
Team 105 Facebook Farkle Program

School of Dreams Academy

Team Members:

 Jonathan Daniels
 Joseph Orona
 Albert Reed

Executive Summary

Our team's project was to test whether a Facebook Farkle player would have a better

chance of success if they followed mathematical law instead of “gut instinct.” We began this

project by working with our school's mathematician learning Matlab and the probability that

would be involved in this project. As the end of the year approached, we were swamped with

other competitions. These challenges include FIRST robotics, BEST robotics, and Botball. When

our final competition came to a close in the middle of March our focus shifted back over to

supercomputing challenge. Because our school’s mathematician left, we no longer had an

expert in Matlab; consequently, we switched over to the programming language NetLogo. As a

first step, we have been attempting to create a Farkle game in NetLogo. Once the game is

created, we can start programming in players that follow an optimal Farkle strategy following

the laws of probability and players that imitate how most people would play and see which

mailto:zack.daniels97@gmail.com
mailto:sodauser5@gmail.com
mailto:albertnm@msn.com

players does better scores better or wins more often. Another factor we would like to include

into next year’s program is the built in feature to Facebook’s Farkle game, power dice. These

dice help the player in various ways and are used at the player’s discretion. A problem to solve

next year is whether or not using these power dice following the laws of probability will lead to

more success over following “gut instinct.”

Problem Statement

 Farkle is a simple dice game that relies heavily on probability, strategy, and luck. A

player will roll six dice, remove scoring dice, and re-roll the remaining dice, if they decide to. If a

player rolls no scoring dice, they “Farkle Out”, meaning that their turn is over and they do not

receive any points for that turn. The Facebook version of Farkle throws in “Power Dice” which

give the game a whole new dimension. The main problem that we were trying to solve was how

to build the optimal Facebook Farkle strategy based on your current score, the score of your

opponents, the number of remaining dice you have to roll that turn, and so on. As the year

progressed, our team changed our focus to other engineering competitions we were competing

in, which meant we didn’t spend as much time working on this project as we needed to.

Consequentially, we had to revise our project.

 Instead of building a program that would develop optimal Facebook Farkle strategy, our

problem turned to building a NetLogo program that would act as a Farkle game following

standard Farkle rules. Once we got to this point, we could incorporate a computer player that

would follow optimal Farkle strategy from the beginning in order to compare success rate to a

human player who was playing without any prior knowledge of said strategy.

 The main goal of this project is to learn about the statistics and probability involved in

this game, while gaining an understanding on how it can be applied to real world problems.

Although we did not achieve our original end product, we still feel this was a successful year.

This is our first year working on the Supercomputing Challenge, so we are also using this project

to learn about the challenge and to gain the skills necessary to be competitive in the challenge

in future years.

Method

 We began our project by learning how to build simple functions in Matlab. The functions

that we put together were all exercises based off of statistics that our mentor gave us. The

most complete one, as seem in appendix B.1, would take user input of a number of dice

between one and two, and, based on standard Farkle rules, give back the odds of scoring

certain amounts with those two dice. This program was helpful to us because we gained a

better understanding of Farkle rules, Matlab programming, and probability.

 The second step we took was to find all possible combinations with six dice. This

seemed daunting at first, but after some research we found plenty of online resources that had

such information available already. There are 46656 possible combinations, starting from

1,1,1,1,1,1 and ending with 6,6,6,6,6,6. From here we could begin looking at the probability of

scoring certain dice combinations. These calculations can be found in Appendix A.1.

 From this point, our goal was to develop a Matlab program that would take user input

based on current score, turn number, opponent score, roll number, and number of available

dice. After taking input, the program would output what move would be best on the human

player’s part, such as “roll again” or “end your turn.” The program would be built on later to be

more interactive and descriptive, but this was our first step.

 This Matlab program was never complete, though. This is due to several factors, such as

our mentor leaving the school and our team’s participation in other engineering competitions

such as the FIRST Robotics competition. Because we couldn’t achieve what we planned, we

narrowed the scope of our project.

