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1. ABSTRACT

Alzheimer’s disease is a debilitating and fatal brain disorder, which impacts millions
of older adults. Currently, it is only definitively diagnosed using histological analysis
of plaques and neurofibrillary tangles in the brain, post mortem. Magnetic
resonance imaging techniques can be used to identify Alzheimer’s plaques, but the
identifiable plaques are very small and difficult to see in the image. This makes
diagnosing, monitoring, and treating the disease very difficult. Contrast agents are
being developed to increase the conspicuity of the plaques in magnetic resonance
images, although this still means days of counting the plaques by hand. This
computerized algorithm automates the process of counting and analyzing the
plaques in magnetic resonance images. Alzheimer’s plaques can be counted in
approximately five seconds with this program, rather than a month of counting

plaques manually.
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2. INTRODUCTION

2.1 Alzheimer’s Disease

Alzheimer’s Disease (AD) is a fatal, degenerative brain disease that causes a
reduction in both cognitive functioning and memory. People with AD also
experience progressive changes to their personality, behavior and judgment. AD
primarily impacts adults over the age of 65. According to The Alzheimer’s
Association (2011), AD is the most common form of dementia, with a prevalence of
approximately 5.4 million people with the diagnosis in the United States as of 2011.
AD not only affects the people who suffer from the disease but millions of family
members are impacted by the necessity to provide care for their loved ones. On
average, one in eight Americans over age 65 has been diagnosed with AD. As the
U.S. population continues to age, due to improvements in medical care and
environmental conditions, The Alzheimer’s Association projects that by 2050 there
could be 11 to 16 million people in the U.S. with AD.

Alzheimer’s Disease is characterized by a loss of neurons in the cerebral
cortex. Evidence of the increased formation of plaques and neurofibrillary tangles
in the brains of patients with AD has been found under microscopy. These plaques
and neurofibrillary tangles are generally found in the hippocampus, the entorhinal
cortex, the basal forebrain, and the amygdala (Bouras et al. 1994). The AD plaques
are deposits of regularly ordered fibrillar aggregates composed of amyloid-beta
peptides (AB) of 36-43 amino acids located in the brain around neurons. AB is a
peptide from an amyloid precursor protein (APP), a critical element for neuronal
growth and post-injury repair (Turner et al. 2003). Neurofibrillary tangles are
composed of tau proteins in a hyper-phosphorylated state (Shin et al. 1991). AD isa
protein mis-folding disease, produced by abnormally folded A peptides and tau
proteins; however, the cause of this process is unknown (Hashimoto et al. 2003).
The following figures show a representation of Af plaques near neurons and

neurofibrillary tangles within the nucleus of the neuron, followed by a histological
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image of the brain of a transgenic Alzheimer’s mouse with the presence of visible
plaques:
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Figure 1. Representative image of A plaques, from www.alz.org.

Figure 2. Histological image of A plaques, from Sillerud et al.

Neuroinflammation is also present in the brains of patients with AD.
Inflammation is found in many disease processes throughout the body and may be
an indicator of tissue damage or an immunological response. Af} plaques are
encased in microglial cells; this is an indication that inflammation is present
(Kreutzberg, 1995). The microglial cells are a type of macrophage found in brains;
they are responsible for engulfing and digesting pathogens. The process by which
these plaques and tangles cause atrophy and degeneration of the cerebral cortex

may be related to neuroinflammation and microglial cells (Aloisi, 2001).

Image Analysis of Alzheimer’s Plaques in MRIs of a Tg Mouse 5



AD has been found to have a genetic cause in some individuals. Several genes
have been found that produce proteins that enable AD development in humans. A
gene has been located within chromosome 21 that is found to produce APP in
different populations. A gene in chromosome 14 is transcoded into presenilin 1
(PS-1), and a gene in chromosome 1 is transcoded into presenilin 2 (PS-2). Mice
were created that expressed APP, PS-1, PS-2, or tau protein genes. Most transgenic
mice used in research are APP/PS-1 bigenic mice because they develop A plaques
and show symptoms similar to AD, such as progressive memory loss. However,
these mice do not develop neurofibrillary tangles, which may impact the predictive
ability of the research (Ashe, 2001). Transgenic mice that are created with tau

protein genes exhibit neurofibrillary tangles but do not show signs of dementia.

2.2 Diagnosing Alzheimer’s Disease

Currently, AD is diagnosed through clinical findings of neuropsycholgical
symptoms, such as language and memory loss, using assessments of intellectual
functioning. Other cerebral pathologies and possible causes for the dementia must
be excluded to make a differential diagnosis of AD (Mendez, 2006). Neuroimaging,
such as computed tomography, magnetic resonance imaging, single photon emission
computed tomography, and positron emission tomography are used to exclude
other causes for memory loss. In order to confirm the diagnosis, though, post-
mortem brain tissue is analyzed histologically for signs of A plaques.

Neuroimaging techniques are not readily available to directly diagnose AD or to

monitor the disease’s progression, in vivo.

2.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a radiological technique used to
visualize internal structures of the body. This technology employs a magnetic field
to magnetize and align the magnetic poles of the nuclei within some cells in the

direction of the MRI field. Tissues within the body return to their non-magnetized
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state at different rates, called their relaxivity rate, which allows the MRI to translate
the information into images that reflect identifiable tissues such as bone, muscle,
and structures within the brain (Squire, 1997). Most often, MRIs use 1-3 Teslas (T),
which is a unit of measuring magnet strength. Ti-weighted, T.-weighted, and T>*-
weighted MRIs are standards in use for clinical and research purposes. Ti-weighted
scans provide images with darker water and brighter fat, which provides good gray
matter and white matter contrast for images of the brain. Tz2-weighted scans show
dark fat and bright water, which is well suited to show inflammation. T>* scans

increase the contrast for certain types of tissues (Squire, 1997).

Figure 3. Para-sagittal MRI of the head, from Wikipedia Commons.

MRI has many practical uses in medicine, and it is frequently used to observe
the structure of brains without harm to the patient. An MRI AD detection method
would be greatly applicable for in vivo measurement of the progression of the
disease. It has been possible to see the plaques in the brain in vivo with MRI;
however, they are so small, around 50 micrometers (um), that many hours, very
high resolution imaging (<100 pm), and high magnetic fields (>9T) are required to
identify A3 plaques (Dhenain et al., 2009).
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2.4 SPIONs

Superparamagnetic iron oxide nanoparticles (SPIONs) have been studied as a
means of increasing the magnetic susceptibility of the plaques in the brain in order
to view them in lower-powered MRI fields (Sigurdsson, 2008). SPIONs have an iron
oxide core that is coated with a variety of other organic or inorganic materials. The
superparamagnetic quality of SPIONSs is characterized by a high relaxivity time, the
time it takes to reach zero magnetization when not exposed to a magnetic field. This

is characterized by a relaxation time t:

KV
T = 1yekBT

where T is time (10-9), K is the anisotropy energy (20,000]/m3 for iron oxide), V is
the volume of the particle, kg is the Boltzmann constant, and T is the temperature
(Hofmann-Amtenbrink et al,, 2009). The high relaxivity time of SPIONs compared to
the brain’s relatively low relaxivity time enables the MRI to readily visualize the
differences in structures. When a SPION is coated with organic material, such as a
peptide or protein, the median diameter of the nanoparticles is 50-160 nanometers
(Hofmann-Amtenbrink et al,, 2009). Anti-APP conjugated SPIONs and anti-Tau
conjugated SPIONs selectively target A plaques and bind to them in order to
increase their conspicuity in MR images. These SPIONs have been shown to
specifically recognize AP plaque in brains, which is consistent with histological

studies (Sillerud et al.).
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Figure 4. Structure of SPION particle coated with peptides, from Hofmann-
Amtenbrink et al. 2009

Gadolinium contrast agents have been used successfully, ex vivo, to identify
AP plaques; however, they leak toxic Gd3+ ions, which harm patients and cannot be
used in vivo (Podulso et al., 2004). Highly invasive methods, such as injections of
ozone, must also be introduced to allow the Gadolinium to cross the blood-brain
barrier (BBB). Because neuroinflamation in the brains of patients with AD
compromises the BBB, a contrast agent must be created that is small enough to
cross the BBB without using these invasive techniques. SPIONs are non-toxic
(Brambilla et al., 2011); the ferric iron in the SPION is a normally occurring element
in the body and is not harmful when injected, and it is small enough to cross the
BBB. This allows the SPIONs to be used to count plaques in vivo, in MR images.

