet finished : waiting, execution
;;print (word "I am not yet finished ™)
if finishTime = ticks [;; | am finished

;;print (word "l am finished " "finishTime " finishTime "tick " ticks)
set taskExecution 2
set taskWaiting 2
set taskFinish 1
ask machine LMachiID [
set numJobFinish numJobFinish + 1
set numJobWait numJobWait - 1
;print (word " | am finished taskID " LTaskID " numJobWait "' numJobWait)

]

Page 60 of 65

;; set taskDone 2

]

if startTime = ticks [;; | am ready to be execute
;sprint (word "I start execution " "startTime " startTime "tick " ticks)
set taskExecution 1
set taskWaiting 2
ask machine LMachiD [
set numJobStart numJobStart + 1
]
]

if startTime < ticks [;; | am waiting
if taskWaiting =0 [
;sprint (word "I am waiting " "startTime " startTime "tick " ticks)
set taskWaiting 1
ask machine LMachlID [
set numJobWait numJobWait + 1
;;print (word ™ am waiting taskID " LTaskID ™ numJobWait " numJobWait)

;; end of ask tasks taskdone = 1

o kkkhkhhkhkhkrhkhkhkhkhhkhkrhkhrhkrhhkhkhdrhkrhkhkhhkhhkhrhkhdhhrhrhhrhhdhhrhhrhhdrhrhhdhhrhhhhrhhihihiix
1

set total TurnAroundTime totalTurnAroundTime + LturnAroundTime
if finishedJobs > 0 [
set averageTurnAroundTime totalTurnAroundTime / finishedJobs

]

let plot-flag 0
set plot-flag ticks mod 10

if plot-flag=0 [

if taskScheduled =1 [
;;setup-task-info
ask machines [
set shape "house"
set color yellow
right random 360
forward 1
set-current-plot "machine"

Page 61 of 65

plotxy random 1 random 1

]

ask schedulers [
set shape "car"
set color green
right random 360
forward 2
set-current-plot "machine"
plotxy random 1 random 1

]

ask decos [
;;ask tasks [
set shape "person”
set color white
right random 360
forward 3
set-current-plot "machine"
plotxy random 1 random 1

]

set totalTime sum [total TaskTime] of machines
if numMachine >0 [
set averageTaskLengthMachine totalTime / numMachine

]

set throughPut sum [numJobFinish] of machines
if numMachine >0 [
set throughPut throughPut / numMachine

]

if taskScheduled =1 [
set numJobFinished numJobFinished + 1
set averageTaskLengthTask totalTime / numJobFinished

]

set averageWaitTime sum [waitTime] of tasks

if averageWaitTime >0 [
set averageWaitTime averageWaitTime / totalJobs
set-current-plot "WaitTime"
plotxy ticks averageWaitTime

]

;; Auto Tuning operation if enable
;; add a machine when the waittile is too long
;; remove a machien whe the waiting time below minWaitTimeAllow

if AutoTuning [

if FlagAutoTune =1 [

Page 62 of 65

;;print (word "FlagAutoTune is 1")
if averageWaitTime > maxWaitTimeAllow [

set autoTuneTickCount ticks

set nextautoTuneTickCount ticks + maxWaitTimeAllow

if numMachine <8 [
set numMachine numMachine + 1
set FlagAutoTune 0
print (word "add one machine ")
output-print "System is overloaded! Add one more machine to service"
;;print (word "reset FlagAutoTune to 0")
set-current-plot "TaskAction-StartTime"
clear-plot
set-current-plot "TaskAction-FinishTime"
clear-plot
set-current-plot "Num of Job Assigned"
clear-plot
set-current-plot "Total task Execution Time"
clear-plot
set-current-plot "Utilization"
clear-plot

]

]

if averageWaitTime < minWaitTimeAllow [
set autoTuneTickCount ticks
set nextautoTuneTickCount ticks + minWaitTimeAllow
if numMachine > 2 [
set numMachine numMachine - 1
set FlagAutoTune 0
print (word "remove one machine ")
output-print "System is underloaded! Remove one more machine from service"
;print (word "reset FlagAutoTune to 0")
set-current-plot "TaskAction-StartTime"
clear-plot
set-current-plot "TaskAction-FinishTime"
clear-plot
set-current-plot "Num of Job Assigned"
clear-plot
set-current-plot "Total task Execution Time"
clear-plot
set-current-plot "Utilization"
clear-plot
]
]
]

if ticks = nextautoTuneTickCount [
set FlagAutoTune 1
;;print (word "reset FlagAutoTune to 1")

]

if FlagAutoTune =0 [
;; print (word "FlagAutoTune is 0")

]
]

Page 63 of 65

;;set plot-flag ticks mod 5
set plot-flag 0

if plot-flag = 0 [

set maxStartTime max-one-of machines [currentStartTime]
set minStartTime min-one-of machines [currentStartTime]

set maxFinishTime max-one-of machines [nextAvailTime]
set minFinishTime min-one-of machines [nextAvailTime]

set maxThroughput max-one-of machines [numJobFinish]
set minThroughput min-one-of machines [numJobFinish]

set maxTaskLength max-one-of machines [totalTaskTime]
set minTaskLength min-one-of machines [totalTaskTime]

set maxUltilization max-one-of machines [utilizationM]
set minUtilization min-one-of machines [utilizationM]

set maxJobWait max-one-of machines [numJobWait]
set minJobWait min-one-of machines [numJobWait]

set maxJobFinish max-one-of machines [numJobFinish]
set minJobFinish min-one-of machines [numJobFinish]

set maxStartTime2 max [currentStartTime] of machines
set minStartTime2 min [currentStartTime] of machines

set maxFinishTime2 max [nextAvailTime] of machines
set minFinishTime2 min [nextAvailTime] of machines

set maxThroughput2 max [numJobFinish] of machines
set minThroughput2 min [numJobFinish] of machines

set maxTaskLength2 max [totalTaskTime] of machines
set minTaskLength2 min [totalTaskTime] of machines

set maxUltilization2 max [utilizationM] of machines
set minUtilization2 min [utilizationM] of machines

set maxJobWait2 max [numJobWait] of machines
set minJobWait2 min [numJobwait] of machines

set maxJobFinish2 max [numJobFinish] of machines
set minJobFinish2 min [numJobFinish] of machines

set loadBalancelndex maxTaskLength2 - minTaskLength2

set LBPI1 maxTaskLength2 - minTaskLength2
set LBPI2 maxUtilization2 - minUtilization2

Page 64 of 65

set LBPI3 maxJobFinish2 - minJobFinish2

;;print (word " M " maxJobWait " numJobWait " maxJobWait2)
;print (word "' M " minJobWait " numJobWait " minJobWait2)
;» print (word " M " maxJobWait " numJobWait "' maxJobWait2)
;» print (word " M " maxJobWait " numJobWait "' maxJobWait2)

set LBP14 maxJobWait2 - minJobWait2

]

set utilization sum [utilizationM] of machines
;:set utilization utilization / numMachine
if numMachine >0 [

set utilization utilization / numMachine

]

;; advancing one tick count
tick

end ;; end of GO procedure

Page 65 of 65

