
Air Traffic Control: The Next Step! 

 
New Mexico Supercomputing Challenge 

Final Report 

April 4, 2012 

 

Team 83 

Manzano High School 

 

 

 

 

 

 

 

 

 

 

Team Members: 

Tommy Soudachanh 

Khiem Tang 

Ian Wesselkamper 

 

Teacher: 

Steve Schum 



Executive Summary 

 
Problem Definition:  

Air Traffic Control is a process that takes many people communicating, and thinking to 

prevent aircraft collisions, and keep planes on time if possible. There are many mistakes 

on both ground, and in air. Planes have been miss tracked, misplaced, and often are 

delayed due to slight mistakes that could have been avoided. Although there are many 

people who work in air traffic control, many mistakes are made as they try to manage air 

traffic. Also human controlled air traffic controls systems are slow, and you can’t use the 

airport to its full potential.  

Problem Solution:  

Our goal is to reduce the amount of human error by creating a program that efficiently 

directs airplanes at a medium sized airport. With this program, the risk of human error 

will decrease for managing air traffic on and off runways and in result, increase the safety 

of air travel and maximize the capability of an airport. The program will be based on the 

layout of a medium sized airport, but can easily be adaptable to other airports, big or 

medium or small. Eventually we will have a working simulation of an airport, with 

different problems like weather delays, pilot error, emergencies, and other things that an 

airport would confront.  



Table of Contents 

 
1. Introduction 

2. Java Knowledge 

3. Program 

4. Data  

5. Conclusions 

6. References 

7. Source Code 

8. Acknowledgements  



Introduction 

 
Although there are many people who work in air traffic control, many mistakes 

are made as they try to manage air traffic. Our goal is to reduce the amount of human 

error by creating a program that efficiently directs airplanes at a medium sized airport. 

With this program, the risk of human error will decrease for managing air traffic on and 

off runways and in result, increase the safety of air travel and maximize the capability of 

an airport. The program will be based on the layout of a medium sized airport, but can 

easily be adaptable to other airports.  



Java Knowledge 

 
We incorporated multiple aspects and concepts of programming for our project.  In 

terms of object-oriented programming, classes, objects, class accessibility, and 

instantiating were concepts we used in programming.  In addition, we used the 

KeyboardReader, JOptionPane, ActionListener, and ItemListener input methods and 

JOptionPane, JFrame, JTextArea, and JApplet output methods to satisfy the requirements 

needed for our program.  Knowledge on loops (if-else, for, while, nested), Garbage 

Collecting, SDLC, and Debugging were needed as well in order to fully complete the 

program. 

 

In terms of creating the outlook and flight environment, we incorporated the 

GridWorld program, developed by the College Board that is used in tandem to teach 

Java in AP Computer Science.  This will allow us to create a field for the objects in 

our program, showing how the flight program will physically work and calculate. 

● Uses a two dimensional array to output an area for critters to interact in: 

 

 

 

 

 

 



Program 

 
The program utilizes the basic physics formulas, such as velocity and 

acceleration, in order to calculate the speed and time needed to land an incoming plane 

that is five miles away. We plan to be able to use a modified version of A* path-finding 

to track and guide planes in air and on the ground, and we hope to make the program 

flexible enough to use any airport with only minor changes to the setup of the airport and 

software. 



Data 

 
Time Distance Velocity 

(seconds) (miles) (mph) 

0.0 0.0 300.00000000000006 

10.0 0.8096851046198468 282.97327532628964 

20.0 1.5720737518127204 265.9465506525793 

30.0 2.2871659415786207 248.9198259788689 

40.0 2.9549616739175475 231.89310130515852 

50.0 3.575460948829501 214.86637663144813 

60.0 4.148663766314481 197.83965195773777 

70.0 4.674570126372489 180.81292728402735 

80.0 5.153180029003522 163.786202610317 

90.0 5.584493474207583 146.75947793660663 

100.0 5.96851046198467 129.73275326289624 

110.0 6.305230992334785 112.70602858918583 

120.0 6.594655065257926 95.67930391547544 

130.0 6.836782680754093 78.65257924176508 

140.0 7.0316138388232865 61.6258545680547 

150.0 7.179148539465507 44.59912989434432 

160.0 7.279386782680756 27.572405220633943 

170.0 7.332328568469029 10.545680546923567 

 

 Inputs were 300 and 100 

 Data has been formatted from origin due to length and logical errors 

 Data has not been implemented in further usages in the program due to errors 



Conclusion 

 
All experimental data has not been collected yet in order to develop a complete 

conclusion. 



