
Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

Dynamic Hashing Algorithms

Albuquerque, New Mexico

Supercomputing Challenge

April 2nd, 2013

Team 49

La Cueva High School

Connor Brown Maxwell Sanchez Ryan De La O James Gavin Lewis

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

Table of Contents:

Front page…………………………………………………………………………………………1

Summary…………………………………………………………………………………………..2

Implementation…………………………………………………………………………….....4

Comparison of Entropy and Distribution……………………………………………7

Tri-salt Implementation…………………………………………………………………..11

Explanation of Steps………………………………………………………………………..12

Step Example………………………………………………………………………………..…13

Application of Algorithm…………………………………………………………………15

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

Summary:

 Introduction: Today, billions of people worldwide use the Internet for many purposes,

from personal communication to finance management to mission-critical information exchange.

Many such services work based on user-based access, with each user having access to certain

resources and information. Account compromising can be a serious issue in many circumstances,

and can result in fraud, theft, and more. Someone gaining access to an online banking account

could mean hundreds of thousands if not millions of dollars in damage. The passwords used in

user authentication are rarely stored in plaintext on the server though; they are instead hashed

and stored in a database. When the user logs in tomorrow, the password he or she enters is

hashed using the same algorithm as the first hash underwent, and the results are compared. If

they are the same, he or she is granted access.

 The Problem: The hashing algorithms that many companies use are cryptographically

solid—Knowing the hash there isn’t a known method for deriving the input text. For example, if

I run SHA1 on the string “Computer”, I get 924645b3e345a600f94ae78f01c5886cc320a89.

There is no known way to reverse this base-16 hash back into the original password;

“Computer”. These algorithms, however, are extremely vulnerable to rainbow table attacks,

where a hacker would have a precomputed table of all the possible letter-number combinations

up to 10 characters in length, and when they run the above hash through this rainbow-table, it

finds that “Computer” is the original password.

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

 Just 15 years ago the thought of generating a rainbow table of any significance would be

out of the question for any consumer or small business. Even a botnet would face a difficult

dilemma of slow internet transfer speeds and storage for the portions of the generated tables.

Today, a $400 GPU can compute over one billion SHA256 hashes per second, and this huge

rainbow table can easily be stored on $500 worth of high-density magnetic storage. After a

database dump, a hacker can start obtaining plaintext passwords immediately.

 Currently, database managers and programmers have two main defenses against rainbow

table attacks: salts and peppers, which alter the hashing algorithm or its output in some way.

These work as additional data fed into the hash at runtime (concatenation), or a modification that

occurs to the output post-computation. For example, a website may concatenate “6702” to every

password entered, before the hash occurs: userPassword = SHA256(passw0rd + 6702). With the

above example, even if the hacker did not know the salt, they could attack it with a rainbow table

they pre-generated. If they generated a rainbow table for 12 characters, then their rainbow table

could crack passwords up to 8 characters long from the aforementioned database, as all 8-letter

password combinations would at some point be found with “6702” added on to the end of them.

For example, if a user entered the password “penc1l” into the website, penc1l6702’s hash would

be stored in the database. In a 12-character alphanumeric rainbow table, penc1l6702 would be an

entry, and would be reported as the plaintext password. After seeing a trend of all passwords

looking like <password>6702, the hacker would find that the salt is 6702, and could either stop

and run with all the 8-and-below-character passwords they cracked, or could generate a new

rainbow table using the above salt. As well, since this algorithm is a static algorithm, it would be

a large hassle to upgrade the database to a new, harder (more CPU cycles to compute) algorithm

to keep up with increasing computation speeds.

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

 What We Want: We want a hashing algorithm that precomputation attacks are virtually

impossible against. We want to make it as hard as possible for hackers to create a rainbow table

after the attack, and we don’t want a simple database dump to reveal the salt, like shown above.

After the intrusion, we want the company implementing our algorithm to have as much time as

possible to alert users, freeze funds, and assess damage before the hacker can recover the

plaintext passwords of users. We want the algorithm to be controlled fully by the sysadmin, and

we want the algorithm to become harder to compute over time, to combat generation of rainbow

tables.

 Implementation: The implementation of SHDA (Secure Hashing Dynamic Algorithm)

we currently have is a Java Object that can be instantiated with the primes and a steporder:

hasher = new SHDA(prime1, prime2, prime3, prime4, prime5, “steps”);

 Where each prime is a prime represented in binary (with 32 characters and padding if

necessary), and the step order is comprised of digits 0 to 9. Upconversion can be then done with

this instantiated hash object, by providing the new step order plus the string to upconvert (as

explained later):

hasher.upconvert(password, newStepsToAdd);

One of the primary difficulties in making a hashing algorithm is getting the results to have

Gaussian (even) distribution. The charts below compare four different trials (each with a

thousand inputs) with a sample area (as shown in the Java code below that generated it)

converted from hex to base 10.