SPION-treatment has allowed AD researchers to count plaques in vivo;

however, counting the plaques is a long and labor-intensive process. In Sillerud et
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al,, the researchers took days to count plaques in an MR image of a single mouse
brain. It was necessary for the researchers to find the difference between the
intensities of the plaque and the brain. They computed the difference in standard
deviations between the intensity of the suspected plaque and its surrounding pixels.
If the standard deviation was less than 2.5, the region could not be considered
plaque. The process of determining whether each darker region of the brain could
be considered took many hours for each plaque. A process to automate the analysis
of the image would allow both researchers and physicians to more quickly gather
necessary information. Researchers could gather the data for studies related to the
treatment of AD faster; improving the speed treatments are available to the people
who need them most. Physicians treating people with AD could use an automated
process to diagnose AD earlier and help monitor the process of the disease in

individuals.

2.5 Image Analysis

Computerized algorithms are created to extract meaningful data from an
image. Automating the image analysis can produce quantifiable and replicable data
and reduce the time needed when compared to manual analysis. Image analysis
algorithms utilize different methods including machine learning, digital geometry,
and signal processing. Previous studies have used machine learning, a subcategory
of artificial intelligence, to analyze MR images in order to locate plaque-like areas
within the body (Nattkemper, et al. 2005). Artificial intelligence and machine
learning require many data sets of recognizable points to extrapolate data from an
image. In machine learning, plaques are first marked and enumerated in an image
where the locations of the plaques have already been established manually. Then,
the program creates parameters through trial and error until all of the regions
specified by the algorithm match with the established plaques. However, when
analyzing an image with less than approximately 10,000 reference points the
correlation between manual and automated results is low. Artificial intelligence

requires large data sets to learn to unambiguously identify plaques (Bishop, 2006).
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When analyzing a single brain with 668 plaques, machine learning will not provide
accurate information.

Signal processing uses arithmetic operations on discrete signals to create a
desired output: the identification of plaques in the brain (Lim, 1995). The entire MR
image is considered the signal, which is measured by the intensity of the pixels.
Specifically, the plaques need to be differentiated from the brain and the noise that
is overlaid on the image during the MRI process. Signal processing is a clear,
mathematical system that provides exact data from complicated images. However,
when using a signal processing image analysis algorithm with MR images
complications arise. The intensities of the pixels are uneven throughout the image,
which makes it difficult to use the same plaque-finding parameters. Because of the
magnetic field used in the MR, the images vary from top to bottom and from center
to edges. With signal processing, though, the image can be flattened and the plaques
can be thresholded and identified.
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3. PROBLEM STATEMENT

Problems still exist with the visualization of A3 plaques in humans, in vivo, to
allow for the diagnosis and treatment of AD in the early stages. A variety of
neuroimaging techniques have been used to try to visualize the plaques. In MR
images, the Af3 plaques cannot be readily seen without a contrast agent. When a
contrast agent is introduced (SPIONs) the plaques are numerous and time
consuming to count by hand. It can take up to a month for a researcher to count the
plaques in a single transgenic mouse brain. If a quick computational solution can be
found to count and analyze plaques in vivo, in MR images, it would save many hours
of time, which instead could be spent monitoring and treating AD. With a
computational solution, many brains can be analyzed in a single day. My hypothesis
is that the number of AP plaques found with a signal processing computer algorithm
will correlate with the data found by manually counting the plaques in SPION-

enhanced MR images of transgenic mouse brains.
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4. METHODS

4.1 Subjects

All animal procedures were approved by the University of New Mexico
(UNM) Institutional Animal Care and Use Committee. The animal procedures were
completed by the UNM Biochemistry and Molecular Biology Department. The
transgenic mouse used in this research was received from Jackson Laboratory in
Bay Harbor, Maine. The mouse was a six-week-old, double transgenic Alzheimer’s
Disease mouse (B6C3-Tg (APPswe,PSEN1dE9) 85Dbo/Mmjax). There were two
transgenes in the mouse: one was the mouse/human chimeric Af (A4) precursor
protein (APPswe; K595N/M596L), and the other was a deletion of exon 9, which
corresponds with early onset Alzheimer’s Disease. After 20 weeks of age, A
peptide and human presenilin were detected in the mouse. By 12 months,
astrocytosis was measured in the mouse, with significant cognitive impairment by
13 months. For 14 months, the mouse was given ad libitum access to food and
water. Then, the mouse was treated with 7.07 pg of anti-tau SPION and 1.52 pg of
anti-APP SPIONs by vein injection in the tail and killed 24 hours later. The brain
was quickly harvested and fixed in buffered formalin for three days. The brain was
stored in 2% agarose gel and 3mM NAN3, then held at 4°C until it was used for MRI

analysis.

4.2 Magnetic Resonance Images

The MRI studies were conducted at the UNM Biomedical Research and
Integrative Neuroimaging Center at 4.7 T. Dr. Laurel Sillerud provided the MR
images to this team. The optimal sequence for plaque detection was a T2-weighted
image with slight T>"-weighting. A 192 x 1024 pixel (px) receive-only surface coil
was used, and each pixel had a 60pm width. The MRI produced 32 coronal image-

slices, each 120 pm wide.
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4.3 Image Analysis

4.3.1 Programing Language

Many factors were considered in determining the programming language to
use in processing the MR images for this study. MATLAB has a strong focus on
matrix manipulations and a large set of image processing tools. Because the MR
images are stored as a matrix of integer values, MATLAB has the ability to modify
those images using its matrix manipulation tools. Established image-processing
algorithms are available in MATLAB to locate object boundaries in binary images
and extrapolate data from these boundaries, which would provide information
regarding the edge and location of the Af3 plaques in the images. MATLAB, in
contrast to C, C++, or Java, has boundary finding, matrix manipulation, and parallel
processing tools without the need for a third party application-programming
interface or the need to reinvent the processing tools by writing the entire code. In
a field of multiple programming languages, MATLAB was determined to be the most

applicable to this study.

4.3.2 Pre-Processing the Image

Thirty-two MR images were generated, each containing one MRI slice
(1024x192 px), in the Digital Imaging and Communications in Medicine (DICOM)
standard format. DICOM is a prominent means of formatting images in the scientific
and medical communities. Image], an image processing application, was used to
convert the DICOM images into uncompressed Tagged Image File Format (TIFF), a
recognizable MATLAB format, without any loss of resolution. After converting the
images to TIFF, each file included 32 sub-files of MRI slices. MATLAB read each slice
individually as a 16-bit unsigned integer matrix of gray scale pixels. This program
then used a built-in MATLAB function to convert the 16-bit integer image into a 64-
bit floating-point number matrix to enable operations that require precise outputs.