 Our new project idea was to develop a NetLogo Farkle game. After the game was

complete, we could add a computer player that would play the game using optimal strategy

and pit the computer against a human player in order to see the rates of success in both

players. Thus far, we have the beginning of the game. Code for the game can be found in

appendix C.

Results and Conclusions

 Seeing as how our project was not fully complete, we have little results and conclusions.

Most of what we have taken from this project is more knowledge on statistics, probability, and

programming in Matlab and NetLogo. We now feel that we can successfully write a NetLogo

program in order to model something, and we are also a bit more confident in our Matlab skills.

In the future, we hope to apply what we learned to a more in depth project.

Credits and References

"Official Rules of Farkle." Official Rules of Farkle. N.p., n.d. Web. 03 Apr. 2013.

 "The Solarium." The Solarium. N.p., 30 Aug. 2009. Web. 03 Apr. 2013.

 "Farkle." Wikipedia. Wikimedia Foundation, 29 Mar. 2013. Web. 03 Apr. 2013.

Acknowledgements

Mentors

• Elizabeth Finley
• Creighton Edington

Appendix A.1

The total number of possibilities was found by multiplying the number of dice by the number of
sides- 6^6

This is a chart of the probability of Farkling based on the number of dice you have.

(The Solarium)

This is a chart of the odds of scoring certain combinations. (The Solaruim)

This is a chart of the odds of scoring x of a kind, depending on how many dice you have left.

Appendix B.1

Below is our Matlab program that we built.

function [text] = dicefunc(d)
%Function should take input for d, with d being number of dice between one and two, and
give
%probability for scoring following standard farkle rules%

if (d == 1)
 text = fprintf('1/6 chance of 100 points; 1/6 chance of 50 points; 1/3 chance of scoring');
end;

if (d == 2)
 text = fprintf('8/36 chance of 50 points; 9/36 chance of 100 points; 2/26 chance of 150
points; 1/36 chance of 200 points; 20/36 chance of scoring');
end;

if (d < 1)
 text = fprintf('ERROR'); %I couldn't figure out how to do this in any other way, but it
works.%
end;

if (d > 2)
 text = fprintf('ERROR');
end;

Appendix C

Net Logo Code

globals [farkle? total-score bank-score]

breed [dice a-dice]

dice-own [

 spots

]

to setup

 clear-all

 ;; setup-globals

 setup-dice

 reset-ticks

 ;;setup-plot

end

to setup-dice

 set-default-shape dice "die-1"

 create-dice 6

 [

 set xcor who

 set color white

 roll-one

]

end

to roll-one

 set spots (1 + random 6)

 set shape (word "die-" spots)

end

to go

 roll

 farkle

 while [bank-score = 0]

 [

 score-points

]

 tick

end

to roll

 ask dice [

 roll-one

]

end

to farkle

 ifelse ((any? dice with [spots = 1 or spots = 5])

 or (count dice with [spots = 2] >= 3)

 or (count dice with [spots = 3] >= 3)

 or (count dice with [spots = 4] >= 3)

 or (count dice with [spots = 6] >= 3))

 [

 ;; do nothing

]

 [

 set farkle? true

 print "farkle"

]

end

to score-points

 grab-die

end

to grab-die

 if mouse-down? [

 let candidate min-one-of turtles [distancexy mouse-xcor mouse-ycor]

 if [distancexy mouse-xcor mouse-ycor] of candidate < 1 [

 ;; The WATCH primitive puts a "halo" around the watched turtle.

 watch candidate

 while [mouse-down?] [

 ;; If we don't force the view to update, the user won't

 ;; be able to see the turtle moving around.

 display

 ;; The SUBJECT primitive reports the turtle being watched.

 ask subject [setxy mouse-xcor mouse-ycor]

]

 ;; Undoes the effects of WATCH. Can be abbreviated RP.

 reset-perspective

]

]

end

	Team 105 Facebook Farkle Program
	Executive Summary
	Problem Statement
	Method
	Results and Conclusions
	Credits and References
	Acknowledgements
	Appendix A.1
	Appendix B.1
	Appendix C