References 

 
 Equations 

○ David J Lilja, “Measuring Computer Performance: A Practitioner’s 

Guide”, Cambridge University Press, 2000.  

○ Deitel, Harvey M. Java How to Program , Fifth Edition. Prentice Hall, 

2002  

○ Edwards, Bruce H., Robert P. Hostetler, and Ron Larson. Calculus of a 

Single Variable. Boston: Houghton Mifflin Company, 2006  

○ Gargenta, Aleksandar. "Java Fundamentals Tutorial." Marakana. 2005. 

Marakana Inc. 1, Oct. 2011 

<http://marakana.com/bookshelf/java_fundamentals_ tutorial/index.html> 

○ Giancoli, Douglas, C. Physics: Sixth Edition. Upper Saddle River: Pearson 

Education, Inc., 2005   

○ Horstmann, Cay. "Gridworld Case Study." 2006. College Board. 25, Sept. 

2011 <http://apcentral.collegeboard.com/apc/public/courses/ 

teachers_corner/151155.html>  

○ Johnston, Barbara. Java Programming Today. Prentice Hill, 2004.  

■ Lester, Patrick. "A* Pathfinding for Beginners." Almanac of 

Policy Issues. 2004. Almanac of Policy Issues. 15, Oct. 2011 

<http://www.policyalmanac.org/games/aStarTutorial.htm>  

○ Scott, Jeff. "Airliner Takeoff Speeds." Aerospaceweb. 2002. The Aircraft 

Museum. 20, Dec. 2011 

<http://www.aerospaceweb.org/question/performance/ q0088.shtml> 



Source Code 

  

Working Code: 

import javax.swing.*; 

public class Airplane { 

  int i; // int = integer variable type (+9,0,-133) 

  int ttotalA=120, ttotalB=240; // ; ends statements. 

  double aA=-0.761, aB=-2.00; // aA=accel before touchdown 

  // aB=accel after touchdown 

  // Variables for landing a plane Part A and Part B 

  double time, ttemp; /*float = real number variable type with 8 chars max 1234567. 

  1.000001 0.000009 including the decimal point */ 

  double vai; // vai = initial velocity part A at 5.0 miles before 

  double va; // va = velocity in part A every 10 seconds 

  double vbi; // vbi = initial velocity part B at 0.5 miles into runway 

  double vb; // va = velocity in part B every 10 seconds 

  double dai; // vai = initial position part A at 5.0 miles before 

  double da; // va = position in part A every 10 seconds 

  double dbi; // vbi = initial position part B at 0.5 miles into runway 

  double db; // vb = position in part B every 10 seconds 

  // Variables for an outbound plane Part C and Part D 

  double vci; // vci = initial velocity part A at 5.0 miles before 

  double vc; // vc = velocity in part A every 10 seconds 

  double vdi; // vdi = initial velocity part B at 0.5 miles into runway 

  double vd; // vd = velocity in part B every 10 seconds 

  double dci; // vci = initial position part A at 5.0 miles before 

  double dc; // vc = position in part A every 10 seconds 

  double ddi; // vdi = initial position part B at 0.5 miles into runway 

  double dd; // vd = position in part B every 10 seconds 

  JFrame frame = new JFrame("final outputs"); 

  JTextArea textArea = new JTextArea(); 

  String area = ""; 

  JScrollPane pane = new JScrollPane(textArea); 

   

  public Airplane() { 

  //const float x=value; Declare a constant for a given scope of the program. 

  //cout.precision(3); // 3 = 3 digits past the decimal point 

  //cout.setf(ios::showpoint | ios::fixed); 

    String temp =JOptionPane.showInputDialog("Enter the initial velocity of an incoming 

plane 5 miles away:"); // We entered 300 mph 

    vai = Double.parseDouble(temp); 

    vai = vai * 1609 / 3600; // Converts mph to m/s 

    temp=JOptionPane.showInputDialog("Enter touchdown velocity of an incoming 

plane.");// We entered 150 mph 

    vbi = Double.parseDouble(temp); 

    vbi = vbi * 1609 / 3600; // Converts mph to m/s 



    System.out.println("the starting distance from runway is 5.00 miles away."); 

    dai = 0.0; // We set dai = 0 = initial position 

    area = "\t\t" + "Time" +"\t\t" + "Distance" +"\t\t\t" + "Velocity" +"\n"; 

    area += "\t\t" + "(seconds)" +"\t\t" + "(miles)"+"\t\t\t" + "(mph)" +"\n"; 

    for(i=0; i<=ttotalA; i++) // i++ means i = i + 1 

    { 

      ttemp=(float)i * 10; // Trick: type cast int i to a real number as float. 