A cell array was then created with the matrices from each MRI slice within it.
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Figure 5. MR image of 10t slice in SPION treated Tg mouse brain

The first step in finding A plaques within the images was to define the
perimeter of the brain, thus ensuring any future findings are within the brain itself.
A mask, which is a boolean image, was created to find the edge of the brain in order
to differentiate the brain from the noise outside of the brain. To accomplish this, the
image is displayed using the MATLAB image viewing and editing feature. Then, a
freeform Region of Interest (ROI) tool was used to draw an outline around the brain.
The selection is turned into an ROI object, then a mask. In this mask, the region
outside of the ROI object is coded as zeros, while the region inside (the brain) is
coded as ones. Later in the process this mask is used to filter out non-plaque

findings.

Figure 7. Boolean mask of brain in 10t slide
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4.3.3 Processing the Image

On the MR image Af plaques appear as dark spots, or less intense regions, in
the brain several pixels wide. However, there are numerous darker areas within the
image that are not plaques. To differentiate plaques from non-plaque features or
noise, a plaque-finding algorithm was created. Only plaques with a z-score greater
than 5 standard deviations (o) away from the mean are considered, because this
ensures that there is no chance that a specific region is hypointense solely from
noise. The z-score of each pixel is calculated by dividing the intensity of the pixel by
the standard deviation of the noise. The standard deviation is the average distance
from the mean pixel intensity, found using the formula below where n is the number
of pixels, 1 is the average intensity of the group of pixels, and x; is the intensity of the

pixel.

n

=N -2

\1 i=1

The standard deviation of the noise was found by defining a forty-by-forty grid of
pixels on the upper left corner of the image, because they are the pixels furthest
from the brain. The larger the standard deviation of the noise the less likely the
pixel represents noise. Then, the image is divided by the standard deviation of the
noise to create a z-score image, or an image where every pixel’s intensity represents
its difference from the average noise intensity. Finding the standard deviation
allows the images to be standardized so that every brain can be analyzed using the

same parameters.

Image Analysis of Alzheimer’s Plaques in MRIs of a Tg Mouse 16



Figure 8. SPION-enhanced A plaques in MR image of 10t slice
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Figure 9. Z-score intensity graph of a row of pixels in 10t slice; red arrow points to

small hypointense region/plaque (row runs through upper plaque in Figure 9)

The MR images have an uneven intensity distribution, so the image cannot be
analyzed using the same parameters throughout the image without normalizing the
intensities first. The intensity of the magnetization during the MRI is greatest at the
top of the image and reduces with distance of the brain from the MRI machine. The
standard deviation and intensity of the image at the top is different than it is on the
bottom, as it is in the center versus the edges. Initial attempts to correct for this

difference using a method of flattening the entire image increased the standard
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deviation of the noise and resulted in no findings. To account for the uneven
intensities, the program divided the image into one-pixel-wide rows and treated
each row as a separate image; however, the center of the image it is still more
intense than at the edges. It was determined that the intensity of the signal of the
brain itself could be flattened without impacting the noise outside of the brain. The
program used the mask to allow only the part of the row that contains the brain to
be flattened, without flattening the noise. Then, the row was recombined with the
noise, leaving the brain flat with the same original standard deviation while the
noise is at a different intensity level.

The image of the brain was flattened using a Gaussian filter, which blurs the
image and then subtracts the blurred image from the original. A Gaussian blur uses
a Gaussian distribution to modify the intensity of each pixel based on the pixels

around it. The equation for the Gaussian distribution is:

1 _x2+y2
e 202

Glxy) = 2102

where G is the pixel intensity at (X, y), x and y are the horizontal and vertical
locations of the pixel respectively, and o is 10 so that the program could have a
sufficiently blurry image to use as a background shape. The Gaussian blur image is
just the background shape of the image, meaning that when the Gaussian blur image
is subtracted from the original image the background shape is removed, leaving only

the intensities as they relate to the background shape.
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Figure 10. A: A mesh graph of intensity of the MR image before it is flattened
B: Mesh graph of the intensity of the MR image after flattening

C: Same as B but viewed as an image
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The values of the intensities of the brain were then centered at zero, so the
intensity of the pixels represents a difference from the average value of the brain.
To accomplish this, the average value of the noise was found by using a built-in
MATLAB mean-finding function. The resulting number is then subtracted from
every value in the array, resulting in the noise being centered at zero. Using the

mask, the program found the average intensity of only the brain, and not the noise.
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Figure 11. Z-score intensity graph of a row from 10 slice after the brain was

centered at zero

Because the plaques have a lower intensity than the brain, the intensities
were inverted so that the plaques will have greater values than the brain itself. The
program then thresholded the image at 5, creating a binary image with values
greater than 5 represented by 1 and values less than 5 are represented by 0. This
binary image represents every pixel that has a distance of 50 from the average value
of the signal, based on whether the pixel value is 1 or 0. The areas that remain of
this image are the plaques and the large areas in or outside the brain that are less

intense than the brain itself.
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Figure 12. Inverted row with red line at 5 where the image will be thresholded; one
plaque is shown above the threshold while there are multiple other spikes in the

graph above 5

The binary image was then converted into a list of regions. The MATLAB
function bwboundaries found the coordinates of every pixel inside a highlighted
region and the area of that region. The program then used the coordinates found
from bwboundaries to find the z-score of the corresponding area in the image. A
list was then compiled containing each perspective plaque’s coordinates in x, y, z,

their z-score relative to the brain, their size in pixels, and a metric describing how

close to circular they are, by calculating the ratio 2\/% where P is the perimeter of

the finding and A is the area in pixels (See sample data set in Appendix).

Figure 13. Binary image of findings in 10t slide before filtering non-plaque
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4.3.4 Filtering Non-Plague Findings

The compiled list of regions now contains many values that are not plaque,
including components of the brain, which are dark relative to the rest of the brain.
To distinguish plaques, the program filters the list of findings according to their size,
z-score, and position. A parameter-sweeping script was used to find optimum upper
and lower size thresholds as well as the minimum z-score. The parameter-sweeping
program found that the optimum minimum size threshold is three pixels in area, the
optimum maximum size threshold is ten pixels in area, and a minimum z-score
threshold is 50. These parameters yielded the greatest possible correlation

between the manual results and the automatic results created in this program.

4.3.5 Parallel Processing

In order to increase the speed and efficiency of the program, a built-in
MATLAB structure parfor was used. This structure iterates over a set of values,
running the contents simultaneously and independently on all processors and
threads. The parfor structure allowed this program to run in around 5 seconds

on a quad-core, 8-thread, Intel i7 processor.
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5. RESULTS

To compare the manual results to the automated results, a MATLAB script
was written that created a matrix of the number of plaques per slice for the manual
results versus the number of plaques per slice by the program. From these arrays a
scatter plot was made to compare the two data sets. The correlation coefficient that
resulted from the comparison between the automatic results and the manual results
is 0.68, which is a sufficiently large coefficient of correlation to be considered
representative of the number of plaques in a brain. The automated results produced
1,723 possible plaques in the brain while the manual results contained 668 plaques,

which is a difference of 1,055 plaques.