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

 for (int i = 1000; i < 2000; i++) // or 2000-3000 or 3000-4000

 {

 String temp3 = hash.getHash(Integer.toString(i));

 temp3 = temp3.substring(0, 20);

 Long l = Long.parseLong(temp3.substring(8, 14), 16);

 out.println(i+","+l);

 }

The following graphs do not display any patterns vulnerable to exploitations that endanger the

integrity of the output.

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

SHDA Output

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

0 100 200 300 400 500 600 700 800 900 1000

SHDA Output

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

SHDA Output

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

SHDA Output

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

Here are some tables generated in a similar way using the popular SHA256 algorithm.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

0 100 200 300 400 500 600 700 800 900 1000

SHA256 Sample

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

SHA256 Sample

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

As you can see, our algorithm is close in distribution to SHA256, with a few more focus areas in
our algorithm, likely due to many entropy-reducing steps.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

SHA256 Sample

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

SHA256 Sample

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

Implementation of tri-level salting:

 Classic concatenation/post-processing

 Starting prime numbers can be changed

 Number and order of algorithm steps can be modified

The concatenation/post-processing salt is implemented by the server administrator as normal
salting is done with other algorithms. The starting prime numbers can be generated with very
simple code:

Random random = new Random();

int prime1 = 0;

while (!isPrime(prime1) || (Integer.toBinaryString(prime1).length() != 31))

 {

 r2 = random.nextInt(1000000000)+1000000000;

 }

And then input the primes at object construction (new SHDA(prime, prime, prime, prime,
prime);).

The step order is determined by the system administrator. Longer step orders take longer to
compute, and are more resistant to rainbow table generation.

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

The salts embedded on the algorithm level help to resist Application-Specific Integrated Circuit

creation. The high-memory steps slow down GPUs and Field-Programmable Gate Array devices,

as accessing memory on these devices require time and leave cores idle.

To future-proof the algorithm, we have implemented a variable difficulty system, based on the

step order. Since the steps are the last portion of the algorithm, additional steps can be added and

hashes created using the old step order can have extra steps added onto the end of them.

Steps:

With any portion of an algorithm that doesn’t contain a one-to-one match, entropy (chaos,

possible outputs) is lost. Some of our steps are made to give an exact one-to-one match (a form

of mixing), which increase difficulty of computation while retaining all entropy provided to the

step. Other algorithm steps do not provide one-to-one matching but are more secure at the

expense of entropy. High entropy costs are only a problem when a large amount of steps are

used, as eventually entropy boils down to a very limited output range. Mixing steps (not having

more than two of the same step in a row) help to reduce the recurring patterns that some steps

tend to produce in output. One of the steps is designed as a memory step, which when used

makes the algorithm more difficult to run on high-performance consumer devices, such as

Graphics Cards and FPGAs.

Here is the code for one of our entropy-reducing steps:

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

 public static void one()

 {

 String One = h0;

 String Two = h1;

 String Three = h2;

 String Four = h3;

 String Five = h4;

 One = leftx(One, 10);

 Two = leftx(Two, 12);

 Three = leftx(Three, 14);

 Four = leftx(Four, 16);

 Five = leftx(Five, 18);

 String[] str = new String[100];

 str[0] = One;

 str[1] = Two;

 str[2] = Three;

 str[3] = Four;

 str[4] = Five;

 int countOne = 0;

 int countTwo = 3;

 int countThree = 4;

 for (int i = 5; i < 100; i++)

 {

 str[i] = XOR(str[countOne], str[countTwo]);

 str[i] = AND(str[i], str[countTwo]);

 str[i] = OR(str[i], invert(str[countTwo]));

 countOne++;

 countThree++;

 countTwo++;

 }

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

 String temp = str[0];

 for (int i = 1; i < 100; i++)

 {

 temp = binaryAdd(temp, str[i]);

 }

 h0=leftx(h0, temp.length()%h0.length());

 h1=leftx(h1, temp.length()%h1.length());

 h2=leftx(h2, temp.length()%h2.length());

 h3=leftx(h3, temp.length()%h3.length());

 h4=leftx(h4, temp.length()%h4.length());

 h0=AND(h0, str[18]);

 h1=AND(h1, str[26]);

 h2=AND(h2, str[55]);

 h3=AND(h3, str[74]);

 h4=AND(h4, str[97]);

 h0=XOR(h0, str[19]);

 h1=XOR(h1, str[27]);

 h2=XOR(h2, str[56]);

 h3=XOR(h3, str[75]);

 h4=XOR(h4, str[98]);

 next();

 }

Team 49 Supercomputing Challenge Final Report

GPU-Hostile: Future-Proof Dynamic Algorithms; The benefits of implementing SHDA

To give a visualization of the step order:

In the case above, the step order is “14837324”, with a difficulty of 8. If the sysadmin desires to

increase the difficulty, he or she could add more steps after the 2nd “4”, and the extra steps could

be added to hashes that were created using the old difficulty 8 algorithm.

Application of our Work:

Our work would be mainly used by system administrators who have to manage user

accounts in some form, and store/check passwords for those accounts. This algorithm could be

used on most every website that uses logins with passwords. It is easy to implement for any

website that uses java at some point, and future implementations of our algorithm will be in other

languages such as the C family and common scripting languages.