      da=dai + vai * ttemp +.5 * aA * Math.pow(ttemp,2); // pow = power 2 = 2nd order 

power 

      da = da / 1609; // Converts meters to miles 

      va=vai+aA*ttemp; 

      va = va * 3600 / 1609; // converts back from m/s to mph 

      area += "\t\t" + ttemp +"\t\t" + da + "\t\t\t" + va + "\n" ; 

    } 

    textArea.setText(area); 

    frame.setSize(500,500); 

    frame.add(pane); 

    frame.setVisible(true); 

  } 

  public static void main(String[] args) {  

    Airplane airplane = new Airplane(); 

  } 

}  

 

Non-Working Code: 

//no package 

import java.util.ArrayList; 

//in progress last edited january 9 2012 

 

public class AircraftController { 

 private int ctime = (int) System.currentTimeMillis(), otime = (int) 

System.currentTimeMillis();//ctime is current time otime is old time 

 private boolean isRunning = true; 

 private ArrayList<Aircraft> airCraft;//this is for doing actions to the planes 

 private ArrayList<Aircraft> removeList;//this is for cueing planes for deletion 

 public AirCraftController() { 

  airCraft = new ArrayList<Aircraft>(); 

  removeList = new ArrayList<Aircraft>(); 

 } 

  

 public voidAirCraftLoop() { 

  while(isRunning) { 

   ctime = System.currentTimeMillis(); 

   //this pretty bit of code adds and removes old and new planes 

   ArrayList<Aircraft> AddList = RecievePlanes(); 

   for(adding:AddList) { 



    airCraft.add(adding); 

   } 

   airCraft.removeAll(removeList); 

   removeList.clear(); 

    

   for(airCraft AirPlane:airCraft) { 

    //error handling needs to be re written 

    //take off handling 

    if(AirPlane.isTakingOff()) { 

     if(checkPath(AirPlane)) {//this will need an extra 

value for handling the size to check for and the path its going to go on 

      //checkPath is going to just check to see if 

theres any collisions in the near future 

      AirPlane.TakeOffApprove(); 

     }else{AirPlane.hold(); 

    } 

    if(AirPlane.isLanding()) { 

     //uhhh 

     //not sure if i should throw code for landing to a 

later section 

    } 

    if(AirPlane.isLeaving()) { 

     //do code related to heading to a new airport 

    }  

      

   } 

    

   otime = ctime; 

  } 

 } 

  

 public ArrayList<Aircraft> RecievePlanes() { 

  ArrayList<Aircraft> recieving = new ArrayList<Aircraft>();//just blank 

for now 

  //for now this will remain blank, later it will be input by user 

  //unlikely future plan, be gotten for a central server 

  return recieving; 

 } 

  

 public void addAircraft(Aircraft aircraft) { 

  airCraft.add(aircraft); 

 } 

  

 public airCraft getAirCraft(int number) { 

  return airCraft.get(number); 

 } 



  

 public static void main(String[] args) { 

  AircraftController controller = new AircraftController(); 

  controller.AirCraftLoop(); 

 } 

}  



 

Acknowledgements 

 
 Adams, et al (1998) C++ An Introduction to Computing, 2nd Ed, Prentice 

Hall 

 Albuquerque Academy-Team 7 (2008) "Modernizing the U.S. Air Traffic 

Control System", NMSCC 

 Jamsa, Kris (1996), Rescued by C++; 2nd Ed, Jamsa Press  

Scott, Jeff (2002), "Airliner Takeoff Speeds", URL: 

http://www.aerospaceweb.org/question/performance/q0088.shtml  

Zitzewitz, et al (2005), Physics Principles and Problems, Glencoe 

 Thank you to Mr. Schum for his time and knowledge 

 Thank you to the NMSSC program for getting us started with computer 

programming 

 Thank you to UNM and the Evaluators for their efforts 

 