Scatter Plot of Automatic Results vs Manual Resul

Manual Results in Number of Plaques
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Figure 14. Scatter plot of Sillerud et al. manual results vs. automated plaques per

slice
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6. CONCLUSION

Alzheimer’s disease is a deadly brain dysfunction that impacts millions of
older adults. Currently, physicians diagnose AD by neuropsychological evaluation
and the ruling out of other possible causes for dementia. A definitive diagnosis can
only come after the patient’s death with histological examination of the brain to
identify plaques and neurofibrillary tangles. There are no diagnostic tools, in use,
that can provide a diagnosis of AD while the patient is still alive. MRIs provide
information regarding the volume and structure of the brain but the plaques are so
small and difficult to identify that prohibitively strong MRI fields are necessary to
view them. Recently, SPIONs have been introduced as a contrast agent that can be
coated with organic material that will specifically bind to AP plaques to increase
their conspicuity when viewing the MR images. When subjects are injected with the
SPIONSs, the plaques become visible on MRI and can be counted. Researchers at
UNM are counting the plaques in MR images of transgenic mouse brains through a
laborious manual process for each possible plaque. An automated means of locating
and counting these plaques has not been available. Now, researchers and clinicians
can use this signal processing image analysis algorithm to vastly decrease the time
necessary to analyze each brain.

The correlation of 0.68 between the automated results and the manual
results indicate a moderately high accuracy of the quantity, positions, intensities,
sizes, and shapes of Af3 plaques in SPION-enhanced MR images of AD transgenic
mouse brains. Because of this correlation, the relative amounts of plaques in the
brain can be predicted from the number of plaques in the automated results. The
results from this study can be used as a reasonable replacement for human labor
when counting A plaques in SPION-treated patients and comparing them between
other automated results.

This signal processing algorithm found 1,723 plaques while the manual
results found 668 plaques. The probable reason for an increase in plaques from the
automated results is that the algorithm picked up more regions in the brain that

have similar visual properties as plaques, but are not plaques, such as the ventricles
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and the corpus colossum in certain slices. The additional findings may also be
related to improved accuracy with a computerized algorithm in finding plaques that
are difficult to visualize. The correlation of findings, however, indicates an accurate
representation of the differences in quantity between slices. This allows for a true
comparison using this algorithm between different brains. It would not provide an
accurate comparison between the data gathered manually on a brain and the data
gathered by this program on another brain. Itis critical that the algorithm provide
an accurate representation of the difference in the number of plaques per brain,
while the absolute number is less important.

With the accuracy of these results, this program also ran in approximately
five to ten seconds for a brain. When comparing this time to analyze an MR image to
the days it is currently taking, it becomes more practical to use this computer
algorithm. The program is a more viable tool for measuring plaque density than the
previous method of marking and counting the plaques by hand. A program that can
be run concurrently, in 10 seconds, as the MRI data is being collected would make
the diagnosis and treatment of AD a quick and seamless process. This automated
process can also give more quantitative information of not only the number of
plaque and their intensities but also values that cannot be found by hand, such as
size and roundness. These will give researchers and clinicians new data points to
reference, more data that they can use to determine the efficacy of drugs or the
progression of the disease in patients.

This program is the culmination of many researchers looking for faster and
more efficient means of diagnosing, monitoring, and treating AD. Not only will
faster results allow physicians to diagnose AD after an MR, it will also allow for the
physician to monitor the progress of the disease and efficacy of the treatment
modalities. This program will also save many researchers the time and money that it
would take to count plaques by hand, allowing for the expedited research of future
drugs and treatments for AD. Giving researchers and physicians a tool to expedite

this process is the most significant original achievement of this project.
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7. DISCUSSION

Developing this program has been a trying and rewarding experience. [ was
able to use the knowledge I have gathered from learning a variety of programming
languages including C++, Java, MATLAB, and others to develop a strong knowledge
of what it takes to make a scientific application. Since beginning to participate in the
Supercomputing Challenge, during my freshman year, [ have learned that I enjoy
coding and do it at every opportunity. At this time, | am working on several
computationally intense coding projects to develop i0S and web applications. I am
grateful that this challenge has opened up the opportunities to pursue coding and
application development.

This particular program has failed many times. I tried over twenty different
ideas for how the program should work; every time something went wrong, and I
decided to make it simpler. I started in the middle of last summer with an extremely
complex 300+ line algorithm that did not work. This experience showed me that a
huge, complex algorithm was the wrong approach to take. Then, once my program
seemed to be running perfectly [ found the plaques per slice correlation compared
to Dr. Sillerud’s manually gathered results was negative, and I had to completely
redesign the algorithm again. This project has taught me to be patient and start
simply and work my way toward more complexity.

Next, I will work on applying this program to the MRI data that Dr. Sillerud is
using to conduct his research on the inhibition NF-«kB and its effects on AD as well as
pancreatic cancer. [ am also looking to acquire a larger data set to apply this
program to. The number of brains I have available to analyze may increase my
ability to use an element of machine learning in the algorithm to decrease the
number of false positives. When this program is applied to multiple brains to show
the benefits of drug protocols in decreasing plaque density, Dr. Sillerud is planning
on helping me publish the results in a peer-reviewed journal.

[ am also looking for other problems to apply my program to; medical
processes that need a large number of objects to be counted and analyzed. [ am

consulting with Dr. Sillerud at the UNM Department of Biochemistry and Molecular
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Biology to discuss possible other applications for this program. Possible
applications could be identifying cancer cells, tumors, or other pathogens.

Working on this project has stimulated the idea of studying computer
science and, more specifically, image processing and artificial intelligence because it
is such a fascinating emerging field. Biochemistry was never a field I considered for
my future but I have found the idea that my program may help alleviate personal
suffering through research exciting. Completing this program in a medical field has
opened up the possibility of pursuing a field like computational biology. There are
so many applications of image analysis and artificial intelligence in the medical field,

which could help solve the problems that are so important to people.
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10. APPENDIX

10.1 MATLAB Code

$Main file PlaquePrograml20301l.m

function [list3, img6] = PlaquePrograml20301(zThreshold, sizeThreshold,
suffix, file, folder,
numImg, lowerThreshold)

$Author: Jordan Medlock
$University of New Mexico
$email: jordanemedlock@gmail.com
$cell: (505)264-5163

$ Testing for inputs/asking for inputs

if file==
fileIn = uigetfile('*.tif');% the input string which represents the
path to the image file
else
fileIn = file;
end
if folder==0

the string which represents the path to the

folder = uigetdir; %
directory which holds the masks

end if nil asks user to create masks
if isempty(suffix)
date = input(‘file suffix:’, ‘s’); %suffix to use to create output
folder
else
date = suffix;
end
if isempty(numImg)
numImg = input('number of images in file:'); %number of images in
composite
end

if isempty(sizeThreshold)
sizeThreshold = input('upper threshold for plaque size in
pixels:'); %$just as it says
end
if isempty(lowerThreshold)
lowerThreshold = input('lower threshold for plaque size in

pixels:'); %$just as it says
end
if isempty(zThreshold)
zThreshold = input('lower threshold for plaques z-score:');%just as
it says
end
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%getting main function to run application

[list3, img6] = plaqueProgram(numImg, fileIn, date, folder,
sizeThreshold, zThreshold,
lowerThreshold);

end

function [list3, imgbinarized] = plaqueProgram(numImg, fileIn, date,

folder, sizeThreshold,
zThreshold,
lowerThreshold)

