

Investigating the Use of Hydroelectric Power

New Mexico Supercomputing Challenge

Final Report

April 4, 2012

Team #77

Los Alamos Middle School

Team Member:

Claire DeCroix

Teacher:

Pauline Stephens

Project Mentor:

David DeCroix

Executive Summary:
In this project a way to power a house, city, etc. without using fossil fuels was

found. On Earth there are many rivers; for example the Rio Grande. These rivers are
constantly flowing, some can create enough power to power a city and others can
only power a cell phone. A way has been found to use the stream flow and turn it
into electricity.

Introduction:

Water wheels have been used for grinding grain, sawing wood, and powering
textile mills since ancient Egypt. The Greeks and Romans knew about water wheels
in the 3rd Century, but they were not used until the 14th. By the end of the 18th
Century approximately 10,000 water wheels where used in New England. The
problem was that the wheel’s power output was limited to 100kW. Benoit
Fourneyron in 1833 developed the first modern hydroelectric turbine, and in 1901
George Westinghouse installed the current equipment at Niagara Falls, expanding
the uses of hydropower.

Lester Allan Pelton invented the Pelton wheel and patented it in October of
1880. The Pelton Wheel extracts energy from the impulse (the momentum) of
moving water.

Pelton’s design worked as follows: the water enters through a tube at the
front of the wheel then is pushed out of two jets. One jet is shorter and higher up on
the wheel and the second is lower shooting water toward one of the bottom cups.
This turns the wheel, which is connected to an electrical generator. The energy is
extracted from the water and turned into electrical power.

Figure 1 Lester Pelton's drawings from the original patent application.

Pelton designed the cups on the wheel in a very efficient but odd way. The

cups are called double cups. They look like two glasses of water set next to each
other, or an “M”, shown in Figure 2. The water hits the middle ridge then splits on
either side of the ridge and pushes the cup backward.

Figure 2 Pelton's cup design.

Problem:

It was asked if there is a way to use stream water, or running water, to
produce power. A simulated hydroelectric power generator was placed in a stream
to extract the energy from the running water then convert it to power.

Problem Solution:

The Mathworks’ Matlab program was used to create a model of the physical
system for this project. A power system to place in a stream or river to generate
electricity was simulated. The power system has blades that turn a shaft and a shaft
that turns an electrical generator. In Figure 3, a schematic diagram of the Pelton
wheel is shown. The water flows through a nozzle and impinges on the bucket
attached to the wheel. The wheel rotates a shaft, which can be connected to an
electrical power generator.

The maximum performance of the system was looked at. The stream flow in a
river is used to generate the power, the velocity in particular, not the traditional
hydropower plant using the depth of water or “head”. The change in velocity was
looked at. “As you increase the velocity how much more power could you get out?”
As speed increases, the propeller turns faster, and you produce more power from
the water. The water temperature wasn’t one of the concerns because it shouldn’t
have an impact on the performance of the system.

The mechanical conversion of water velocity into turning a shaft and the
shaft turning/running a generator was also looked into. The generator is a black box
that has directly effected by parameters, such as flow speed and blade efficiency.
These relate directly to the power output of the generator. The most efficient
generator will be determined by understanding these differences on power output.

The force of water impinging on a Pelton wheel blade can be expressed as:

Where:
 V= Jet Velocity

 u= Bucket Velocity
 Q= Flow Rate
 ρ= Water Density

With that equation it is possible to calculate the Power with “Power = Force *
Velocity”, which simplifies to this equation:

 ()

 For maximum power, it can be shown that V=2u, thus the power equation can be
simplified to:

A graphical user interface (GUI) was created using GUIDE, Matlab’s Graphical

User Interface Development Environment, to calculate the maximum power in the
above equation, shown in Figure 4. The GUI has editable text and stationary text. It
is possible to enter the minimum flow rate, the maximum flow rate, the flow rate
increment, and the jet velocity, for which it plots the calculated power as a function
of flow rate. The GUI calculates the power output then plots the data into a graph.