$Author: Jordan Medlock
$University of New Mexico
$Email: jordanemedlock@gmail.com
$Cell: (505)264-5163

outputFile = 'finalImg'; %constants to output names
outputfolder = 'outputFolder'; %constants to output names

mkdir(sprintf('%-s _%-s', outputfolder, date)); %making the directory to
hold the outputs

threshold = sizeThreshold;
dash = filesep; %this line makes the program not only work on mac but
also windows and linux

tic; ¢start timer
img = cell(numImg); $initialize variables
mask = cell(numImg);
for i=1:numImg $for each image
img{i} = double(imread(fileIn, i)); $read in the file at
index i and assign it
to the cell array 'img'
if folder== % if there is no input
folder
[mask{i}, ~] = cropImg(img{i}, 1i); ¢create the masks and

assign them to the cell
array 'mask’
imwrite(mask{i},sprintf(
'outputFolder $%$-s%$-smask%-d.tif',date,dash,i)); Swrite
'mask’' to the output folder
else
mask{i} = double(imread(sprintf(
'$-s%-smask%-d.tif',folder,dash,i))); %import the image and
convert it to a
double so that
mathematical
operations can be
performed on it

end
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end

imgfinal = cell(numImg); %initialize some more variables

stats = cell(numImg);

list2 = cell(numImg);

parfor i=l:numImg %parallel process these lines of code accross each
slice in the brain

$0ld code :-) failed experement

$imgl = double(flattenImgMinus(img, 10));

$[img2, ~] = makeZScoreImg(imgl, noiseSTD{i});

$img3 = double(findAreaSubtractedImg(img2, outerWidth, innerWidth,
numImg, i));

oe

imgbinarized = cell(numImg);
$img4 = binarize(img3, 2.5);

$[img5, stats{i}] = findXY(img4, threshold);

$img6{i} = double(findPlaqueZScore(img3, img5));

[m,n] = size(img{i}); %find the size of the image so that the
program can reference it and split it line by line
for j=1l:m

$j=x(2); %line for debugging

imgsplit = img{i}(j,:); %splits image row by row

masksplit = mask{i}(j,:); $splits
mask row by row

[imgstand,~,noiseavg] = makeZScoreImg(imgsplit);
$standardizes the image and finds the
average value of the noise

brainavg = brainAverage(masksplit,imgstand); $finds the
average value only of the brain using the
split mask

brainavgmask = (-(masksplit-1))*brainavg; $creates a
non-binary mask to apply to the image so
that the brain does not curve off at the
edges when flattened

tobeflattened = brainavgmask + imgstand.*masksplit; %masks the
standardized image to be flattened

flattenedonce = flattenImgMinus(tobeflattened,10).*masksplit;
$flattens the image with a standard
deviation of 10

puttogether = flattenedonce+(imgstand.*(-masksplit+1));
$puts the image back together so that the
brain is flattened and the noise remains the
same

minusnoise = puttogether-noiseavg; $subtracts
the noise puts the noise at zero

minusbrain = minusnoise-brainAverage(masksplit,minusnoise);
$centers brain at zeros by subtracting the
average of the brain

imgnegative(j,:) = -minusbrain; $inverts
the image around the brain
imgbinarized(j,:) = binarize(imgnegative(j,:),zThreshold);

$binarizes the image at 'zScore' and the
indeces create the entire out of the rows
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end

end

[imgbinarized, stats{i}] = findXY(imgbinarized, threshold); %takes
the binarized image and creates a list of
the boundaries and statistics about those
boundaries

imgfinal{i} = double(findPlaqueZScore(imgnegative,imgbinarized));
guses the binarized image as a mask over the
z-score image so that only plaque show up

imwrite(uintl6(imgfinal{i}), sprintf(

'outputFolder %-s%-s%-s_%-s %02.0f.tif’',
date, dash, outputFile, date, i)); %outputs
the final image

list2{i} = zeros(size([length(stats{i}),1:61)); $initializes
'"list2' note: 'list' is a built in function
which cannot be used as a variable name

for j=l:length(stats{i}) $for each boundary in the
'stats' list

if length(stats{i}(j).PixelList)<1l %if there are no pixels in

'stats{i}(j)"' skip it
continue;

end
$create the list from each instance variable
in the 'stats' object

list2{i}(j,1:6) = [stats{i}(]).PixelList(1,1),
stats{i}(j).PixelList(1,2),
i,
imgnegative(stats{i}(Jj).PixelList(1,2),
stats{i}(j).PixelList(1l,1)),
stats{i}(Jj).Area, stats{i}(Jj).Perimeter/
(2*sqgrt(pi*stats{i}(Jj).Area))];

end

list3 = []; %initializes 'list3' as a blank array to hold each piece of

14

'list2' in it

for i=l:numImg % for each slice

end

i

list3 = [list3; list2{i}]; %add the last line of 'list2' to the
last line in 'list3'

1l; %initialize the index

while i<length(list3) $for all lines in 'list3', 'list3' changes

sizes often therefore it cannot use a 'for'
loop
length(list3) goutput just to know its working :-)
if list3(i,1)==0 ||
list3(i,4) < zThreshold ||
mask{list3(i,3)}(list3(i,2),list3(i,1))==0 ||
list3(i,5) > threshold ||
list3(i,5) <= lowerThreshold %things that it’1ll cut out of
"list3’

list3(i,:) = [];%deleting that line
else
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i=1i+1; $one problem with matlab is that you cannot use
easy i++ incrementation
end $lol going from c++ and not having '++' in

matlab was anoying

end

csvwrite(sprintf (' 'outputFolder %-s%-sfinallist %-s.csv', date, dash,

date), list3);%write the output list as a csv

beep; $%$BEEP! done :-)

toc; % end timer

end % WOOHOO! Its done!

function img = flattenImg(imgIn, sigma) %uses a gaussian blur to divide
the image and flatten it

$Author: Jordan Medlock

$University of New Mexico

$email: jordanemedlock@gmail.com

$cell: (505)264-5163

filter = fspecial('gaussian', size(imgIn), sigma); %create the
gaussian filter for the images

img2 = imfilter(imgIn, filter)+0.000000000001; &filter the image

img = double(imgIn)./double(img2); %./ means that it divides each cell
in the matrix by each the corresponding cell in
the other matrix

end

function img = flattenImgMinus(imgIn, sigma) %same thing as the other
one although it subtracts instead of divides

$Author: Jordan Medlock

$University of New Mexico

$email: jordanemedlock@gmail.com

$cell: (505)264-5163

filter = fspecial('gaussian', size(imgIn), sigma); %create the
gaussian filter for the images

img2 = imfilter(imgIn, filter); %filter the image
img = imgIn-img2;

end
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function [img, noiseSTD, noiseHeight]
$makes a standardized image finds tha

= makeZScoreImg (imgIn, noiseSTD)
standard deviation of the noise,

and the average intenbsity of it

%Author: Jordan Medlock
$University of New Mexico

$Email: jordanemedlock@gmail.com
%Cell: (505)264-5163
[m,n] = size(imgIn);
if m > 40
m=40;
end $deciding where to put the noise
if n > 40
n=40;
end
if exist('noiseSTD', 'var') %if noiseSTD exists use it
img = imgIn/noiseSTD;
else $if it doesnt create it
noiseSTD = std2(imgIn(l:m,1l:n));
noiseHeight = mean2(imgIn(l:m,1l:n));
img = imgIn/noiseSTD;
end
end

function [imgOut] = findAreaSubtractedImg(imgIn, w, r, numImg, imgNum)
$failed experement :( subtracts the surrounding pixels from each
pixel in the image and creates an image from the output
$very unnatural

%Author: Jordan Medlock
$University Of New Mexico

$Email: jordanemedlock@gmail.com
$Cell: (505)264-5163

[m,n] = size(imgIn);

imgOut = zeros(size(imgIn));

for i=1:m

for j=1:n

swaitbar(((((j-1)/n+i-1)/m+imgNum-1)/numImg), waitBar,
sprintf('%-.2f%%, image %-.0f of %-.0f, line %-.0f of %-.0f', ((((J-
1)/n+i-1)/m+imgNum-1)/numImg)*100, imgNum, numImg, i, m));

%piece of code to find time remaining: 32/60*cputime/((j-
1)/n+i-1)

¢didnt quite work...
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if i<=r

if j<=r

sumA = sum(imgIn(l:(i+w), 1l:(j+w)));
SumA = sum(sumA);
areahA = (it+w)*(j+w);

sumB = sum(imgIn(l:(i+r), 1l:(j+r)));
sumB = sum(sumB) ;
areaB = (i+r)*(j+r);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;

elseif j<=w

sumA = sum(imgIn(l:(i+w), 1l:(j+w)));
SumA = sum(sumA);
areahA = (it+w)*(j+w);

sumB = sum(imgIn(l:(i+r), (j-r):(j+r)));
sumB = sum(sumB) ;
areaB = (i+r)*(2*r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;

elseif (n-w)>j>(w)

sumA = sum(imgIn(l:(i+w), (J-w):(J+w)));
SumA = sum(sumA);
arealA = (it+w)*(2*w+l);

sumB = sum(imgIn(l:(i+r), (j-r):(j+r)));
sumB sum(sumB) ;
areaB = (i+r)*(2*r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;

elseif (n-r)>=j>=(n-w)

else

sumA = sum(imgIn(l:(i+w), (Jj-w):n));
SumA = sum(sumA);
areaA = (i+w)*(n-j+w+l);

sumB = sum(imgIn(l:(i+r), (Jj-r):(Jj+r)));
sumB = sum(sumB) ;
areaB = (i+r)*(2*r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);

imgOut(i,j) = mm;

sumA = sum(imgIn(l:(i+w), (Jj-w):n));
SumA sum(sumd) ;
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areaA = (i+w)*(n-j+w+l);

sumB = sum(imgIn(l:(i+r),(j-r):n));
sumB = sum(sumB) ;
areaB= (i+r)*(n-j+r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;
end

elseif i<=w
if j<=r

sumA = sum(imgIn(l:(i+w), 1l:(j+w)));
SumA = sum(sumA);

areahA = (it+w)*(j+w);

sumB = sum(imgIn((i-r):(i+r), l:(Jj+r)));
sumB = sum(sumB) ;

areaB = (2*r+1)*(j+r);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;

elseif j<=w

SumA sum(imgIn(l: (i+w), l:(Jj+w)));
sSumA sum(sumd) ;
areahA = (it+w)*(j+w);

sumB = sum(imgIn((i-r):(i+r), (j-r):(j+r)));
sumB = sum(sumB) ;
areaB = (2*r+l)*(2*r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;
elseif (n-w)>3j>(w)

SumA sum(imgIn(l: (i+w), (j-w):(j+w)));
SumA sum(sumd) ;
arealA = (it+w)*(2*w+l);

sumB = sum(imgIn((i-r):(i+r), (j-r):(j+r)));
sumB = sum(sumB) ;
areaB = (2*r+l)*(2*r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;

elseif (n-r)>=j>=(n-w)

sumA = sum(imgIn(l:(i+w), (Jj-w):n));

SumA = sum(sumA);
areaA = (i+w)*(n-j+w+l);
sumB = sum(imgIn((i-r):(i+r), (j-r):(j+r)));
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sumB = sum(sumB) ;
areaB = (2*r+l)*(2*r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;

else

end

elseif

sumA = sum(imgIn(l:(i+w), (Jj-w):n));
SumA = sum(sumA);

areaA = (i+w)*(n-j+w+l);
sumB = sum(imgIn((i-r):(i+r),(Jj-r):n));
sumB = sum(sumB) ;

areaB= (2*r+1)*(n-j+r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;

(m-w)>i>w

if j<=r

sumA = sum(imgIn((i-w):(i+w), l:(Jj+w)));
SumA = sum(sumA);
arealA = (2*w+l)*(j+w);

sumB = sum(imgIn((i-r):(i+r), l:(Jj+r)));
sumB = sum(sumB) ;

areaB = (2*r+1)*(j+r);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;

elseif j<=w

sumA = sum(imgIn((i-w):(i+w), l:(Jj+w)));
SumA = sum(sumA);
arealA = (2*w+l)*(j+w);

sumB = sum(imgIn((i-r):(i+r), (j-r):(j+r)));
sumB sum(sumB) ;
areaB = (2*r+l)*(2*r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;

elseif (n-w)>j>(w)

sumA = sum(imgIn((i-w):(i+w), (j-w):(j+w)));
SumA = sum(sumA);
areaA = (2*w+l)*(2*w+l);

sumB = sum(imgIn((i-r):(i+r), (j-r):(j+r)));
sumB = sum(sumB) ;
areaB = (2*r+l)*(2*r+l);
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mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;
elseif (n-r)>=j>=(n-w)

SumA sum(imgIn((i-w): (i+w), (j-w):n));
SumA sum(sumd) ;
areaA = (2*w+l)*(n-j+w+l);

sumB = sum(imgIn((i-r):(i+r), (j-r):(j+r)));
sumB sum(sumB) ;
areaB = (2*r+l)*(2*r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;
else

sumA = sum(imgIn((i-w):(i+w), (j-w):n));
SumA sum(sumd) ;
areaA = (2*w+l)*(n-j+w+l);

sumB = sum(ingIn((i-r):(i+r),(Jj-r):n));
sumB = sum(sumB) ;
areaB= (2*r+1)*(n-j+r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;
end

elseif (m-r)>i>=(m-w)
if j<=r

sumA = sum(imgIn((i-w):m, 1l:(j+w)));
SumA = sum(sumA);

areaA = (m-i+w+l)*(j+w);

sumB = sum(imgIn((i-r):(i+r), l:(Jj+r)));
sumB = sum(sumB) ;

areaB = (2*r+1)*(j+r);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;

elseif j<=w

sumA = sum(imgIn((i-w):m, 1l:(j+w)));
SumA = sum(sumA);

areaA = (m-i+w+l)*(j+w);

sumB = sum(imgIn((i-r):(i+r), (j-r):(j+r)));
sumB = sum(sumB) ;

areaB = (2*r+l)*(2*r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
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imgOut(i,j) = mm;
elseif (n-w)>j>(w)

sumA = sum(imgIn((i-w):m, (Jj-w):(J+w)));
SumA = sum(sumA);
areaA = (m-i+w+l)*(2*w+l);

sumB = sum(imgIn((i-r):(i+r), (j-r):(j+r)));
sumB = sum(sumB) ;
areaB = (2*r+l)*(2*r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;
elseif (n-r)>=j>=(n-w)