V u

Figure 3 Pelton wheel schematic.

Figure 4 The GUI layout.

But in order for the GUI to work a conversion from text (string) to a number had to
occur. There are four major element in the GUI, text boxes, which are descriptions of
the variable, editable text boxes, which are the numbers for flow rate and jet
velocity, a push button, that takes the numbers and calls the power calculation
routine, and a graphical display area, which plots the power as a function of the
input flow rates and jet velocity. The editable text box contains strings, or
characters, which need to be converted into numbers using the “STR2double”
function.

Results:

As shown in Figure 5 there is a different colored line for each different jet
velocity; blue for a jet velocity of 1, green for a jet velocity of 1.5, and red for a jet
velocity of 2. The flow rate was varied from zero to one m3/s (cubic meters per
second). A cell phone charger needs two watts of power, where as a (my
Grandmother’s) hair dryer needs 1800 watts of power. So, as shown in the graph, a
cell phone charger can use a jet velocity of one and still get plenty of power without
needing a stream like the Rio Grande, whose flow rate is about 42 m3/s. But a
hairdryer needs a jet velocity of two and the water has to be flowing at least 0.9
m3/s.

Rivers and their flow rates:
River: Rio Grande, NM Boulder Creek, CO Jemez River, NM
Flow Rate: 42 m3/s 0.85 m3/s 4.8 m3/s

Figure 5 Pelton wheel power curves.

Conclusions:

It is possible to power a cell phone or an appliance using a stream or a river.
The next step would be the to investigate the practicality of the theoretical
simulation and propose designs for different power requirements. One could
actually design a portable Pelton wheel for backpackers or military persons using a
small stream flow, or if a larger stream or river were available, one could design a
system to generate power for a household.

References:
1. Gulliver, John S. and Roger E. Arndt, “History and Technology of

Hydropower,” Encyclopedia of Energy, Vol. 3, 2004.
2. Haidar, Ahmed M.A. et.al., “Utilization of pico hydro generation in domestic

and commercial loads,” Renewable and Sustainable Energy Reviews, Vol 16,
pp. 518-524, 2012.

3. Agar, D. and M. Rasi, “On the use of a laboratory scale Pelton wheel water-
turbine in renewable energy education,” Renewable Energy, Vol 33, pp.
1517-1522, 2008.

4. Pelton Wheel, Wikipedia.
5. Colorado Division of Water Resources website (http://www.dwr.state.co.us)

Acknowledgements:
 Thank you to Mrs. Pauline Stephens, the sponsor, David DeCroix, my mentor.

And thank you to the judges at the interim presentation and Nico Marrero for their

input.

Appendix: The Computer Program

function varargout = PeltonGUI(varargin)

% PELTONGUI MATLAB code for PeltonGUI.fig

% PELTONGUI, by itself, creates a new PELTONGUI or raises the

existing

% singleton*.

%

% H = PELTONGUI returns the handle to a new PELTONGUI or the

handle to

% the existing singleton*.

%

% PELTONGUI('CALLBACK',hObject,eventData,handles,...) calls the

local

% function named CALLBACK in PELTONGUI.M with the given input

arguments.

%

% PELTONGUI('Property','Value',...) creates a new PELTONGUI or

raises the

% existing singleton*. Starting from the left, property value

pairs are

% applied to the GUI before PeltonGUI_OpeningFcn gets called.

An

% unrecognized property name or invalid value makes property

application

% stop. All inputs are passed to PeltonGUI_OpeningFcn via

varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows

only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help PeltonGUI

% Last Modified by GUIDE v2.5 18-Mar-2012 15:19:04

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @PeltonGUI_OpeningFcn, ...