SumA sum(imgIn((i-w):m, (j-w):n));
sSumA sum(sumd) ;
areaA = (m-i+w+l)*(n-j+w+l);

sumB = sum(imgIn((i-r):(i+r), (j-r):(j+r)));
sumB = sum(sumB) ;
areaB = (2*r+l)*(2*r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;

else
sumA = sum(imgIn((i-w):m, (Jj-w):n));

SumA sum(sumd) ;
areaA = (m-i+w+l)*(n-j+w+l);

sumB = sum(ingIn((i-r):(i+r),(Jj-r):n));
sumB = sum(sumB) ;
areaB= (2*r+1)*(n-j+r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;
end
else
if j<=r
sumA = sum(imgIn((i-w):m, 1l:(j+w)));
SumA = sum(sumA);

areaA = (m-i+w+l)*(j+w);

sumB = sum(imgIn((i-r):m, 1l:(j+r)));

sumB = sum(sumB) ;

areaB = (m-i+r+l)*(j+r);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;

elseif j<=w

sumA = sum(imgIn((i-w):m, 1l:(j+w)));
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end
end

end

end

SumA = sum(sumA);

areaA = (m-i+w+l)*(j+w);

sumB = sum(imgIn((i-r):m, (Jj-r):(Jj+r)));
sumB = sum(sumB) ;

areaB = (m-i+r+1)*(2*r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);

imgOut(i,j) = mm;

elseif (n-w)>j>(w)

sumA = sum(imgIn((i-w):m, (Jj-w):(J+w)));
SumA = sum(sumA);
areaA = (m-i+w+l)*(2*w+l);

sumB = sum(imgIn((i-r):m, (Jj-r):(Jj+r)));
sumB = sum(sumB) ;

areaB = (m-i+r+1l)*(2*r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);

imgOut(i,j) = mm;

elseif (n-r)>=j>=(n-w)

sumA = sum(imgIn((i-w):m, (Jj-w):n));
SumA = sum(sumA);
areaA = (m-i+w+l)*(n-j+w+l);

sumB = sum(imgIn((i-r):m, (Jj-r):(Jj+r)));
sumB = sum(sumB) ;
areaB = (m-i+r+1l)*(2*r+1l);
mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;
else
sumA = sum(imgIn((i-w):m, (Jj-w):n));
SumA = sum(sumA);

end

areaA = (m-i+w+l)*(n-j+w+l);

sumB = sum(imgIn((i-r):m,(j-r):n));
sumB sum(sumB) ;
areaB= (m-i+r+l)*(n-j+r+l);

mm = (sumA- sumB)/(areaBA- areaB)-imgIn(i,Jj);
imgOut(i,j) = mm;
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function newImg = binarize(img, threshold)
$Author: Jordan Medlock

$Email: jordanemedlock@gmial.com

$Cell: (505)264-5163

$last edited 110815

[m,n]=size(img);
newImg = zeros(size(img));

for i=1:m
for j=1:n
if img(i,j)>threshold
newImg(i,j)=1;

else
newImg(i,j)=0;
end
end
end
end
function [L, stats] = findXY(img, threshold) % finds the boundaries of

a binary image and outputs them in a list
$Author: Jordan Medlock
$Email: jordanemedlock@gmail.com
$Cell: (505)264-5163
$last edited: 110816

[~,L] = bwboundaries(img);
stats = regionprops(L, 'Area’', 'PixelList', 'Perimeter');
end

function imgOut = findPlaqueZScore(zScoreImg, plaqueOnlyImg) %$finds the
z-score of only the plaque regions

$Author: Jordan Medlock

$email: jordanemedlock@gmail.com

$cell: (505)264-5163

$last edited 110809

Image Analysis of Alzheimer’s Plaques in MRIs of a Tg Mouse 45



img = binarize(plaqueOnlyImg, 1);

imgOut = img.*zScorelmg;
end
function [mask, outImg] = cropImg(imgIn, i) %asks the user to crop the

image and create a mask

img = imgIn;

imagesc(img); %display the image

title(sprintf('image %.0f', i)); % put its title so the user knows
whats going on

h = imfreehand('closed', true); %ask the user to create a freehand
region of interest around the brain

h.wait(); $wait till they are done

mask = h.createMask(); %create a binary mask from the ROI
object

outImg = img.*mask; gmask the image

end

function plaques = subtractAreaFromCandidates(img, candidates,
threshold, w, r) %failed exprement :-( supposed

to do the job of the other failed experement
but that didnt do a good job either
plaques = candidates;
for i=1l:length(candidates)
sum = zeros([length(candidates),1]);
num = zeros([length(candidates),1]);
for j=-r-1l:r+l
for k=-r-1l:r+l
if sqrt(j®2 + k"2) < w || sqrt(j*2 + k*2) > r

continue;
end
if candidates(i,l) + j <=0 || candidates(i,2) + k <=0
continue;
end
[m,n] = size(img);
if candidates(i,l) + j > m || candidates(i,2) + k > n
continue;
end
num(i) = num(i) + 1;
sum(i) = sum(i) + img(candidates(i,2) + j, candidates(i, 1)
+ k);
end
end
end
a=1;
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while a < length(plaques)

if img(plaques(a,2),plaques(a,l))-(sum(a)/num(a)) < threshold
plaques(a,:) = [];
sum(a) = [];
num(a) = [];
else
plaques(a,3) = img(plaques(a,2),plaques(a,l))-(sum(a)/num(a));
a=a+ 1;
end
end
end

function brainAvg = brainAverage(mask, imgIn) %find the average value
of the brain rather than the whole image

img = imgIn;
[m,n] = size(imgIn);
sum = 0;
num = 0;
for i=1:m
for j=1:n
if mask(i,j) == 1
sum = sum + img(i,Jj);
num = num + 1;
end
end
end
brainAvg = (sum/num);
end
$Finally!!!!
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$%%%%%%%ParameterSweeping.m script

readS5( 's5coords.txt');
s5=s5coords;
s5(:,3)=s5(:,3)./10;
output zeros(10,20);
a=1;
compS5 = zeros(32);
for 1=1:32
[m,n] = size(s5);
o=1;
while o
compS5(1l)=compS5(1)+1;
a=a+l;
if a<m
o = 1==s5(a,3);
else
o = 0;
end
end

end

for i=1:10
for j=i:20

list3=PlaquePrograml20301(2.5, j, 120229, 'mase s5.tif',
'outputFolder S5 120315', 32, 1i);

[m,n] = size(list3);
compAuto = zeros(32);
a=1;
for 1=1:32
o=1;
while o
compAuto(l) = compAuto(l)+1;
a=a+l;
if a<m
o = 1==1ist3(a,3);
else
o=0;

end

end
[i,31
output (i, j)=corr(compAuto(3:29,1),compS5(3:29,1))
end
end
beep;
beep;
beep;
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$%%%%%%%Compare.m script

oe

readS5( 's5coords.txt');
s5=s5coords;
s5(:,3)=s5(:,3)./10;

a=1;
compS5 = zeros(32);
for 1=1:32
[m,~] = size(s5);
o=1;
while o
compS5(1l)=compS5(1)+1;
a=a+l;
if a<m
o = 1==s5(a,3);
else
o = 0;
end
end
end
i=1;
list2 5 7 17=PlaquePrograml20301(2.5, 17,
'outputFolder 120208 6', 32, 7);
list2 5 2 10=PlaquePrograml20301(2.5, 10,

'outputFolder 120208 6', 32, 2);
size(list2 5 7 17);
zeros(32);

[m,n] =
compAuto =
a=1;

for 1=1:32

o=1;
while o
compAuto(l) =
a=a+l;
if a<m
O=
else
o=0;

compAuto(l)+1;

1==1ist3(a,3);

end
end

output(l)=corr(compAuto(:,1),compS5(:,1));

beep;
beep;
beep;

'120229",

'120229",

'mase_s5.tif',

'mase_s5.tif',
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img = cell(2,1);
img{i} = double(imread( 'mase s5.tif',10));

zThreshold = 2.5;

mask{i} = double(imread('outputFolder 120208 6/maskl0.tif'));
imagesc(img{i});

h = impoint();

h.wait();

x = uintl6(h.getPosition());

[m,n] = size(img{i});
¢for j=1l:m
J=x(2);

imgsplit = img{i}(j,:);

masksplit = mask{i}(j,:);

[imgstand,~,noiseavg] = makeZScoreImg(imgsplit);

brainavg = brainAverage(masksplit,imgstand);

brainavgmask = (-(masksplit-1))*brainavg;

tobeflattened = brainavgmask + imgstand.*masksplit;
flattenedonce = flattenImgMinus(tobeflattened,10).*masksplit;

puttogether = flattenedonce+(imgstand.*(-masksplit+1));
minusnoise = puttogether-noiseavg;
minusbrain = minusnoise-brainAverage(masksplit,minusnoise);
negative(j,:) = -minusbrain;
binary(j,:) = binarize(negative(j,:),5);

%end

[m,n] = size(img{i});
for j=1l:m

imgsplit2d(j,:) = img{i}(Jj,:);
masksplit2d(j,:) = mask{i}(j,:);
[imgstand2d(j,:),~,noiseavg2d(j,:)] =
makeZScoreImg(imgsplit2d(j,:));
brainavg2d(j,:) = brainAverage(masksplit2d(j,:),imgstand2d(j,:));
brainavgmask2d(j,:) = (-(masksplit2d(j,:)-1))*brainavg2d(j,:);
tobeflattened2d(j,:) = brainavgmask2d(j,:) +
imgstand2d(j,:).*masksplit2d(j,:);
flattenedonce2d(j,:) =
flattenImgMinus (tobeflattened2d(j,:),10).*masksplit2d(j,:);

puttogether2d(j,:) = flattenedonce2d(j,:)+(imgstand2d(j,:).* (-
masksplit2d(j,:)+1));
minusnoise2d(j,:) puttogether2d(j,:)-noiseavg2d(j,:);
minusbrain2d(j,:) = minusnoise2d(j,:)-
brainAverage (masksplit2d(j,:),minusnoise2d(j,:));
negative2d(j,:) = -minusbrain2d(j,:);
binary2d(j,:) = binarize(negative2d(j,:),5);
end
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X (px)
383
455
461
469
572
297
382
403
425
436
437
450
451
454
454
455
464
469
474
480
484
488
498
500
521
523
540
546
550
558
632
633
299
302
359
369
379
382
390
391
392
398
399
405
413
417
417
423
464
465
482
482
486
490
493
496
505
519
519
534
551
553
554
559
566
569
580
628
356
361
363
378
378
387
397
403
408
410
411
412
414
435
440

10.2 Sample List of Findings for S5

y (px)
57
49
52
48
57
132
110
77
39
55
78
125
33
63
104
132
56
158
100
130
123
134
93
38
76
81
79
132
77
65
158
154
144
139
134
80
112
107
128
98
95
140
90
86
124
73
84
61
63
67
50
80
80
86
86
119
72
76
112
95
123
74
91
97
101
104
119
180
78
127
62
105
111
50
140
86
127
66
135
165
124
134
188

z (slices) z-score (SD)

U as SRR BRAEDBEBESEDADRDBESEDAEDNDEDEDEAEDDEEEABDDEDEDSEDEAEDADEDEWWWNLWWWWWWWWWWWWWWWWWWWWPWWWRER R

5.31389986650220
6.81606202892931
5.06738755789502
5.71665769003585
5.19151973385078
6.07815770859543
6.60138723169894
5.86092255911581
6.42988844909019
6.26445082693567
5.96030171031703
5.43649489290419
5.48736528646123
6.09605547162596
5.65846609186770
5.88334571371092
6.09242838619616
7.80993959130433
5.12034897160334
5.02855781206426
5.26835651328861
5.29249146546113
5.59786663072441
9.93846804846567
6.53233718500042
5.32778465580986
7.40368838692621
6.34491304893277
7.88945889671868
5.73948176091358
5.10640855133784
5.41060722495354
5.62718925101854
6.44515202611410
6.95453599282405
7.28835422399129
5.20951074709501
5.58040768990441
5.90966092233452
5.05272313940031
6.18092736700214
6.20602942795813
6.04826820193784
5.11949613540628
5.16237463594234
6.69432168843741
5.15232213882268
5.54748850161786
5.22160602597933
5.99968936640585
8.64695810966032
5.29513436569209
5.22034514037046
7.22232203566978
5.74475241763457
5.52539430191041
5.59815407899168
6.49483563576837
5.16329328124243
6.40742053761642
5.06501690470077
5.50901293039601
5.59582268090094
5.44337383508423
5.08084853240030
5.38956617780332
5.27398944314700
5.59205499974951
8.67609492972065
5.90950612548181
7.09218006078481
5.36690783493555
5.85110102915837
10.1005765522327
6.03478478637453
5.52215035842937
5.85343606631386
6.72375862051081
7.81294984926535
5.15136734258408
5.33999780447493
5.82624312810094
5.20652019320323

Continues for 1723 rows

area (px) roundness (

o

o

o

BPORROPANNONRRDRORUOZTOOONRUTARNNDRRRETIROUNTAXRSNXRORRUINTONNAORNORAANROUZSANNUR RGN ULS LR OO0

p
2VmA.
0.786393873897061
0.822084468062250
0.786393873897061
1.07997935257674
0.963131863949189
1.03986373924986
0.564189583547756
0.683038916019309
1.18041728111098
0.713649646461109
0.786393873897061
0.949261377864701
0.681037072175311
0.681037072175311
0.683038916019309
0.683038916019309
0.935352168221325
0.861451327634586
0.861451327634586
0.861451327634586
0.830151103815378
0.763660723748473
0.728059254791900
0.690988298942671
0.853855802910311
0.752252778063675
0.690988298942671
0.564189583547756
0.775068669433270
0.564189583547756
1.24287489096088
1.02963127233795
0.830151103815378
1.11376457983660
0.728059254791900
0.787550487047847
0.681037072175311
0.564189583547756
0.718931944883810
0.763660723748473
1.07997935257674
0.861451327634586
1.21827615086514
0.564189583547756
1.16260300414991
0.763660723748473
0.787550487047847
0.690988298942671
0.763660723748473
0.790516864641796
0.564189583547756
0.880508212376027
0.880508212376027
0.564189583547756
0.763660723748473
1.33120328988401
0.683038916019309
0.880508212376027
0.861451327634586
0.853855802910311
0.965962898663125
0.852966995184973
1.17401094983470
1.04103018970089
0.683038916019309
1.03986373924986
0.949261377864701
0.683038916019309
0.564189583547756
0.963131863949189
0.763660723748473
1.16602036535087
0.681037072175311
1.16260300414991
0.690988298942671
0.728059254791900
1.00925300880806
0.564189583547756
0.963131863949189
0.846284375321635
0.564189583547756
1.01821429833130
0.564189583547756
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