 'gui_OutputFcn', @PeltonGUI_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before PeltonGUI is made visible.

function PeltonGUI_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to PeltonGUI (see VARARGIN)

% Enter out input data here

handles.count = 0;

%handles.peaks=peaks(35);

handles.membrane=membrane;

%[x,y]=(-8,0.5,8);

%r=sqrt(x.^2+y.^2)+eps;

%sinc=sin(r)./r;

%handles.sinc=sinc

handles.current_data=handles.membrane;

surf(handles.current_data)

% Choose default command line output for PeltonGUI

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes PeltonGUI wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = PeltonGUI_OutputFcn(hObject, eventdata,

handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

function minFlowRate_Callback(hObject, eventdata, handles)

% hObject handle to minFlowRate (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of minFlowRate as

text

% str2double(get(hObject,'String')) returns contents of

minFlowRate as a double

handles.minFlowRate=str2double(get(hObject,'String'));

% Update handles structure

guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.

function minFlowRate_CreateFcn(hObject, eventdata, handles)

% hObject handle to minFlowRate (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function maxFlowRate_Callback(hObject, eventdata, handles)

% hObject handle to maxFlowRate (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of maxFlowRate as

text

% str2double(get(hObject,'String')) returns contents of

maxFlowRate as a double

handles.maxFlowRate=str2double(get(hObject,'String'));

% Update handles structure

guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.

function maxFlowRate_CreateFcn(hObject, eventdata, handles)

% hObject handle to maxFlowRate (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function incFlowRate_Callback(hObject, eventdata, handles)

% hObject handle to incFlowRate (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of incFlowRate as

text

% str2double(get(hObject,'String')) returns contents of

incFlowRate as a double

handles.incFlowRate=str2double(get(hObject,'String'));

% Update handles structure

guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.

function incFlowRate_CreateFcn(hObject, eventdata, handles)

% hObject handle to incFlowRate (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function jetVelocity_Callback(hObject, eventdata, handles)

% hObject handle to jetVelocity (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of jetVelocity as

text

% str2double(get(hObject,'String')) returns contents of

jetVelocity as a double

handles.jetVelocity=str2double(get(hObject,'String'));

% Update handles structure

guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.

function jetVelocity_CreateFcn(hObject, eventdata, handles)

% hObject handle to jetVelocity (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in pushbuttonCalculateAndPlot.

function pushbuttonCalculateAndPlot_Callback(hObject, eventdata,

handles)

% hObject handle to pushbuttonCalculateAndPlot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%Count number of times we've entered this routine

handles.count = handles.count + 1;

% Calculate the power using this code

%g = 9.81; %Acceleration of gravity (m/s^2)

rho = 1000; %Density of water (kg/m^3)

%Dimension flow rate vector

flowRate =

(handles.minFlowRate:handles.incFlowRate:handles.maxFlowRate)';

tmp = size(flowRate);

nmax = tmp(1);

clear tmp

power=zeros(nmax,1);

for i=1:nmax

 [power(i)]=0.5*rho*flowRate(i)*handles.jetVelocity^2; % Maximum

power

end

%u_bucket = v_jet/2;

%head = 0.5*rho*g*v_jet^2;

%Plots

%subplot(2,1,1);

if (handles.count ==1)

 plot(flowRate,power, 'b');grid on;ylabel('Power

(Watts)');xlabel('Flow Rate (m^3/s)');

 hold on;

elseif (handles.count == 2)

 plot(flowRate,power, 'r');grid on;ylabel('Power

(Watts)');xlabel('Flow Rate (m^3/s)');

elseif (handles.count == 3)

 plot(flowRate,power, 'g');grid on;ylabel('Power

(Watts)');xlabel('Flow Rate (m^3/s)');

elseif (handles.count >= 4)

 plot(flowRate,power, 'c');grid on;ylabel('Power

(Watts)');xlabel('Flow Rate (m^3/s)');

end

% Update handles structure

guidata(hObject, handles);

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.

function axes2_CreateFcn(hObject, eventdata, handles)

% hObject handle to axes2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: place code in OpeningFcn to populate axes2

% --- Executes on mouse press over axes background.

function axes2_ButtonDownFcn(hObject, eventdata, handles)

% hObject handle to axes2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

